FCC TEST REPORT

REPORT NO.: RF940222L01
MODEL NO.: SKY-4001TH
(refer to page 5 for other mode)
RECEIVED: Feb. 22, 2005
TESTED: Feb. 23, 2005
ISSUED Apr. 11, 2005

$$
\begin{aligned}
\text { APPLICANT: } & \text { Skytech II, Inc. } \\
\text { ADDRESS: } & 9230 \text { Conservation Way Fort Wayne, Indiana } \\
& 46809
\end{aligned}
$$

ISSUED BY: Advance Data Technology Corporation
LAB ADDRESS: No. 47, $14^{\text {th }}$ Ling, Chia Pau Tsuen, Lin Kou Hsiang 244, Taipei Hsien, Taiwan, R.O.C.
TEST LOCATION: No. 19, Hwa Ya $2^{\text {nd }}$ Rd., Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 26 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, A2LA or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1. CERTIFICATION 3
2. SUMMARY OF TEST RESULTS 4
2.1 MEASUREMENT UNCERTAINTY 4
3. GENERAL INFORMATION 5
3.1 GENERAL DESCRIPTION OF EUT 5
3.2 DESCRIPTION OF TEST MODES 6
3.2.1 CONFIGURATION OF SYSTEM UNDER TEST 6
3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL: 7
3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS 8
3.4 DESCRIPTION OF SUPPORT UNITS 8
4. TEST TYPES AND RESULTS 9
4.1 CONDUCTED EMISSION MEASUREMENT 9
4.2 DEACTIVATION TIME 9
4.2.1 LIMITS OF DEACTIVATION TIME MEASUREMENT 9
4.2.2 TEST INSTRUMENTS 9
4.2.3 TEST PROCEDURES 9
4.2.4 DEVIATION FROM TEST STANDARD 9
4.2.5 TEST SETUP 10
4.2.6 TEST RESULTS 10
4.3 RADIATED EMISSION MEASUREMENT 12
4.3.1 LIMITS OF RADIATED EMISSION MEASUREMENT. 12
4.3.2 TEST INSTRUMENTS 14
4.3.3 TEST PROCEDURES 15
4.3.4 DEVIATION FROM TEST STANDARD 15
4.3.5 TEST SETUP 16
4.3.6 EUT OPERATING CONDITIONS 16
4.3.7 TEST RESULTS 17
4.4 20dB OCCUPIED BANDWIDTH MEASUREMENT 22
4.4.1 LIMITS OF BAND EDGES MEASUREMENT 22
4.4.2 TEST INSTRUMENTS 22
4.4.3 TEST PROCEDURES 22
4.4.4 DEVIATION FROM TEST STANDARD 22
4.4.5 TEST SETUP 23
4.4.6 TEST RESULTS 23
5. PHOTOGRAPHS OF THE TEST CONFIGURATION 25
6. INFORMATION ON THE TESTING LABORATORIES 26

1. CERTIFICATION

```
        PRODUCT: Remote control transmitter
    MODEL NO.: SKY-4001TH (refer to page 5 for other model)
        BRAND: SKYTECH
        APPLICANT: Skytech II, Inc.
        TESTED: Feb. 23, 2005
TEST SAMPLE: R&D SAMPLE
    STANDARDS: FCC Part 15, Subpart C (Section 15.231),
                            ANSI C63.4-2003
```

The above equipment (model: SKY-4001TH) have been tested by Advance Data Technology Corporation, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C			
STANDARD PARAGRAPH	TEST TYPE	RESULT	REMARK
15.207	Conducted Emission Test	NA	3 3Vdc from battery
$15.231(\mathrm{a})$	De-activation	PASS	Meet the requirement of limit
15.209 $15.231(b)$	Radiated Emission Test	PASS	Minimum passing margin is -12.93dB at 434.04 MHz
15.231 (c)	20dB Occupied Bandwidth Measurement	PASS	Meet the requirement of limit

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4:

Measurement	Frequency	Uncertainty
Conducted emissions	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$	2.44 dB
Radiated emissions	$30 \mathrm{MHz} \sim 200 \mathrm{MHz}$	3.63 dB
	$200 \mathrm{MHz} \sim 1000 \mathrm{MHz}$	3.65 dB
	$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	2.20 dB
	$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$	1.88 dB

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Remote control transmitter
MODEL NO.	SKY-4001TH
POWER SUPPLY	3 Vdc from battery
MODULATION TYPE	ASK
CARRIER FREQUENCY OF EACH CHANNEL	433.92 MHz
NUMBER OF CHANNEL	1
ANTENNA TYPE	Printed antenna
DATA CABLE	NA
I/O PORTS	NA

NOTE:

1. The following models are provided to this EUT, and identical to each other except for their models and buttons due to marketing requirement.

Brand	MODEL NO.	REMARK
SKYTECH	SKY-4001TH	Three buttons
SKYTECH	SKY-4001LCD	Two buttons

2. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

FCC ID: K9L-4001THTX

3.2 DESCRIPTION OF TEST MODES

One channel is provided to this EUT:

Channel	Frequency
1	433.92 MHz

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

	EUT
(Power from battery)	
Test table	

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL:

EUT configure mode	Applicable to				Description
	PLC	RE<1G	RE $\geq 1 G$	APM	
-	-	x	x	x	NA

Where PLC: Power Line Conducted Emission \quad RE<1G RE: Radiated Emission below 1GHz RE \geq 1G: Radiated Emission above $1 \mathrm{GHz} \quad$ APM: Antenna Port Measurement

Radiated Emission Test (Below 1 GHz):

\boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types and X.Y.Z. axis.
\boxtimes Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type	Axis
1	1	ASK	Z

Radiated Emission Test (Above 1 GHz):

\boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types and X.Y.Z. axis.
\boxtimes Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type	Axis
1	1	ASK	Z

Antenna Port Conducted Measurement:

\boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet types .
\boxtimes Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type
1	1	ASK

FCC ID: K9L-4001THTX

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a Remote control transmitter. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.231)
ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NA	NA	NA	NA	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

NA

4.2 DEACTIVATION TIME

4.2.1 LIMITS OF DEACTIVATION TIME MEASUREMENT

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

4.2.2 TEST INSTRUMENTS

Description \& Manufacturer	Model No.	Serial No.	Calibrated Until
SPECTRUM ANALYZER	FSEK30	100049	Aug. 12, 2005

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST PROCEDURES

1 The EUT was placed on the turning table.
2 The signal was coupled to the spectrum analyzer through an antenna.
3 Set the resolution bandwidth to 1 kHz and video bandwidth to 100 kHz . The spectrum analyser was turned to the centre frequency of the transmitter's and the analyser's marker function was used to determine the duration of transmission.

4 The transmission duration was measured and recorded.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

FCC ID: K9L-4001THTX

4.2.5 TEST SETUP

4.2.6 TEST RESULTS

Push button	Frequency $(\mathbf{M H z})$	Transmission duration $(\mathbf{s e c})$	Maximum limit $(\mathbf{s e c})$	PASS/FAIL
1	433.92	2.10	5	PASS

The plot of test result is attached as below.

FCC ID: K9L-4001THTX

Manual Push - Button 1

FCC ID: K9L-4001THTX

4.3 RADIATED EMISSION MEASUREMENT

4.3.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to 15.231 the field strength of emissions from intentional radiators operated under these frequencies bands shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental		Field Strength of Spurious	
	uV/meter	dBuV/meter	uV/meter	dBuV/meter
$40.66-40.70$	2250	67.04	225	48.04
$70-130$	1250	61.94	125	41.94
$130-174$	1250 to 3750	61.94 to 71.48	125 to 375	41.94 to 51.48
$174-260$	3750	71.48	75	37.50
$260-470$	3750 to 12500	71.48 to 81.94	375 to 1250	51.48 to 61.94
Above 470	12500	81.94	1250	61.94

NOTE:

(1) Where F is the frequency in MHz , the formula for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 $\mathrm{MHz}, \mathrm{uV} / \mathrm{m}$ at 3 meters $=56.81818(\mathrm{~F})-6136.3636$; for the band $260-470 \mathrm{MHz}$, uV / m at 3 meters $=41.6667(\mathrm{~F})$ - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.
(2) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

FCC ID: K9L-4001THTX

Frequencies $(\mathbf{M H z})$	Field strength (microvolts/meter)	Measurement distance (meters)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	3

As shown in 15.35 (b), for frequencies above 1000 MHz , the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

FCC ID: K9L-4001THTX
4.3.2 TEST INSTRUMENTS

DESCRIPTION \& MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE \& SCHWARZ	ESI7	838496/016	Jan. 07, 2006
Spectrum Analyzer ROHDE \& SCHWARZ	FSP40	100041	Nov. 29, 2005
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Feb. 03, 2006
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-404	Jan. 05, 2006
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA 9170242	Jan. 23, 2006
Preamplifier Agilent	8447D	2944A10631	Nov. 17, 2005
Preamplifier Agilent	8449B	3008A01960	Nov. 14, 2005
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	219272/4	Mar. 04, 2005
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	219275/4	Mar. 04, 2005
Software ADT.	ADT_Radiated_V5.14	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA
Antenna Tower Controller inn-co GmbH	CO2000	019303	NA
Turn Table ADT.	TT100.	TT93021704	NA
Turn Table Controller ADT.	SC100.	SC93021704	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in HwaYa Chamber 3.
3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1 GHz if tested.
4. The IC Site Registration No. is IC4924-4.

4.3.3 TEST PROCEDURES

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using the quasi-peak method or average method as specified and then reported in Data sheet peak mode and QP mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz .
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection (PK) at frequency above 1 GHz .

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

FCC ID: K9L-4001THTX
4.3.5 TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

4.3.6 EUT OPERATING CONDITIONS

Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.

FCC ID: K9L-4001THTX
4.3.7 TEST RESULTS

Below 1GHz Worst-Case Data

EUT	Remote control transmitter	MODEL	SKY-4001TH
CHANNEL	Channel 1	FREQUENCY RANGE	Below 1000MHz
MODULATION TYPE	ASK	INPUT POWER (SYSTEM)	3Vdc
ENVIRONMENTAL CONDITIONS	25deg. C, 61\%RH, 991hPa	DETECTOR FUNCTION	Quasi-Peak / Peak/ Average
TESTED BY	Long Chen		

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M

No.	Freq. (MHz)	Emission Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Antenna Height (m)	Table Angle $($ Degree $)$	Raw Value (dBuV)	Correction Factor $(\mathrm{dB} / \mathrm{m})$
1	288.54	14.48 QP	46.00	-31.52	1.50 H	307	-0.34	14.82
2	$* 434.04$	76.37 PK	100.83	-24.46	1.55 H	249	58.17	18.20
2	$* 434.04$	57.02 AV	80.83	-23.81	1.55 H	249	38.82	18.20
3	517.92	20.75 QP	46.00	-25.25	1.00 H	106	1.11	19.64
4	741.46	23.85 QP	46.00	-22.15	1.50 H	184	-0.21	24.05
5	817.27	24.32 QP	46.00	-21.68	1.00 H	241	-0.40	24.72
6	868.08	41.04 PK	80.83	-39.79	1.00 H	283	15.71	25.33
7	868.08	21.69 AV	60.83	-39.14	1.00 H	283	-3.64	25.33
8	914.47	25.62 QP	46.00	-20.38	1.50 H	328	-0.45	26.07
9	945.57	26.47 QP	46.00	-19.53	1.00 H	256	0.03	26.43

NOTE: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB)
2. Correction Factor $(\mathrm{dB})=$ Antenna Factor $(\mathrm{dB})+$ Cable Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission level - Limit value.
5. "*" = Fundamental frequency
6. The average value of fundamental frequency is: Average $=$ Peak value $+20 \log$ (Duty cycle)

Where the duty factor is calculated from following formula:
$20 \log ($ Duty cycle $)=20 \log \frac{(2+4+15+12)^{*} 0.216 \mathrm{~ms}}{66.13 \mathrm{~ms}}=-19.35 \mathrm{~dB}$
please see page 20 to 21 for plotted duty

FCC ID: K9L-4001THTX

EUT	Remote control transmitter	MODEL	SKY-4001TH
CHANNEL	Channel 1	FREQUENCY RANGE	Below 1000MHz
MODULATION TYPE	ASK	INPUT POWER (SYSTEM)	3Vdc
ENVIRONMENTAL CONDITIONS	25deg. C, 61\%RH, 991hPa	DETECTOR FUNCTION	Quasi-Peak / Peak/ Average
TESTED BY	Long Chen		

ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M								
No.	Freq. (MHz)	Emission Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Antenna Height (m)	Table Angle $($ Degree $)$	Raw Value (dBuV)	Correction Factor $(\mathrm{dB} / \mathrm{m})$
1	39.72	15.51 QP	40.00	-24.49	1.00 V	97	0.06	15.45
2	99.98	12.81 QP	43.50	-30.69	1.00 V	259	1.52	11.29
3	144.69	16.67 QP	43.50	-26.83	1.00 V	85	1.81	14.86
4	$* 434.04$	87.25 PK	100.83	-13.58	1.21 V	161	82.63	18.20
$\mathbf{4}$	$* 434.04$	$\mathbf{6 7 . 9 0} \mathrm{AV}$	$\mathbf{8 0 . 8 3}$	-12.93	$\mathbf{1 . 2 1 \mathrm { V }}$	$\mathbf{1 6 1}$	$\mathbf{4 9 . 7 0}$	$\mathbf{1 8 . 2 0}$
5	475.15	20.21 QP	46.00	-25.79	1.00 V	196	1.25	18.96
6	646.21	21.20 QP	46.00	-24.80	1.00 V	172	-1.03	22.24
7	725.91	23.04 QP	46.00	-22.96	1.00 V	346	-0.60	23.64
8	868.07	51.05 PK	80.83	-29.78	1.17 V	101	25.72	25.33
8	868.07	32.70 AV	60.83	-28.13	1.17 V	101	7.37	25.33

NOTE: 1. Emission level $(\mathrm{dBuV} / \mathrm{m})=$ Raw Value $(\mathrm{dBuV})+$ Correction Factor(dB)
2. Correction Factor(dB) = Antenna Factor (dB) + Cable Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission level - Limit value
5. "*" = Fundamental frequency
6. The average value of fundamental frequency is: Average $=$ Peak value $+20 \log$ (Duty cycle)

Where the duty factor is calculated from following formula:

please see page 20 to 21 for plotted duty

FCC ID: K9L-4001THTX

ASK modulation

EUT	Remote control transmitter	MODEL	SKY-4001TH
CHANNEL	Channel 1	FREQUENCY RANGE	$1-7 \mathrm{GHz}$
MODULATION TYPE	ASK	INPUT POWER (SYSTEM)	3 Vdc
ENVIRONMENTAL CONDITIONS	25deg. C, 61\%RH, 991hPa	DETECTOR FUNCTION	Peak (PK)
TESTED BY	Long Chen		

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M

No.	Freq. (MHz)	Emission Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Antenna Height (m)	Table Angle $($ Degree $)$	Raw Value (dBuV)	Correction Factor $(\mathrm{dB} / \mathrm{m})$
1	1302.08	45.64 PK	74.00	-28.36	1.15 H	287	17.52	28.12
2	1736.21	54.38 PK	74.00	-19.62	1.47 H	58	26.26	28.12
3	2604.11	45.25 PK	74.00	-28.75	1.47 H	58	17.13	28.12

ANTENN POLARITY \& TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBBV} / \mathrm{m})$	Margin (dB)	Antenna Height (m)	Table Angle $($ Degree $)$	Raw Value (dBu)	Correction Factor $(\mathrm{dB} / \mathrm{m})$	
1	1302.06	49.62 PK	74.00	-24.38	1.20 V	58	21.50	28.12	
2	1736.17	58.34 PK	74.00	-15.66	1.25 V	129	30.21	28.12	
3	2604.02	48.93 PK	74.00	-25.07	1.06 V	0	20.81	28.12	

REMARKS: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission level - Limit value.

FCC ID: K9L-4001THTX

FCC ID: K9L-4001THTX

4.4 20dB OCCUPIED BANDWIDTH MEASUREMENT

4.4.1 LIMITS OF BAND EDGES MEASUREMENT

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for device operating above 70 MHz and below 900 MHz .

Fundamental Frequency (MHz)	Limit of $\mathbf{2 0} \mathbf{~ d B}$ Bandwidth(kHz)
433.92	1084.8

4.4.2 TEST INSTRUMENTS

Description \& Manufacturer	Model No.	Serial No.	Calibrated Until
SPECTRUM ANALYZER	FSEK30	100049	Aug. 12, 2005

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.4.3 TEST PROCEDURES

1. The EUT was placed on the turning table.
2. The signal was coupled to the spectrum analyzer through an antenna.
3. Set the resolution bandwidth to 10 kHz and video bandwidth to 30 kHz then select Peak function to scan the channel frequency.
4. The 20 dB bandwidth was measured and recorded.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation

FCC ID: K9L-4001THTX
4.4.5 TEST SETUP

4.4.6 TEST RESULTS

Frequency (MHz)	$\mathbf{2 0} \mathbf{~ d B ~ b a n d w i d t h ~}$ $(\mathbf{k H z})$	Maximum limit $(\mathbf{k H z})$	PASS/FAIL
433.92	55.11	1084.80	PASS

The plot of test result is attached as below.

FCC ID: K9L-4001THTX

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

RADIATED EMISSION TEST

6. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, NVLAP, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	CNLA, BSMI, DGT
Netherlands	Telefication
Singapore	PSB, GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:
www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180
Fax: 886-2-26052943
Hwa Ya EMC/RF/Safety Telecom Lab:
Tel: 886-3-3183232
Fax: 886-3-3185050

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343
Fax: 886-3-5935342
Linko RF Lab.
Tel: 886-3-3270910
Fax: 886-3-3270892

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also

