

December 28, 2001

American TCB Sandy Pickett 6731 Whittier Ave Suite C110 McLean, Va. 22101

Gentlemen:

The enclosed documents constitute a formal submittal and application for a Grant of Equipment Authorization pursuant to Subpart E of Part 15 of FCC Rules (CFR 47) regarding intentional radiators. Data within this report demonstrates that the equipment tested complies with the FCC limits for intentional radiators.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

Sincerely,

Juan Martinez

Senior EMC Engineer

JM/dmg

Enclosures: Agent Authorization Letter

guan man-

Emissions Test Report with Appendixs

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 4 (LELEAN Devices) on the D-Link Corporation Model: DW-590 & DWL-A520

FCC ID: KA22001120010-1

GRANTEE: **D-Link Corporation**

No.8, Li-shing Road VII

Hsinchu, Taiwan

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: December 28, 2001

FINAL TEST DATE: December 21, 2001

AUTHORIZED SIGNATORY:

Juan Martinez

Senior EMC Engineer

guan mare

DECLARATIONS OF COMPLIANCE

Equipment Name and Model:

PCI Adapter, DW-590 & DWL-A520

Manufacturer:

D-Link Corporation No.8, Li-shing Road VII Hsinchu, Taiwan

Tested to applicable standards:

RSS-210, Issue 4, December 2000 (Low Power License-Exempt Radiocommunication Devices)

FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV2** Dated August 12, 2001 Departmental Acknowledgement Number: IC2845 **SV4** Dated July 19, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 4); and that the equipment performed in accordance with the data submitted in this report.

Signature

Name Juan Martinez

Title Senior EMC Engineer
Company Elliott Laboratories Inc.
Address 684 W. Maude Ave

Sunnyvale, CA 94086

guan man

USA

Date: December 28, 2001

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product, which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R45825 Page 2 of 18 Pages

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	5
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION DURING TESTING ANTENNA REQUIREMENTS	
TEST SITE	9
GENERAL INFORMATIONCONDUCTED EMISSIONS CONSIDERATIONSRADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION	10
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) POWER METER FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	
TEST PROCEDURES	12
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONSRADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT	12
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	14
FCC 15.407 (A) OUTPUT POWER LIMITS	
APPENDIX 2: Test Data Log Sheets	

SCOPE

An electromagnetic emissions test has been performed on the D-Link Corporation model DW-590 & DWL-A520 pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 4 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the D-Link Corporation model DW-590 & DWL-A520 and therefore apply only to the tested sample. The sample was selected and prepared by Shinglin Chung of D-Link Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

File: R45825 Page 4 of 18 Pages

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Comments	Result
Operation in t	he 5.15 – 5.25 Gl	Hz Band		
		As the device operates in the 5.15 – 5.25 GHz band the antenna must be integral to the device.	Antenna Gain = 3 dBi The antenna is integral	JoyMax Antenna
15.407(e)		Indoor operation only	Refer to user's manual in Appendix 6	COMPLIES
15.407(a) (1)		26dB Bandwidth	41 – 43.3 MHz in Turbo Mode 29.25 MHz in 802.11a (Normal) Mode	N/A
	6.2.2 q1 (i)	20dB Bandwidth	33 MHz in Turbo Mode 21.17 MHz in 802.11a Mode	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	13.9 dBm in Turbo Mode 11.5 dBm in 802.11a Mode	COMPLIES
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	-1.0 dBm in Turbo Mode -2.0 dBm in 802.11a Mode	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-1.8 dB @ 15750MHz in turbo mode -4.7 dB @ 15540MHz in 802.11a Mode	JoyMax Antenna
density of spur	ious emissions in		is restricted to indoor use only, therefore the were limited to the power spectral limits for	
		Maximum Antenna Gain /Integral Antenna	Antenna Gain = 3 dBi The antenna is integral	JoyMax Antenna
15.407(a) (1)		26dB Bandwidth	46 MHz in Turbo Mode 29.25 MHz in 802.11a (Normal) Mode	N/A
	6.2.2 q1 (i)	20dB Bandwidth	33 MHz in Turbo Mode 21.17 MHz in 802.11a Mode	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	14.9 dBm in Turbo Mode 12.3 dBm in 802.11a Mode	COMPLIES
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	-0.92 dBm in Turbo Mode 1.8 dBm in 802.11a Mode	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-2.7 dB @ 15870MHz in turbo mode -2.5 dB @ 15960MHz in 802.11a Mode	JoyMax Antenna

File: R45825 Page 5 of 18 Pages

General requi	rements for all ba	nds		
•	6.2.2 q(iv)(a)	Digital Modulation	Digital Modulation is used, refer to the "Theory of Operations" (Appendix 9) for a detailed explanation.	COMPLIES
	6.2.2 q(iv)(b)	Peak Spectral Density	9.33 dBm/MHz in turbo mode 10.9 dBm/MHz in 802.11a Mode	COMPLIES
15.407(a)(6)		Peak Excursion Ratio	Less than 13dB	COMPLIES
	6.2.2 q(iv)(c)	Channel Selection	The channels used represent the highest, lowest and center channels available.	N/A
15.407 (c)	6.2.2 q(iv)(d)	Automatic Discontinuation of Operation in the absence of information to transmit	Operation is discontinued in the absence of information to transmit, refer to the "Theory of Operations" in Appendix 9 for a detailed explanation.	COMPLIES
15.407 (g)	6.2.2 q(iv)(e)	Frequency Stability	Frequency stability is 20 ppm, refer to the "Theory of Operations" in Appendix 9 for a detailed analysis.	COMPLIES
	6.2.2 q(iv)(g)	User Manual information	All relevant statements have been included in the user's manuals. Refer to Appendix 6 for details	COMPLIES
15.407 (f)	6.2.2 q(iv)(g)	RF Exposure Requirements	Refer to MPE calculations in Appendix 11	COMPLIES
15.407(b) / 15.207	6.6	AC Conducted Emissions	-3.3dB @ 16.569MHz	COMPLIES

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

File: R45825 Page 6 of 18 Pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The D-Link Corporation model DW-590 & DWL-A520 are Wireless UNII PCI cards designed for use in a PC computer for wireless network environments. The devices both use a mini PCI Card module that contains the actual RF circuitry. This card is mounted onto a larger circuit board that provides an interface between the module and the standard PCI socket in a PC.

Normally, the host PC would be placed on a table-top during operation. The host PC was, therefore, treated as table-top equipment during testing to simulate the end user environment. The EUT receives it power from this computer host.

The sample was received on December 21, 2001 and tested on December 21, 2001. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number	FCC ID #
D-Link DWL-A520 (USA) PCI Adaptor	16	KA22001120010-1
D-Link DW-590 (Taiwan) PCI Adaptor	16	KA22001120010-1

ENCLOSURE

The EUT does not have an enclosure. EUT is intended to be installed in a host computer.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
PC	599GJ01	DoC
GEM DD-556AA Monitor	BDK012A03712	H79DD-556
Gateway G9900 Keyboard	B004367	GYUR61SK
HP M-S-34 Mouse	LCA53334764	DZL210472

The EUT was installed in Dell PC, S/N #

No remote support equipment was used during emissions testing.

File: R45825 Page 7 of 18 Pages

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

		Cable(s)		
Port	Connected To	Description	Shielded or Unshielded	Length (m)
Keyboard	PC	PS/2	shielded	1.5
Mouse	PC	PS/2	shielded	1.3
VGA	PC	D-SUB15	shielded	1.5
Printer	PC	Parallel	shielded	2.0
PalmPilot	PC	Serial	shielded	2.0

EUT OPERATION DURING TESTING

Transmitting Mode at 5.25GHz, Data Rate = 6Mbps and Pc-Dac = 6

The radio was transmitting at full power on the specified channel with a duty cycle of 99% (maximum allowed). The EUT was tested in both normal mode (channel bandwidth of approximately 30 MHz) and turbo mode (channel bandwidth of approximately 60 MHz).

"Normal Mode" allows data rates of up to 54 Mb/s. The device was, therefore, tested in normal mode at the data rate that produced the highest output power for normal mode (6 Mb/s).

"Turbo Mode" allows data rates of up to 72Mb/s. At data rates higher than 12Mb/s the PA gain is reduced to improve signal fidelity. The device was, therefore, tested in turbo mode at the data rate that produced the highest output power in that mode (12Mb/s).

ANTENNA REQUIREMENTS

As the device is intended to operate in the 5.15 - 5.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2(q1) (i) is required. The antenna for the device is an integral antenna, which is equipped with a non-standard reverse connector.

File: R45825 Page 8 of 18 Pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on December 21, 2001at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 4 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

File: R45825 Page 9 of 18 Pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R45825 Page 10 of 18 Pages

POWER METER

Either a spectrum analyzer or a power meter and thermister mount are used for all direct output power measurements from transmitters.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An Appendix of this report contains the list of test equipment used and calibration information.

File: R45825 Page 11 of 18 Pages

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

File: R45825 Page 12 of 18 Pages

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

File: R45825 Page 13 of 18 Pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \quad \text{microvolts per meter}$$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

File: R45825 Page 14 of 18 Pages

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

File: R45825 Page 15 of 18 Pages

SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for unwanted (spurious) emissions outside of the restricted bands above 1GHz.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm (note 1)	68.3 dBuV/m
5725 – 5825	-27 dBm (note 2)	68.3 dBuV/m
	-17 dBm (note 3)	78.3 dBuV/m

Note 1:If operation is restricted to indoor use only then emissions in the band 5.15 – 5.25 GHz must meet the power spectral density limits for the intentional signals detailed in RSS 210 and FCC Subpart E for devices operating in the 5.15 – 5.25 Ghz band.

Note 2: Applies to spurious signals separated by more than 10 MHz from the allocated band.

Note 3: Applies to spurious signals within 10 MHz of the allocated band.

AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205 and Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

File: R45825 Page 16 of 18 Pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

File: R45825 Page 17 of 18 Pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 $D_m = Measurement Distance in meters$

 D_S = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R45825 Page 18 of 18 Pages

APPENDIX 1: Test Equipment Calibration Data

File: R45825 Appendix Page 1 of 2

Conducted and Radiated Emissions, 21-Dec-01 09:03 PM Engineer: jmartinez

<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	1320	12	5/23/2001	5/23/2002
EMCO	LISN, 10kHz-100MHz	3825/2	1292	12	4/9/2001	4/9/2002
Elliott Laboratories	LISN 2 x (Solar 8028 LISN + 6512 Caps)	LISN-5, Support	379	12	8/10/2001	8/10/2002
EMCO	Log Periodic Antenna, 0.2-1 GHz	3146	1294	12	3/27/2001	3/27/2002
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	812	12	1/23/2001	1/23/2002
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	12	5/9/2001	5/9/2002
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	1317	12	5/9/2001	5/9/2002

Radiated Emissions, 1 - 18 GHz, 28-Dec-01 06:20 PM

Engineer: jmartinez

<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	868	12	11/13/2001	11/13/2002
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz)	84125C	1149	12	2/5/2001	2/5/2002
Hewlett Packard	Spectrum Analyzer 9KHz - 26GHz	8563E	284	12	2/22/2001	2/22/2002

APPENDIX 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T45779 54 Pages

File: R45825 Appendix Page 2 of 2

Elliott EMC Test Date				
Client:	D-Link Corporation	Job Number:	J45655	
Model:	DW-590 & DWL-A520	T-Log Number:	T45779	
		Proj Eng:	Mark Briggs	
Contact:	Shinglin Chung			
Emissions Spec:	FCC 15 B & E	Class:	В	
Immunity Spec:	N/A	Environment:	-	

For The

D-Link Corporation

Model

DW-590 & DWL-A520

Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Emissions Spec:	FCC 15 B & E	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT INFORMATION

General Description

The EUT is a Wireless UNII PCI card w/ Mini PCI which is designed to be used in PC computers for wireless network environments. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end user environment. The EUT receives it power from the computer host.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
D-Link	DWL-A520 (USA)	PCI Adaptor	16	KA22001120010-1
D-Link	DW-590 (Taiwan)	PCI Adaptor	16	KA22001120010-1

Antenna

The EUT uses an integral antenna (JoyMax) with a gain of 3 dBi.

The antenna connector will not be accessible by the end user and will be contained within the enclosure of the host system. D-Link will provide clear instructions to ensure that this is done when the module is used in different host systems to meet the requirements of FCC Part 15.203 and RSS-210.

EUT Enclosure

The EUT does not have and enclosure. It is intended to be installed in a host computer.

Modification History

Mod. #	Test	Date	Modification
1	-	-	•

Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Emissions Spec:	FCC 15 B & E	Class:	В
Immunity Spec:	N/A	Environment:	-

Test Configuration #1

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Epson	P952A	Printer	ADA0013241	BKMFBP952A
Robotics	Pilot5000	PDA	N/A	MQ90001
Dell	DHS	PC	599GJ01	DoC
GEM	DD-556AA	Monitor	BDK012A03712	H79DD-556
Dell	RT7D5JTW	Keyboard	TH-095FEM-37171-18G- 2340	AQ6-7DK15
HP	M-S-34	Mouse	LCA53334764	DZL210472

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID	
None					

Interface Ports

		Cable(s)			
Port	Connected To	Description	Shielded or Unshielded	Length(m)	
Keyboard	PC	PS/2	shielded	1.5	
Mouse	PC	PS/2	shielded	1.3	
VGA	PC	D-SUB15	shielded	1.5	
Paralled printer	PC	DB25	shielded	2	
Serial	PC	DB9	shielded	2	

Note: Minimum configuration used, as stated in ANSI 62.3/1992. All other ports were not connected during test.

EUT Operation During Emissions (Digital)

Tranmitting Mode at 5.25GHz, Data Rate = 6Mbps and PcDac = 6

Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Emissions Spec:	FCC 15 B & E	Class:	В
Immunity Spec:	N/A	Environment:	-

Test Configuration #2

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	DHS	PC	599GJ01	DoC
GEM	DD-556AA	Monitor	BDK012A03712	H79DD-556
Dell	RT7D5JTW	Keyboard	TH-095FEM-37171-18G- 2340	AQ6-7DK15
HP	M-S-34	Mouse	LCA53334764	DZL210472

The EUT was installed in Dell PC, S/N # 599GJ01

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None				

Interface Ports

			Cable(s)	
Port	Connected To	Description	Shielded or Unshielded	Length(m)
Keyboard	PC	PS/2	shielded	1.5
Mouse	PC	PS/2	shielded	1.3
VGA	PC	D-SUB15	shielded	1.5

Note: No printer and serial device were not connected during the radio test portion.

EUT Operation During Emissions (Radio)

The radio was transmitting at full power on the specified channel with a duty cycle of 99% (maximum allowed). The EUT was tested in both normal mode (channel bandwidth of approximately 30 MHz) and turbo mode (channel bandwidth of approximately 60 MHz).

"Normal Mode" allows data rates of up to 54 Mb/s. The device was, therefore, tested in normal mode at the data rate that produced the highest output power for normal mode (6 Mb/s).

"Turbo Mode" allows data rates of up to 72Mb/s. At data rates higher than 12Mb/s the PA gain is reduced to improve signal fidelity. The device was, therefore, tested in turbo mode at the data rate that produced the highest output power in that mode (12Mb/s).

Elliott	EMC Test Data
Client: D-Link Corporation	Job Number: J45655
Model: DW-590 & DWL-A520	T-Log Number: T45779
	Proj Eng: Mark Briggs
Contact: Shinglin Chung	
Spec: FCC 15 B & E	Class: B

Radiated Emissions

Test Specifics

(AT)11' 11

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/21/01 Config. Used: 1
Test Engineer: jmartinez/Vishal Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

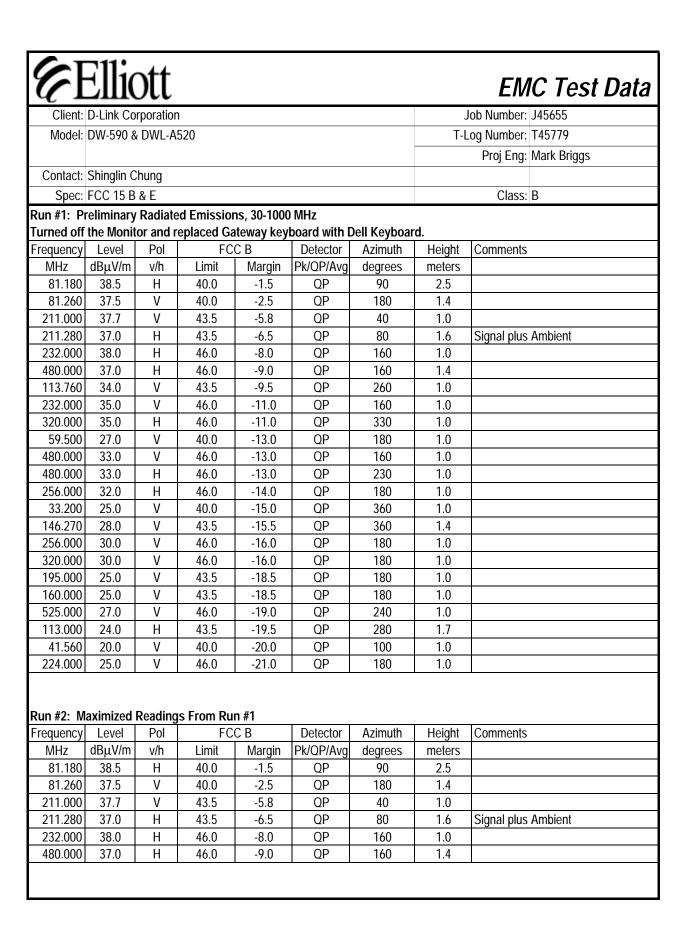
On the OATS, the measurement antenna was located 3 meters from the EUT for the measurement range 30 - 1000 MHz.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 10.6°C

Rel. Humidity: 82%

Summary of Results


Run #	Test Performed	Limit	Result	Margin
2	RE, 30 - 1000MHz -	FCC B	Pass	-1.5dB @ 81.18MHz
	Maximized Emissions			

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Elliott	EM	IC Test Data
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В

Conducted Emissions - Power Ports

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/21/01 Config. Used: 1
Test Engineer: jmartinez Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 10.6°C

Rel. Humidity: 82%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power 120V/60Hz	FCC B	Pass	-3.3dB @ 16.569MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: AC Power Port Conducted Emissions, 0.45 - 30MHz, 120V/60Hz

MHz dBuV Lead Limit Margin Function 16.569 44.7 Neutral 48.0 -3.3 QP 16.591 44.3 Line 1 48.0 -3.7 QP 0.643 40.3 Line 1 48.0 -7.7 QP 1.446 40.2 Neutral 48.0 -7.8 QP 0.482 39.8 Neutral 48.0 -8.2 QP 1.283 39.2 Line 1 48.0 -8.8 QP	Frequency	Level	Power	FCC-B	FCC-B	Detector	Comments
16.591 44.3 Line 1 48.0 -3.7 QP 0.643 40.3 Line 1 48.0 -7.7 QP 1.446 40.2 Neutral 48.0 -7.8 QP 0.482 39.8 Neutral 48.0 -8.2 QP	MHz	dBuV	Lead	Limit	Margin	Function	
0.643 40.3 Line 1 48.0 -7.7 QP 1.446 40.2 Neutral 48.0 -7.8 QP 0.482 39.8 Neutral 48.0 -8.2 QP	16.569	44.7	Neutral	48.0	-3.3	QP	
1.446 40.2 Neutral 48.0 -7.8 QP 0.482 39.8 Neutral 48.0 -8.2 QP	16.591	44.3	Line 1	48.0	-3.7	QP	
0.482 39.8 Neutral 48.0 -8.2 QP	0.643	40.3	Line 1	48.0	-7.7	QP	
	1.446	40.2	Neutral	48.0	-7.8	QP	
1.283 39.2 Line 1 48.0 -8.8 QP	0.482	39.8	Neutral	48.0	-8.2	QP	
	1.283	39.2	Line 1	48.0	-8.8	QP	

Elliott	EM	IC Test Data
Client: D-Link Corporation	Job Number:	J45655
Model: DW-590 & DWL-A520	T-Log Number:	T45779
	Proj Eng:	Mark Briggs
Contact: Shinglin Chung		
Spec: FCC 15 B & E	Class:	В

FCC Part 15 Subpart E Tests: Turbo Mode

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/19/01 Config. Used: 2
Test Engineer: Jmartinez Config Change: N/A

Test Location: SVOATS# 4 Host Unit Voltage 120Vac, 60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

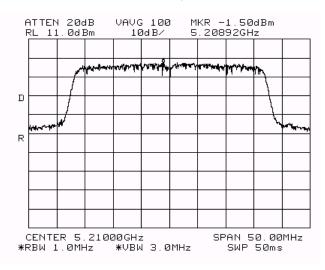
Ambient Conditions: Temperature: 8.9°C

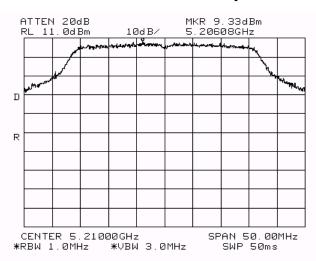
Rel. Humidity: 89%

Summary of Results: Turbo Mode

Run #	Test Performed	Limit	Result	Comments
1	Output Power	15.407(a) (1), (2)	Pass	13.9dBm@ 5210 MHz,
1	Output Fower	15.407(a) (1), (2)	Pa55	14.9dBm@5290 MHz
2	Power Spectral Density (PSD)	15.407(a) (1), (2)	Pass	-1dBm@ 5250 MHz, -
Z	r ower Spectral Delisity (FSD)	13.407(a) (1), (2)	Pa55	92dBm@5290MHz
3	26dB Bandwidth	15.407	Pass	> 20 MHz
3	20 dB Bandwidth	RSS 210	Pass	> 20 MHz
4	Peak Excursion Envelope	15.407(a) (6)	Pass	Peak to average excursion < 13dB
5	Antenna Conducted - Out of	15.407(b)	Pass	All emissions below the -
J	Band Spurious	13.407(b)	F d 5 5	27dBm/MHz limit

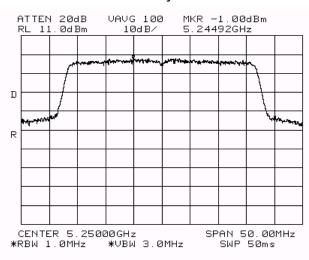
Client	: D-Link Co	rporation			Job Number:	J45655	
Model	: DW-590 8	DWL-A520			T-Log Number:	T45779	
					Proj Eng: Mark Briggs		
Contact	: Shinglin C	Chung					
Spec	: FCC 15 B	& E			Class:	В	
Vodifica	tions Ma	de During Testi	ng:				
		ere made to the EUT	•	ing			
			ŭ				
)eviatio	ns From	The Standard					
		made from the requ	iramants of	tho standard			
NO devic	ations were	made nom me requ	ii ci ii ci ii 3 Oi	ine standard.			
D #1. ()dd D						
	Dutput Pow						
tuiiπi. C	· ^ 4	- C-! 1					
Cuiiπi. C	Antenr	na Gain: 3	dBi				
Xuiiπi. X	Antenr	na Gain: 3	_dBi I		1	Τ	
αιι # 1.				Output Power (dRm)	FCC Limit (dBm) (note	Comments	
(απ π τ. (Antenr	Frequency (MHz)	PC_DAC	Output Power (dBm)	FCC Limit (dBm) (note 3)	Comments	
(απ. τ. τ.	Channel			Output Power (dBm)		Comments Note 2	
Cuii π I. C		Frequency (MHz)	PC_DAC	. ,	3)	Comments	
(απ π 1. · C	Channel	Frequency (MHz) 5210	PC_DAC	13.7	3) 17.0	Note 2	
Xuii # 1. X	Channel	Frequency (MHz) 5210 5210	PC_DAC 11 11	13.7 13.9	3) 17.0 17.0	Note 2 Note 1	
(απ π 1. · C	Channel Low Mid	5210 5210 5250 5250 5290	PC_DAC 11 11 12	13.7 13.9 13.6	3) 17.0 17.0 17.0	Note 2 Note 1 Note 2	
(απ π 1. · C	Channel	5210 5210 5250 5250	PC_DAC 11 11 12 12	13.7 13.9 13.6 13.8	3) 17.0 17.0 17.0 17.0	Note 2 Note 1 Note 2 Note 1 Note 1	
Kull #1.	Channel Low Mid High	5210 5210 5210 5250 5250 5290 5290	PC_DAC 11 11 12 12 16 16	13.7 13.9 13.6 13.8 14.7 14.9	3) 17.0 17.0 17.0 17.0 24.0 24.0	Note 2 Note 1 Note 2 Note 1 Note 2 Note 1 Note 2 Note 1 Note 2	
	Channel Low Mid High	5210 5210 5210 5250 5250 5290 5290 using spectrum ana	PC_DAC 11 11 12 12 16 16 16	13.7 13.9 13.6 13.8 14.7 14.9	3) 17.0 17.0 17.0 17.0 24.0	Note 2 Note 1 Note 2 Note 1 Note 2 Note 1 Note 2 Note 1 Note 2	
Note 1:	Channel Low Mid High Measured the power	Frequency (MHz) 5210 5210 5250 5250 5290 5290 using spectrum and over the occupied by	PC_DAC 11 11 12 12 16 16 16 allyzer's power andwidth (2	13.7 13.9 13.6 13.8 14.7 14.9 er measurement function 6dB bandwidth).	3) 17.0 17.0 17.0 17.0 24.0 24.0	Note 2 Note 1 Note 2 Note 1 Note 2 Note 1 Note 2 Note 1 Note 2	
Note 1:	Channel Low Mid High Measured the power Measured	Frequency (MHz) 5210 5210 5250 5250 5290 5290 using spectrum ana over the occupied busing a Power Mete	PC_DAC 11 11 12 16 16 16 allyzer's power andwidth (2 per with a their	13.7 13.9 13.6 13.8 14.7 14.9 er measurement function 6dB bandwidth).	3) 17.0 17.0 17.0 17.0 24.0 24.0 1 (RBW = 1MHz, VBW =	Note 2 Note 1 Note 2 Note 1 Note 2 Note 1 Note 2 Note 1 30kHz) which summe	
Note 1: Note 2:	Channel Low Mid High Measured the power Measured RSS 210	Frequency (MHz) 5210 5210 5250 5250 5290 5290 using spectrum ana over the occupied busing a Power Mete	PC_DAC 11 11 12 12 16 16 16 allyzer's power andwidth (2 per with a there is 5.15 to 5.25	13.7 13.9 13.6 13.8 14.7 14.9 er measurement function 6dB bandwidth). rmal sensor 6 GHz band, 6dB higher	3) 17.0 17.0 17.0 17.0 24.0 24.0	Note 2 Note 1 Note 2 Note 1 Note 2 Note 1 Note 2 Note 1 30kHz) which summe	

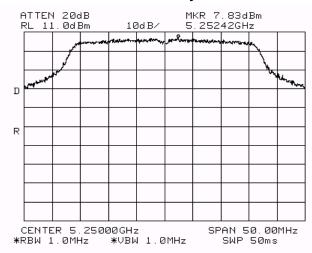

	Ellic	ott				EM	IC Tes	t Data
	D-Link Co				Jo	ob Number:	J45655	
Model:	DW-590 8	k DWL-A520			T-Lo	og Number:	T45779	
						Proj Eng:	Mark Briggs	
Contact:	Shinglin C	Chung						
Spec:	FCC 15 B	& E				Class:	В	
Run #2: P	•	ctral Density na Gain: 3	dBi					
	Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	FCC Limit (d	•	Densit	ver Spectral ty (dBm)	
	low	5210	-1.50	4.			.33	Note 1
	mid	5250	-1.00	4.			.83	Note 1
	high	5290	-0.92	11	.0	8	.58	Note 1
Note 1: Note 2:	the peak of not excee band) so	excursion measurem d the maximum pern no restriction is place	peak PSD was also meents (run #4). The peal nitted average PSD of 1 and on the output power on the 5.15 to 5.25 GHz	k PSD (meau OdBm (5.15 t or average PS	sred with RE o 5.25 GHz SD with resp	BW=VBW=1 band) or 11 ect to RSS	MHz) of 9.33 dBm (5.25-5.	dBm did


c ——		
Client: D-Link Corporation	Job Number:	J45655
Model: DW-590 & DWL-A520	T-Log Number:	T45779
	Proj Eng:	Mark Briggs
Contact: Shinglin Chung		
Spec: FCC 15 B & E	Class:	В

Plots Showing Power Spectral Density (RBW = 1MHz, VBW = 3 MHz, video averaging ON)

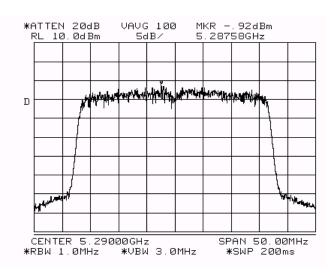
FCC Power Density

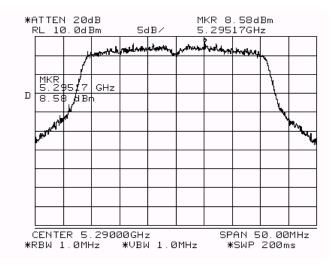

Canada Power Density



0		
Client: D-Link Corporation	Job Number:	J45655
Model: DW-590 & DWL-A520	T-Log Number:	T45779
	Proj Eng:	Mark Briggs
Contact: Shinglin Chung		
Spec: FCC 15 B & E	Class:	В

FCC Power Density

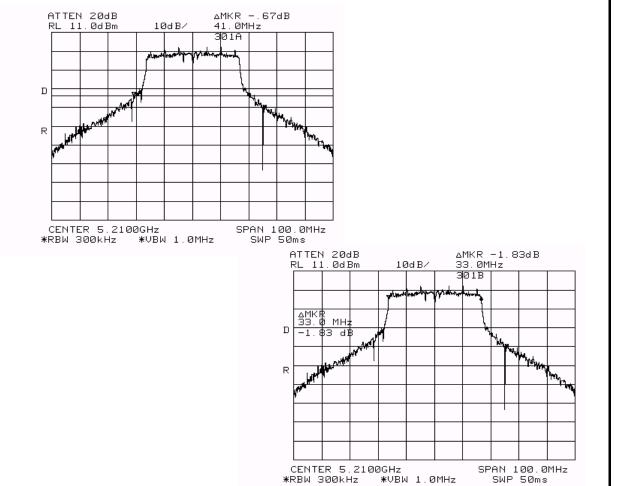

Canada Power Density



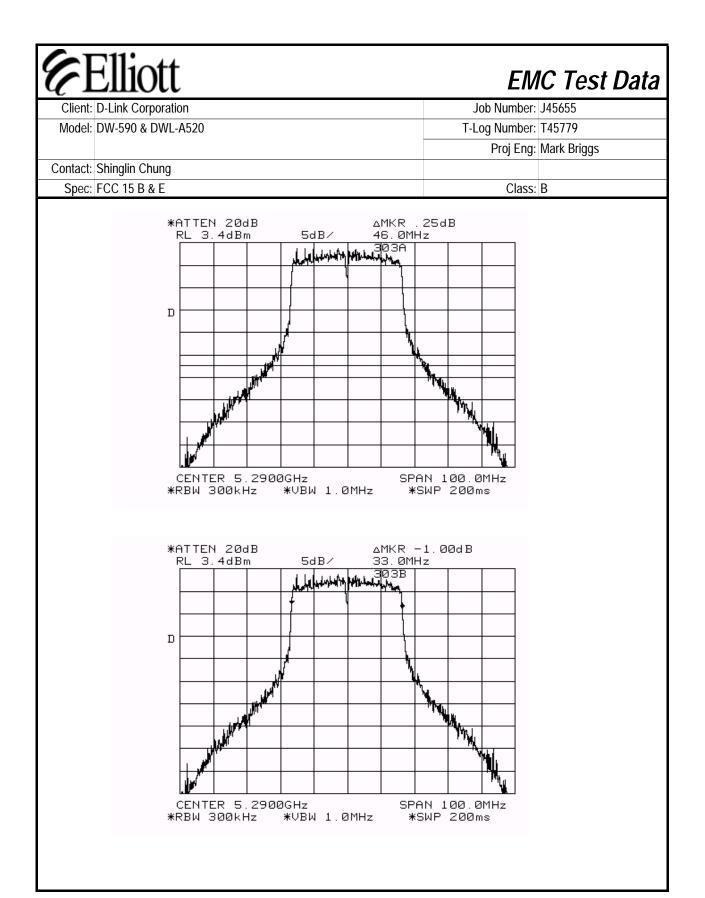
_			
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec	FCC 15 B & F	Class:	В

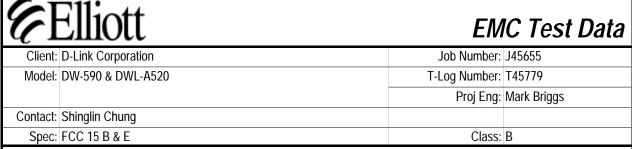
FCC Power Density

Canada Power Density

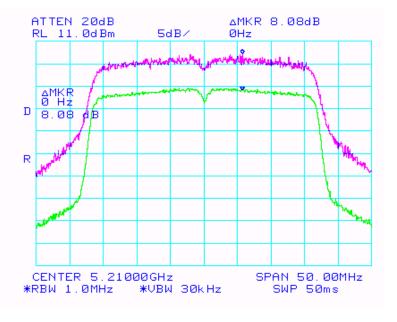


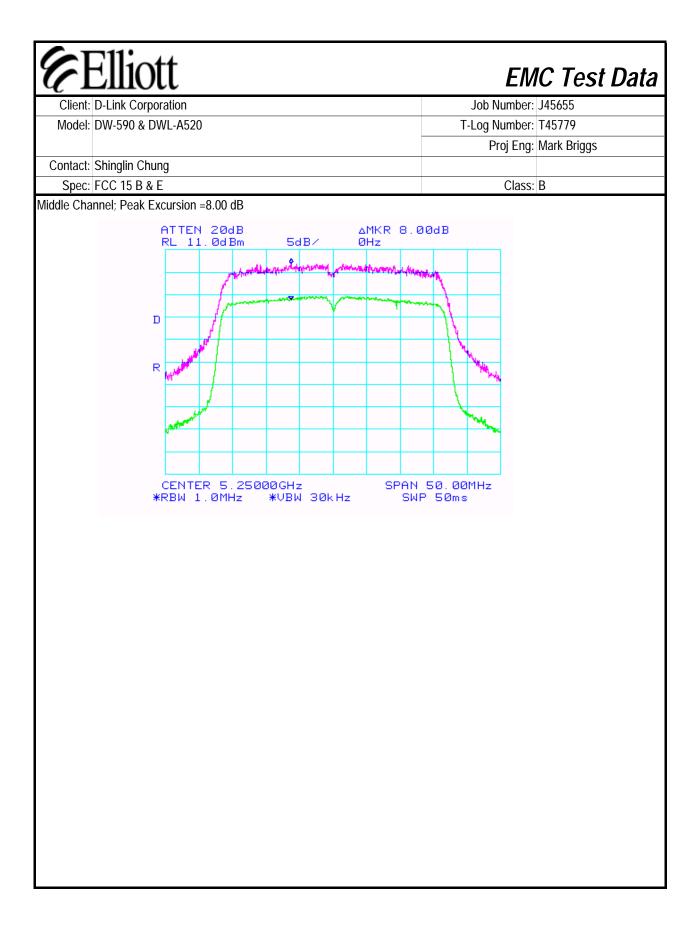
_			
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В

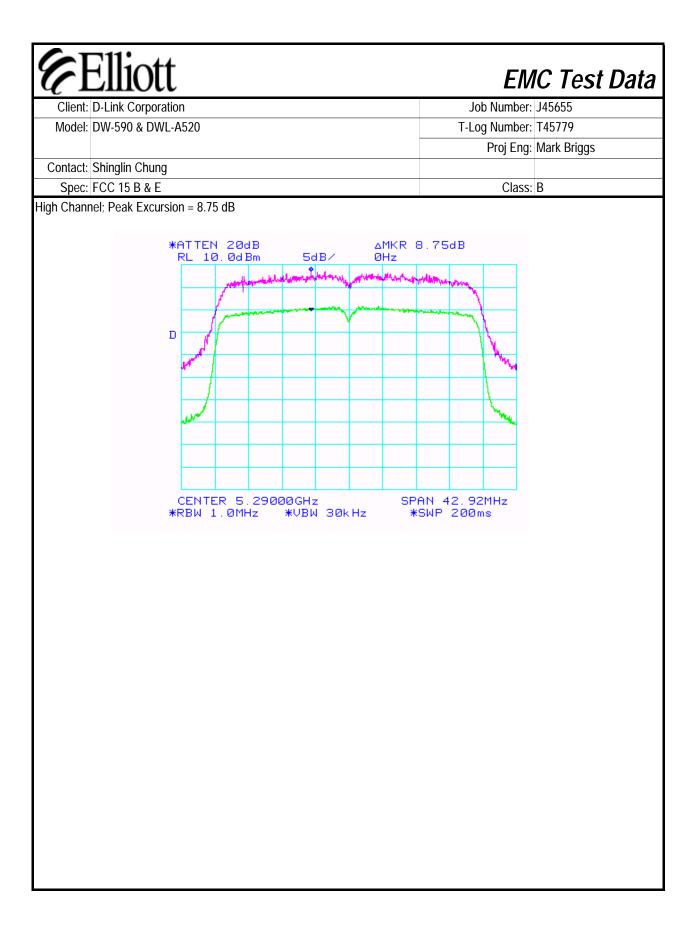

Run #3: Signal Bandwidth


Channel	Frequency (MHz)	Resolution Bandwidth	26 dB Signal Bandwidth (MHz)	20 dB Signal Bandwidth (MHz)	Graph reference #
low	5210	300 kHz	41.00	33.00	301A and 301B
mid	5250	300 kHz	43.30	33.00	302A and 302B
high	5290	300 kHz	46.00	33.00	303A and 303B

Plots Showing Signal Bandwidth




Run #4: Peak Excursion Measurement

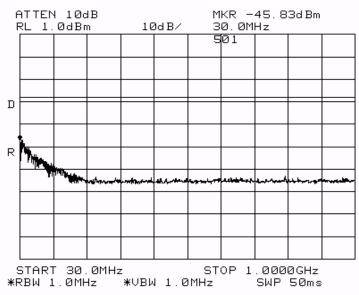

Plots Showing Peak Excursion

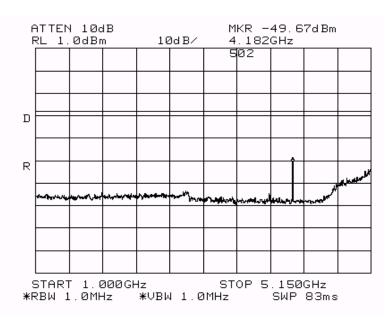
Trace A: RBW = VBW = 1MHz Trace B: RBW = 1 MHz, VBW = 30kHz

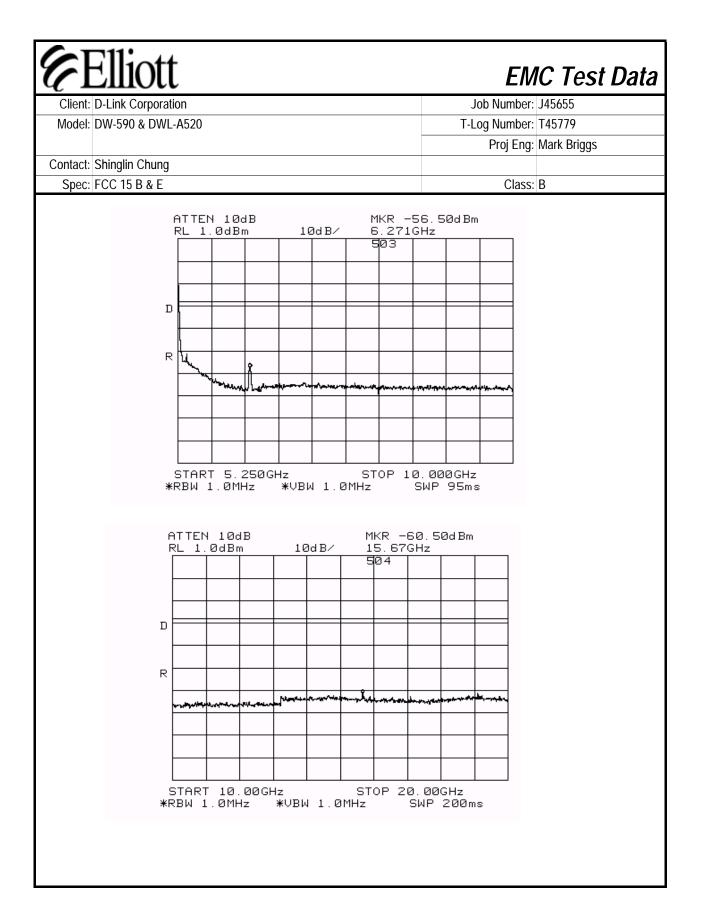
Low Channel; Peak Excursion = 8.08 dB

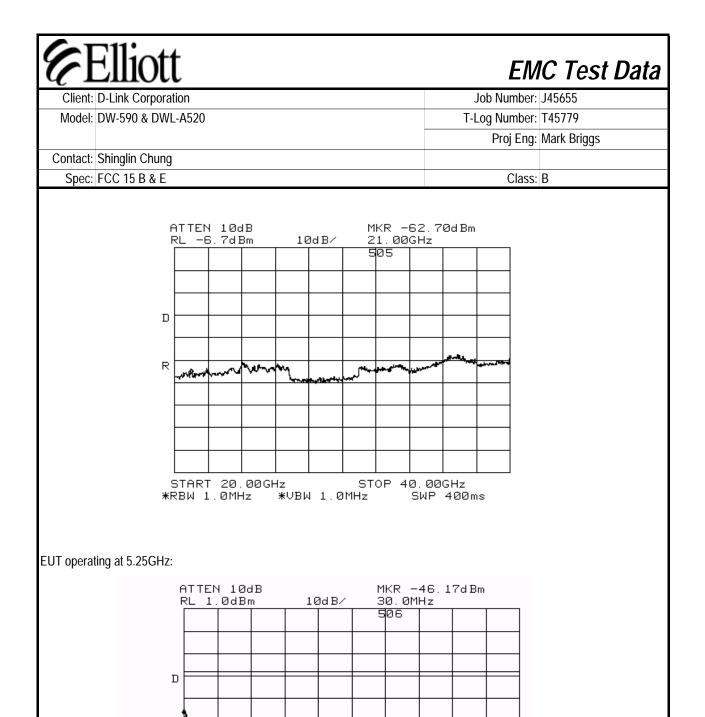
EI	liott
Cliant, D. Li	nk Cornoration

Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В

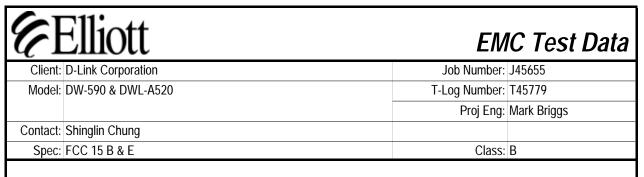

Run #5: Out Of Band Spurious Emissions - Antenna Conducted

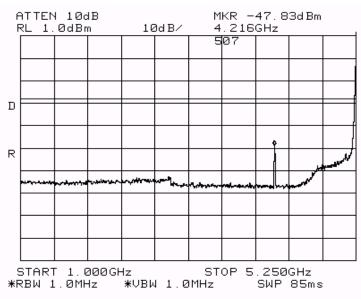

The antenna gain of the radios integral antenna is 3 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -30 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 3 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

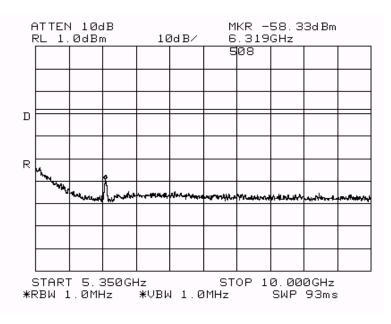

Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		30 - 1000 MHz	Note 4	501
		1 to 5.15 GHz	4182 (Note 1)	502
low	5210	5.25 to 10 GHz	6271 (Note 3)	503
		10 GHz to 20 GHz	15670 (Note 1)	504
		20 GHz to 40 GHz	None	505
mid	5250	30 - 1000 MHz	Note 4	506
		1 to 5.25 GHz	4216 (Note 1)	507
		5.35 to 10 GHz	6319 (Note 2)	508
		10 GHz to 20 GHz	None	509
		20 GHz to 40 GHz	None	510
		30 - 1000 MHz	Note 4	511
high	5290	1 to 5.30 GHz	4247 (Note 1)	512
		5.34 to 10 GHz	6365 (Note 3)	513
		10 GHz to 20 GHz	15870 (Note 1)	514
		20 GHz to 40 GHz	None	515


Note 1:	Signal is in a restricted band. Refer to run #6 for field strength measurements.
Niete O	Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no
Note 2:	field strength measurements required.
Note 2.	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than -
Note 3:	27dBm field strength measurements were made (refer to run #6)
Note 4:	All spurious signals in this frequency band measured during digital device radiated emissions test.

6	Elliott	EM	IC Test Data
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В
	Plots Showing Out-Of-Band Emissions (RB	SW=VBW=1MHz)	
EUT operat	ling at 5.21 GHz:		

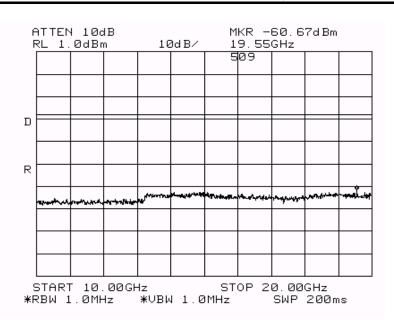

*VBW 1.0MHz

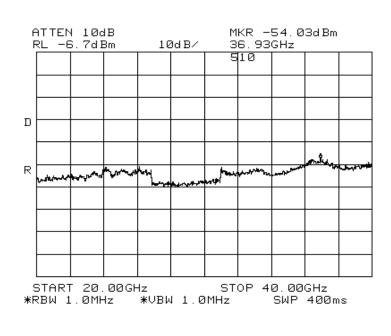

START 30.0MHz

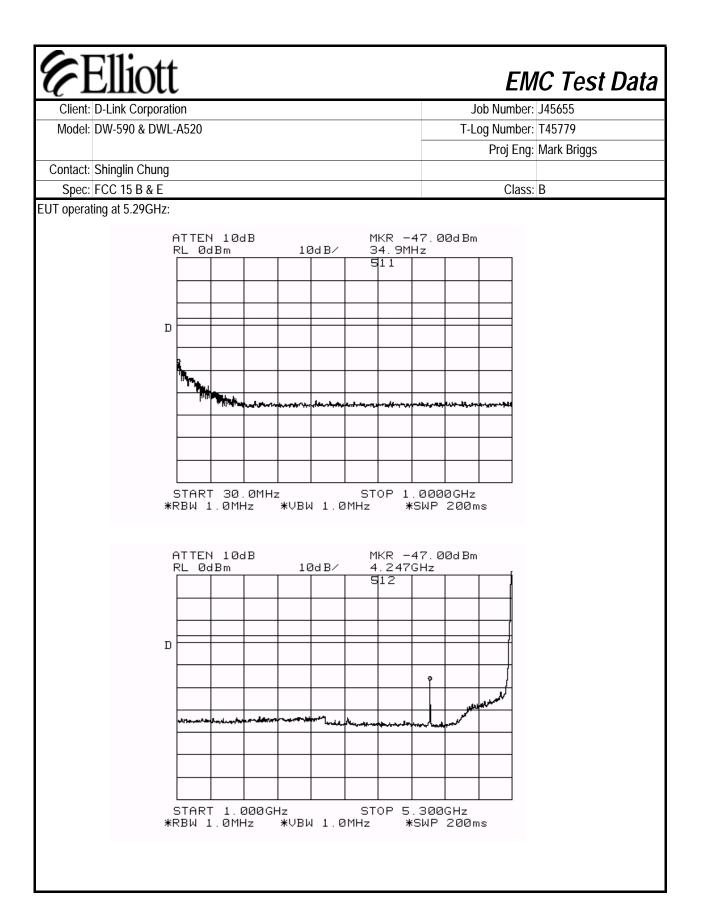

*RBW 1.0MHz

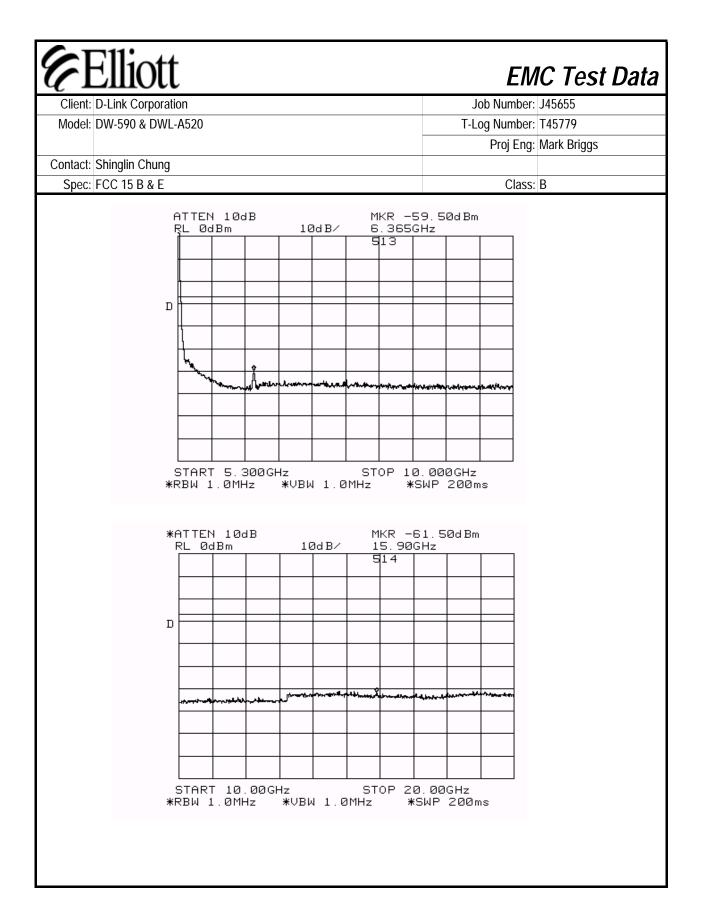
STOP 1.0000GHz

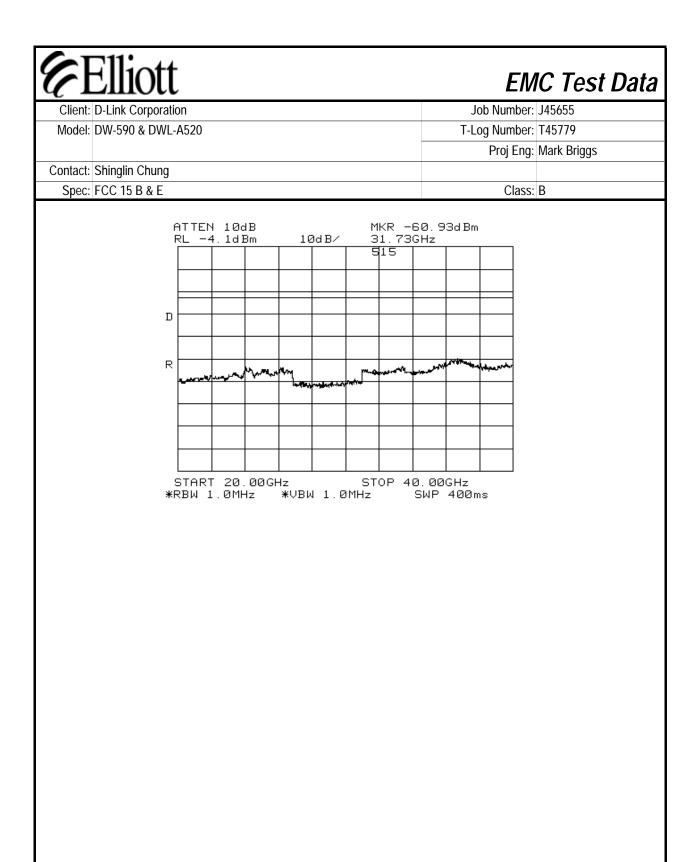
SWP 50ms



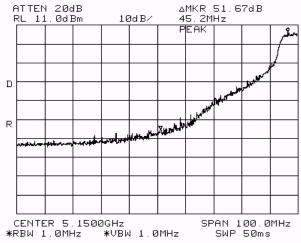


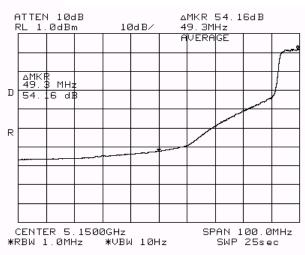





Client: D-Link Corporation	Job Number:	J45655
Model: DW-590 & DWL-A520	T-Log Number:	T45779
	Proj Eng:	Mark Briggs
Contact: Shinglin Chung		
Spec: FCC 15 B & E	Class:	В

	Elliott EMC Test D		IC Test Data
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В

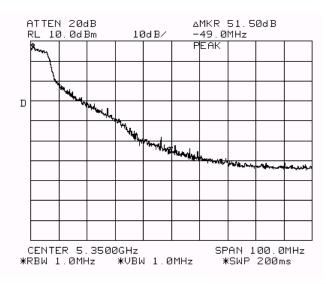

Band Edge Measurements:

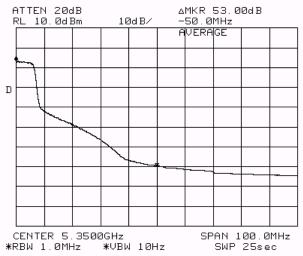

For signals in the restricted bands immediately above and below the 5.15 to 5.35 GHz allocated band a measurement was made of the amplitude of the spurious emissions with respect to the intentional signals. The relative amplitude, in dBc, was then applied to the average and peak field strength of the intentional signal made on the OATS to calculate the field strength of the unintentional signals.

Plots Showing Out-Of-Band Emissions (Peak RBW=VBW=1MHz; Average RBW = 1MHz, VBW = 10Hz)

5.15 GHz band edge, EUT operating on the lowest channel, PC-Dac 11

The highest signal within 60 MHz of the 5.15 GHz band was -51.67 dBc (Peak) / -54.16 dBc (Average)




Elliott
Olivert D. Lindy On an autilia

c		
Client: D-Link Corporation	Job Number:	J45655
Model: DW-590 & DWL-A520	T-Log Number:	T45779
	Proj Eng:	Mark Briggs
Contact: Shinglin Chung		
Spec: FCC 15 B & E	Class:	В

5.35 GHz band edge EUT operating on highest channel:

The highest signal in the 5.35 to 5.46 GHz band was -51.5 dBc (Peak) / -53.0 dBc (Average)

Elliott	EMC Test Data
Client: D-Link Corporation	Job Number: J45655
Model: DW-590 & DWL-A520	T-Log Number: T45779
	Proj Eng: Mark Briggs
Contact: Shinglin Chung	
Spec: FCC 15 B & E	Class: B

FCC Part 15 Subpart E Tests: Normal Mode

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test:	12/19/01	Config. Used: #2
Test Engineer:	Mark Briggs	Config Change: N/A
Test Location:	SVOATS #4	Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 8.9°C

Rel. Humidity: 89%

Summary of Results

Run #	Test Performed	Limit	Result	Comments
1	Output Power	15.407(a) (1), (2)	Doos	11.5dBm@5180MHz,
ı	Output Fower	13.407(a) (1), (2)	Pass	12.3dBm@5260MHz
2	Power Spectral Density (PSD)	15.407(a) (1), (2)	Pass	-2dBm@5180MHz,
2	rower spectral bensity (F3b)	15.407(a) (1), (2)	Pa55	1.8dBm@5260MHz
3	26dB Bandwidth	15.407	Pass	> 20 MHz
3	20 dB Bandwidth	RSS 210	Pass	> 20 MHz
4	Peak Excursion Envelope	15.407(a) (6)	Pass	Peak to average excursion < 13dB
5	Antenna Conducted - Out of	15.407(b)	Pass	All emissions below the -
	Band Spurious	13.407(D)	F 433	27dBm/MHz limit

6	Elliott	EM	IC Test Data
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & F	Class:	В

Modifications Made During Testing:

No modifications were made to the EUT during testing

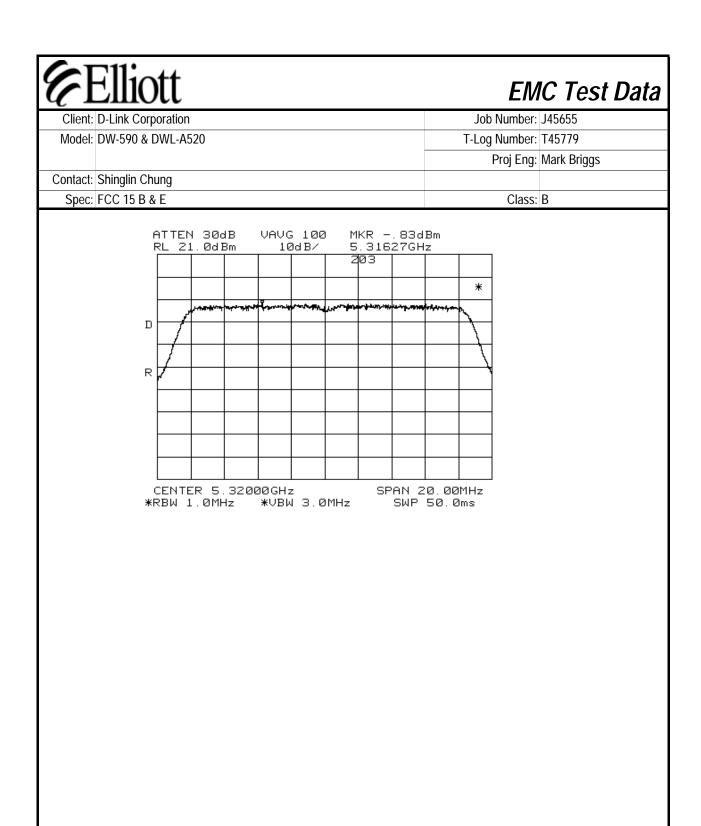
Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Output Power

Antenna Gain: 3 dBi

Channel	Frequency (MHz)	Output Power	FCC Limit (dBm) (note 3)	Comments
Low	5180	11.0	17.0	Note 1
Low	5180	11.5	17.0	Note 2
Mid	5260	12.3	24.0	Note 1
IVIIU	5260	12.3	24.0	Note 2
Lligh	5320	10.4	24.0	Note 1
High	5320	10.3	24.0	Note 2

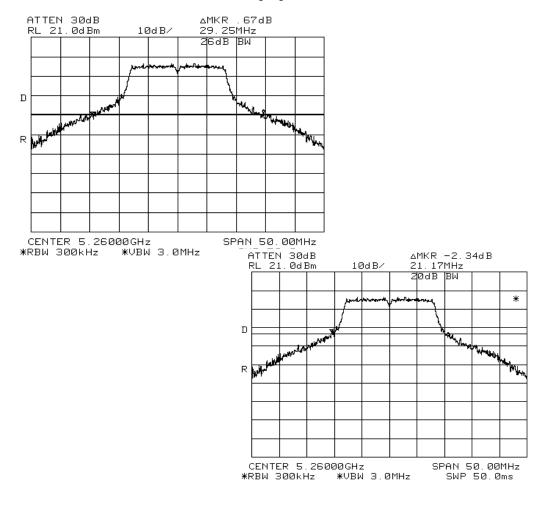

Note 1:	Measured using spectrum analyzer's power measurement function (RBW = 1MHz, VBW = 30kHz)
Note 2:	Measured using a power meter with a thermal sensor head.
INUTA 3.	RSS 210 limit is 23dBm in the 5.15 to 5.25 GHz band, 6dB higher than the FCC limit. This limit is based on the
	emission bandwidth and operating frequency.

	Ellio	ott				EM	IC Tes	t Data
	D-Link Co				Jo	ob Number:	J45655	
Model	DW-590 8	DWL-A520			T-Lo	og Number:	T45779	
							Mark Briggs	
Contact	Shinglin C	hung						
	FCC 15 B					Class:	В	
•		ctral Density						
	•	-	dBi					
	Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	FCC Limit (c			Reference	
	Low	5180	-2.0	4.		201		Note 1
	Mid	5260	1.8	11		202		Note 1
	High	5320	-0.8	11	.0	203		Note 1
				·				

7	Elliot	t	,									ı	EM	IC Test D
	D-Link Corpo											Job Nu	mber:	J45655
Model:	DW-590 & DV	NL-	A520								T-l	Log Nu	mber:	T45779
												Pro	j Eng:	Mark Briggs
ontact:	Shinglin Chur	ng												
Spec:	FCC 15 B & E											(Class:	В
	<u>Plots Sh</u>	Α	ATTEI	ower S N 20 0.0d	dB	VAV	ity (RB G 100 ØdB∕	1 G	1KR - 5.179	-2.01	ØdBm	video	<u>avera</u>	ging ON)
								'	201					
			7	-	I amangan katan men		444	*****	****		*	444	1	
		İ	1									$\top \setminus$	1	
		ם	f^{-}	+			 	+				+	1	
		ľ	r	\vdash			+	\vdash				+	-	
		-		-		-	_	-			_	+	-	
]	
		Ì										T	1	
		}		+		1	+	+	 	1		+-	+	
		١			100	1000					10.0			
				ER 5 1.0M	.180 Hz		z W 3.0	aMHz			19.0 50.			
				30d			100		KR 1.					
		K		. Ød E	SM T	16	dB/		. 2633 02	336H	z			
		\vdash												
		L			4 A A A A A A A A A A A A A A A A A A A		**************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		er en	ALCO MONTHS			
	,	. L	_/									***\		
	1	╹┞	71									$ \ \ $		
			7											
	F	₹												
		\vdash	\neg											
		\vdash	\dashv		-		-					\vdash		
		-												

SPAN 20.00MHz SWP 50.0ms

CENTER 5.26000GHz *RBW 1.0MHz *VBW 3.0MHz



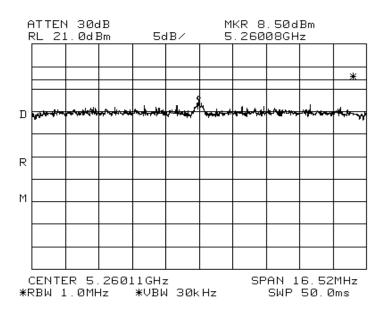

-			
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В

Run #3: Signal Bandwidth

PCDAC	Frequency (IVIHZ)	Resolution Bandwidth	26 dB Signal Bandwidth (MHz)	20 dB Signal Bandwidth (MHz)	
6		300 kHz			Measured the highest
12	5260	300 kHz	29.25 MHz	21.17 MHz	power channel only.
9		300 kHz			power charmeromy.

Plots Showing Signal Bandwidth


Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В


Run #4: Peak Excursion Measurement

Plots Showing Peak Excursion

Trace A: RBW = VBW = 1MHz Trace B: RBW = 1 MHz, VBW = 30kHz

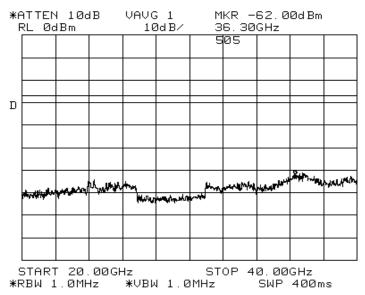
5.26 GHz: Peak Excursion = 8.5dB. Peak power spectral density (RSS210 only) = 10.92dBm.

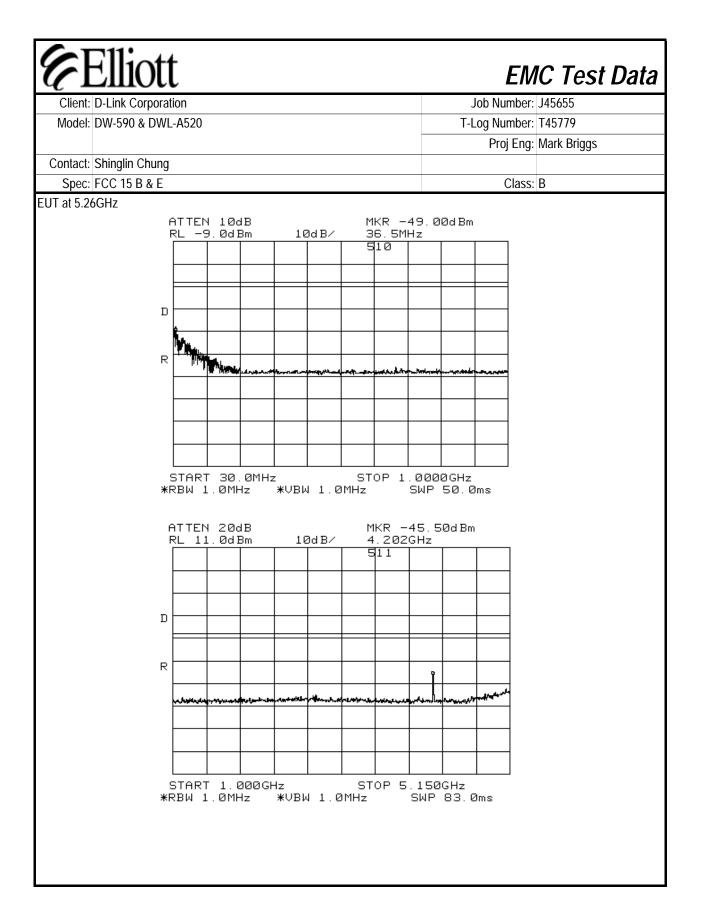
E E	lliott
\mathbf{q}	шош

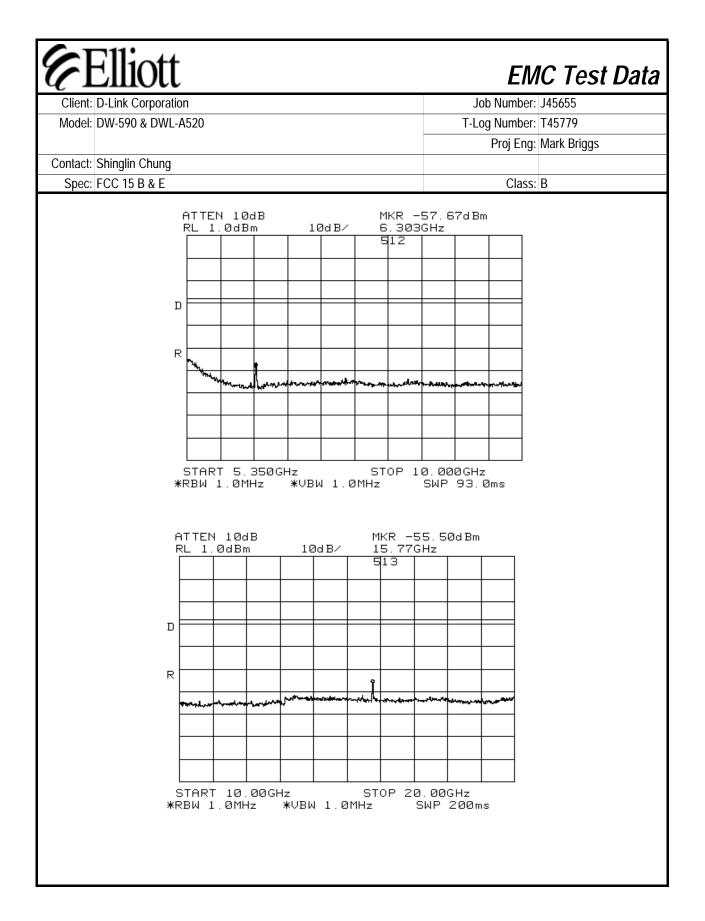
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В

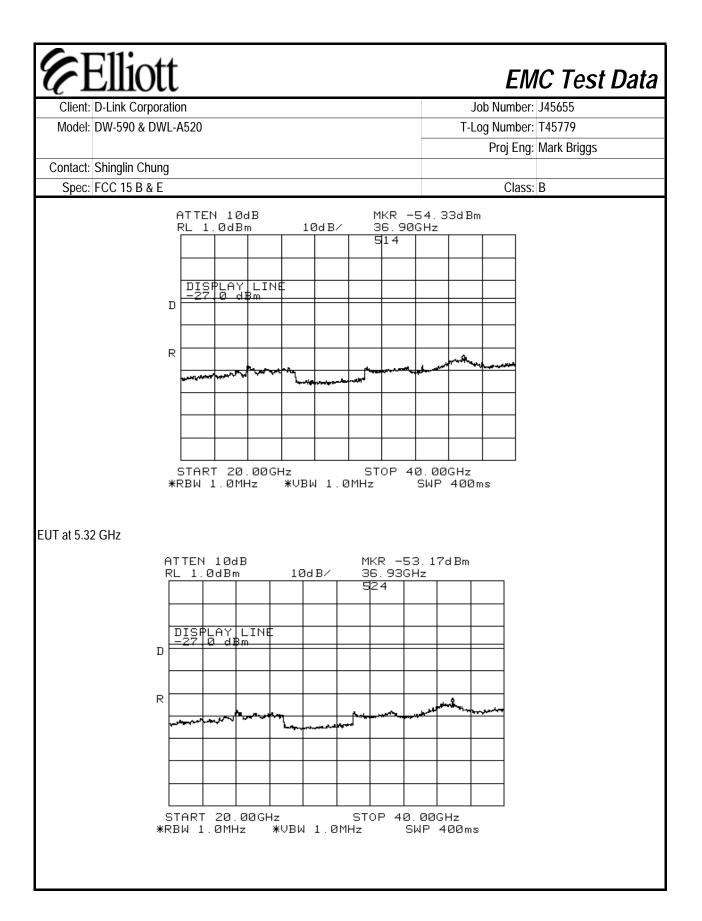
Run #5: Out Of Band Spurious Emissions - Antenna Conducted

The antenna gain of the radios integral antenna is 3 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -30 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 3 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

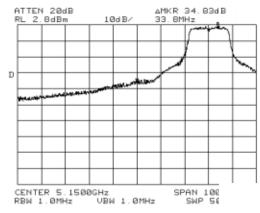

Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		30 - 1000 MHz	Note 4	501
		1 to 5.15 GHz		502
Low		5.25 to 10 GHz		503
		10 GHz to 20 GHz		504
		20 GHz to 40 GHz	-62dBm @ 36 GHz	505
		30 - 1000 MHz	Note 4	510
Mid	5260	1 to 5.25 GHz	-45.5dBm @ 4.208GHz	511
IVIIU		5.35 to 10 GHz	-57.7dBm @ 6.3GHz	512
		10 GHz to 20 GHz	-55.8dBm @ 15.7GHz	513
		20 GHz to 40 GHz		514
		30 - 1000 MHz	Note 4	520
		1 to 5.725 GHz		521
High		5.825 to 10 GHz		522
		10 GHz to 20 GHz		523
		20 GHz to 40 GHz		524

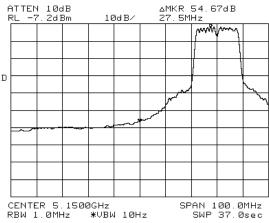

Note 1:	Signal is in a restricted band. Refer to run #6 for field strength measurements.
Note 2:	Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no
Note 2:	field strength measurements required.
Note 3:	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than -
Note 3:	27dBm field strength measurements were made (refer to run #6)
Note 4:	All spurious signals in this frequency band measured during digital device radiated emissions test.
Note 5:	Signal is wihtin 10Mhz of the 5.725 or 5.825 Band edge. Limit is -17dBm EIRP


	Elliott	EM	IC Test Data
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В


Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)

EUT operating at 5.18GHz:

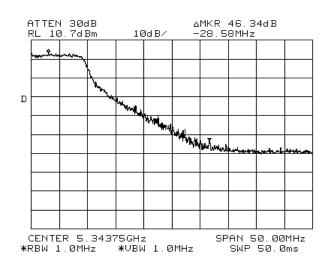

Band Edge Measurements:

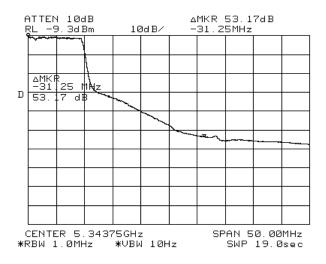

For signals in the restricted bands immediately above and below the 5.15 to 5.35 GHz allocated band a measurement was made of the amplitude of the spurious emissions with respect to the intentional signals. The relative amplitude, in dBc, was then applied to the average and peak field strength of the intentional signal made on the OATS to calculate the field strength of the unintentional signals.

Plots Showing Out-Of-Band Emissions (Peak RBW=VBW=1MHz; Average RBW = 1MHz, VBW = 10Hz)

5.15 GHz band edge, EUT operating on the lowest channel

The highest signal within 50 MHz of the 5.15 GHz band was -34.83 dBc (Peak) / -54.67 dBc (Average)





י			
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В

5.35 GHz band edge EUT operating on channel 17 (highest channel):

The highest signal in the 5.35 to 5.46 GHz band was -46.34 dBc (Peak) / -53.17 dBc (Average)

Elliott	EMC Test Data
Client: D-Link Corporation	Job Number: J45655
Model: DW-590 & DWL-A520	T-Log Number: T45779
	Proj Eng: Mark Briggs
Contact: Shinglin Chung	
Spec: FCC 15 B & F	Class: B

Radiated Emissions: Normal Mode

Test Specifics

(AT)11' 11

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/21/01 Config. Used: 2
Test Engineer: jmartinez Config Change: N/A

Test Location: SVOATS #4 Host Unit Voltage 120Vac, 60Hz

General Test Configuration

The EUT was located on the turntable for radiated emissions testing. All support equipment was located underneath the table.

On the OATS, the measurement antenna was located 3m from the EUT for the frequency range 1 - 26 GHz.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 10°C

Rel. Humidity: 98%

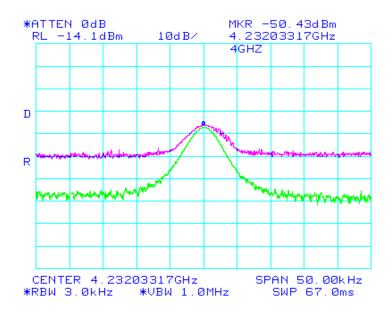
Summary of Results

Run #	Test Performed	Limit	Result	Margin
	RE, 1000 - 40000 MHz -	15.407(b)(6)	Daga	-2.52dB @ 15960MHz
0	Spurious Emissions	13.407(b)(0)	Pass	-2.520D @ 15900WITZ

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.

Client:	D-Link Co	rporation	1					lob Number:	J45655
Model:	DW-590 &	DWL-A	520				T-L	og Number:	T45779
								Proj Eng:	Mark Briggs
Contact:	Shinglin C	hung						, ,	33
	FCC 15 B							Class:	В
			Emissions	s, 1000 - 40	000 MHz, Jo	yMax Anter	nna		
	Limit fo	r emissio	ons in restric	ted bands:	54dBuV/m	(Average)	74dBuV	/m (Peak)	
Limit			ide of restric			7dBm/MHz		BuV/m)	
Fundamer	ıtal signal	measure	ements (to	calculate th	he band edg	e field stren	naths):	•	'
Frequency		Pol	15.209 /		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5180.365	105.4	V	-	-	Pk	0	0.0		ng, peak limit
5179.064	96.7	V	-	ı	Avg	0	0.0		ading, average limit
5180.250	94.8	Н	-	-	Pk	0	0.0		ng, peak limit
5179.035	85.7	Н	-	-	Avg	0	0.0		ading, average limit
5320.240	105.2	V	-	-	Pk	0	0.0		ng, peak limit
5319.005	96.8	V	-	-	Avg	0	0.0		ading, average limit
5320.085	93.6	Н	-	-	Pk	0	0.0		ng, peak limit
5319.006	85.0	Н	-	-	Avg	0	0.0	Average re	ading, average limit
Band Edge	e Field Stre	enath Ca	alculations						
Frequency		Pol	15.209 /	15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.0	70.6	٧	74.0	-3.4	Pk			Note 1	
5150.0	42.0	٧	54.0	-12.0	Avg			Note 1	
5150.0	60.0	h	74.0	-14.0	Pk			Note 1	
5150.0	31.0	h	54.0	-23.0	Avg			Note 1	
5350.0	58.9	٧	74.0	-15.1	Pk			Note 2	
5350.0	43.6	V	54.0	-10.4	Avg			Note 2	
5350.0	47.3	٧	74.0	-26.7	Pk			Note 2	
5350.0	31.8	٧	54.0	-22.2	Avg			Note 2	
		0						•	alculated using the
Note 1:				-	•		•	e) applied to	the highest peak and
	average fi	eld stren	gth measure	ements of th	ne fundamen	tal signal lev	el.		
	EUT opera	ating on I	highest chai	nnel availab	ole in the 5.25	5 - 5.35 MHz	band. Sign	nal level calc	ulated using the relativ
	measurem	nents in r	un #5 (-46.3	34 dBc for p	eak and -53.	17 dBc for a	verage) app	olied to the h	ighest peak and avera
Note 2:				-	mental signal				

	D-Link Co	rporatior	1				J	ob Number: J45655
Model: DW-590 & DWL-A520							og Number: T45779	
						· -	Proj Eng: Mark Briggs	
Contact	Shinalin C	huna						1 Toj Elig. Mark briggs
Contact: Shinglin Chung Spec: FCC 15 B & E								Class: B
_			s Emission:	1000 40	0000 MH-			Class. D
					/Max Antenn	12		
requency		Pol	15.209		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	- Commonte
15540.0	49.3	h	54.0	-4.7	Avg	170	1.0	Note 2
15540.0	49.3	V	54.0	-4.7	Avg	191	1.0	Note 2
10360.0	61.7	h	68.3	-6.6	Note 3	193		Note 4
15540.0	63.7	h	74.0	-10.3	Pk	170		Note 2
15540.0	63.7	V	74.0	-10.3	Pk	191		Note 2
10360.0	53.3	V	68.3	-15.0	Note 3	231	1.0	Note 4
	Ol-		/ CU-> 1					
			6 GHz), Jo y 15.209			A -inath	Halaht	Commonto
requency MHz	Level dBµV/m	Pol v/h	Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments
15780.0	•	h	54.0	-8.0	Avg	146		Note 2
15780.0	45.7	V	54.0	-8.3	Avg	212		Note 2
10520.0	56.5	h	68.3	-11.8	Note 3	206		Note 4
10020.0	60.3	h	74.0	-13.7	Pk	146		Note 2
15780.0						212		Note 2
15780.0 15780.0		V	74.0	-14./	Pk	212	1.1	INUIC Z
15780.0 15780.0 10520.0	59.3 51.7	V	74.0 68.3	-14.7 -16.6	Note 3	244		Note 4
15780.0	59.3							
15780.0	59.3							
15780.0 10520.0	59.3 51.7	V	68.3 ailable (5.3	-16.6 2 GHz), Jo		244		
15780.0 10520.0 EUT On H	59.3 51.7 ighest Cha Level	v I nnel Av Pol	68.3 ailable (5.3	-16.6 2 GHz), Jo 15.407	Note 3 yMax Anteni Detector	244		
15780.0 10520.0 EUT On H Frequency MHz	59.3 51.7 ghest Cha Level dBμV/m	v Innel Av Pol v/h	68.3 ailable (5.3 15.209 Limit	-16.6 2 GHz), Jo 15.407 Margin	Note 3 yMax Anteni	244 na Azimuth degrees	Height meters	Note 4 Comments
15780.0 10520.0 EUT On H Frequency MHz 15960.0	59.3 51.7 ighest Cha Level dBμV/m 51.5	v Innel Av Pol v/h h	68.3 ailable (5.3 15.209 A Limit 54.0	-16.6 2 GHz), Jo 15.407 Margin -2.5	yMax Anteni Detector Pk/QP/Avg Avg	244 na Azimuth degrees 190	Height meters 1.0	Note 4 Comments Note 2
15780.0 10520.0 EUT On H Frequency MHz 15960.0 15960.0	59.3 51.7 ghest Cha Level dBμV/m 51.5 66.4	v Innel Av Pol v/h h	68.3 ailable (5.3 15.209 Limit 54.0 74.0	-16.6 2 GHz), Jo 15.407 Margin -2.5 -7.6	yMax Anteni Detector Pk/QP/Avg Avg Pk	na Azimuth degrees 190 190	Height meters 1.0 1.0	Note 4 Comments Note 2 Note 2
15780.0 10520.0 EUT On H Frequency MHz 15960.0 15960.0 10640.0	59.3 51.7 ghest Cha Level dBμV/m 51.5 66.4 45.1	v nnel Av Pol v/h h v	68.3 ailable (5.3 15.209 a Limit 54.0 74.0 54.0	-16.6 2 GHz), Jo 15.407 Margin -2.5 -7.6 -8.9	yMax Anteni Detector Pk/QP/Avg Avg Pk Avg	Azimuth degrees 190 148	1.1 Height meters 1.0 1.0 1.3	Note 4 Comments Note 2 Note 2 Note 2 Note 2
15780.0 10520.0 10520.0 EUT On H Frequency MHz 15960.0 15960.0 10640.0	59.3 51.7 ghest Cha Level dBμV/m 51.5 66.4 45.1 42.1	v nnnel Av Pol v/h h v h	68.3 ailable (5.3 15.209 / Limit 54.0 74.0 54.0 54.0	-16.6 2 GHz), Jo 15.407 Margin -2.5 -7.6 -8.9 -11.9	yMax Anteni Detector Pk/QP/Avg Avg Pk Avg Avg	244 Azimuth degrees 190 190 148 171	Height meters 1.0 1.3 1.1	Note 4 Comments Note 2
15780.0 10520.0 10520.0 EUT On H Frequency MHz 15960.0 15960.0 10640.0 15960.0	59.3 51.7 Ighest Cha Level dBμV/m 51.5 66.4 45.1 42.1 41.3	v nnel Av Pol v/h h v h v	68.3 ailable (5.3 15.209 / Limit 54.0 74.0 54.0 54.0 54.0	-16.6 2 GHz), Jo 15.407 Margin -2.5 -7.6 -8.9 -11.9 -12.7	yMax Antenr Detector Pk/QP/Avg Avg Pk Avg Avg Avg	244 Azimuth degrees 190 190 148 171 202	Height meters 1.0 1.3 1.1 1.2	Note 4 Comments Note 2
15780.0 10520.0 10520.0 EUT On H Frequency MHz 15960.0 10640.0 10640.0 15960.0	59.3 51.7 ghest Cha Level dBμV/m 51.5 66.4 45.1 42.1 41.3 60.2	v nnel Av Pol v/h h v h v	68.3 ailable (5.3 15.209 Limit 54.0 74.0 54.0 54.0 54.0 74.0	-16.6 2 GHz), Jo 15.407 Margin -2.5 -7.6 -8.9 -11.9 -12.7 -13.8	yMax Anteni Detector Pk/QP/Avg Avg Pk Avg Avg Avg Avg	244 Azimuth degrees 190 190 148 171 202 148	1.1 Height meters 1.0 1.0 1.3 1.1 1.2 1.3	Note 4 Comments Note 2
15780.0 10520.0 EUT On H Frequency MHz 15960.0 15960.0 10640.0 15960.0	59.3 51.7 ghest Cha Level dBμV/m 51.5 66.4 45.1 42.1 41.3 60.2 55.0	v nnel Av Pol v/h h v h v	68.3 ailable (5.3 15.209 / Limit 54.0 74.0 54.0 54.0 54.0	-16.6 2 GHz), Jo 15.407 Margin -2.5 -7.6 -8.9 -11.9 -12.7	yMax Antenr Detector Pk/QP/Avg Avg Pk Avg Avg Avg	244 Azimuth degrees 190 190 148 171 202	Height meters 1.0 1.3 1.1 1.2 1.3 1.1	Note 4 Comments Note 2

See following page for test notes...

	Elliott	EM	IC Test Data
Client	: D-Link Corporation	Job Number:	J45655
Model	: DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact	Shinglin Chung		
Spec	FCC 15 B & E	Class:	В
test not	es for run 6b		
Note 1:	For emissions falling in the restricted bands detailed in 15.205 the gemissions the limit is EIRP < -27dBm (equivalent to a field strength	,	apply. For all other
Note 2:	Signal is in a restricted band		
Note 3:	Restricted Band Peak Measurements: Resolution and Video BW: 1 Resolution Bw: 1MHz and Video Bw: 10 Hz. All other measurement averaging on (100 samples).		· ·
Note 4:	Signal does not fall in a restricted band.		
Note 5:	This measurement was made using a resolution bandwidth of 3 kHz allow measurements with RBW = 1MHz because a preamplifier countentional signal would overload the amplifier and there is no low p the intentionally trasmitted signal but pass the spuroius signal). The during the conducted antenna measurements) and so the amplitude the same as that in a 1MHz bandwidth (please refer to the plot below the average limit.	uld not be used (with the lass filter with sufficient e signal was a narrowba e (peak/average) in a 31	e EUT operating the shape factor to reject and signal (as verified kHz bandwidth would be

Plot showing LO signal at 4GHz measured using RBW = 1MHz and RBW = 3kHz. Amplitude of the signal does not change with resolution bandwidth.

		EM	IC Test Data
Client:	D-Link Corporation	Job Number:	J45655
Model:	DW-590 & DWL-A520	T-Log Number:	T45779
		Proj Eng:	Mark Briggs
Contact:	Shinglin Chung		
Spec:	FCC 15 B & E	Class:	В

Radiated Emissions: Turbo Mode

Test Specifics

C □11: -44

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/21/01 Config. Used: 2
Test Engineer: jmartinez Config Change: N/A

Test Location: SVOATS #4 Host Unit Voltage 120Vac, 60Hz

General Test Configuration

The EUT was located on the turntable for radiated emissions testing. All support equipment was located underneath the table.

On the OATS, the measurement antenna was located 3m from the EUT for the frequency range 1 - 26 GHz.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 10°C

Rel. Humidity: 98%

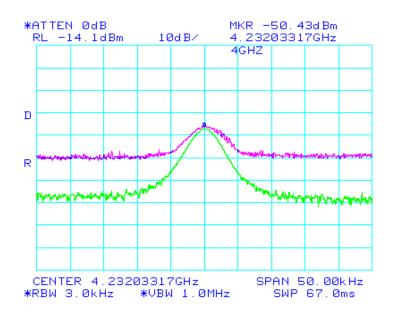
Summary of Results

Run #	Test Performed	Limit	Result	Margin
6	RE, 1000 - 40000 MHz -	15.407(b)(6)	Docc	-1.8dB @ 15750MHz
0	Spurious Emissions	15.407(0)(0)	Pass	-1.0UD @ 13/30WITZ

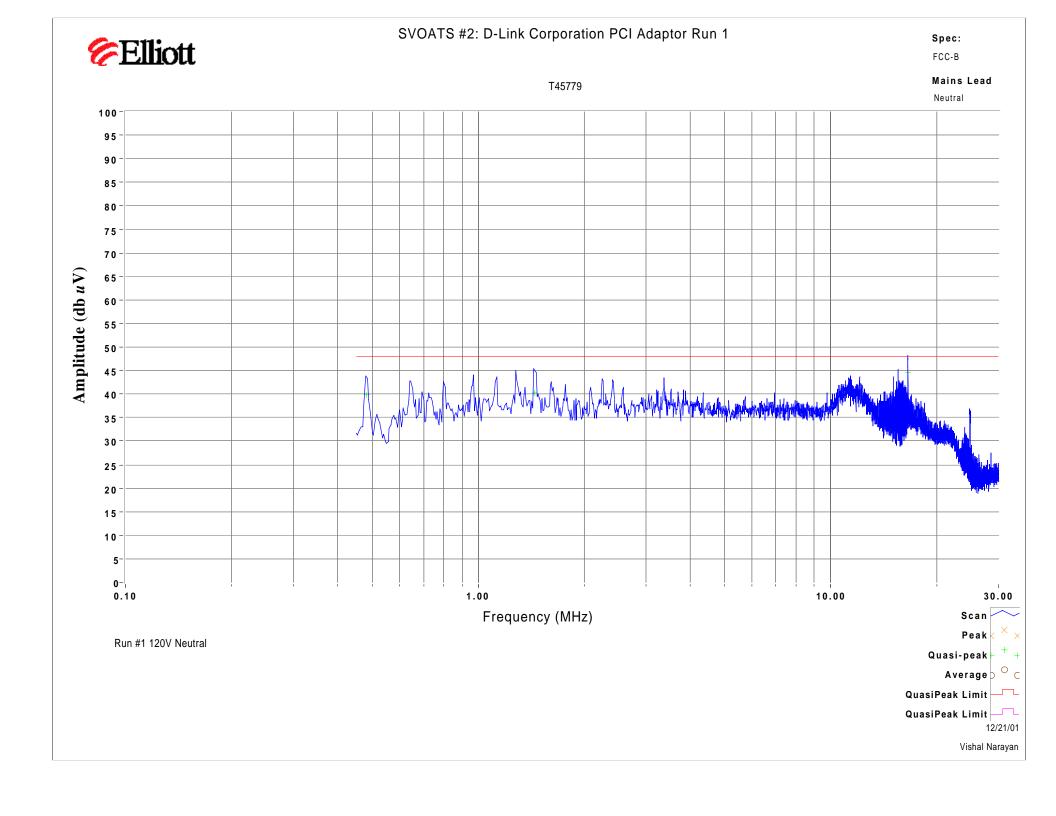
Modifications Made During Testing:

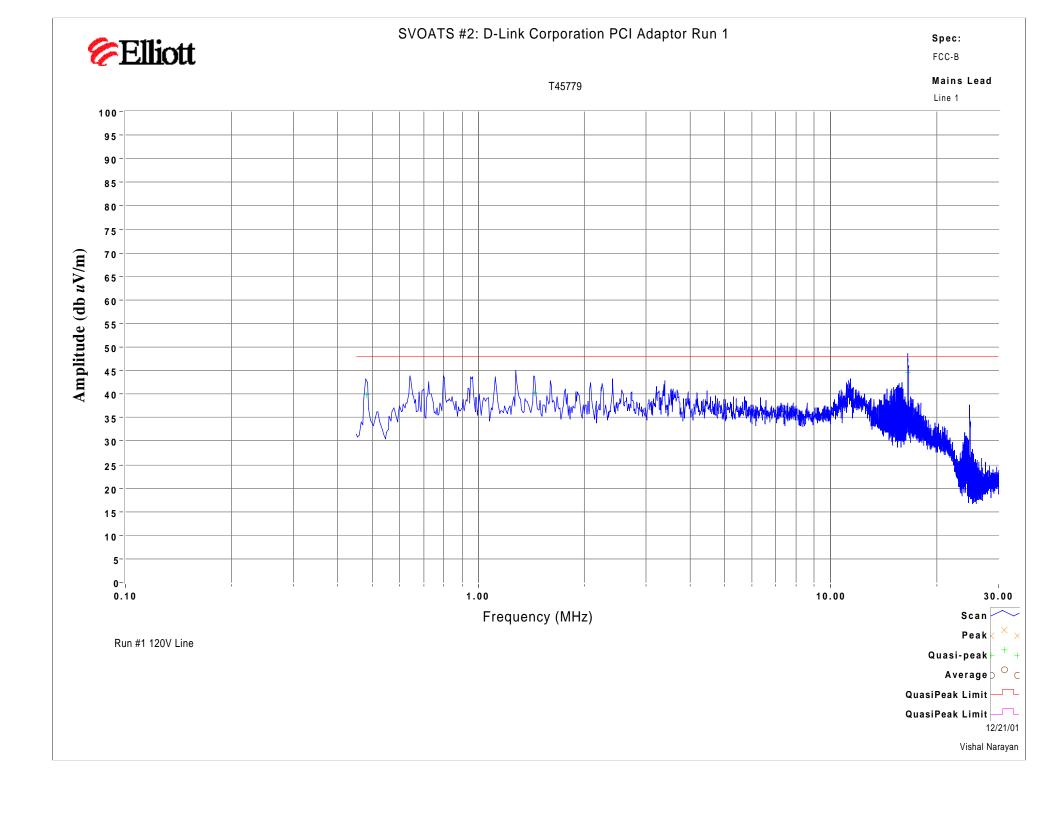
Modifications are detailed under each run description.

Deviations From The Standard


No deviations were made from the requirements of the standard.

	Ellic						ı		IC Test Dat
	D-Link Co	<u> </u>					J	ob Number:	J45655
Model:	DW-590 & DWL-A520						T-L	.og Number:	T45779
								Proj Eng:	Mark Briggs
Contact:	Shinglin C	hung							
Spec:	FCC 15 B	& E						Class:	В
			Emissions	s, 1000 - 40	000 MHz				1
		•							
	Limit fo	r emissio	ons in restric	ted bands:	54dBuV/m	(Average)	74dBuV	/m (Peak)]
Limit	for emission	ons outsi	ide of restric	ted bands:	EIRP < -2	7dBm/MHz	(68dE	BuV/m)	
						e field stren	<u> </u>	1 -	
requency		Pol	15.209 /		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5210.094	106.3	V	-	-	Pk	228	1.1		ng, peak limit
5209.005	98.8	V	-	-	Avg	228	1.1		ading, average limit
5209.703	92.1	Н	-	-	Pk	185	1.9		ng, peak limit
5209.000	85.5	Н	-	-	Avg	185	1.9		ading, average limit
5289.570	106.8	V	-	-	Pk	285	1.1		ng, peak limit
5289.133	99.6	V	-	-	Avg	285	1.1		ading, average limit
5290.053	95.8	H	-	-	Pk	185	1.8	+	ng, peak limit
5289.026	88.3	Н	-	-	Avg	185	1.8	Average re	ading, average limit
Dand Edge	. Eiold Str	onath C	alculations						
requency		Pol	15.209 /	15 407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
5150.0	· ·	V/11	74.0	-19.4	Pk	ucgrees	HICKCIS	Note 1	
5150.0	44.6	V	54.0	-9.4	Avg			Note 1	
5150.0	40.4	h	74.0	-33.6	Pk			Note 1	
5150.0	31.3	h	54.0	-22.7	Avg			Note 1	
5350.0		V	74.0	-18.7	Pk			Note 2	
5350.0		V	54.0	-7.4	Avg			Note 2	
5350.0		h	74.0	-29.7	Pk			Note 2	
5350.0	35.3	h	54.0	-18.7	Avg			Note 4	
	00.0		0 1.0	10.7	7119			11010 1	
	FUT opera	ating on	the lowest c	hannel avai	lable in the 5	5.15 - 5.25 M	Hz band. S	Signal level c	alculated using the
Note 1:	_	-						-	to the highest peak ar
					•	tal signal lev		ago, appliou	to the highest pour ar
			•					al level calc	ulated using the relative
		•	•				•		ulated using the relatives st peak and average
	magairem	ICHIO III I	un #5 (-51.5	ubu idi pe	an anu -05 u	,	ge) applied	to the highe	or hear and average
Note 2:			curomonto o	f the funder	mental signal	lovol			


	D-Link Co	rporation	ı				J	ob Number: J45655
Model	el: DW-590 & DWL-A520						T-L	og Number: T45779
								Proj Eng: Mark Briggs
Contact	Shinglin C	hung						. 0 00
	FCC 15 B							Class: B
			s Emission	s. 1000 - 40	0000 MHz			
					/Max antenn	a		
requency		Pol		/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
15630.0	52.2	V	54.0	-1.8	Avg	192	1.0	Note 2
15630.0	50.5	h	54.0	-3.5	Avg	135	1.0	Note 2
10420.0	60.5	h	68.3	-7.8	Note 3	182	1.2	Note 4
15630.0		V	74.0	-9.9	Pk	192		Note 2
10420.0		V	68.3	-10.0	Note 3	216		Note 4
15630.0	63.8	h	74.0	-10.3	Pk	135	1.0	Note 2
			5 GHz), Joy			1		<u>.</u>
requency		Pol		15.407	Detector	Azimuth	Height	Comments
	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	N
MHz	F0 0	V	54.0	-1.8	Avg	169		Note 2
15750.0			F40		////	141	1.0	
15750.0 15750.0	49.2	h	54.0	-4.8	Avg			Note 2
15750.0 15750.0 15750.0	49.2 62.3	h v	74.0	-11.7	Pk	169	1.0	Note 2
15750.0 15750.0 15750.0 10500.0	49.2 62.3 56.3	h v h	74.0 68.3	-11.7 -12.0	Pk Note 3	169 168	1.0 1.0	Note 2 Note 4
15750.0 15750.0 15750.0 10500.0 15750.0	49.2 62.3 56.3 61.6	h v h	74.0 68.3 74.0	-11.7 -12.0 -12.4	Pk Note 3 Pk	169 168 141	1.0 1.0 1.0	Note 2 Note 4 Note 2
15750.0 15750.0 15750.0 10500.0	49.2 62.3 56.3 61.6	h v h	74.0 68.3	-11.7 -12.0	Pk Note 3	169 168	1.0 1.0 1.0	Note 2 Note 4
15750.0 15750.0 15750.0 10500.0 15750.0 10500.0	49.2 62.3 56.3 61.6 55.8	h V h h V	74.0 68.3 74.0 68.3	-11.7 -12.0 -12.4 -12.5	Pk Note 3 Pk Note 3	169 168 141 168	1.0 1.0 1.0	Note 2 Note 4 Note 2
15750.0 15750.0 15750.0 10500.0 15750.0 10500.0	49.2 62.3 56.3 61.6 55.8 ghest Cha	h V h h V	74.0 68.3 74.0 68.3 vailable (5.2	-11.7 -12.0 -12.4 -12.5	Pk Note 3 Pk	169 168 141 168	1.0 1.0 1.0 1.1	Note 2 Note 4 Note 2
15750.0 15750.0 15750.0 10500.0 15750.0 10500.0	49.2 62.3 56.3 61.6 55.8 ghest Cha	h v h v v	74.0 68.3 74.0 68.3 vailable (5.2	-11.7 -12.0 -12.4 -12.5 9 GHz), Jo	Pk Note 3 Pk Note 3	169 168 141 168 na Azimuth	1.0 1.0 1.0	Note 2 Note 4 Note 2 Note 4
15750.0 15750.0 15750.0 10500.0 15750.0 10500.0	49.2 62.3 56.3 61.6 55.8 ghest Cha Level dBμV/m	h v h v v nnel Av	74.0 68.3 74.0 68.3 railable (5.2	-11.7 -12.0 -12.4 -12.5 9 GHz), Jo / 15.407	Pk Note 3 Pk Note 3 VMax antenn Detector	169 168 141 168	1.0 1.0 1.0 1.1 Height meters	Note 2 Note 4 Note 2 Note 4
15750.0 15750.0 15750.0 10500.0 15750.0 10500.0 EUT On H	49.2 62.3 56.3 61.6 55.8 ghest Cha Level dBμV/m 51.3	h v h v v nnel Av Pol v/h	74.0 68.3 74.0 68.3 railable (5.2 15.209	-11.7 -12.0 -12.4 -12.5 9 GHz), Jo / 15.407 Margin	Pk Note 3 Pk Note 3 VMax antenn Detector Pk/QP/Avg	169 168 141 168 168 na Azimuth degrees	1.0 1.0 1.0 1.1 Height meters	Note 2 Note 4 Note 2 Note 4 Comments
15750.0 15750.0 15750.0 10500.0 15750.0 10500.0 EUT On Herequency MHz 15870.0	49.2 62.3 56.3 61.6 55.8 ighest Cha Level dBμV/m 51.3 51.0	h v h v v nnel Av Pol v/h h	74.0 68.3 74.0 68.3 railable (5.2 15.209 Limit 54.0	-11.7 -12.0 -12.4 -12.5 9 GHz), Jo / 15.407 Margin -2.7	Pk Note 3 Pk Note 3 YMax antenr Detector Pk/QP/Avg Avg	169 168 141 168 168 Azimuth degrees 169	1.0 1.0 1.0 1.1 Height meters 1.0	Note 2 Note 4 Note 2 Note 4 Comments Note 2
15750.0 15750.0 15750.0 10500.0 15750.0 10500.0 EUT On H Frequency MHz 15870.0	49.2 62.3 56.3 61.6 55.8 ighest Cha Level dBμV/m 51.3 51.0 59.8	h v h v nnel Av Pol v/h h v	74.0 68.3 74.0 68.3 railable (5.2 15.209 Limit 54.0 54.0	-11.7 -12.0 -12.4 -12.5 9 GHz), Jo / 15.407 Margin -2.7 -3.0	Pk Note 3 Pk Note 3 yMax antenn Detector Pk/QP/Avg Avg Avg	169 168 141 168 na Azimuth degrees 169 167	1.0 1.0 1.1 1.1 Height meters 1.0 1.1	Note 2 Note 4 Note 2 Note 4 Comments Note 2 Note 2 Note 2 Note 2
15750.0 15750.0 15750.0 10500.0 15750.0 10500.0 2010 On H Eutron H Frequency MHz 15870.0 10580.0	49.2 62.3 56.3 61.6 55.8 ghest Cha Level dBμV/m 51.3 51.0 59.8 63.9	h v h h v nnel Av Pol v/h h v	74.0 68.3 74.0 68.3 railable (5.2 15.209 Limit 54.0 54.0 68.3	-11.7 -12.0 -12.4 -12.5 9 GHz), Jo / 15.407 Margin -2.7 -3.0 -8.5	Pk Note 3 Pk Note 3 yMax antenn Detector Pk/QP/Avg Avg Avg Avg	169 168 141 168 Azimuth degrees 169 167 171	1.0 1.0 1.0 1.1 Height meters 1.0 1.1 1.5	Note 2 Note 4 Note 2 Note 4 Comments Note 2 Note 2 Note 2 Note 2 Note 2


See following page for test notes...

	Elliott	EM	IC Test Data				
Client	D-Link Corporation	Job Number:	J45655				
Model	DW-590 & DWL-A520	T-Log Number:	T45779				
		Proj Eng:	Mark Briggs				
Contact	Shinglin Chung						
Spec	FCC 15 B & E	Class:	В				
test note	es for run 6b						
Note 1:	For emissions falling in the restricted bands detailed in 15.205 the general limits of 15.209 apply. For all other emissions the limit is EIRP < -27dBm (equivalent to a field strength at 3m of 68dBuV/m)						
Note 2:	Signal is in a restricted band						
Note 3:	Restricted Band Peak Measurements: Resolution and Video BW: 1 Resolution Bw: 1MHz and Video Bw: 10 Hz. All other measuremer averaging on (100 samples).		· ·				
Note 4:	Signal does not fall in a restricted band.						
Note 5:	This measurement was made using a resolution bandwidth of 3 kH allow measurements with RBW = 1MHz because a preamplifier countentional signal would overload the amplifier and there is no low p the intentionally trasmitted signal but pass the spuroius signal). The during the conducted antenna measurements) and so the amplitude the same as that in a 1MHz bandwidth (please refer to the plot belot the average limit.	uld not be used (with the bass filter with sufficient e signal was a narrowba e (peak/average) in a 31	e EUT operating the shape factor to reject and signal (as verified kHz bandwidth would be				

Plot showing LO signal at 4GHz measured using RBW = 1MHz and RBW = 3kHz. Amplitude of the signal does not change with resolution bandwidth.

