

Radio Satellite Communication

Untertürkheimer Straße 6–10, D-66117 Saarbrücken, Telephone +49 (0) 681 598 - 0, Fax +49 (0) 681 598 - 9075

Test report No.: 2-3706-01-02/04

This test report consists of 61 pages

Page 1 of 61

Member of RWTÜV Group

Test report No. 2-3706-01-02/04 Applicant: Saab Rosemount Tank Radar AB Type: Rosemount 5400 series K-band radar level transmitter Test standard : FCC Part 15

CETECOM

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 2 of 61

Тε

able	of	contents	

Page

1.	General information	3
1.1	Notes	3
1.2	Testing laboratory	4
1.3	Details of applicant	4
1.4	Application details	4
1.5	Equipment under test (EUT)	5
1.6	Technical data	5
1.7	Test standards	6
2.	Technical tests	7
2.1	Summary of test results	7
2.2	Test environment	7
2.3	Measurement and test set-up	7
2.4	Test equipment utilised and test set-up	8 - 10
2.5	Test results	11 - 14
3.	Plots, graphs and data sheets	15 - 37
4.	Photographs	38 - 56

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 3 of 61

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item .

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Tester :

Date

23.07.2004

Manfred Paschwitz

Name

Signature

M. Cult

Technical responsibility for area of testing:

Name	Signature
Klaus Kammerinke	Mans Lemme Ze

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 4 of 61

1.2 Testing laboratory

CETECOM ICT Services GmbH Untertürkheimerstraße 6–10 D-66117 Saarbrücken Germany		CETECOM ICT Services GmbH P.O. Box 10 04 45 D-66004 Saarbrücken Germany
Telephone Fax e-mail	:	+ 49 (0) 681 598–0 + 49 (0) 681 598–9075 info@ict.cetecom.de
Internet	:	http://www.cetecom.de

Accredited testing laboratory

Accredited by Listed by

- : Regulierungsbehörde für Telekommunikation und Post (RegTP)
- : Federal Communications Commission (FCC) Industry Canada (IC)

Authority	Identification/Registration No.
RegTP	TTI-P-G 081/94-D0
FCC	90462
IC	3463

Testing location, if different from CETECOM ICT Services GmbH: (Not applicable)

1.3 Details of applicant

Name	:	Saab Rosemount Tank Radar AB
Street	:	Gamlestadsvägen 18 B
Town	:	SE-40251 Göteborg
Country	:	Sweden
Phone	:	+46 31 33 70 000
Fax	:	+46 31 25 30 22
Contact person		
Name	:	Mr. Carl Fjelkner
Phone	:	+46 31 33 70 000
Fax	:	+46 31 25 30 22
E–Mail	:	carl.fjelkner@emersonprocess.com

1.4 Application details

Date of receipt of application	:	19.07.2004
Date of receipt of test item	:	19.07.2004
Date of test	:	20.072004 - 21.07.2004
Person(s) who have been	:	Mr. Mikael Kleman
present during the test		

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 5 of 61

1.5 Equipment under test (EUT)

Description	:	Short range device; Tank Radar
Type designation	:	Rosemount 5400 series K-band radar level tranmitter
Manufacturer		
Name	:	Saab Rosemount Tank Radar AB
Street	:	Gamlestadsvägen 18 B
Town	:	SE-40251 Göteborg
Country	:	Sweden

1.6 Technical data

Frequency range	:	23.003 GHz 28.008 GHz
Operational frequency	:	25.278 GHz
EIRP (operation for testing)	:	110 nW [-39.5 dBm] (EUT without tanks)
Field strength PEP	:	Radiation not traceable if EUT is operating inside tanks
Type of modulation	:	5G00P0N
Pulse frequency	:	1,8432 MHz
Pulse width	:	0,8 ns
Microwave modules	:	TX / RX – Module employing TDR principle
Antenna	:	4" Cone Antenna, gain 25 dBi (see Photo)
Normal power supply (U nom)	:	24.0 V DC
Extreme power supply (U min)	:	11.0 V DC
(U max)	:	42.0 V DC

1.6.1 Operation conditions		
Operation:	:	As soon as the equipment is powered up,
		TX and RX start operating
Purpose of operation	:	In-tank level (distance) measuring equipment

1.6.2 Test item

Rosemount 5400 series K-band radar level tranmitter with different available antennas

Antennas	Gain
2" Cone	21 dBi
3" Cone	23 dBi
4" Cone	25 dBi

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 6 of 61

1.7 Test standards

	Code of Federal Regulations (CFR 47) Federal Communications Commission (FCC)
FCC Part 15	Radio Frequency Devices (04/2004)
	SECTION 15.245 Operation within the band 24.075 GHz to 24.175 GHz
	SECTION 15.205 Restricted bands of operation.
	SECTION 15.209 Radiation emission limits, general requirements

SECTION 15.207 Conducted limits

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 7 of 61

2 Technical test

2.1 Summary of test results

X No deviations from the technical specification (s) were ascertained in the course of the performed tests.

The deviations as specified in 2.5 were ascertained in the course of the performed tests.

This test report :

describes an additional test

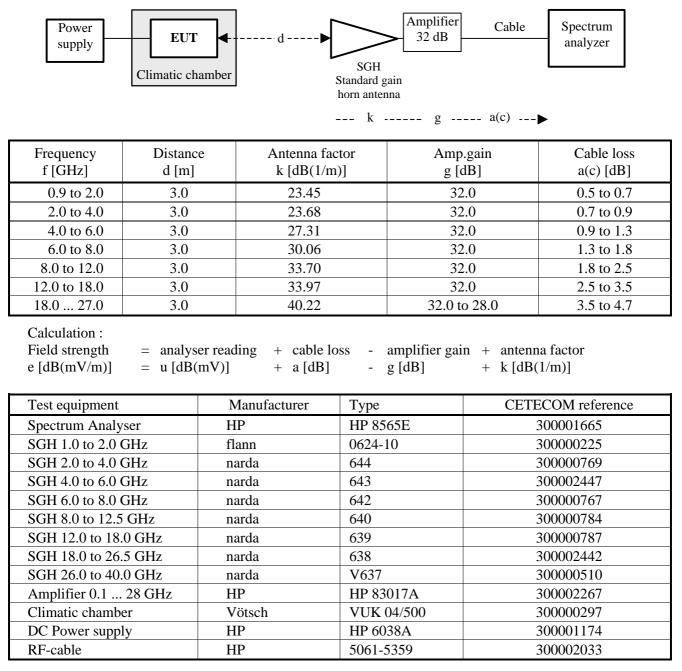
describes the first test

is a verification of documents

is only valid with the test report no.

2.2 Test environment

The environmental conditions are documented especially for each test.

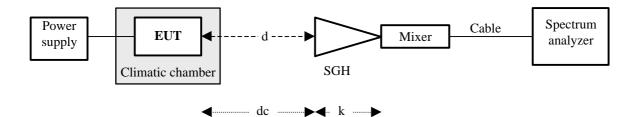

2.3 Measurement and test set-up

The measurement and test set-up is defined in the technical specification .

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 8 of 61

- 2.4 Test equipment utilized and test set-up
- 2.4.1 Field strength measurement of fundamental and spurious radiation in the frequency range 0.9 GHz to 26 GHz

Measurement uncertainties


Test parameter	Measurement uncertainty
DC Power supply	±0.5 V
Temperature	±0.2 °C
Frequency	±0.01 ppm
eirp	±1.5 dB

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Pa

Page 9 of 61

2.4.2 Field strength and spurious radiation in the frequency range 33 GHz to 110 GHz

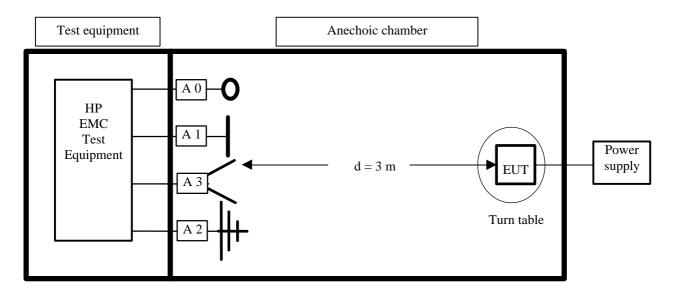
Frequency	Distance	Distance correction	Antenna factor
range [GHz]	d [m]	dc (3 m/Xm) [dB]	k [dB 1/m]
33.0 to 50.0	0.250	-21.58	39.10
50.0 to 75.0	0.125	-27.60	40.67
75.0 to 110.0	0.125	-27.60	45.07

Calculation :	Field streng	gth = Ana	alyser read	ding + An	tenna	factor	+ Distance correction	1
	e	=	u	+	k	+	dc	

Remark: Cable loss is automatically taken into account if the S.A. is operating with external mixers

Test equipment	Manufacturer	Туре	CETECOM reference
Spectrum Analyser	HP	HP 8565E	300001665
Power supply	HP	6032A	300002115
SGH 33 50 GHz	Thomson	COR 33_50	30000812
Mixer 33 50 GHz	HP	11970Q	300000781j
SGH 50 75 GHz	Thomson	COR 50_75	300000789k
Mixer 50 75 GHz	HP	11970V	300008710
SGH 75 110 GHz	Thomson	COR 75_110	300000789m
Mixer 75 110 GHz	HP	11970W	300000871v

Measurement uncertainty


Test parameter	Measurement uncertainty
Power supply	±0.1 VDC
Temperature	±0.2 °C
Frequency	±0.01 ppm
Field strength <50 GHz	±1.0 dB
Field strength >50 GHz	±3.0 dB

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 10 of 61

2.4.3 Field strength and spurious radiation in the frequency range 9 kHz to 4 GHz

Set-up for radiated measurements

Test equipment	Manufacturer	Туре	Serial No.
Spectrum analyser	HP	HP 85660B	2478A05306
Analyser display	HP	HP 85662A	2816A16541
Quasi peak adapter	HP	HP 85650A	2811A01131
RF-preselector	HP	HP 85685A	2833A00768
Loop Antenna A 0	R&S	HFH 2–Z2	881 058/42
Biconical antenna A 1	Emco	3104	3758
Logperantenna A 2	Emco	3146	2304
Double ridge horn ant. A 3	Emco	3115	3007
Relay switch	R&S	RSU	375 339/002
High pass filter	FSY Microwave	HM 985955	001
Amplifier	Tron-Tech	P42-GA29	B2302
DC Power supply	HP	HP 6038A	300001174
RF-cable	HP	5061-5359	P36303

Measurement uncertainties

Performance	Measurement uncertainty
Input power (DC)	±0.5 V
Temperature	±0.2 °C
Frequency	±0.01 ppm
RF-power	±1.5 dB

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 11 of 61

2.5 Test results

2.5.1 Test results overview

This test was performed :

in addition to the test report no.

Verification of EUT :

X EUT is in accordance with the technical description

- EUT is not in accordance with the technical description
- Х
- The equipment is compliant to FCC requirement

2.5.2 Remarks on methods of measurements

The EUT inclusive fixed horn antenna is positioned on top of a portable metal, glass, plastic and concrete tank. This model tank simulates the operation within a normal size metal, glass, plastic and concrete tank. The Radar level gauge plus metal, glass, plastic and concrete tank is fixed on a non-conductive support and can be rotated and tilted in all angles. A variable DC power supply drives the level gauge. The operation of the system is controlled by a service PC that is connected to the system by means of a twisted pair signal wire.

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 26 GHz in a semi-anechoic chamber. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform with specifications ANSI C63.2-1987 clause 15 and ANSI C63.4-1992 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test set–ups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received.

The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths (RBW) over various frequency ranges are set according to requirement ANSI C63-4-1992 clause 4.2.

1. Measurements of ERP/EIRP at fundamental and spurious frequencies

Spurious frequencies are produced by transmitter and receiver when the EUT is active. According to FCC requirements 15.209, spurious emissions have to be investigated as maximum field strength values in the frequency range from 9 kHz to 960 MHz. Where possible, the measurement distance shall be 3 m. If other distances are used, the distance correction is added to the test result.

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 12 of 61

In the low frequency range (9 kHz to 30 MHz), the receiving antenna is an active loop antenna which is positioned at 3 m distance in a shielded, anechoic chamber (see page 8). In case of required measuring distances > 3 m, a distance correction factor is used to calculate the received field strength.

Spurious EIRP measurements in the frequency range 960 MHz to 22 GHz are carried out in a shielded semianechoic test chamber. The measurement distance is 3.0 m.

In the frequency range 4 GHz to 40 GHz, spurious EIRP measurements are performed in a shielded fully anechoic chamber with rectangular SGH's. The measurement distances are indicated underneath each plot, and a calculation for field strength is added, where all relevant factors like cable losses, antenna factors, etc are taken into account.

As a first step the UWB field disturbance sensor (Pulse Radar) is operating without a tank in order to measure the occupied bandwidth and the EIRP of the fundamental frequency and possible harmonic emissions. As a next step the EUT is positioned on top of portable tanks of different material like: PVC, glass, concrete, and closed metal which simulate the operation under real life conditions. This test set-up allows to measure all RF leaking emissions from the EUT plus various tanks. As the FCC requirements for UWB applications are very tight, a broadband linear amplifier (frequency range: 0.1 to 28 GHz with linear gain of 32 dB) is used in the receiver chain just behind the receiving horn antenna.

The EUT was configured to continuously transmit at 100% duty cycle in measurement mode in which the device maintains its full power. The normal operating measurement mode is a radar pulse with a duty cycle less than 1:25. By configuring the unit to transmit continuously in the continuous measurement mode no desensitisation factor was required. This approach was used because the EUT produces extremely low output power, and would otherwise be impossible to measure even with our high sensitivity test equipment.

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 13 of 61

2.5.3 Test results in details

Equipment under test (EUT) :	see page 5
Ambient temperature :	23 °C
Relative humidity :	55 %

TRANSMITTER PARAMETERS

Fundamental frequency

Microwave module :	Rosemount 5402 C operating TX and RX ON			
Test condition	EUT operating outside a tank:			
$t = 23.0 \circ C$	EUT is rotated in 3 axes in order to receive maximum EIRP			
TX on and RX on	Start Frequency	Stop Frequency	EIRP	See plot
Test operation	f [GHz]	f [GHz]	[dBm]	no.:
U DC = 24.0 V	23.003	28.008	-39.6	1 / 2 / 3

Microwave module :	ve module : Rosemount 5402 C operating TX and RX ON			
Test condition $t = 23.0 \circ C$	EUT with 4" horn antenna operating inside various tanks: Tank material: PVC, glass, concrete, steel			
TX on and RX on Normal operation	Start FrequencyStop FrequencyESee plotf [GHz]f [GHz] $[\mu V/m]$ no.:			See plot no.:
U DC = 24.0 V	23.003	28.008	3.75 to 3.89	4

REFERENCE OF TEST EQUIPMENT USED :

see test set-up on page 8 / 9

LIMITS:

SECTION 15.245

SECTION 15.245

Frequency range	Measurement	Field strength	Field strength
(MHz)	distance [m]	e [dBµV/m] @ 3 m	Ε [μV/m]
24,075 to 24,175	3	124.0	2 500 mV/m
Harmonics	3	68.0	25,000

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 14 of 61

Equipment under test (EUT) :	see page 5
Ambient temperature :	23 °C
Relative humidity :	55 %

TRANSMITTER PARAMETERS

Spurious Frequencies

SECTION 15.245 SECTION 15.205 / 15.209

Microwave module :

Rosemount 5402 C operating TX and RX ON

Test conditiont = 23.0 ° C	EUT operating inside various tanks Test set-up see pages 8, 9, 10							
Frequency range [GHz]	Spurious frequenciesS AESee pl[GHz]u [dBmV] $[\mu V/m]$ no.:							
0.009 to 30.0 MHz (h + v) horizontal and vertical plane	Nothing found above noise floor	Noise	Noise	5 6				
0.030 to 4.0 (h + v)	0.950 (max.)7	35.2 dB(µV/m)	17.3	7 / 8 / 9 / 10				
4.0 to 6.0 (h + v)	4.073	-12.3 (PK)	158.5	11				
6.0 to 8.0 (h + v)	7.227	-12.0 (PK)	237.1	12				
8.0 to 12.0 (h + v)	8.300	-13.7 (PK)	338.8	13				
12.0 to 18.0 (h + v)	noise	-16.8 (PK)	254.1	14				
18.0 to 22.0 (h + v)	21.833	-18.3 (PK)	467.7	15				
20.25 to 30.25 (h + v)	25.250	-65.4 dBm (PK)	noise	22 / 23				
27.0 to 40.0 (h + v)	30.660	-18.3 (PK)	229.1	16				
33.0 to 50.0 (h + v)	noise	-23.0 (PK)	537.0	17				
33.0 to 50.0 (h + v)	noise	-36.0 (AV)	120.2	18				
50.0 to 75.0 (h + v)	noise	-14.6 (PK)	831.7	19				
50.0 to 75.0 (h + v)	noise	-23.8 (AV)	288.4	20				
75.0 to 110.0 (h + v)	noise	-29.8 (PK)	239.8	21				

LIMITS:

SECTION 15.205 / 15.209 / 15.245

Lining.		BECHON 13.203 / 13.207 / 13.213					
Frequency range	Measurement	Field strength	Field strength				
(MHz)	distance [m]	e [dBµV/m] @ 3 m	Ε [μV/m]				
0.009 - 0.490	300	88.5 53.8	2400/F(kHz)				
0.490 - 1.705	30	53.8 43.0	24000/F(kHz)				
1.705 - 30.0	30	49.5	30				
30.0 - 88.0	3	40.0	100				
88.0-216.0	3	43.5	150				
216.0 - 960.0	3	46.0	200				
> 960.0	3	54.0 (AV)	500				
> 960.0	3	74.0 (PK)	5,000				
Harmonics	3	68.0	2,500				
Harmonics >17,700	3	77.5	7,500				

Verdict : Spurious field strength limits are kept if EUT is operating inside tanks

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 15 of 61

Equipment under test (EUT) :	see page 5
Ambient temperature :	23 °C
Relative humidity :	55 %

TRANSMITTER PARAMETERS CONDUCTED SPURIOUS FREQUENCIES

SECTION 15.245 SECTION 15.207

Microwave module :

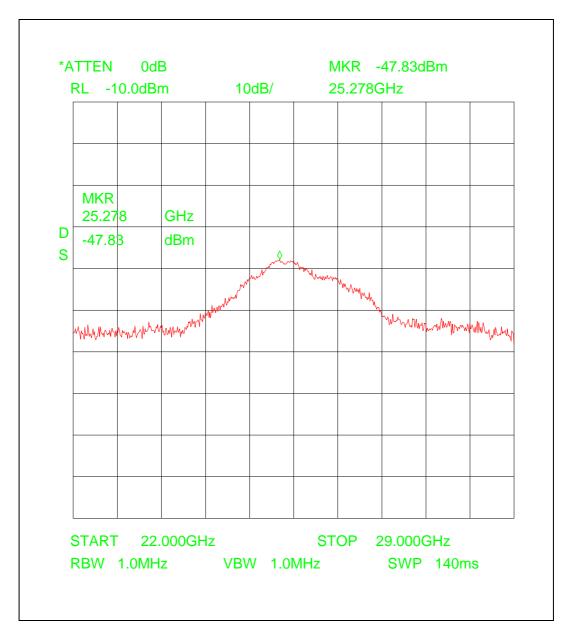
Rosemount 5402 C

Test condition $t = 23.0 \circ C$ AC Power supply	Conducted spurious voltages Measurement with LISN outside a tank						
Frequency range [MHz]	Spurious frequencies [MHz]	S Α u [dBμV]	U [µV]	See plot on page			
0.150 - 30.000 (L1 + N)	Noise	n. f.	24 / 25 / 26 / 27				

The measurement were performed in TX and RX mode, L1 and N floating and grounded , max values was hold.

LIMITS:

SECTION 15.207


Frequency of emission (MHz)	Conducted limits [dBµV]					
	Quasi-peak (QP) Average (Av.)					
0.150 - 0.500	66.0 - 56.0	56.0 - 46.0				
0.500 - 5.000	56.0	46.0				
5.000 - 30.000	60.0	50.0				

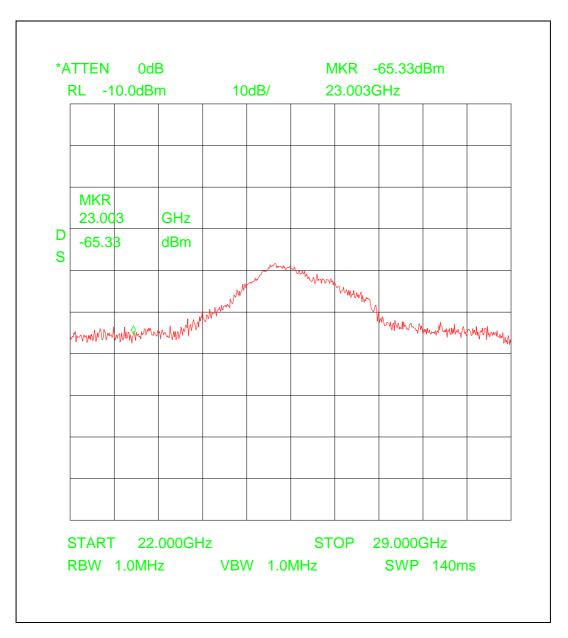
Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 16 of 61

3 Plots, graphs and data sheets

Plot 1

EUT in test operation outside the tank

Measurement distance d = 1.0 m System attenuation (a sys) = 8.3 dB eirp = -39.6 dBm EIRP = 112 nW



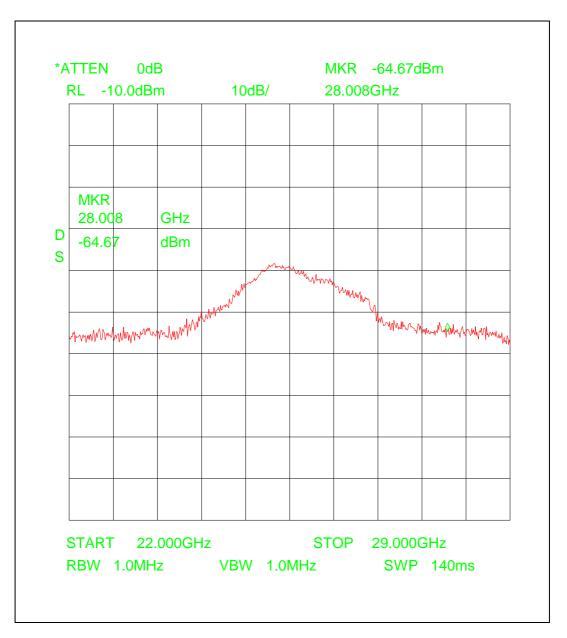
Test report No.: 2-3706-01-02/04

Date : 23.07.2004

2004 Page 17 of 61

Plot 2

EUT in test operation outside the tank F start = 23.003 000 GHz

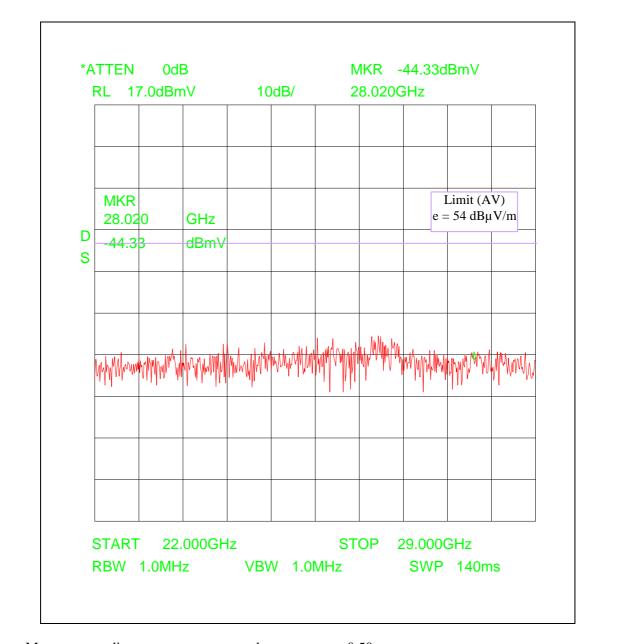


Test report No.: 2-3706-01-02/04

Date : 23.07.2004

2004 Page 18 of 61

Plot 3

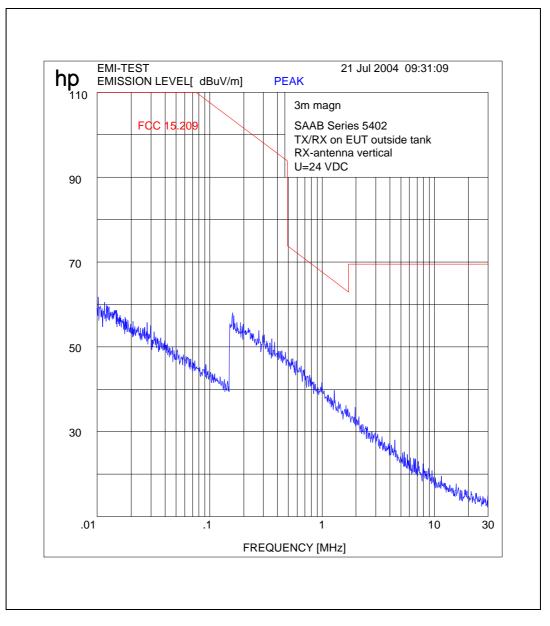

EUT in test operation outside the tank F stop = 28.008 000 GHz

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

Page 19 of 61

Plot 4

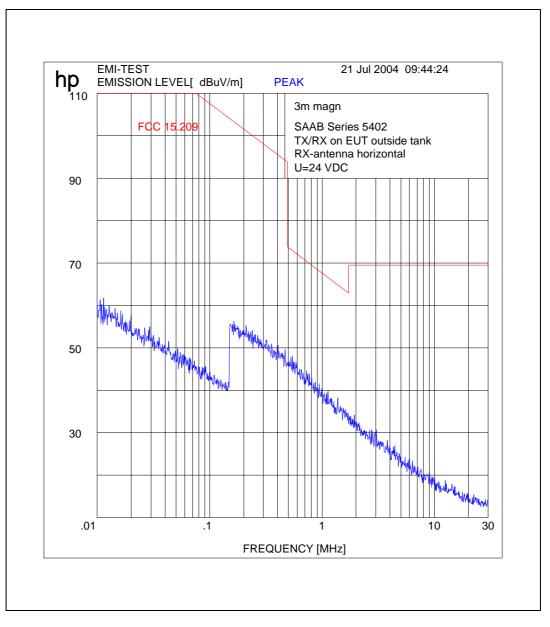
Measurement distance d = 0.50 m F start = 23.003 GHz

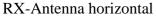

Field strength = analyser reading + cable loss - amplifier gain + antenna factor + dist. corr $\begin{array}{rcl} e \ [dB(mV/m)] \ = \ u \ [dB(mV)] & + \ a \ [dB] & - \ g \ [dB] & + \ k \ [dB(1/m)] & + \ d.c. \ [dB] \\ e & = \ -44.6 & + \ 3.5 & - \ 32.0 & + \ 40.2 & + \ (-15.6) \end{array}$ = -48.5 dB(mV/m)e $= 11.5 \, dB(\mu V/m)$ e E = 3.75 μ V/m (F start) F stop = 28.008 GHz = -44.3 + 3.5 - 32.0 + 40.2 + (-15.6)e = -48.2 dB(mV/m)e $= 11.8 \, dB(\mu V/m)$ e E = 3.89 μ V/m (F stop)

Test report No.: 2-3706-01-02/04

Date : 23.07.2004

Page 20 of 61

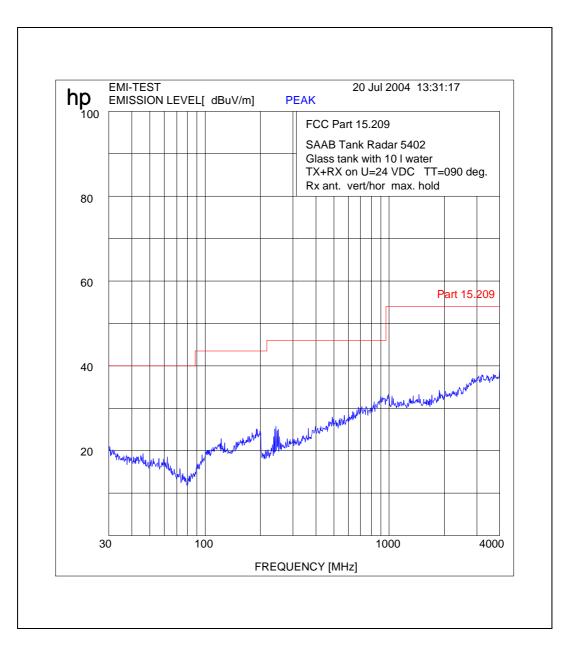

RX-Antenna vertical



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

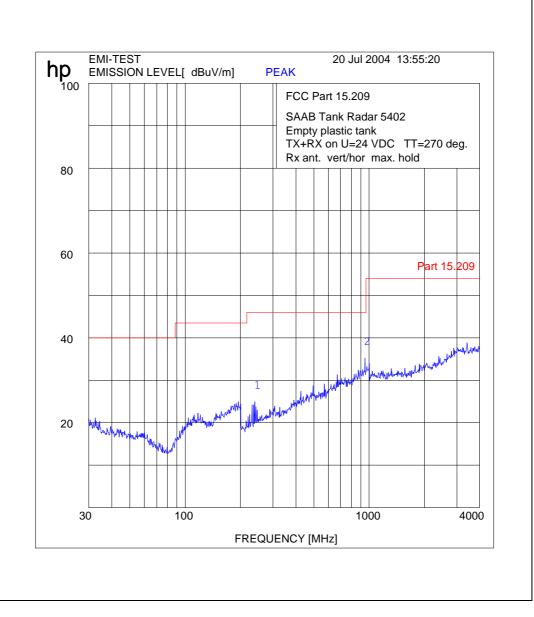
4 Page 21 of 61



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

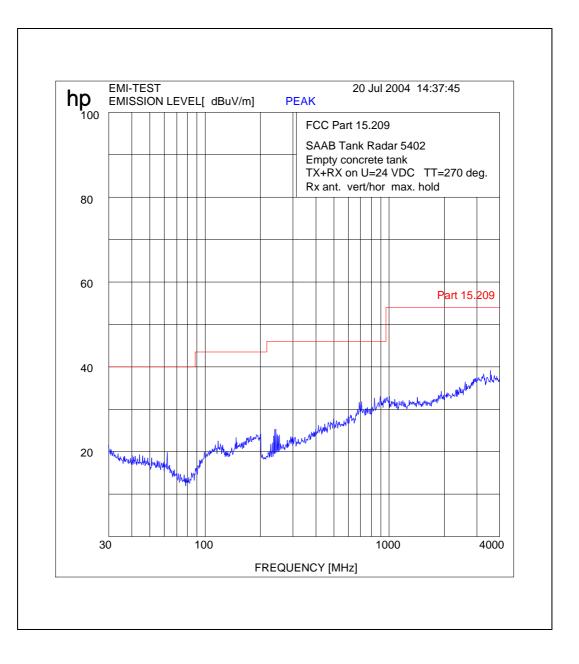
Page 22 of 61



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

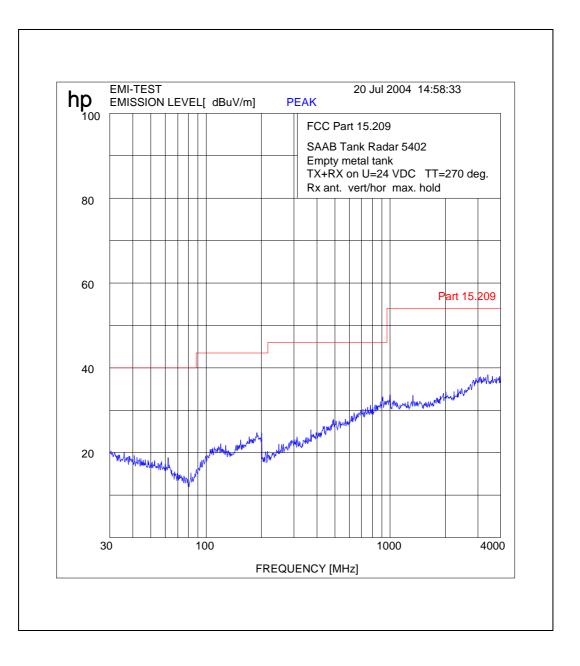
Page 23 of 61


Marker 1	239.507 MHz	$e = 24.9 \text{ dB}\mu\text{V}/\text{m}$
Marker 2	950.500 MHz	$e = 35.2 \text{ dB}\mu\text{V}/\text{ m}$

Test report No.: 2-3706-01-02/04

Date : 23.07.2004

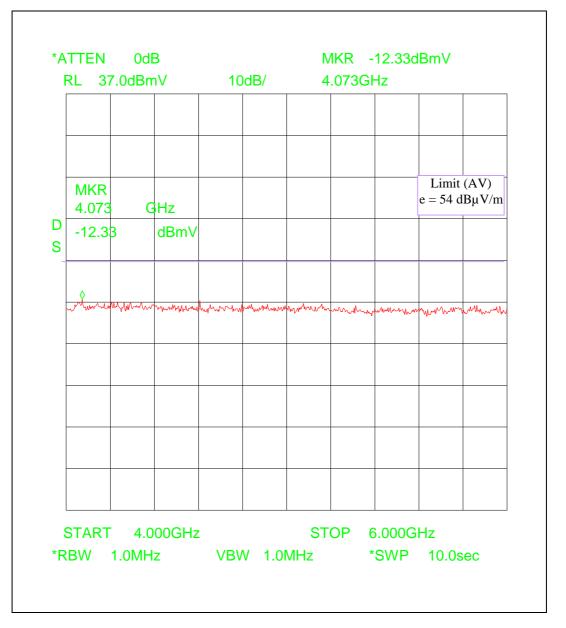
Page 24 of 61



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

Page 25 of 61



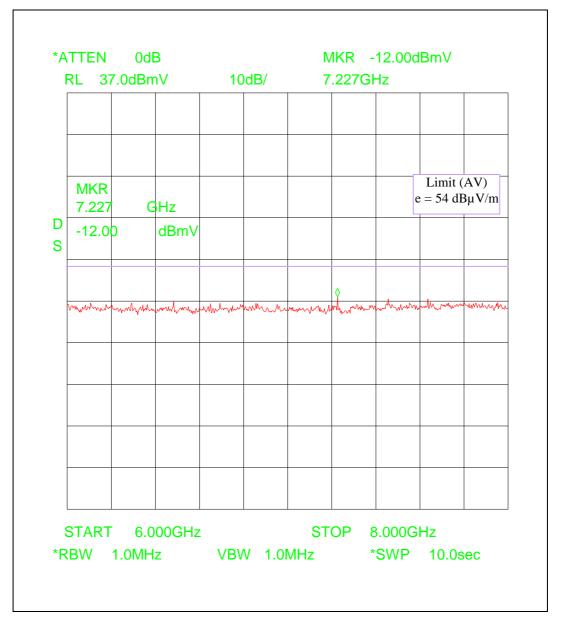
Test report No.: 2-3706-01-02/04 Date : 23.07.2004

23.07.2004 Page 26 of 61

Plot 11

Measurement distance

d = 3.0 m


Field strength	analyser reading + cable loss - amplifier gain	+ antenna factor
e [dB(mV/m)]	u [dB(mV)] + a [dB] - g [dB]	+ $k [dB(1/m)]$
e	-12.3 + 1.0 - 32.0	+ 27.3
e	-16.0 dB(mV/m)	
e	$44.0 dB(\mu V/m)$	
E	158.49 μ V/m PEAK measurement, 10 sweeps, MA	AX. HOLD

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

Page 27 of 61

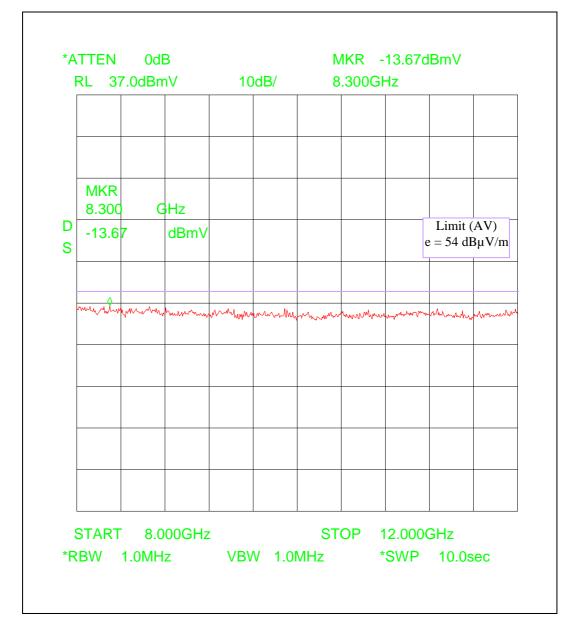
Plot 12

Measurement distance

= 3.0 m

Field strength	=	analyser reading	+	cable loss	-	amplifier gain	+	antenna factor
e [dB(mV/m)]	=	u [dB(mV)]	+	a [dB]	-	g [dB]	+	k [dB(1/m)]
e	=	-12.0	+	1.5	-	32.0	+	30.0
e	=	-12.5 dB(mV/m)						
e	=	$47.5 \text{ dB}(\mu \text{V/m})$						
E	=	237.1 µV/m P	EAH	K Measureme	ent,	10 sweeps, MA	Χŀ	łOLD

d



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

OO4 Page 28 of 61

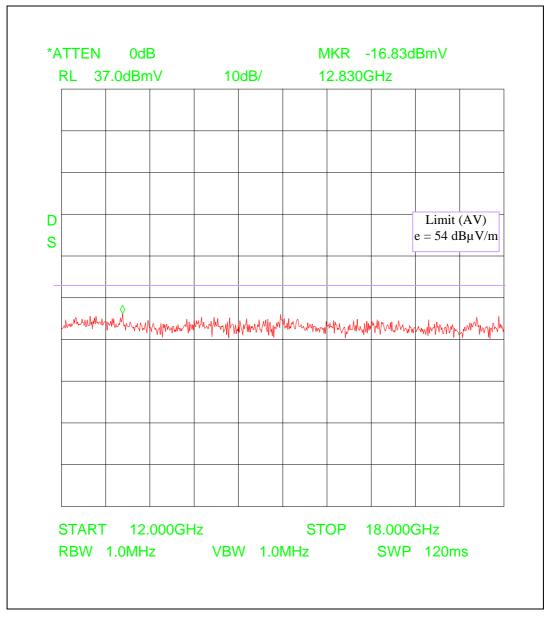
Plot 13

Measurement distance

= 3.0 m

Field strength	=	analyser reading	+ cable loss	-	amplifier gain	+	antenna factor
e [dB(mV/m)]	=	u [dB(mV)]	+ a [dB]	-	g [dB]	+	k [dB(1/m)]
e	=	-13.6	+ 2.5	-	32.0	+	33.7
e	=	-9.4 dB(mV/m)					
e	=	$50.6 dB(\mu V/m)$					
E	=	338.8 µV/m Pl	EAK measurer	nent	10 sweeps, MAX	ΚH	OLD

d



Test report No.: 2-3706-01-02/04 I

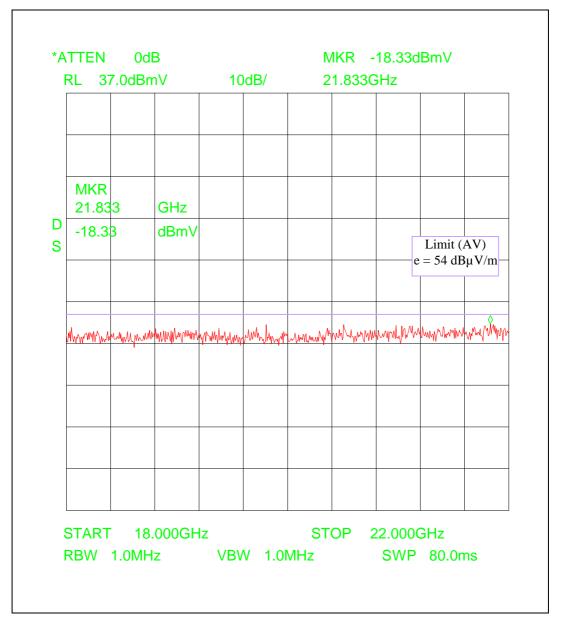
Date : 23.07.2004

004 Page 29 of 61

Plot 14

Measurement distance

d = 3.0 m


Field strength	=	analyser reading	+	cable loss	-	amplifier gain	+	antenna factor
e [dB(mV/m)]	=	u [dB(mV)]	+	a [dB]	-	g [dB]	+	k [dB(1/m)]
e	=	-16.8	+	3.0	-	32.0	+	33.9
e	=	-11.9 dB(mV/m)						
e	=	48.1 dB(µV/m)						
E	=	254.1 µV/m PE.	AK	measuremen	t, 1	00 sweeps, MAX	ΧH	IOLD

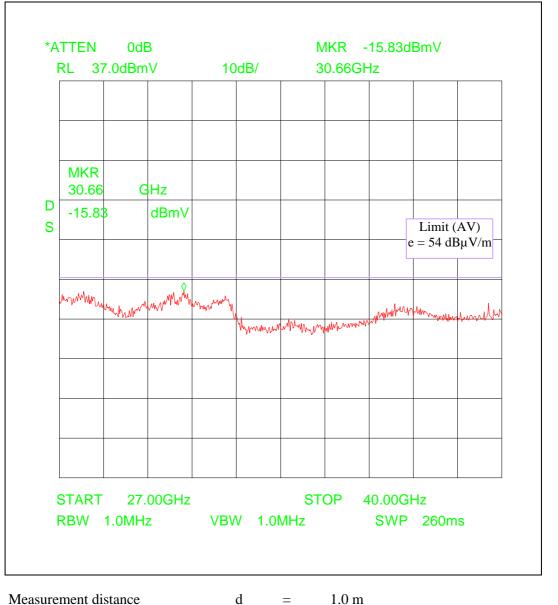
Test report No.: 2-3706-01-02/04 Date : 23.07.2004

Page 30 of 61

Plot 15

3.0 m =

Field strength	=	analyser reading	+	cable loss	-	amplifier gain	+	antenna factor
e [dB(mV/m)]	=	u [dB(mV)]	+	a [dB]	-	g [dB]	+	k [dB(1/m)]
e	=	-18.3	+	3.5	-	32.0	+	40.2
e	=	-6.6 dB(mV/m)						
e	=	53.4 dB(µV/m)						
E	=	467.7 μV/m (No	ise)	PEAK mea	asur	ement, 100 swe	eps	, MAX HOLD

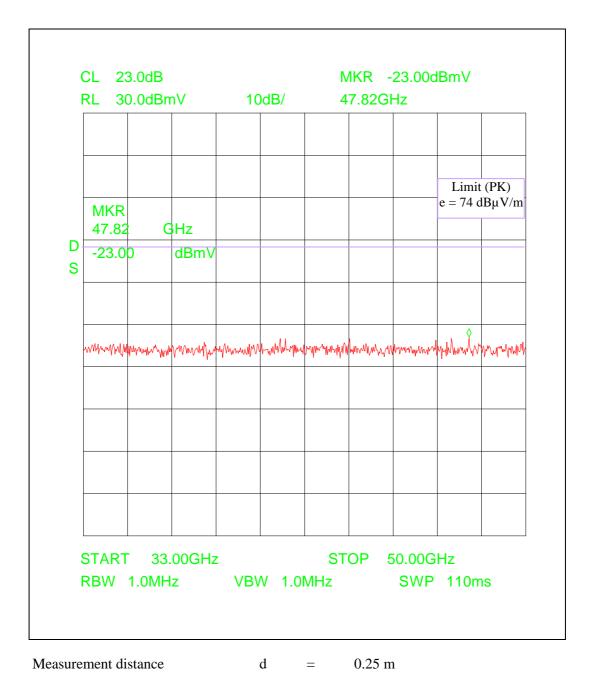

d

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

Page 31 of 61

Plot 16

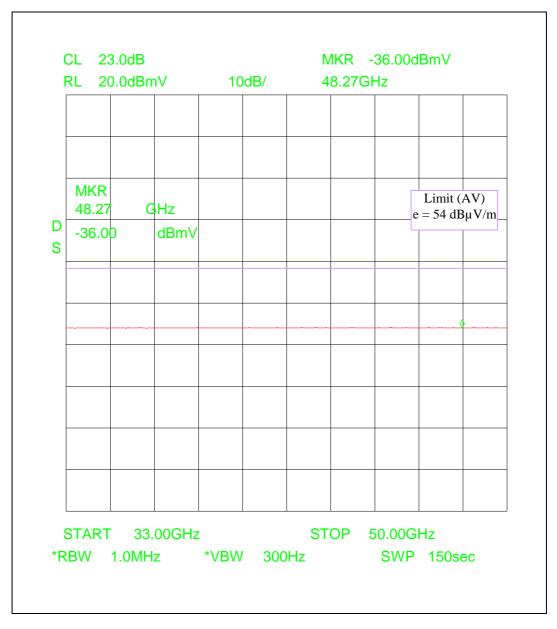
Measurement distance d =


Field strength = analyser reading + cable loss - amplifier gain + antenna factor - distance corr. e [dB(mV/m)] = u [dB(mV)]+ a [dB] - g [dB] + k [dB(1/m)] - d [dB]+ 4.5 - 28.0 = -18.3 + 38.5 - 9.5 e $= -12.8 \, dB(mV/m)$ e $= 47.2 \, dB(\mu V/m)$ e Е = $229.1 \,\mu$ V/m PEAK measurement, 100 sweeps, MAX HOLD

Test report No.: 2-3706-01-02/04

Date : 23.07.2004

Page 32 of 61


Field strength	=	analyser reading	+	antenna factor	-	distance corr.
e [dB(mV/m)]	=	u [dB(mV)]	+	k [dB(1/m)]	-	dc [dB]
e	=	-23.0	+	39.1	-	21.5
e	=	-5.4 dB(mV/m)				
e	=	54.6 dB(µV/m)				
E	=	537.0 µV/m (No	ise)	PEAK measure	eme	ent, 100 sweeps, MAX HOLD

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

Page 33 of 61

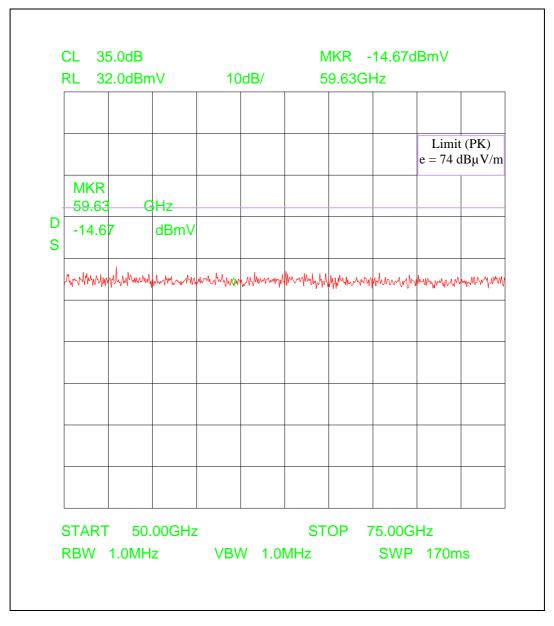
Plot 18

Measurement distance

= 0.25 m

Field strength	=	analyser reading	+	antenna factor	-	distance corr.
e [dB(mV/m)]	=	u [dB(mV)]	+	k [dB(1/m)]	-	dc [dB]
e	=	-36.0	+	39.1	-	21.5
e	=	-18.4 dB(mV/m)				
e	=	41.6 dB(µV/m)				
E	=	120.2 µV/m (Noi	ise)	AV measurem	ent	, 3 sweeps, MAX HOLD

d



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

004 Page 34 of 61

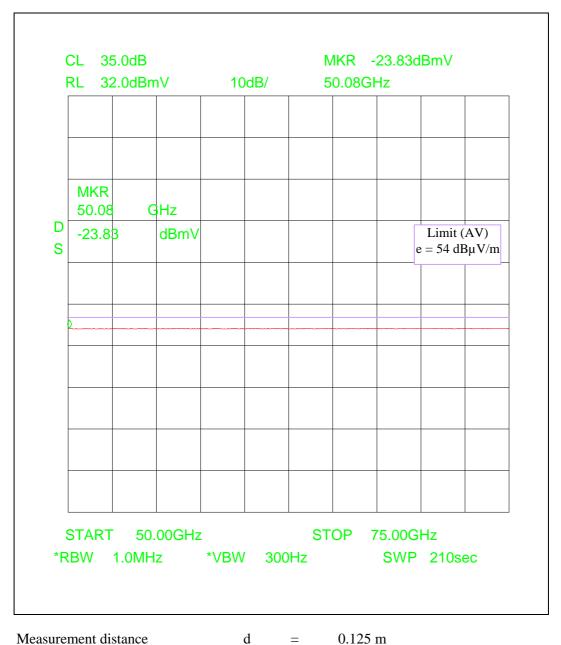
Plot 19

Measurement distance

= 0.125 m

Field strength e [dB(mV/m)]		analyser reading u [dB(mV)]		antenna factor k [dB(1/m)]		
e	=	-14.6	+	40.6	-	27.6
e	=	-1.6 dB(mV/m)				
e	=	58.4 dB(µV/m)				
E	=	831.7 µV/m (Noi	ise)	PEAK measur	em	ent, 100 sweeps, MAX HOLD

d



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

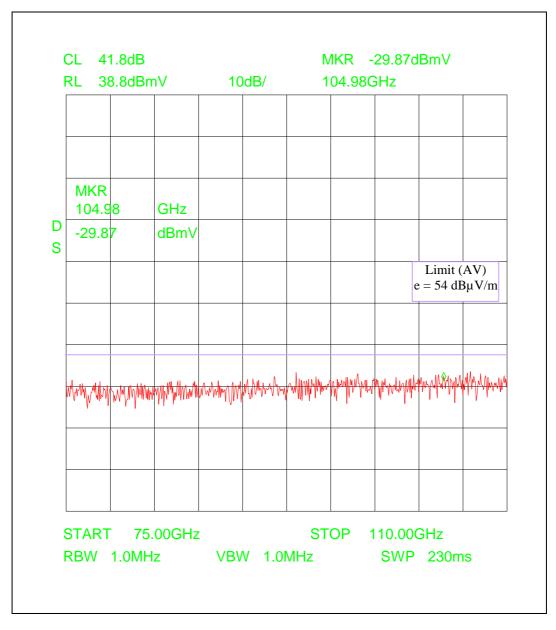
Page 35 of 61

Plot 20

Measurement distance

= 0.125 m

Field strength e [dB(mV/m)] e	=	analyser reading u [dB(mV)] -23.8	+	antenna factor k [dB(1/m)] 40.6	-	
e	=	-10.8 dB(mV/m)	Т	40.0	-	27.0
e E		49.2 dB(μV/m) 288.4 μV/m (No	ise)			



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

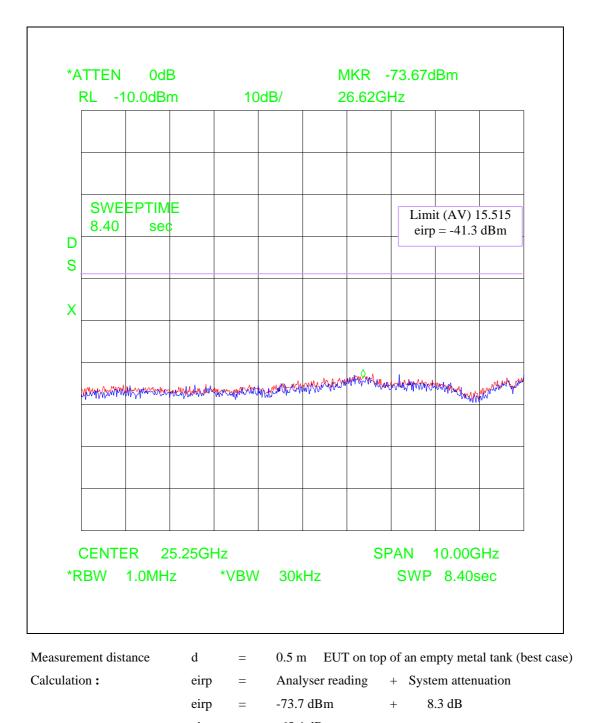
004 Page 36 of 61

Plot 21

Measurement distance

d = 0.125 m

Field strength e [dB(mV/m)] e	=	analyser reading u [dB(mV)] -29.8	+	antenna factor k [dB(1/m)] 45.0	-	
e	=	-12.4 dB(mV/m)				
e	=	47.6 dB(µV/m)				
E	=	239.8 µV/m (No	ise)			



Test report No.: 2-3706-01-02/04

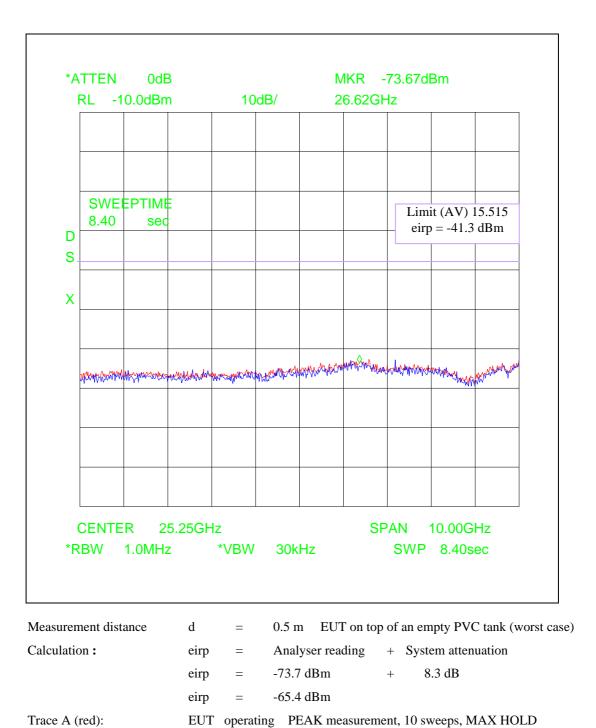
Date : 23.07.2004

Page 37 of 61

Plot 22

-65.4 dBm eirp = Trace A (red): EUT operating PEAK measurement, 10 sweeps, MAX HOLD EUT off

Trace B (blue)

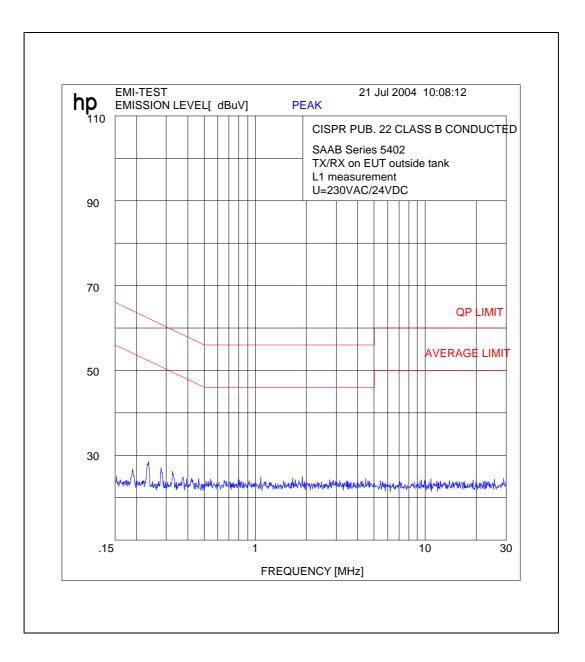

Test report No.: 2-3706-01-02/04

Trace B (blue)

EUT off

Date : 23.07.2004

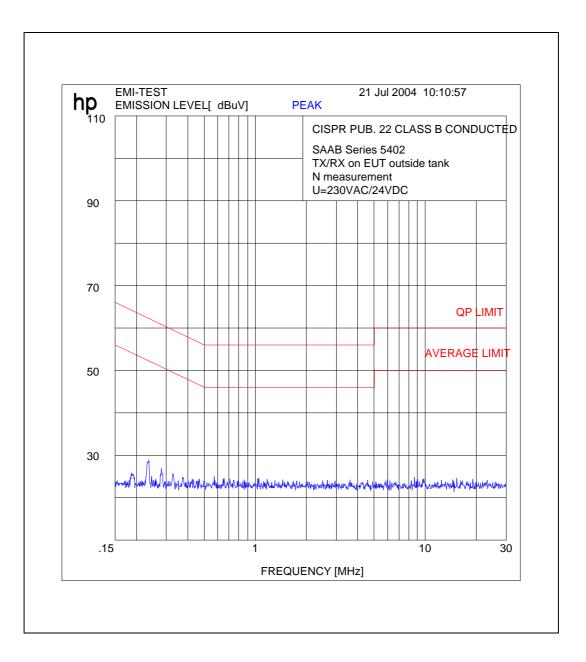
D04 Page 38 of 61



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

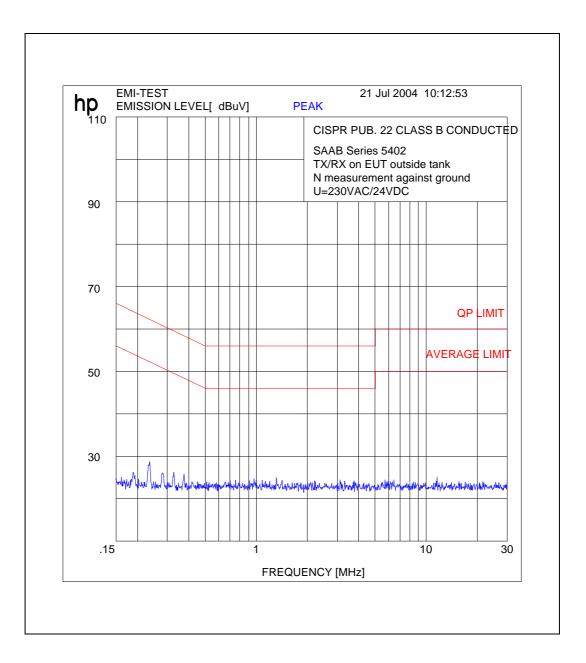
Page 39 of 61



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

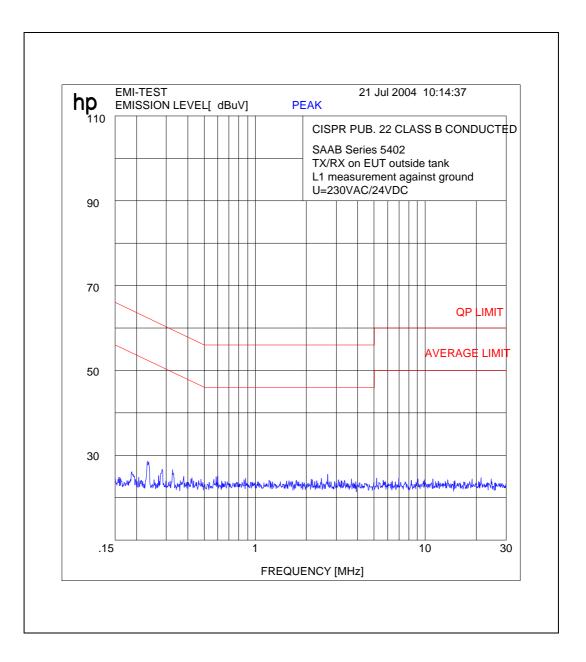
Page 40 of 61



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

Page 41 of 61



Test report No.: 2-3706-01-02/04

Date : 23.07.2004

Page 42 of 61

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 43 of 61

4 Photographs

Photograph 1

EUT radiating inside a PVC tank

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

Page 44 of 61

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

.2004 Page 45 of 61

Photograph 3

EUT radiating inside a glass tank filled with 10 l water

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 46 of 61

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

OO4 Page 47 of 61

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Pa

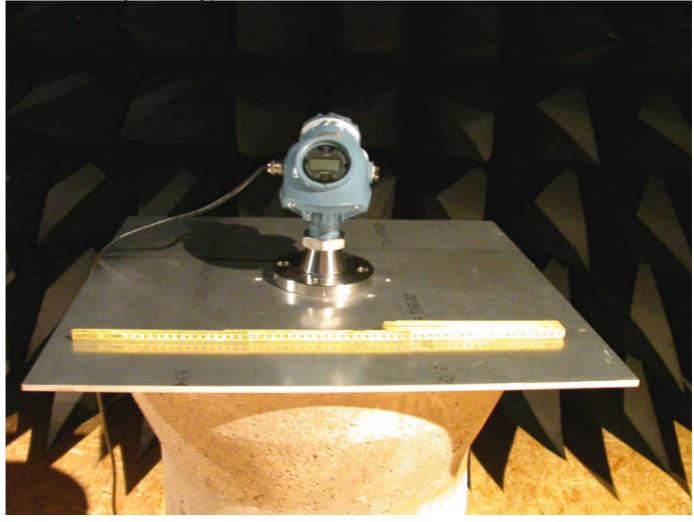
2004 Page 48 of 61

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

004 Page 49 of 61

Photograph 7

EUT radiating inside an empty concrete tank



Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 50 of 61

Photograph 8

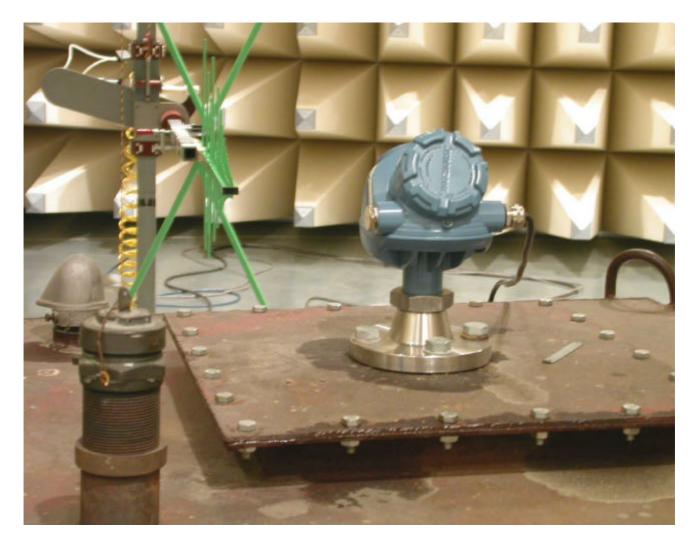
EUT radiating inside an empty concrete tank

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

.2004 Page 51 of 61

Photograph 9

EUT radiating inside an empty steel tank


Test report No.: 2-3706-01-02/04 Date : 23.07.2004

Page 52 of 61

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 53 of 61

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 54 of 61

Photograph 12

EUT with 4" cone antenna

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

Page 55 of 61

Photograph 13

EUT top view with display window



Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 56 of 61

Photograph 14

EUT side view

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 57 of 61

Photograph 15

4" cone antenna

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 58 of 61

Photograph 16

Various attachable antennas: 4" cone, 3" cone, 2" cone

Test report No.: 2-3706-01-02/04 Date : 23.07.2004 Page 59 of 61

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

Page 60 of 61

Test report No.: 2-3706-01-02/04 Date : 23.07.2004

Page 61 of 61

