









Bundesnetzagentu

# TEST REPORT

Test report no.: 1-3759/21-01-08-A

# **Testing laboratory**

#### **CTC advanced GmbH**

BNetzA-CAB-02/21-102

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com e-mail: mail@ctcadvanced.com

#### Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

# Applicant

**Rosemount Tank Radar AB** Layoutvägen 1 P O Box 150 435 33 Mölnlycke / SWEDEN Phone: +46 31 3370 0000 Contact: Andrei Stefanescu e-mail: Andrei.Stefanescu@Emerson.com +46 313 370 343 Phone:

## Manufacturer

Rosemount Tank Radar AB P O Box 150 Lavoutvägen 1 435 33 Mölnlycke / SWEDEN

# Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 – Radio frequency devices **RSS-211** Level Probing Radar Equipment

For further applied test standards please refer to section 3 of this test report.

## Test Item

| Kind of test item: | 77-81 GHz level probing radar                              |
|--------------------|------------------------------------------------------------|
| Model name:        | Rosemount 1208A Level Transmitter                          |
| FCC ID:            | K8C1208L (parent model)<br>K8C1208LB (variant model)       |
| IC:                | 2827A-1208L (parent model)<br>2827A-1208LB (variant model) |
| Frequency:         | 77 – 81 GHz                                                |
| Technology tested: | FMCW radar                                                 |
| Antenna:           | Lens antenna                                               |
| Power supply:      | 5 V DC via USB                                             |
| Temperature range: | -40° to +85°                                               |

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

# Test report authorized:

#### Meheza Walla Lab Manager **Radio Communications**

# **Test performed:**

**Thomas Vogler** Lab Manager **Radio Communications** 



# 1 Table of contents

| 1  | Table of contents                               |                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |
|----|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| 2  | Genera                                          | l information                                                                                                                                                                                                                                                                                               | 3                    |  |  |  |  |
|    | 2.1<br>2.2<br>2.3                               | Notes and disclaimer<br>Application details<br>Test laboratories sub-contracted                                                                                                                                                                                                                             | 3                    |  |  |  |  |
| 3  | Test st                                         | andard/s, references and accreditations                                                                                                                                                                                                                                                                     | 4                    |  |  |  |  |
| 4  | Report                                          | ing statements of conformity – decision rule                                                                                                                                                                                                                                                                | 5                    |  |  |  |  |
| 5  | Test en                                         | vironment                                                                                                                                                                                                                                                                                                   | 6                    |  |  |  |  |
| 6  | Test ite                                        | em                                                                                                                                                                                                                                                                                                          | 6                    |  |  |  |  |
|    | 6.1<br>6.2                                      | General description<br>Additional information                                                                                                                                                                                                                                                               |                      |  |  |  |  |
| 7  | Descri                                          | ption of the test setup                                                                                                                                                                                                                                                                                     |                      |  |  |  |  |
|    | 7.1<br>7.2<br>7.3<br>7.4<br>7.5                 | Shielded semi anechoic chamber<br>Shielded fully anechoic chamber<br>Radiated measurements > 18 GHz<br>Radiated measurements > 50/85 GHz<br>AC power-line conducted emissions                                                                                                                               | 10<br>11<br>11       |  |  |  |  |
| 8  | Seque                                           | nce of testing                                                                                                                                                                                                                                                                                              | 14                   |  |  |  |  |
|    | 8.1<br>8.2<br>8.3<br>8.4<br>8.5                 | Sequence of testing radiated spurious 9 kHz to 30 MHz<br>Sequence of testing radiated spurious 30 MHz to 1 GHz<br>Sequence of testing radiated spurious 1 GHz to 18 GHz<br>Sequence of testing radiated spurious above 18 GHz<br>Sequence of testing radiated spurious above 50/85 GHz with external mixers | 15<br>16<br>17       |  |  |  |  |
| 9  | Measu                                           | rement uncertainty                                                                                                                                                                                                                                                                                          | 19                   |  |  |  |  |
| 10 | Far                                             | field consideration for measurements above 18 GHz                                                                                                                                                                                                                                                           | 19                   |  |  |  |  |
| 11 |                                                 | nmary of measurement results                                                                                                                                                                                                                                                                                |                      |  |  |  |  |
| 12 | Sun                                             | nmary of measurement results                                                                                                                                                                                                                                                                                |                      |  |  |  |  |
|    | 12.1<br>12.2<br>12.3<br>12.4<br>12.5<br>12.6    | Frequency stability and fundamental bandwidth<br>Fundamental emissions<br>Unwanted emissions limit<br>Antenna beamwidth and antenna side lobe gain<br>Emissions from digital circuitry<br>Spurious emissions conducted < 30 MHz (AC power line)                                                             | 23<br>26<br>35<br>36 |  |  |  |  |
| 13 | Glo                                             | ssary                                                                                                                                                                                                                                                                                                       | 40                   |  |  |  |  |
| 14 |                                                 | ument history                                                                                                                                                                                                                                                                                               |                      |  |  |  |  |
| 15 |                                                 | reditation Certificate – D-PL-12076-01-04                                                                                                                                                                                                                                                                   |                      |  |  |  |  |
| 16 | Accreditation Certificate – D-PL-12076-01-05 42 |                                                                                                                                                                                                                                                                                                             |                      |  |  |  |  |



# 2 General information

## 2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

#### This test report replaces the test report with the number 1-3759/21-01-08 and dated 2022-07-26.

# 2.2 Application details

| Date of receipt of order:          | 2021-12-21                         |
|------------------------------------|------------------------------------|
| Date of receipt of test item:      | 2022-04-20                         |
| Start of test:                     | 2022-04-25                         |
| End of test:                       | 2022-06-28                         |
| Person(s) present during the test: | Mr. Anders Jirskog (during set-up) |
|                                    | Mr. Magnus Olsson (during set-up)  |

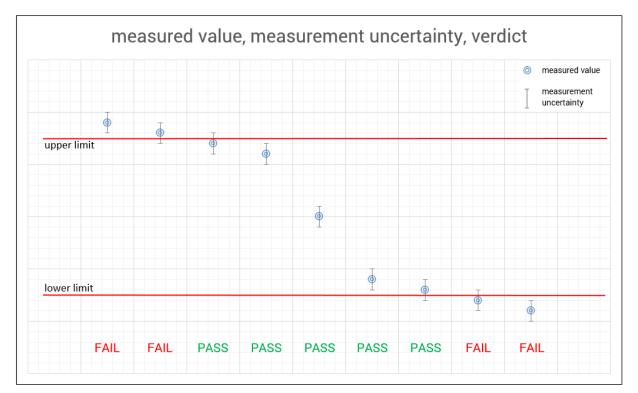
## 2.3 Test laboratories sub-contracted

None



# 3 Test standard/s, references and accreditations

| Test standard     | Date    | Description                                                                                                                                                                |
|-------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Part 15    |         | Title 47 of the Code of Federal Regulations; Chapter I; Part 15 – Radio frequency devices                                                                                  |
| RSS-211           | 2015-03 | Level Probing Radar Equipment                                                                                                                                              |
| 890966 D01 v01r01 | 2014-09 | Measurement Procedure for Level Probing Radars                                                                                                                             |
| -                 |         |                                                                                                                                                                            |
| Reference         | Version | Description                                                                                                                                                                |
| ANSI C63.4-2014   | -/-     | American national standard for methods of measurement of radio-<br>noise emissions from low-voltage electrical and electronic<br>equipment in the range of 9 kHz to 40 GHz |
| ANSI C63.10-2013  | -/-     | American national standard of procedures for compliance testing of unlicensed wireless devices                                                                             |
|                   |         |                                                                                                                                                                            |
|                   |         |                                                                                                                                                                            |


| Accreditation    | Description                                                                                            |                                                                |
|------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| D-PL-12076-01-04 | Telecommunication and EMC Canada<br>https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf                 | DAKKS<br>Deutsche<br>Akkreditierungsstelle<br>D-PL-12076-01-04 |
| D-PL-12076-01-05 | Telecommunication FCC requirements<br>https://www.dakks.de/files/data/as/pdf/D-PL-12076-<br>01-05e.pdf | DAKKS<br>Deutsche<br>Akkreditierungsstelle<br>D-PL-12076-01-05 |



#### 4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."





#### 5 **Test environment**

| Temperature :               | T <sub>nom</sub><br>T <sub>max</sub><br>T <sub>min</sub> | <ul> <li>+20 °C during room temperature tests</li> <li>+50 °C during high temperature tests</li> <li>-30 °C during low temperature tests</li> </ul> |  |  |
|-----------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Relative humidity content : |                                                          | 45 %                                                                                                                                                |  |  |
| Barometric pressure :       |                                                          | 1010 hpa                                                                                                                                            |  |  |
| Power supply :              | V <sub>nom</sub>                                         | 5 V DC                                                                                                                                              |  |  |

#### **Test item** 6

#### **General description** 6.1

| Kind of test item             | : | 77-81 GHz level probing radar                                          |
|-------------------------------|---|------------------------------------------------------------------------|
| Model name                    | : | Rosemount 1208A Level Transmitter                                      |
| HMN                           | : | -/-                                                                    |
| PMN                           | : | Rosemount 1208A Level Transmitter                                      |
| HVIN                          | : | 1208L1 (parent model)                                                  |
|                               |   | 1208LB1 (variant model)                                                |
| FVIN                          | : | -/-                                                                    |
| S/N serial number             | : | 22GORL0000004                                                          |
| Hardware status               | : | DP3                                                                    |
| Software status               | : | 1.B.0                                                                  |
| Frequency band                | : | 77 - 81 GHz                                                            |
| Type of modulation            | : | FMCW                                                                   |
| Number of channels            | : | 1                                                                      |
| Number of transmission cycles | : | 5 per second (depending on IO-Link via USB)                            |
| Antenna                       | : | Lens antenna                                                           |
| Other radio modules           |   | Bluetooth (variant model with FCC-ID K8C1208LB, IC-ID 2827A-1208LB and |
|                               | • | HVIN 1208LB1)                                                          |
| Power supply                  | : | 5 V DC via USB                                                         |
| Temperature range             | : | -40° to +85°                                                           |

# 6.2 Additional information

The TLPR works with a maximum output power < 2 dBm with an antenna gain of 25 dBi. The maximum EIRP therefore is +27 dBm.

The receiver interferer level is -49.5 dBm as calculated by the manufacturer.

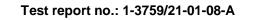
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

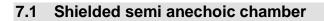
Test setup and EUT photos are included in test report:

1-3759/19-01-01\_AnnexA 1-3759/19-01-01\_AnnexB 1-3759/19-01-01\_AnnexF



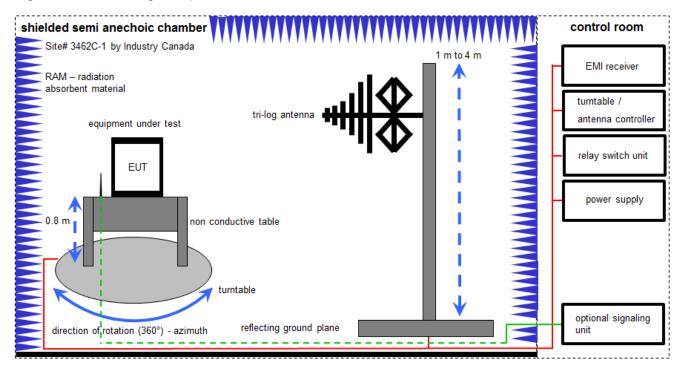
# 7 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

#### Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- \*) next calibration ordered / currently in progress





The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

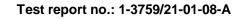
CTC || advanced

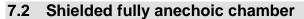


Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


#### Example calculation:


 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$ 




## Equipment table:

| No. | Lab /<br>Item | Equipment                                          | Туре             | Manufacturer                     | Serial No. | INV. No.  | Kind of<br>Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|----------------------------------------------------|------------------|----------------------------------|------------|-----------|------------------------|---------------------|---------------------|
| 1   | n. a.         | Switch-Unit                                        | 3488A            | HP                               | 2719A14505 | 300000368 | ev                     | -/-                 | -/-                 |
| 2   | n. a.         | DC power supply,<br>60Vdc, 50A, 1200 W             | 6032A            | HP                               | 2920A04466 | 300000580 | ne                     | -/-                 | -/-                 |
| 3   | n. a.         | Meßkabine 1                                        | HF-Absorberhalle | MWB AG 300023                    |            | 300000551 | ne                     | -/-                 | -/-                 |
| 4   | n. a.         | EMI Test Receiver                                  | ESCI 3           | R&S                              | 100083     | 300003312 | k                      | 09.12.2021          | 21.12.2022          |
| 5   | n. a.         | Antenna Tower                                      | Model 2175       | ETS-Lindgren                     | 64762      | 300003745 | izw                    | -/-                 | -/-                 |
| 6   | n. a.         | Positioning<br>Controller                          | Model 2090       | ETS-Lindgren                     | 64672      | 300003746 | izw                    | -/-                 | -/-                 |
| 7   | n. a.         | Turntable Interface-<br>Box                        | Model 105637     | ETS-Lindgren                     | 44583      | 300003747 | izw                    | -/-                 | -/-                 |
| 8   | n. a.         | TRILOG Broadband<br>Test-Antenna<br>30 MHz - 3 GHz | VULB9163         | Schwarzbeck<br>Mess - Elektronik | 318        | 300003696 | viKi!                  | 30.09.2019          | 29.09.2023          |
| 9   | n. a.         | Switch-Unit                                        | 3488A            | HP                               | 2719A14505 | 300000368 | ev                     | -/-                 | -/-                 |
| 10  | n. a.         | EMI Test Receiver                                  | ESR3             | Rohde & Schwarz                  | 102587     | 300005771 | k                      | 20.05.2022          | 19.05.2023          |







Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

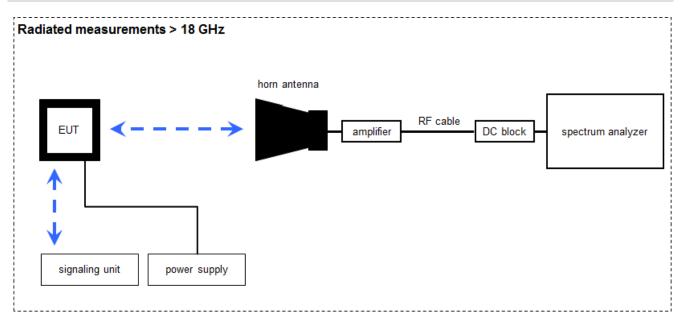
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

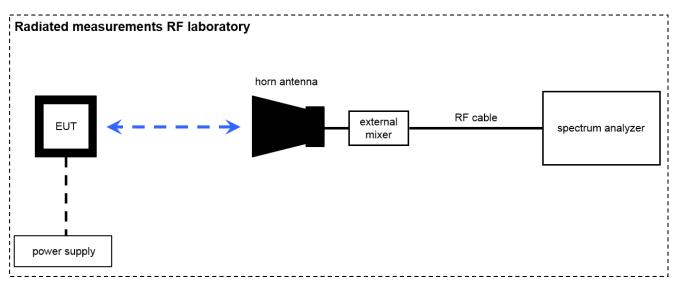
# Example calculation:

FS  $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$ )

## Equipment table:


| No. | Lab /<br>Item | Equipment                                            | Туре                                                | Manufacturer                     | Serial No. | INV. No.  | Kind of<br>Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|------------------------------------------------------|-----------------------------------------------------|----------------------------------|------------|-----------|------------------------|---------------------|---------------------|
| 1   | n. a.         | DC power supply,<br>60Vdc, 50A, 1200 W               | 6032A                                               | HP                               | 2818A03450 | 300001040 | viKi!                  | 09.12.2020          | 08.12.2023          |
| 2   | n. a.         | Active Loop Antenna<br>9 kHz to 30 MHz               | 6502                                                | EMCO                             | 2210       | 300001015 | viKi!                  | 01.07.2021          | 31.07.2023          |
| 3   | n. a.         | Anechoic chamber                                     | FAC 3/5m                                            | MWB/TDK                          | 87400/02   | 300000996 | ev                     | -/-                 | -/-                 |
| 4   | n. a.         | TRILOG Broadband<br>Test-Antenna<br>30 MHz - 3 GHz   | VULB9163                                            | Schwarzbeck<br>Mess - Elektronik | 318        | 300003696 | vlKl!                  | 30.09.2021          | 29.09.2023          |
| 5   | n. a.         | Double-Ridged<br>Waveguide Horn<br>Antenna 1-18.0GHz | 3115                                                | EMCO                             | 9709-5289  | 300000213 | vlKl!                  | 14.07.2020          | 13.07.2022          |
| 6   | n. a.         | Switch / Control Unit                                | 3488A                                               | HP                               | *          | 300000199 | ne                     | -/-                 | -/-                 |
| 7   | n.a.          | Variable isolating<br>transformer                    | MPL IEC625 Bus<br>Variable isolating<br>transformer | Erfi                             | 91350      | 300001155 | ne                     | -/-                 | -/-                 |
| 8   | n. a.         | EMI Test Receiver<br>20Hz- 26,5GHz                   | ESU26                                               | R&S                              | 100037     | 300003555 | k                      | 09.12.2020          | 31.12.2022          |
| 9   | n. a.         | Highpass Filter                                      | WHKX7.0/18G-8SS                                     | Wainwright                       | 19         | 300003790 | ne                     | -/-                 | -/-                 |
| 10  | n. a.         | Broadband Amplifier<br>0.5-18 GHz                    | CBLU5184540                                         | CERNEX                           | 22049      | 300004481 | ev                     | -/-                 | -/-                 |
| 11  | n. a.         | Broadband Amplifier<br>5-13 GHz                      | CBLU5135235                                         | CERNEX                           | 22010      | 300004491 | ev                     | -/-                 | -/-                 |
| 12  | n. a.         | 4U RF Switch<br>Platform                             | L4491A                                              | Agilent Technologies             | MY50000037 | 300004509 | ne                     | -/-                 | -/-                 |
| 13  | n. a.         | NEXIO EMV-<br>Software                               | BAT EMC<br>V3.16.0.49                               | EMCO                             |            | 300004682 | ne                     | -/-                 | -/-                 |
| 14  | n. a.         | PC                                                   | ExOne                                               | F+W                              |            | 300004703 | ne                     | -/-                 | -/-                 |
| 15  | n. a.         | RF-Amplifier                                         | AMF-6F06001800-<br>30-10P-R                         | NARDA-MITEQ Inc                  | 2011572    | 300005241 | ev                     | -/-                 | -/-                 |

CTC | advanced


member of RWTÜV group



#### 7.3 Radiated measurements > 18 GHz



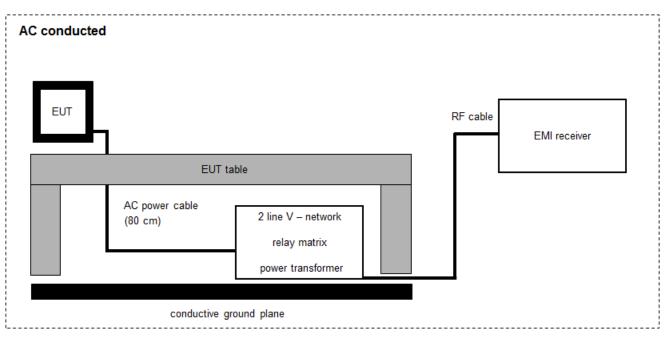
#### 7.4 Radiated measurements > 50/85 GHz



#### OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

#### Example calculation:


OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μW)

Note: conversion loss of mixer is already included in analyzer value.

# Equipment table (radiated measurements in test lab):

| No. | Lab /<br>Item | Equipment                                  | Туре          | Manufacturer               | Serial No.    | INV. No.  | Kind of<br>Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|--------------------------------------------|---------------|----------------------------|---------------|-----------|------------------------|---------------------|---------------------|
| 1   | n.a.          | Horn Antenna 18,0-<br>40,0 GHz             | LHAF180       | Microw.Devel               | 39180-103-021 | 300001747 | viKi!                  | 17.01.2022          | 31.01.2024          |
| 4   | n.a.          | Std. Gain Horn<br>Antenna 40-60 GHz        | 2424-20       | Flann                      | 76            | 400001981 | ne                     | -/-                 | -/-                 |
| 5   | n. a.         | Std. Gain Horn<br>Antenna<br>49.9-75.8 GHz | 2524-20       | Flann                      | *             | 300001983 | ne                     | -/-                 | -/-                 |
| 6   | n. a.         | Std. Gain Horn<br>Antenna 60-90 GHz        | COR 60_90     | Thomson CSF                |               | 300000814 | ev                     | -/-                 | -/-                 |
| 7   | n.a.          | Std. Gain Horn<br>Antenna<br>73.8-112 GHz  | 2724-20       | Flann                      | *             | 300001988 | ne                     | -/-                 | -/-                 |
| 9   | n.a.          | Std. Gain Horn<br>Antenna<br>114-173 GHz   | 2924-20       | Flann                      | *             | 300001999 | ne                     | -/-                 | -/-                 |
| 10  | n.a.          | Std. Gain Horn<br>Antenna<br>145-220 GHz   | 3024-20       | Flann                      | *             | 300002000 | ne                     | -/-                 | -/-                 |
| 13  | n. a.         | Broadband LNA<br>18-50 GHz                 | CBL18503070PN | CERNEX                     | 25240         | 300004948 | ev                     | 09.03.2022          | 08.03.2024          |
| 14  | n. a.         | Harmonic Mixer 3-<br>Port, 50-75 GHz       | FS-Z75        | Rohde & Schwarz            | 101578        | 300005788 | k                      | 15.06.2021          | 30.06.2022          |
| 15  | n. a.         | Harmonic Mixer 3-<br>Port, 60-90 GHz       | FS-Z90        | R&S                        | 101555        | 300004691 | k                      | 22.07.2021          | 31.07.2022          |
| 16  | n. a.         | Harmonic Mixer 3-<br>Port, 75-110 GHz      | FS-Z110       | R&S                        | 101411        | 300004959 | k                      | 15.06.2021          | 30.06.2022          |
| 18  | n. a.         | Harmonic Mixer 3-<br>Port, 110-170 GHz     | FS-Z170       | Radiometer Physics<br>GmbH | 100014        | 300004156 | k                      | 11.06.2021          | 30.06.2022          |
| 19  | n. a.         | Harmonic Mixer 3-<br>Port, 140-220 GHz     | SAM-220       | Radiometer Physics<br>GmbH | 200001        | 300004157 | k                      | 22.07.2020          | 31.07.2022          |
| 21  | n. a.         | Spectrum Analyzer<br>2 Hz - 85 GHz         | FSW85         | R&S                        | 101333        | 300005568 | k                      | 30.06.2021          | 29.06.2022          |
| 22  | n.a.          | Power Supply                               | E3632A        | Agilent Technologies       | MY40001320    | 40000396  | ev                     | -/-                 | -/-                 |
| 25  | n. a.         | Temperature Test<br>Chamber                | T-40/50       | CTS GmbH                   | 064023        | 300003540 | ev                     | 08.05.2022          | 07.05.2024          |

# 7.5 AC power-line conducted emissions



## FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

#### Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \mu V/m)$ 

## Equipment table:

| No. | Lab /<br>Item | Equipment                                       | Туре    | Manufacturer | Serial No. | INV. No.  | Kind of<br>Calibration |            | Next<br>Calibration |
|-----|---------------|-------------------------------------------------|---------|--------------|------------|-----------|------------------------|------------|---------------------|
| 1   | -/-           | Two-line V-Network<br>(LISN) 9 kHz to 30<br>MHz | ESH3-Z5 | R&S          | 892475/017 | 300002209 | viKi!                  | 14.12.2021 | 31.12.2023          |
| 2   | -/-           | RF-Filter-section                               | 85420E  | HP           | 3427A00162 | 300002214 | NK!                    | -/-        | -/-                 |
| 3   | -/-           | EMI Test Receiver                               | ESCI 3  | R&S          | 101240     | 300004427 | k                      | 07.12.2021 | 31.12.2022          |
| 4   | -/-           | Hochpass 150 kHz                                | EZ-25   | R&S          | 100010     | 300003798 | ev                     | -/-        | -/-                 |



## 8 Sequence of testing

#### 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement\***

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

#### **Final measurement**

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

\*)Note: The sequence will be repeated three times with different EUT orientations.



## 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.



## 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.



## 8.4 Sequence of testing radiated spurious above 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

#### Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

## 8.5 Sequence of testing radiated spurious above 50/85 GHz with external mixers

#### Setup

• The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.

CTC | advanced

- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

#### Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

# 9 Measurement uncertainty

| Test case                                                           | Uncertainty                                     |
|---------------------------------------------------------------------|-------------------------------------------------|
| Equivalent isotropically radiated power (e.i.r.p.)                  | Conducted value ± 1 dB<br>Radiated value ± 3 dB |
| Permitted range of operating frequencies                            | ± 100 kHz                                       |
| Conducted unwanted emissions in the spurious domain (up to 40 GHz)  | ± 1 dB                                          |
| Radiated unwanted emissions in the spurious domain (up to 40 GHz)   | ± 3 dB                                          |
| Conducted unwanted emissions in the spurious domain (40 to 50 GHz)  | ± 4 dB                                          |
| Radiated unwanted emissions in the spurious domain (40 to 50 GHz)   | ± 4 dB                                          |
| Conducted unwanted emissions in the spurious domain (50 to 300 GHz) | ± 5 dB                                          |
| Radiated unwanted emissions in the spurious domain (50 to 300 GHz)  | ± 5 dB                                          |
| DC and low frequency voltages                                       | ± 3 %                                           |
| Temperature                                                         | ± 1 °C                                          |
| Humidity                                                            | ± 3 %                                           |

# **10** Far field consideration for measurements above 18 GHz

# Far field distance calculation:

 $D_{ff}=2\times D^2/\lambda$ 

with

- D<sub>ff</sub> Far field distance
- D Antenna dimension

λ wavelength

## Spurious emission measurements:

| Antenna frequency<br>range in GHz | Highest measured<br>frequency in GHz | D in cm                      | λ in cm      | D <sub>ff</sub> in cm |
|-----------------------------------|--------------------------------------|------------------------------|--------------|-----------------------|
| 18-26                             | 26                                   | 3.4                          | 1.15         | 20.04                 |
| 26-40                             | 40                                   | 2.2                          | 0.75         | 12.91                 |
| 40-50                             | 50                                   | 2.77                         | 0.60         | 25.58                 |
| 50-75                             | 75<br>110<br>140<br>170              | 1.85<br>1.24<br>1.02<br>0.85 | 0.40         | 17.11                 |
| 75-110                            |                                      |                              | 0.27         | 11.28<br>9.72<br>8.19 |
| 90-140                            |                                      |                              | 0.22<br>0.18 |                       |
| 110-170                           |                                      |                              |              |                       |
| 140-220                           | 220                                  | 0.68                         | 0.14         | 6.78                  |
| 220-325                           | 325                                  | 0.43                         | 0.09         | 4.01                  |
| 325-500                           | 500                                  | 0.26                         | 0.06         | 2.22                  |



#### 11 Summary of measurement results

|                                                                                                                                                    | No deviations from the technical specifications were ascertained    |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|
|                                                                                                                                                    | There were deviations from the technical specifications ascertained |  |  |  |
| <ul> <li>This test report is only a partial test report.</li> <li>The content and verdict of the performed test cases are listed below.</li> </ul> |                                                                     |  |  |  |

| TC identifier                       | C identifier Description |           | date       | Remark |
|-------------------------------------|--------------------------|-----------|------------|--------|
| RF-Testing 47 CFR Part 15 / RSS-211 |                          | see below | 2022-12-07 | -/-    |

| Test<br>Specification<br>Clause | Test Case                           | Temperature<br>Conditions | Power<br>Source<br>Voltages | С           | NC | NA | NP | Results<br>(max.) |
|---------------------------------|-------------------------------------|---------------------------|-----------------------------|-------------|----|----|----|-------------------|
| §15.215(c)                      | Frequency stability                 | Nominal<br>Extreme        | Nominal<br>Extreme          | $\boxtimes$ |    |    |    | complies          |
| §15.256(f)<br>RSS-211, 2.4      | Fundamental bandwidth               | Nominal                   | Nominal                     |             |    |    |    | complies          |
| §15.256(g)<br>RSS-211,5.2b      | Fundamental emissions<br>limits     | Nominal                   | Nominal                     |             |    |    |    | complies          |
| §15.256(h)<br>RSS-211,5.1d      | Unwanted emissions limit            | Nominal                   | Nominal                     |             |    |    |    | complies          |
| §15.256(i)<br>RSS-211,5.2a      |                                     |                           | Nominal                     |             |    |    |    | complies          |
| §15.256(j)<br>RSS-211,5.2c      |                                     |                           | Nominal                     |             |    |    |    | complies          |
| §15.256(k)<br>RSS-Gen, 7.1      | Emissions from digital<br>circuitry | Nominal                   | Nominal                     |             |    |    |    | complies          |
| §15.107/207<br>RSS-Gen, 8.8     |                                     |                           | Nominal                     |             |    |    |    | complies          |

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed



# 12 Summary of measurement results

## 12.1 Frequency stability and fundamental bandwidth

#### **Description:**

§15.215(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

§15.256(f) The fundamental bandwidth of an LPR emission is defined as the width of the signal between two points, one below and one above the center frequency, outside of which all emissions are attenuated by at least 10 dB relative to the maximum transmitter output power when measured in an equivalent resolution bandwidth.

#### Measurement:

 $f_C$  is the point in the radiation where the power is at maximum. The frequency points where the power falls 10 dB below the  $f_C$  level and above  $f_C$  level are designated as  $f_L$  and  $f_H$  respectively. The operating frequency range (i.e. the frequency band of operation) is defined as  $f_H - f_L$ .

#### Measurement parameters:

| Resolution bandwidth: | 1 MHz    |
|-----------------------|----------|
| Video bandwidth:      | ≥1 MHz   |
| Detector:             | Pos-Peak |
| Trace:                | Max hold |

#### Limits:

As specified in Section 15.215(c), the bandwidth of the fundamental emission must be contained within the frequency band over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage. Frequency stability is to be measured according to Section 2.1055 at the highest and lowest frequency of operation and with the modulation that produces the widest emission bandwidth.

§15.256(f)(1) The minimum fundamental emission bandwidth shall be 50 MHz for LPR operation under the provisions of this section.

§15.256(f)(2) LPR devices operating under this section must confine their fundamental emission bandwidth within the 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz bands under all conditions of operation.

Same requirements for fundamental emission bandwidth are given in RSS-211, 2.4 and 5.1.a)

# © CTC advanced GmbH

| Test Conditions                             | Transmitter Fro<br>(G | 10 dB bandwidtl<br>(GHz) |      |
|---------------------------------------------|-----------------------|--------------------------|------|
|                                             | fL                    | f <sub>H</sub>           |      |
| -30 °C / V <sub>nom</sub>                   | 77.024                | 80.996                   | 3.97 |
| -20 °C / V <sub>nom</sub>                   | 77.024                | 80.996                   | 3.97 |
| -10 °C / V <sub>nom</sub>                   | 77.024                | 80.996                   | 3.97 |
| 0 °C / V <sub>nom</sub>                     | 77.014                | 80.996                   | 3.98 |
| 10 °C / V <sub>nom</sub>                    | 77.014                | 80.996                   | 3.98 |
| 20 °C / V <sub>min</sub> - V <sub>max</sub> | 77.014                | 80.996                   | 3.98 |
| 30 °C / V <sub>nom</sub>                    | 77.014                | 80.996                   | 3.98 |
| 40 °C / V <sub>nom</sub>                    | 77.014                | 80.996                   | 3.98 |
| 50 °C / V <sub>nom</sub>                    | 77.014                | 80.996                   | 3.98 |

0 MHz (0 ppm)

# F

## Plot 1: 10 dB bandwidth, Pos-Peak measurement, reference at 20°

±5.0 MHz (±65 ppm)

deviation based on 20 °C

Test report no.: 1-3759/21-01-08-A

|                       |                 |                          |                 |             |                     | <b></b>                |
|-----------------------|-----------------|--------------------------|-----------------|-------------|---------------------|------------------------|
| MultiView             | y = Spectru     | m × Spectrum 2           | ×               |             |                     |                        |
| Ref Level 3           | 30.00 dBm Offs  | et 50.20 dB • RBW 10 MHz |                 |             |                     |                        |
|                       | ● SW1           | T 150 s 🗢 VBW 28 MHz     | Mode Auto Sweep |             |                     |                        |
| Inp: ExtMix E         |                 |                          |                 |             |                     |                        |
| 1 Frequenc            | y Sweep         |                          |                 |             | ∘1Pk Max Auto ID ⊜2 | 1                      |
|                       |                 |                          |                 |             | M1[                 |                        |
| 20 dBm                |                 |                          |                 |             |                     | 78.651 00 GHz          |
|                       |                 |                          | M1              |             |                     |                        |
| 10 dBm                |                 |                          | ~~~~~~~         |             |                     | ~~                     |
|                       |                 |                          |                 |             |                     | TP                     |
| 0 dBm                 |                 |                          |                 |             |                     | \<br>▼                 |
| o dom                 |                 |                          |                 |             |                     |                        |
| -10 dBm               |                 |                          |                 |             |                     |                        |
| -10 0800-             |                 |                          |                 |             |                     | $\langle \rangle$      |
|                       | ~~~             |                          |                 |             |                     | mun                    |
| -20 dBm               |                 |                          |                 |             |                     |                        |
|                       |                 |                          | ~~~             |             |                     |                        |
| -30 dBm               |                 |                          |                 |             |                     |                        |
|                       |                 |                          |                 |             |                     |                        |
| -40 dBm               |                 |                          |                 |             |                     |                        |
|                       |                 |                          |                 |             |                     |                        |
| -50 dBm               |                 |                          |                 |             |                     |                        |
|                       |                 |                          |                 |             |                     |                        |
| -60 dBm               |                 |                          |                 |             |                     |                        |
|                       | VI              |                          |                 |             |                     | V2                     |
| 05 70 0 011           |                 |                          |                 | 500 0 MUE ( |                     |                        |
| CF 79.0 GH            |                 | 501                      | pts             | 500.0 MHz/  |                     | Span 5.0 GHz           |
| 2 Marker Ta<br>Type F | able<br>Ref Trc | X-Value                  | Y-Value         | Function    | Function            | Decult                 |
| M1                    |                 | 78.651 GHz               | 11.71 dBm       | ndB         |                     | 0 dB                   |
| Τ1                    | ī               | 77.014 GHz               | -0.56 dBm       | ndB down BW | 3.98 (              | GHz                    |
| T2                    | 1               | 80.996 GHz               | 0.75 dBm        | Q Factor    |                     | 19.8                   |
|                       |                 |                          |                 |             | - Measuring         | 20.06.2022<br>13:11:48 |

13:11:49 20.06.2022





## 12.2 Fundamental emissions

#### **Description:**

§15.256(g) Fundamental emissions limits.

(1) All emission limits provided in this section are expressed in terms of Equivalent Isotropic Radiated Power (EIRP).

(2) The EIRP level is to be determined from the maximum measured power within a specified bandwidth.

(i) The EIRP in 1 MHz is computed from the maximum power level measured within any 1 MHz bandwidth using a power averaging detector;

(ii) The EIRP in 50 MHz is computed from the maximum power level measured with a peak detector in a 50-MHz bandwidth centered on the frequency at which the maximum average power level is realized and this 50 MHz bandwidth must be contained within the authorized operating bandwidth. For a RBW less than 50 MHz, the peak EIRP limit (in dBm) is reduced by 20 log(RBW/50) dB where RBW is the resolution bandwidth in megahertz. The RBW shall not be lower than 1 MHz or greater than 50 MHz. The video bandwidth of the measurement instrument shall not be less than the RBW. If the RBW is greater than 3 MHz, the application for certification filed shall contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.

(3) The EIRP limits for LPR operations in the bands authorized by this rule section are provided in Table below. The emission limits in Table below are based on boresight measurements (i.e., measurements performed within the main beam of an LPR antenna).

#### Limits:

| Frequency range<br>(GHz) | Average emission limit<br>(EIRP in dBm / 1 MHz) | Peak emission limit<br>(EIRP in dBm / 50 MHz) |  |  |
|--------------------------|-------------------------------------------------|-----------------------------------------------|--|--|
| 5.925 to 7.250           | -33                                             | +7 dBm                                        |  |  |
| 24.05 to 29.00           | -14                                             | +26 dBm                                       |  |  |
| 75.00 to 85.00           | -3                                              | +34 dBm                                       |  |  |

Same requirements are given in RSS-211, 5.2.b)

#### Measurement parameters:

| Resolution bandwidth: | 1 MHz          |
|-----------------------|----------------|
| Video bandwidth:      | ≥1 MHz         |
| Span:                 | depends on DUT |
| Detector:             | Pos-Peak       |
| Trace:                | Max hold       |

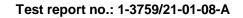


#### **Results:**

There are two different aspects which will affect the peak-to-average ratio resp. RMS value at all:

- Duty cycle of the device
- Frequency domain mitigation / dwell time due to FMCW-modulation

The EUT uses FMCW with a negative or positive ramp over a bandwidth of 4 GHz within  $T_s = 8x167\mu s$ . The total DUT cycle is 200 ms. Therefore the gap (blanking period) between the emissions is approx. 1\*10 99 ms.

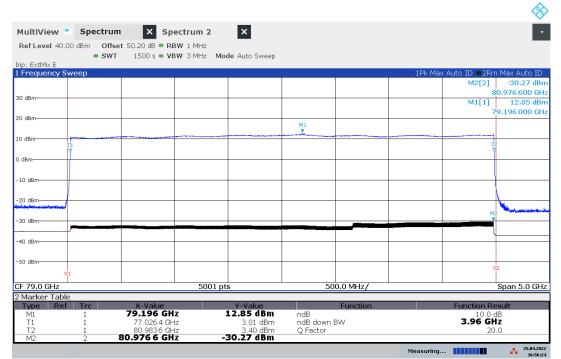

This will lead to:

| Mode   | Operating bandwidth (ΔF)<br>[GHz] | dwell time (T <sub>D</sub> )*<br>[µs/MHz] | averaging factor (AF)**<br>[dB] |  |
|--------|-----------------------------------|-------------------------------------------|---------------------------------|--|
| Normal | 3.970                             | 0.364                                     | -57.4                           |  |

\*dwell time  $T_D = T_S / \Delta F$ 

\*\*averaging factor  $AF = T_D / cycle time$ 

| Mode   | Equivalent isotropically radiated p<br>(e.i.r.p.) |               |  |  |
|--------|---------------------------------------------------|---------------|--|--|
|        | Peak power                                        | Average power |  |  |
| Normal | 21.80 dBm                                         | -30.27 dBm    |  |  |






#### Plot 2: Peak EIRP

|                   |                     |                         |                   |    |          |                                |       | \$                         |
|-------------------|---------------------|-------------------------|-------------------|----|----------|--------------------------------|-------|----------------------------|
| MultiView         | Spectrum            | × Spectrum 2            | ×                 |    |          |                                |       | -                          |
| Ref Level 40.0    | 0 dBm Offset<br>SWT | t 50.20 dB • RBW 50 MHz |                   |    |          |                                |       |                            |
| Inp: ExtMix E     |                     | 180 s 🗢 VBW 80 MHz      | . Mode Auto Sweep |    |          |                                |       |                            |
| 1 Frequency Sv    | weep                |                         |                   |    |          |                                |       | k Max Auto ID              |
|                   |                     |                         |                   |    |          |                                | M1[1] | 21.80 dBn<br>78.667 20 GH: |
| 30 dBm            |                     |                         | M1                |    |          |                                |       |                            |
| 20 dBm            |                     |                         |                   |    |          |                                |       |                            |
|                   |                     |                         |                   |    |          |                                |       | N                          |
| 10 dBm            |                     |                         |                   |    |          |                                |       | $\mathbf{X}$               |
| 0 dBm             |                     |                         |                   |    |          |                                |       | my                         |
| named             |                     |                         |                   |    |          |                                |       | My V.                      |
| -10 dBm           |                     |                         |                   |    |          |                                |       |                            |
| -20 dBm           |                     |                         |                   |    |          |                                |       |                            |
| -30 dBm           |                     |                         |                   |    |          |                                |       |                            |
| -40 dBm           |                     |                         |                   |    |          |                                |       |                            |
|                   |                     |                         |                   |    |          |                                |       |                            |
| -50 dBm           |                     |                         |                   |    |          |                                |       |                            |
|                   |                     |                         |                   |    |          |                                |       |                            |
| CF 79.0 GHz       |                     | 60                      | 1 pts             | 50 | 0.0 MHz/ |                                |       | Span 5.0 GHz               |
|                   | ~                   |                         |                   |    |          | <ul> <li>Measuring.</li> </ul> |       | 25.04.2022<br>16:01:25     |
| :01:25 25.04.2022 | ,                   |                         |                   |    |          |                                |       |                            |

#### Plot 3: RMS measurement



16:56:25 25.04.2022

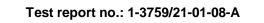


# 12.3 Unwanted emissions limit

## **Description:**

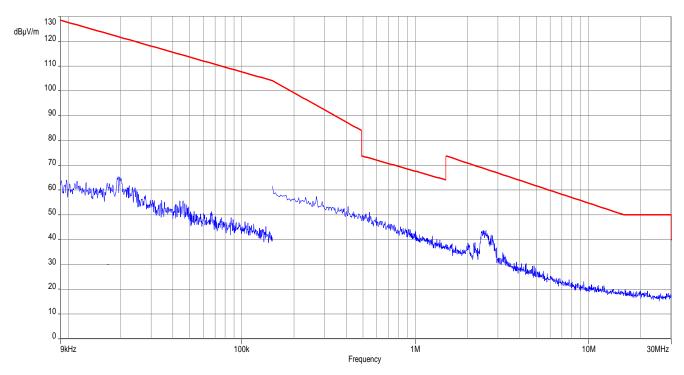
| §15.256(h)                                                                                                  |                                                                                                       |     |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----|
|                                                                                                             | 6(b)                                                                                                  |     |
|                                                                                                             |                                                                                                       |     |
|                                                                                                             | tod emissions from LDD devises shall not even ad the general emission limit in \$45,000 of this share |     |
| Unwanted emissions from LPR devices shall not exceed the general emission limit in §15.209 of this chapter. | ted emissions from LPR devices shall not exceed the general emission limit in §15.209 of this chap    | er. |

#### Measurement parameters:


| 100 kHz / 1 MHz            |
|----------------------------|
| ≥ resolution bandwidth     |
| Quasi Peak / Average (RMS) |
| Max hold                   |
|                            |

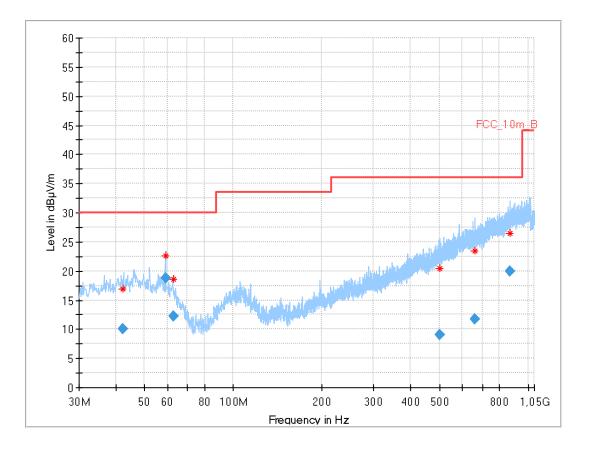
# Limits:

|                                               | FCC §15.209 / RSS-Gen |                          |  |  |  |  |  |  |  |  |
|-----------------------------------------------|-----------------------|--------------------------|--|--|--|--|--|--|--|--|
| Field strength of the harmonics and spurious. |                       |                          |  |  |  |  |  |  |  |  |
| Frequency (MHz)                               | Field strength (µV/m) | Measurement distance (m) |  |  |  |  |  |  |  |  |
| 0.009 - 0.490                                 | 2400/F(kHz)           | 300                      |  |  |  |  |  |  |  |  |
| 0.490 - 1.705                                 | 24000/F(kHz)          | 30                       |  |  |  |  |  |  |  |  |
| 1.705 – 30                                    | 30 (29.5 dBµV/m)      | 30                       |  |  |  |  |  |  |  |  |
| 30 – 88                                       | 100 (40 dBµV/m)       | 3                        |  |  |  |  |  |  |  |  |
| 88 – 216                                      | 150 (43.5 dBµV/m)     | 3                        |  |  |  |  |  |  |  |  |
| 216 – 960                                     | 200 (46 dBµV/m)       | 3                        |  |  |  |  |  |  |  |  |
| >960                                          | 500 (54 dBµV/m)       | 3                        |  |  |  |  |  |  |  |  |


# Results:

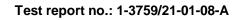
|           | Spurious emission level (dBm) |       |           |       |       |           |       |       |  |  |  |  |  |  |
|-----------|-------------------------------|-------|-----------|-------|-------|-----------|-------|-------|--|--|--|--|--|--|
| -//-      |                               |       |           |       |       |           |       |       |  |  |  |  |  |  |
| Frequency | BW                            | Level | Frequency | BW    | Level | Frequency | BW    | Level |  |  |  |  |  |  |
| [GHz]     | [kHz]                         | [dBm] | [GHz]     | [kHz] | [dBm] | [GHz]     | [kHz] | [dBm] |  |  |  |  |  |  |
|           | see plots                     |       |           |       |       |           |       |       |  |  |  |  |  |  |
|           |                               |       |           |       |       |           |       |       |  |  |  |  |  |  |
|           |                               |       |           |       |       |           |       |       |  |  |  |  |  |  |
|           |                               |       |           |       |       |           |       |       |  |  |  |  |  |  |
|           |                               |       |           |       |       |           |       |       |  |  |  |  |  |  |





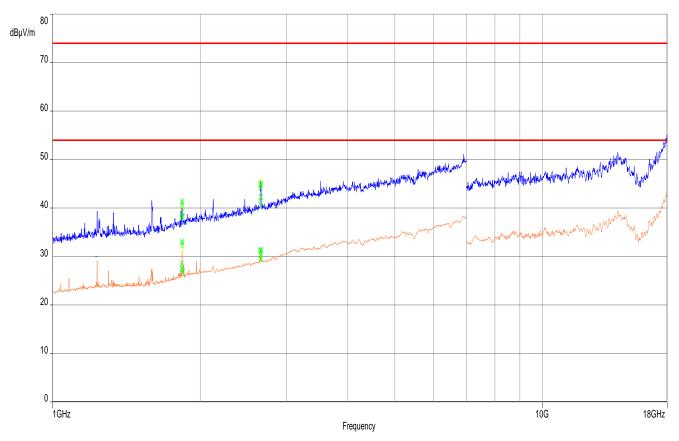

Plot 4: 9 kHz - 30 MHz

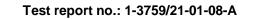





## Plot 5: 30 MHz - 1000 MHz




# Final\_Result


| Frequency<br>(MHz) | QuasiPe<br>ak<br>(dBµV/m | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimut<br>h<br>(deg) | Corr.<br>(dB/m<br>) |
|--------------------|--------------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|----------------------|---------------------|
| 42.336             | 10.09                    | 30.0              | 19.9           | 1000               | 120.0              | 400.0          | Н   | 45                   | 16                  |
| 59.006             | 18.72                    | 30.0              | 11.3           | 1000               | 120.0              | 119.0          | V   | 270                  | 15                  |
| 62.639             | 12.22                    | 30.0              | 17.8           | 1000               | 120.0              | 267.0          | V   | 180                  | 13                  |
| 501.708            | 9.06                     | 36.0              | 26.9           | 1000               | 120.0              | 144.0          | Н   | 335                  | 20                  |
| 660.609            | 11.73                    | 36.0              | 24.3           | 1000               | 120.0              | 400.0          | V   | 90                   | 22                  |
| 867.929            | 19.92                    | 36.0              | 16.1           | 1000               | 120.0              | 400.0          | V   | 71                   | 25                  |





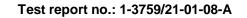
Plot 6: 1 GHz - 18 GHz, PEAK/RMS-measurement







## Plot 7: 18 GHz - 40 GHz, PEAK/RMS-measurement


|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|--------------------------------|---------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MultiView                                                                                                       | Spectrum                  | X Sp                                    | ectrum 2                       | 🗧 🗙 Spectr          | um 3                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                 | 0 dBµV Offset             |                                         |                                |                     | _                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Att<br>1 Frequency S <sup>1</sup>                                                                               | 0 dB 👄 SWT                | 4400 s 👄 VE                             | W 3 MHz Moo                    | de Auto Sweep       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | o I Diz May                             | ●2Av MaxLin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 Frequency 5                                                                                                   | weep                      |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | M2[2]                                   | 24.20 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 80 dBµV                                                                                                         |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         | 8.801 000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | M1[1]                                   | 45.84 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                 | ——H1 74.000 dBµ\          | /                                       |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         | 9.749 400 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 70 dBμV                                                                                                         |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60 dBµV                                                                                                         |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                           | H2 54.000                               | і dBµV                         |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50 dBµV                                                                                                         |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40 dBµV-                                                                                                        |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                 |                           |                                         | <b>4</b>                       | أبرا لملقان فالترقي |                                         | and the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | المطارب الألم عام تماليم | والأول والألب والمرومة ومعاوية والمراجع | A State Stat |
| and the stand of the | Lateral of Andread States | فانصرحي ليستحاقهم أيتأه                 | المناطي البول فالمرية فالمورية |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 dBµV                                                                                                         |                           |                                         |                                | M2                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                           |                                         |                                | M2                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20"dBDV                                                                                                        |                           |                                         | mmmm                           | mmunul              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | and the second s |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 00011                                                                                                        |                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~                              |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dBμV                                                                                                         |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.40.41                                                                                                         |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 dBµV                                                                                                          |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 dBµV                                                                                                        |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CF 29.0 GHz                                                                                                     |                           |                                         | 22001 pt                       | S                   | 2                                       | .2 GHz/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | 5                                       | Span 22.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Measuring.             |                                         | 31.05.2022<br>11:53:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                 |                           |                                         |                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

11:53:56 31.05.2022

# Plot 8: 40 GHz – 50 GHz, PEAK/RMS-measurement

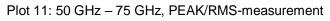
| ultiView    | Spectrum                                                                                                       | 🕂 🗙 Sp                   | ectrum 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 🗧 🗙 Spect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rum 3 | ×                                             |                                                               |                                          |                 |
|-------------|----------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------|---------------------------------------------------------------|------------------------------------------|-----------------|
| ef Level 9  | 0.00 dBµV Offset                                                                                               | : -5.00 dB 🖷 RE          | SW 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | _                                             |                                                               |                                          |                 |
| tt          | 0 dB 🖷 SWT                                                                                                     | 2000 s 🖷 VE              | W 3 MHz Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | de Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                               |                                                               |                                          |                 |
| requency    | Sweep                                                                                                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |                                               | , <u>,</u>                                                    | ●1Pk Max ●2Av I                          |                 |
|             |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               | M2[2]                                                         |                                          | 81 dBµ          |
|             |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               | 41.848                                   |                 |
| dBµV        |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               | M1[1]                                                         |                                          | 96 dBj          |
|             | H1 74.000 dBpV                                                                                                 | ,                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               | 40.500                                   | 400 GI          |
| din a la    | HI 74.000 UBHV                                                                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| dBµ∨−−−−    |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
|             |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| dBµ∨        |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
|             |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| M1          |                                                                                                                | H2 54.000                | i dBμV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| dBµ∨        |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| ر المنابعة، | hu desi                                                                                                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| dBuy        | al and the second s | description and the base | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| upp v       |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a state of the |       | والمجامعة في المحافظ المطالبة المالية المحافظ | مەدەرىمەر يەروندۇرىدى <del>ۋ</del> ەدەرىلەر <del>ب</del> ەرەر | المتادينية بالمغاد والمقادمة فحصا المطلة | باليالين أفيانه |
|             | M2                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| dBµ∨        |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
|             | + $  $                                                                                                         |                          | - Lurra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
|             |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| dBµV        |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
|             |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| dBµV        |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
|             |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
|             |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| Вµ∨         |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
|             |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
|             |                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                               |                                                               |                                          |                 |
| 0.0 GHz     |                                                                                                                |                          | 10001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | 1.0 GHz/                                      |                                                               | 50                                       | 0.0 GF          |

14:58:16 31.05.2022





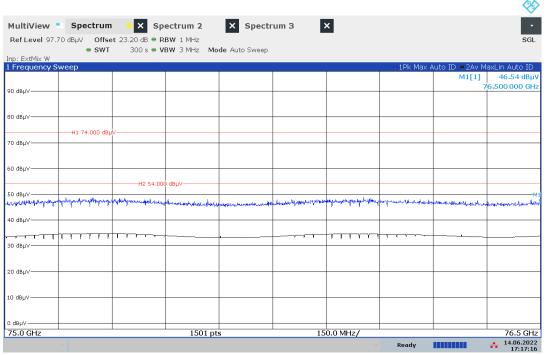
# Plot 9: 20 GHz, PEAK/RMS-measurement


| 4ultiView 📮   | Spectrum          | × Spect    | rum 2          | ×           |                       |                |             |                                                 |                          |
|---------------|-------------------|------------|----------------|-------------|-----------------------|----------------|-------------|-------------------------------------------------|--------------------------|
| ef Level 80.0 | ) dBµV            | • RBW 1 M  | Ηz             | _           |                       |                |             |                                                 | _                        |
| tt            | 0 dB 🖷 SWT 300 s  |            |                | uto Sweep   |                       |                |             |                                                 |                          |
|               | ABLE502_CBL1_18-4 | OG_50CM_DB | JV"            |             |                       |                | - 10        |                                                 |                          |
| Frequency Sv  | veep              |            |                |             |                       |                | 0 1 PK      | Max <ul> <li>2Av Maxl</li> <li>M2[3]</li> </ul> | 1                        |
|               |                   |            |                |             |                       |                |             |                                                 | 19.93 UB<br>19.250 400 G |
| dBµV          | HI 74.000 UBDV    |            |                |             |                       |                |             |                                                 | 44.44 dB                 |
| uph 4         |                   |            |                |             |                       |                |             |                                                 | 19.782 000 G             |
|               |                   |            |                |             |                       |                |             |                                                 |                          |
| dBµV          |                   |            |                |             |                       |                |             |                                                 |                          |
|               |                   |            |                |             |                       |                |             |                                                 |                          |
| 10.11         |                   |            | μv             |             |                       |                |             |                                                 |                          |
| dBµV          |                   |            |                |             | M1                    |                |             |                                                 |                          |
|               |                   |            | N              |             | X                     |                |             |                                                 |                          |
| dBµV          | manus markers     |            | verse the hard | - commenced | - Weed unerstand      |                |             |                                                 |                          |
| M             |                   |            |                |             | and the second second | ann hannanstra | manufacture |                                                 |                          |
| Мавакуна      |                   |            |                |             |                       |                |             | manuthing                                       | had in                   |
| abox -        |                   |            |                |             |                       |                |             |                                                 | ANA MC Secondary         |
| M2            |                   |            |                |             |                       |                |             |                                                 |                          |
| dBµV          |                   |            |                |             |                       |                |             |                                                 | +                        |
|               |                   |            |                |             | +                     |                |             |                                                 |                          |
|               |                   |            |                |             |                       |                |             |                                                 |                          |
| dBµV          |                   |            |                |             |                       |                |             |                                                 |                          |
|               |                   |            |                |             |                       |                |             |                                                 |                          |
| звµv          |                   |            |                |             |                       |                |             |                                                 |                          |
|               |                   |            |                |             |                       |                |             |                                                 |                          |
|               |                   |            |                |             |                       |                |             |                                                 |                          |
| 0 dBµV        |                   |            |                |             |                       |                |             |                                                 | 1                        |
|               |                   |            |                |             |                       |                |             |                                                 |                          |
| 10.75.011     |                   |            | 1001           |             |                       |                |             |                                                 | 0                        |
| 19.75 GHz     |                   |            | 1201 pt        | s           | 12                    | 20.0 MHz/      |             |                                                 | Span 1.2 G               |

## Plot 10: 40 GHz, PEAK/RMS-measurement

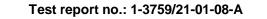
|                                                              | Spectrum                                 | 🕂 🗙 Sp                                   | ectrum 2               | × Spectr      | um 3 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                |                            |
|--------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------|---------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|
| Ref Level 9                                                  | 0.00 dBµV Offset                         | -5.00 dB 🔍 RE                            | 3W 1 MHz               | _             |      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                | _                          |
| Att                                                          | O dB 🖷 SWT                               |                                          | SW 3 MHz Mo            | de Auto Sweep |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                |                            |
| Frequency                                                    | Sweep                                    |                                          |                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                | : ●2Av MaxLin              |
|                                                              |                                          |                                          |                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | M2[2]                                                                                                          | 27.52 dB                   |
|                                                              |                                          |                                          |                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                | 41.000 000 GF<br>48.14 dB  |
| ⊃ dBµV                                                       |                                          |                                          |                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                | 40,500 400 G               |
|                                                              | —н1 74.000 dBµV—                         |                                          |                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                | 10.300 400 0               |
| 0 dBµV                                                       |                                          |                                          |                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                |                            |
|                                                              |                                          |                                          |                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                |                            |
|                                                              |                                          |                                          |                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                |                            |
| 0 dBµV                                                       |                                          |                                          |                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                |                            |
|                                                              |                                          | H2 54.000                                | ври                    |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                |                            |
|                                                              |                                          |                                          |                        |               | 11   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                |                            |
| 0 dBµV                                                       |                                          |                                          |                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                |                            |
|                                                              | and when here and here                   | win much                                 | Marconomentation       |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                |                            |
| manyalawahah                                                 | an a | an a | Mannananan             |               |      | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nondumpedan          | adorchenore realized                                                                                           | and and also               |
| manyhamahah                                                  | a way and the second second              | un marine                                | Mannaharr              |               |      | and the second sec                                                                                                                                                                                                                                             | nombanhanhan         | and my demonstration of                                                                                        | . west and all and         |
| manyalanahah                                                 | www.putrusteron.ortero                   | allen var var der a                      | Mannaharra             |               |      | and the second sec                                                                                                                                                                                                                                             | noralunpurkan        | internet callense                                                                                              | y yagt, at dy blow, a      |
| Munyululunululu<br>0 dBµV                                    | www.www.www.                             | when when a start when a                 | Marunnahannan          |               |      | and the second sec                                                                                                                                                                                                                                             | nombumpen            | ad more manufacture of the second | a good at he block         |
| 10 dBµV<br>мар. мублици (мар. мублици)<br>10 dBµV<br>10 dBµV |                                          | nakowa Nakowa Nava<br>                   | Marumananan<br>        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | normlandar           | at on the second and                                                                                           |                            |
| Munyululunululu<br>0 dBµV                                    |                                          |                                          | Marandrahan 1990       |               |      | and the second s |                      | ad out the set card and a                                                                                      | a and ada a                |
| <u>мулуу Маруу (</u><br>0 dвµV                               |                                          |                                          | Marandrahan (1997)<br> |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | normalise Articles A | ad out the set out the set                                                                                     | an aray an day da bay na a |
| му.лү/Мери/Мери/Мери/<br>0 dBµV<br>0 dBµV                    |                                          |                                          | Marunovanovanov<br>    |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | normalise Articles A | at op her of reddies,                                                                                          | , well at he alter at      |
| му.лү/Мери/Мери/Мери/<br>0 dBµV<br>0 dBµV                    |                                          | anter versentera                         | Mannonananan<br>       |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ad an den set and surge                                                                                        |                            |
| <del>кор. ор./ Макулий</del><br>0 dBµV<br>0 dBµV             |                                          | aller Vitraenlera                        | Mennenenenen           |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | norale Areada        | 23.000 minelis                                                                                                 |                            |
| му.лү/Мери/Мери/Мери/<br>0 dBµV<br>0 dBµV                    |                                          | aller var weeks                          | Mannananan<br>         |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                |                            |
| маранда (Малана)<br>о dBµV                                   |                                          |                                          | Mennenenenen<br>       |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nordes opening       | ad on the second have                                                                                          |                            |
| иц. лу. (Маульн)<br>0 dBµV                                   |                                          |                                          | Menonenenenen<br>      |               |      | 00.0 MHz/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nords grates         | að eyrðin reinaðarsjó                                                                                          | 41.0 GF                    |

15:06:20 31.05.2022



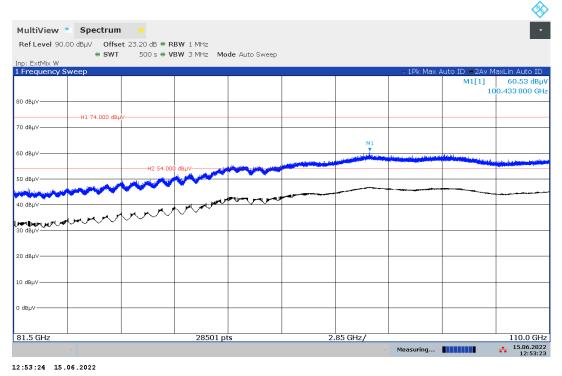



| Ref Level 90 |               | t 24.40 dB 🖷 R |              |                | _                                       |         |           | ×                                                                                                               |                            |
|--------------|---------------|----------------|--------------|----------------|-----------------------------------------|---------|-----------|-----------------------------------------------------------------------------------------------------------------|----------------------------|
| np: ExtMix V | • SWT         | 16000 s 🖷 V    | 3WY 3 MHz Mi | ode Auto Sweep |                                         |         |           |                                                                                                                 |                            |
| Frequency    | Sweep         |                |              |                |                                         |         | O IPK Ma> | Auto ID  2Av  M2[2]                                                                                             |                            |
|              |               |                |              |                |                                         |         |           |                                                                                                                 | 50.622 500 GI              |
| ) dBµ∨       |               |                |              |                |                                         |         |           |                                                                                                                 | 57.37 dBj<br>73.233 600 Gl |
|              | H1 74.000 dBµ | v              |              |                |                                         |         |           |                                                                                                                 | 75.255 000 0               |
| ) dBµV       |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
|              |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
| ) dBµ∨       |               |                |              |                |                                         |         |           |                                                                                                                 | M1                         |
|              |               | H2 54.000      | dBµV         |                | and the strength of the strength of the |         |           | and the state of the |                            |
| bud Rush     |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
| м2<br>Ј фвру |               |                |              |                |                                         |         |           | _                                                                                                               |                            |
| J dBhA       |               |                |              |                |                                         |         | $\sim$    |                                                                                                                 |                            |
| ) dBµV       |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
| і авру-      |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
| ) dBµV       |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
| з авру-      |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
| D dBµV       |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
| 0000         |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
| dBµV         |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
|              |               |                |              |                |                                         |         |           |                                                                                                                 |                            |
|              |               |                | 05001        |                |                                         |         |           |                                                                                                                 | 75.0.01                    |
| 0.0 GHz      | v             |                | 25001 p      | ots            | 2                                       | .5 GHz/ | Measurin  | ıg                                                                                                              | 75.0 GH                    |


Note: Mixer products visible on plot






17:17:17 14.06.2022

 $\wedge$ 





#### Plot 13: 81 GHz - 110 GHz, PEAK/RMS-measurement



#### Plot 14: 110 GHz – 170 GHz, PEAK/RMS-measurement

| 1ultiView    | <ul> <li>Spectrum</li> </ul> | 🕂 🗙 Spe       | ctrum 2   | × Spect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rum 3 🚺 | ×                                |          |                 |                |
|--------------|------------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------|----------|-----------------|----------------|
| Ref Level 97 | .30 dBµV Offset              | 22.80 dB 🔍 RB | W 1 MHz   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | -                                |          |                 | _              |
| p: ExtMix D  | ● SWT                        | 16000 s 🖷 VB  | W 3 MHz M | ode Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                  |          |                 |                |
| Frequency S  | Sweep                        |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  | o1Pk Max | Auto ID 😐 2Av N | 1axLin Auto ID |
|              |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          | M1[1]           | 58.69 dB       |
| dBµV         |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          | 1               | 10.000 000 GI  |
|              |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| dBµV         |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| dop+         |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
|              | H1 74.000 dBµV-              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| dBµ∨───      |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
|              |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| dвµ∨         |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | A State Street State State State |          |                 |                |
|              |                              | H2 54.000     | dBµV      | and the second s |         |                                  |          | [               |                |
| dBµ∨         |                              |               |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                  |          |                 |                |
|              |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| dBµV         |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
|              |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| dBµV         |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| ивр •        |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
|              |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| dBµ∨         |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
|              |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| dBµ∨         |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
|              |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| BμV          |                              |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                  |          |                 |                |
| 0.0 GHz      | 1                            |               | 60001 p   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | .0 GHz/                          | 1        | 1               | 170.0 G        |

07:59:02 15.06.2022



# Plot 15: 170 GHz – 200 GHz, PEAK/RMS-measurement

|                                 |                                             | ,                                     |                               |                                               | -     |                |                                     |                                                                                                                  | <b></b>                |
|---------------------------------|---------------------------------------------|---------------------------------------|-------------------------------|-----------------------------------------------|-------|----------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------|
| MultiView                       | Spectrum                                    | × Sp                                  | ectrum 2                      | × Spect                                       | rum 3 | ×              |                                     |                                                                                                                  | •                      |
| Ref Level 93.30                 | 0 dBµV Offse<br>● SWT                       |                                       |                               | lode Auto Sweep                               |       |                |                                     |                                                                                                                  |                        |
| Inp: ExtMix G<br>1 Frequency Sw | voon                                        |                                       |                               |                                               |       | o 1Pk Max Auto | ID A 24v Mod is                     | Nuto ID 020m                                                                                                     | May Auto ID            |
|                                 | чеер                                        |                                       |                               |                                               |       | O IPK Max Auto |                                     | M1[1]                                                                                                            | 56.47 dBµV             |
| 90 dBµ∨                         |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  | 0.000 000 GHz          |
| 80 dBµV                         |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
|                                 | — H1 74.000 dBµ                             | v                                     |                               |                                               |       |                |                                     |                                                                                                                  |                        |
| 70 dBµV                         |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
| M£D dBµV                        | والمحمد المراجع المراجع المحمد والمحمد والم | Notion and the protocol of the second | والترجيع فيرجع والترجيع وتنار | والمتعادة والمعارفة والمعارفة ومراجعا والمعار |       |                | and a destantial life of the second | and the second |                        |
|                                 |                                             | H2 54.00                              | авру                          |                                               |       |                |                                     |                                                                                                                  |                        |
| 50 dBµV                         |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
|                                 |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
| 40 dBµV                         |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
| 30 dBµV                         |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
|                                 |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
| 20 dBµV                         |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
| 10 dBµV                         |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
|                                 |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
| 0 dBµV                          |                                             |                                       |                               |                                               |       |                |                                     |                                                                                                                  |                        |
| 170.0 GHz                       |                                             | I                                     | 30001                         | pts                                           | 3     | 3.0 GHz/       | I                                   | 1                                                                                                                | 200.0 GHz              |
|                                 | ~                                           |                                       |                               |                                               |       | ~              | Measuring                           |                                                                                                                  | 15.06.2022<br>12:04:51 |

12:04:52 15.06.2022



## 12.4 Antenna beamwidth and antenna side lobe gain

#### **Description:**

§15.256(i) Antenna beamwidth

(A) LPR devices operating under the provisions of this section within the 5.925-7.250 GHz and 24.05-29.00 GHz bands must use an antenna with a -3 dB beamwidth no greater than 12 degrees.

(B) LPR devices operating under the provisions of this section within the 75-85 GHz band must use an antenna with a -3 dB beamwidth no greater than 8 degrees.

(j) Antenna side lobe gain. LPR devices operating under the provisions of this section must limit the side lobe antenna gain relative to the main beam gain for off-axis angles from the main beam of greater than 60 degrees to the levels provided in Table below.

#### Limits:

| FCC §15.256 / RSS-211 5.2a) c)                                                                                       |    |     |  |
|----------------------------------------------------------------------------------------------------------------------|----|-----|--|
| Frequency range Antenna beamwidth Antenna side lobe gain limit<br>(GHz) in degree (°) relative to main beam gain (dE |    |     |  |
| 5.925 to 7.250                                                                                                       | 12 | -22 |  |
| 24.05 to 29.00                                                                                                       | 12 | -27 |  |
| 75.00 to 85.00                                                                                                       | 8  | -38 |  |

Same requirements are given in RSS-211, 5.2.a) and c)

#### Antenna data:

| Antennas           | Maximum gain | Maximum 3 dB beam width | Maximum side lobe level > 60° |
|--------------------|--------------|-------------------------|-------------------------------|
| 40 mm lens antenna | 25 dBi       | 7.2                     | -14.5 dBi (-39.5 dBc)         |

#### Note:

See manufacturer's documentation



# **12.5 Emissions from digital circuitry**

#### **Description:**

§15.256(k) Emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in §15.209 of this chapter provided it can be clearly demonstrated that those emissions are due solely to emissions from digital circuitry contained within the transmitter and the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in §15.3(k) of this part, e.g., emissions from digital circuitry used to control additional functions or capabilities other than the operation of the transmitter, are subject to the limits contained in subpart B, part 15 of this chapter. Emissions from these digital circuits shall not be employed in determining the -10 dB bandwidth of the fundamental emission or the frequency at which the highest emission level occurs.

#### Measurement:

| Measurement parameter |                            |  |  |
|-----------------------|----------------------------|--|--|
| Detector:             | Quasi Peak / Average (RMS) |  |  |
| Sweep time:           | Auto                       |  |  |
| Resolution bandwidth: | 100 kHz / 1 MHz            |  |  |
| Video bandwidth:      | > resbw                    |  |  |
| Trace-Mode:           | Max-Hold                   |  |  |

#### Limits:

| FCC §15.109 / RSS-Gen, 7.1 |                                                                |     |  |  |
|----------------------------|----------------------------------------------------------------|-----|--|--|
| Fi                         | Field strength of the harmonics and spurious.                  |     |  |  |
| Frequency (MHz)            | Frequency (MHz) Field strength (µV/m) Measurement distance (m) |     |  |  |
| 0.009 - 0.490              | 2400/F(kHz)                                                    | 300 |  |  |
| 0.490 – 1.705              | 24000/F(kHz)                                                   | 30  |  |  |
| 1.705 – 30                 | 30 (29.5 dBµV/m)                                               | 30  |  |  |
| 30 – 88                    | 100 (40 dBµV/m)                                                | 3   |  |  |
| 88 – 216                   | 150 (43.5 dBµV/m)                                              | 3   |  |  |
| 216 – 960                  | 200 (46 dBµV/m)                                                | 3   |  |  |
| >960                       | 500 (54 dBµV/m)                                                | 3   |  |  |

#### Results:

See 12.3 Unwanted emissions limit according to §15.256(h) / RSS-211, 5.1 d).



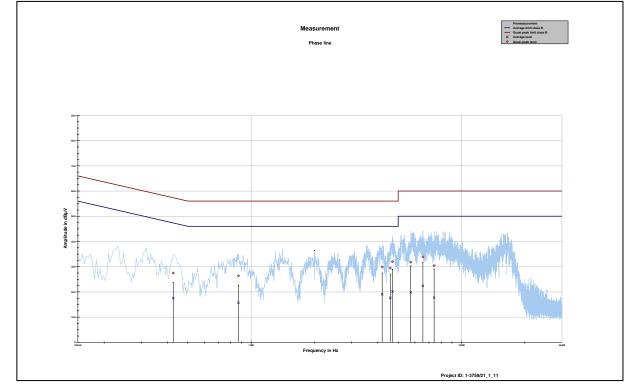
# 12.6 Spurious emissions conducted < 30 MHz (AC power line)

#### **Description:**

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

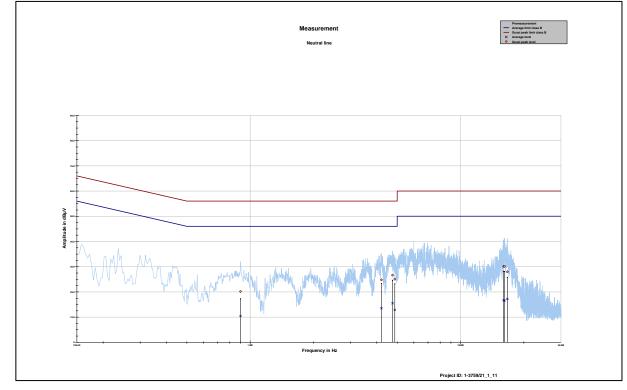
#### Measurement:

| Measurement parameter |                                            |  |  |
|-----------------------|--------------------------------------------|--|--|
| Detector:             | Peak - Quasi Peak / Average                |  |  |
| Sweep time:           | Auto                                       |  |  |
| Resolution bandwidth: | F < 150 kHz: 1 kHz<br>F > 150 kHz: 100 kHz |  |  |
| Video bandwidth:      | F < 150 kHz: 200 Hz<br>F > 150 kHz: 9 kHz  |  |  |
| Span:                 | 9 kHz to 30 MHz                            |  |  |
| Trace-Mode:           | Max Hold                                   |  |  |


#### Limits:

| FCC                         |                              |                     | IC                                  |
|-----------------------------|------------------------------|---------------------|-------------------------------------|
| CFR Part 15.107 / 15.207(a) |                              | RSS-Gen 8.8         |                                     |
|                             | Conducted Spurious           | Emissions < 30 Mł   | Hz                                  |
| Frequency (MHz)             | Quasi-Pea                    | κ (dBμV/m)          | Average (dBµV/m)                    |
| 0.15 – 0.5                  | 79 (Cl<br>66 to 56*          | ass A)<br>(Class B) | 66 (Class A)<br>56 to 46* (Class B) |
| 0.5 – 5                     | 73 (Class A)<br>56 (Class B) |                     | 63 (Class A)<br>46 (Class B)        |
| 5 – 30.0                    | 73 (Cl<br>60 (Cl             |                     | 63 (Class A)<br>50 (Class B)        |

\*Decreases with the logarithm of the frequency




Plot 16: Phase line



| Frequency | Quasi peak<br>level | Margin quasi<br>peak | Limit QP | Average level | Margin<br>Average | Limit AV |
|-----------|---------------------|----------------------|----------|---------------|-------------------|----------|
| MHz       | dBµV                | dB                   | dBµV     | dBµV          | dB                | dBµV     |
|           |                     |                      |          |               |                   |          |
| 0.426113  | 27.48               | 29.85                | 57.328   | 17.45         | 30.66             | 48.111   |
| 0.870131  | 26.38               | 29.62                | 56.000   | 15.68         | 30.32             | 46.000   |
| 4.194675  | 29.90               | 26.10                | 56.000   | 19.03         | 26.97             | 46.000   |
| 4.586456  | 29.44               | 26.56                | 56.000   | 17.65         | 28.35             | 46.000   |
| 4.698394  | 31.95               | 24.05                | 56.000   | 20.17         | 25.83             | 46.000   |
| 5.735681  | 31.79               | 28.21                | 60.000   | 19.74         | 30.26             | 50.000   |
| 6.552825  | 33.85               | 26.15                | 60.000   | 22.39         | 27.61             | 50.000   |
| 7.407281  | 30.41               | 29.59                | 60.000   | 17.75         | 32.25             | 50.000   |





| Frequency | Quasi peak<br>level | Margin quasi<br>peak | Limit QP | Average level | Margin<br>Average | Limit AV |
|-----------|---------------------|----------------------|----------|---------------|-------------------|----------|
| MHz       | dBµV                | dB                   | dBµV     | dBµV          | dB                | dBµV     |
|           |                     |                      |          |               |                   |          |
| 0.899981  | 20.14               | 35.86                | 56.000   | 10.46         | 35.54             | 46.000   |
| 4.205869  | 24.79               | 31.21                | 56.000   | 13.52         | 32.48             | 46.000   |
| 4.750631  | 26.64               | 29.36                | 56.000   | 15.49         | 30.51             | 46.000   |
| 4.870031  | 25.03               | 30.97                | 56.000   | 12.88         | 33.12             | 46.000   |
| 16.030200 | 30.12               | 29.88                | 60.000   | 16.69         | 33.31             | 50.000   |
| 16.175719 | 30.12               | 29.88                | 60.000   | 16.52         | 33.48             | 50.000   |
| 16.694363 | 27.98               | 32.02                | 60.000   | 17.17         | 32.83             | 50.000   |





# 13 Glossary

| C/N₀      | Carrier to noise-density ratio, expressed in dB-Hz |
|-----------|----------------------------------------------------|
| GNSS      | Global Navigation Satellite System                 |
| FHSS      | Frequency hopping spread spectrum                  |
| OFDM      | Orthogonal frequency division multiplexing         |
| DSSS      | Dynamic sequence spread spectrum                   |
| RLAN      | Radio local area network                           |
| WLAN      | Wireless local area network                        |
| MC        | Modulated carrier                                  |
| CW        | Clean wave                                         |
| PER       | Packet error rate                                  |
| DC        | Duty cycle                                         |
| NOP       | Non occupancy period                               |
| OP        | Occupancy period                                   |
| CAC       | Channel availability check                         |
| DFS       | Dynamic frequency selection                        |
| OOB       | Out of band                                        |
| OBW       | Occupied bandwidth                                 |
| OCW       | Operating channel bandwidth                        |
| 00        | Operating channel                                  |
| AVG       | Average                                            |
| QP        | Quasi peak                                         |
| PP        | Positive peak                                      |
| NP        | Not performed                                      |
| NA        | Not applicable                                     |
| NC        | Not compliant                                      |
| С         | Compliant                                          |
| S/N or SN | Serial number                                      |
| Inv. No.  | Inventory number                                   |
| SW        | Software                                           |
| HW        | Hardware                                           |
| EMC       | Electromagnetic Compatibility                      |
| FVIN      | Firmware version identification number             |
| HVIN      | Hardware version identification number             |
| HMN       | Host marketing name                                |
| PMN       | Product marketing name                             |
| IC        | Industry Canada                                    |
| FCC ID    | Company Identifier at FCC                          |
| FCC       | Federal Communications Commission                  |
| EN        | European Standard                                  |
| ETSI      | European Telecommunications Standards Institute    |
| GUE       | GNSS User Equipment                                |
| UUT       | Unit under test                                    |
| DUT       | Device under test                                  |
| EUT       | Equipment under test                               |

# 14 Document history

| Version | Applied changes                                                 | Date of release |
|---------|-----------------------------------------------------------------|-----------------|
| -/-     | Draft                                                           | 2022-07-05      |
|         | Initial release                                                 | 2022-07-26      |
| А       | clarification of parent model and variant model on page 1 and 6 | 2022-12-07      |

# 15 Accreditation Certificate – D-PL-12076-01-04

| first page                                                                                                                                                                                                                                                                                                                                    | last page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DARKS<br>Deutsche<br>Akkreditierungsstelle<br>Deutsche Akkreditierungsstelle GmbH                                                                                                                                                                                                                                                             | Deutsche Akkreditierungsstelle GmbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleG8V<br>Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation                                                                                                                          | Office Berlin Office Frankfurt am Main Office Braunschweig<br>Spittelmarkt 10 Europa-Allee 52 Bundesallee 100<br>10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory<br>CTC advanced GmbH<br>Untertürkheimer Straße 6-10, 66117 Saarbrücken<br>is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following<br>fields:<br>Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Standards                                                                                                                                                                                                                                                                                                                                     | The publication of extracts of the accreditation certificate is subject to the prior written approval by<br>Deutsche Akkrediterungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate<br>disseminations of the cover sheet by the conformity assessment body mentioned overleaf.<br>No impression shall be made that the accreditation also extends to fields beyond the scope of<br>accreditation attested by DAkS.<br>The accreditation uses granted pursuant to the Act on the Accreditation Body (AkkStelleC) of 31 July 2009<br>(Federal Law Gavette Jo. 3625) and the Regulation (IC) No 765/2008 of the European Perliament and of<br>the Council of July 2008 acting out the requirements for accreditation and market surelliance relating<br>to the marketing of products (Official Journal of the European Liono 1.218 of 9 July 2008, p. 30). NAXAS is<br>a signatory to the Multilateral Accrements for accreditor of the European of the Council of the Scope and Scope a |
| 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the<br>reverse side of the cover sheet and the following annex with a total of 07 pages.<br>Registration number of the certificate: D-PL-12076-01-04<br>Frankfurt am Main, 08.06.2020                                                                   | a Septator (Lo tick) international Accessibility for instance and accessibility of the second accessibility of the segmetric for these agreements recognise each other's accreditations.<br>Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.<br>The up-to-date state of membership can be retrieved from the following websites:<br>EA: www.european-accreditation.org<br>ILAC: www.liac.org<br>IAF: www.liaf.nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The cardfacte together with its amen reflects the status at the time of the date of issue. The current status of the scope of<br>accreditions can be found in the database of accredited badies of Devische Akkrediterungsstelle GmbH.<br>https://www.daks.de/ref.content/accredited-badies-dakks<br>In non-sonial.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

#### or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04\_Canada\_TCEMC.pdf

# 16 Accreditation Certificate – D-PL-12076-01-05

| first page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | last page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control of the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Deutsche Akkreditierungsstelle GmbH<br>Office Berlin<br>Spittelmark 10<br>10117 Berlin Office Frankfurt am Main Office Braunschweig<br>60327 Frankfurt am Main Blundesallee 100<br>38116 Braunschweig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01, it comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages.<br>Registration number of the certificate: D-PL-12076-01-05<br>Frankfurt am Main, 09.06.2020<br>The certificate together with its anseer reflects the status at the time of the date of saue. The current status of the score of accreditation can be found in the status and during during during during the status at the time of the date of saue. The current status of the score of accenditation can be found in the status and guarantee bodies during | The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkKS. The accreditation attested by DAkKS. The accreditation attested by DAkKS. The accreditation attested by DAkKS. Signal and the accureditation attested by DAkKS. The accreditation accreditation attested by DAkKS. The accreditation attested from the following websites: DAK: www.latcorg LAKS. We wantlet.org LAKS. The accreditation. The accreditation attested the metal accreditation attested from the following websites: DAK: www.latcorg LAKS: www.l |

# Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05\_TCB\_USA.pdf