

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01

Manufacturer

Rosemount Tank Radar AB Layoutvägen 1, P O Box 150 435 33 Mölnlycke / SWEDEN

Test standard/s

47 CFR Part 15

Title 47 of the Code of Federal Regulations; Chapter I; Part 15 – Radio frequency devices

RSS-211

Tank Level Probing Radar Equipment

For further applied test standards please refer to section 3 of this test report.

	Test Item
Kind of test item:	Tank Level Probing Radar
Model name:	Rosemount [™] 5408 level transmitter
FCC ID:	K8C5408T
IC:	2827A-5408T
Frequency:	24 GHz Band
Antenna:	horn antenna / parabolic antenna
Power Supply:	24 V DC
Temperature Range:	-40°C to +85°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Karsten Geraldy Lab Manager Radio Communications & EMC

Test performed:

Meheza Walla Lab Manager Radio Communications & EMC

Test report no.: 1-1690/16-01-06-A

1 Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1 2.2	Notes and disclaimer Application details	3 3
3	Test s	standard/s and guideline/s	3
4	Test e	environment	4
5	Test i	tem	5
	5.1 5.2	General Description Additional information	5 5
6	Desci	iption of the test setup	6
	6.1 6.2 6.3	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz	7 8 9
	6.4	Radiated measurements > 50 GHz	9
-	0.J		۱۱
1	weas	urement uncertainty	11
8	Sequ	ence of testing	12
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	13
	8.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	
	8.4 8.5	Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50.0 GHz with external mixers	15 16
9	Sum	nary of measurement results	
10	Tes	t results	
	10.1	Frequency stability and fundamental bandwidth	18
	10.2	Fundamental emissions, EIRP Emission for TLPR Devices	20 22
	10.3	Conducted limits	22
Ann	nex A	Document history	30
Ann	iex B	Further information	30
Ann	ex C	Accreditation Certificate	31

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-1690/16-01-06 and dated 2016-09-19.

2.2 Application details

Date of receipt of order:	2016-04-27
Date of receipt of test item:	2016-06-03
Start of test:	2016-06-06
End of test:	2016-06-13
Person(s) present during the test:	Mr. Jan Westerling

3 Test standard/s and guideline/s

Test standard	Date	Test standard description
47 CFR Part 15	2015-10	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 – Radio frequency devices
RSS-211	2015-03	Tank Level Probing Radar Equipment

4 Test environment

Temperature:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +85 °C -40 °C
Relative humidity content:		45 %
Barometric pressure:		not relevant for this kind of testing
Power supply:	Vnom	24.0 V DC

5 Test item

5.1 General Description

Kind of test item	Tank Level Probing Radar
Type identification	Rosemount [™] 5408 level transmitter
PMN	5408T
HVIN	5408T
FVIN	1
HMN	Not Applicable
S/N serial number :	#209 #210
HW hardware status :	DP3
SW software status :	1.A0
Frequency band :	24 GHz Band
Type of modulation :	FMCW
Number of channels :	1
Antenna :	Horn Antenna / Parabolic Antenna
Power supply :	24 V DC
Temperature range :	-40 °C to +85 °C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in documents:

1-1690/16-01-01_AnnexA 1-1690/16-01-01_AnnexB 1-1690/16-01-01_AnnexC

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CETECOM ICT Services is now

advanced

CTC I

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch / Control Unit	3488A	HP		300000929	ne		
2	n. a.	Directional Coupler	101020010	Krytar	70215	300002840	ev		
3	n. a.	DC-Blocker	8143	Inmet Corp.	none	300002842	ne		
4	n. a.	Powersplitter	6005-3	Inmet Corp.		300002841	ev		
5	n. a.	Temperature Test Chamber	VT 4002	Heraeus Voetsch	5856604682001 0	300003019	ev	03.09.2015	03.09.2017
6	n. a.	System DC Power Supply	N5767A	Agilent Technologies	US14J1569P	300004851	vlKl!	04.09.2014	04.09.2016
7	n. a.	Signal Analyzer 30GHz	FSV30	R&S	103170	300004855	k	25.01.2016	25.01.2017
8	n. a.	Power Sensor	NRP-Z81	R&S	100010	300003780	k	25.01.2016	25.01.2017
9	AC2- C01	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 605505	400001187	ev		
10	AC2- C02	RF-Cable	Sucoflex 104	Huber & Suhner	147636/4	400001188	ev		

6.2 Shielded fully anechoic chamber

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 \overline{FS} [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
4	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne		
5	9	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne		
6	90	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
7	n. a.	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne		
8	n. a.	Band Reject filter	WRCG1855/1910- 1835/1925-40/8SS	Wainwright	7	300003350	ev		
9	n. a.	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev		
10	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne		
11	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	viKI!	29.10.2014	29.10.2017
12	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne		
13	n. a.	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	04.09.2015	04.09.2016

6.3 Radiated measurements > 18 GHz

6.4 Radiated measurements > 50 GHz

OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

Example calculation:

OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μW)

Note: conversion loss of mixer is already included in analyzer value.

Test report no.: 1-1690/16-01-06-A

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A023	Std. Gain Horn Antenna 39.3-59.7 GHz	2424-20	Flann	75	300001979	ne		
2	A025	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne		
3	A026	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001986	ne		
4	A027	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne		
5	A028	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001991	ne		
6		Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	14.08.2015	14.08.2017
7		Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda		300000486	k	10.09.2015	10.09.2017
8	A031	Std. Gain Horn Antenna 26.5 to 40.0 GHz	V637	Narda	82-16	300000510	k	14.08.2015	14.08.2017
9	n. a.	Spectrum Analyzer 20 Hz - 50 GHz	FSU50	R&S	200012	300003443	Ve	02.10.2014	02.10.2016
10	n. a.	Harmonic Mixer 2- Port, 50-75 GHz	FS-Z75	R&S	100099	300003949	k	09.03.2016	09.03.2017
11	n. a.	PXA Spectrum Analyzer 3Hz to 50GHz	N9030A PXA Signal Analyzer	Agilent Technologies	US51350267	300004338	k	09.02.2016	09.02.2017
12	n. a.	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev		
13	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	12.05.2016	12.05.2017
14	n. a.	Waveguide Harmonic Mixer, 75- 110 GHz	M1970W	KEYSIGHT	MY51430848	300005115	k	25.02.2016	25.02.2018
15	n. a.	Waveguide Harmonic Mixer, 50- 80 GHz	M1970V	KEYSIGHT	MY51390914	300005116	k	05.02.2016	05.02.2018
16	n. a.	Temperature Test Chamber	T-40/50	CTS GmbH	053031	300003592	ev	03.09.2015	03.09.2017

6.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2014	17.06.2016
2	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
3	n. a.	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	04.02.2016	04.02.2017

7 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Spectrum bandwidth	span/1000					
Conducted output power	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8.5 Sequence of testing radiated spurious above 50.0 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	47 CFR Part 15 / RSS-211	see below	2017-01-23	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	Pass	Fail	NA	NP	Results
§15.215(c)	Frequency stability	Nominal Extreme	Nominal Extreme					complies
RSS-211 / 5.3	Fundamental emissions, EIRP Emission for TLPR Devices	Nominal	Nominal					complies
§15.209 RSS-211,5.1d RSS-Gen	Unwanted emissions limit	Nominal	Nominal					complies
§15.107/207 RSS-Gen / 8.8	Conducted limits	Nominal	Nominal					complies

NA = Not Applicable; NP = Not Performed

MD = see Manufacturer's Documentation

10 Test results

10.1 Frequency stability and fundamental bandwidth

Description:

§15.215(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Measurement:

 f_C is the point in the radiation where the power is at maximum. The frequency points where the power falls 10 dB below the f_C level and above f_C level are designated as f_L and f_H respectively. The operating frequency range (i.e. the frequency band of operation) is defined as $f_H - f_L$.

Measurement parameters:

Resolution bandwidth:	1 MHz
Video bandwidth:	≥1 MHz
Detector:	Pos-Peak
Trace:	Max hold

Limits:

As specified in Section 15.215(c), the bandwidth of the fundamental emission must be contained within the frequency band over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage. Frequency stability is to be measured according to Section 2.1055 at the highest and lowest frequency of operation and with the modulation that produces the widest emission bandwidth.

Same requirements for fundamental emission bandwidth are given in RSS-211, 2.4 and 5.1.a)

Test report no.: 1-1690/16-01-06-A

Results:

Test Conditions	Transmitter Fre	equency Range Hz)	10 dB bandwidth (GHz)
	fL	fн	
-40 °C / V _{nom}	24.058 500	26.998 500	2.94
-30 °C / V _{nom}	24.058 500	26.998 500	2.94
-20 °C / V _{nom}	24.058 500	26.998 500	2.94
-10 °C / V _{nom}	24.058 500	26.998 500	2.94
0 °C / V _{nom}	24.058 500	26.998 500	2.94
10 °C / V _{nom}	24.058 500	26.998 500	2.94
20 °C / V _{nom}	24.058 500	26.998 500	2.94
30 °C / V _{nom}	24.058 500	26.998 500	2.94
40 °C / V _{nom}	24.058 500	26.998 500	2.94
50 °C / V _{nom}	24.058 500	26.998 500	2.94
60 °C / V _{nom}	24.058 500	26.998 500	2.94
70 °C / V _{nom}	24.058 500	26.998 500	2.94
80 °C / V _{nom}	24.058 500	26.998 500	2.94
deviation based on 20 °C	±0.0 MHz (±0 ppm)	±0.0 MHz (±0 ppm)	

Verdict: Complies

10.2 Fundamental emissions, EIRP Emission for TLPR Devices

Description:

(a) The device shall be installed inside a closed container or in a still pipe by qualified installers.

(b) The leakage of the RF field outside the container at 3 m from the container or still pipe walls shall not exceed the values outlined in Table below. The levels shall be assessed using the procedures defined in ETSI EN 302 372.

Limits: RSS-211 / 5.3

Frequency range (GHz)	Maximum Average EIRP (in dBm / 1 MHz)			
5.65 to 8.50	-41.3 dBm			
8.50 to 10.55	-41.3 dBm			
24.05 to 29.00	-41.3 dBm			
75.00 to 85.00	-41.3 dBm			

Measurement parameters:

Resolution bandwidth:	1 MHz
Video bandwidth:	≥1 MHz
Span:	depends on DUT
Detector:	RMS
Trace:	Max hold

Plot 1: EIRP Emissions for TLPR devices, RMS detector, antenna horizontal/vertical

Results:

Antenna type	Maximum Average EIRP (in dBm / 1 MHz)
Horn Antenna / Parabolic Antenna	-72.27

Verdict: Complies

10.3 Unwanted emissions limit

Description:

Unwanted emissions shall not exceed the general emission limit in §15.209 of this chapter.

Measurement parameters:

Resolution bandwidth:	100 kHz / 1 MHz
Video bandwidth:	≥ resolution bandwidth
Detector:	Quasi Peak / Average (RMS)
Trace:	Max hold

Limits:

FCC §15.209 - RSS-Gen - RSS-211 / 5.1						
Field strength of the harmonics and spurious.						
Frequency (MHz)	Frequency (MHz) Field strength (µV/m) Measurement distance (m)					
0.009 – 0.490	2400/F(kHz)	300				
0.490 – 1.705	24000/F(kHz)	30				
1.705 – 30	30 (29.5 dBµV/m)	30				
30 – 88	100 (40 dBµV/m)	3				
88 – 216	150 (43.5 dBµV/m)	3				
216 – 960	200 (46 dBµV/m)	3				
>960	500 (54 dBµV/m)	3				

Results:

Spurious emission level (dBm)								
	-/-			-/-		-/-		
Frequency	BW	Level	Frequency	BW	Level	Frequency	BW	Level
[GHz]	[kHz]	[dBµV/m]	[GHz]	[kHz]	[dBµV/m]	[GHz]	[kHz]	[dBµV/m]
	see plots							

Verdict: Complies

Plot 2: 9 kHz - 30 MHz

Plot 3: 30.0 MHz - 1.0 GHz, antenna horizontal/vertical

CETECOM ICT Services is now

CETECOM ICT Services is now

CTC | advanced

Plot 4: 1 GHz - 18 GHz, antenna horizontal/vertical (RMS-measurement)

Plot 6: 18 GHz - 24.05 GHz, antenna horizontal/vertical (RMS-measurement)

10.4 Conducted limits

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

Measurement parameter					
Detector:	Peak - Quasi Peak / Average				
Sweep time:	Auto				
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace-Mode:	Max Hold				

Limits:

FCC §15.107 / §15.207 / RSS-Gen, 8.8				
Conducted limits				
Frequency of Emission (MHz) Conducted Limit (dBµV)				
	Quasi-peak	Average		
0.15 – 0.5	66 to 56 *	56 to 46 *		
0.5 – 5	56	46		
5 - 30	60	50		

*Decreases with the logarithm of the frequency

Verdict: Complies

Test report no.: 1-1690/16-01-06-A

Plot 12: Phase line

Test report no.: 1-1690/16-01-06-A

Annex A Document history

Version	Applied changes	Date of release
	Initial release - DRAFT	2016-09-19
-A	FCC ID, IC, HVIN and PMN changed	2017-01-23

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN	-	Product marketing name
HMN	-	Host marketing name
HVIN	-	Hardware version identification number
FVIN	-	Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate	Back side of certificate		
DALKS Deutsche Akkreditierungsstelle			
Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH		
Belehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung Akkreditierung	Standort Berlin Standort Frankfurt am Main Standort Braunschweig Spittelmarist 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig		
Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken			
die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Funk Mobilfunk (GSM / DCS) + OTA Elektromagnetische Verträglichkeit (EMV) Produktischerheit SAR / EMF Umwelt Baraf Card Technology Biuetooth* Automotive Wi-Ff-Services Kanadische Anforderungen US-Anforderungen Autsmitik Near Field Communication (NFC) Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der	Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlichen Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAKS). Ausgenommen davon ist die separate Weiterverbreitung des Deckblattes durch die umseitig genannte Konformitätbewertungsstelle in unveränderter Form. St. darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt, die über den durch die DAKS bestätigten Akkreditierungsbereich himaugehen. Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBI. 15. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments und des Rates vom 9. Juli 2008 über die Vorschriften für die Akkreditierung und Marktüberwachung im Zusamenhang mit der Vermarktung von Produkter (Abl. 12. 28 vom 9. Juli 2008, 5. 30). Die DAKS ist Unterzeichnerin der Multilateralen Abkommen zur gegenseitigen Anerkennung der European e-ooperation for Accreditation (Cooperation (ILAC). Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an. Der aktuelle Stand der Mitgliedschaft kann folgenden Webselten entnommen werden: EA: www.eingeang ILAC: www.einge.org ILAC: www.einge.org		
Frankfurt, 25.11.2016 Im Außtrag Gipl.ing. (Fri Half Egrer Abteilungsleiter			

Note:

The current certificate including annex can be received on request.