Total Quality. Assured.

Radio Spectrum
 TEST REPORT

	Report No.: Model No.: Issued Date:	180300382TWN-001 RW8300E-B3-a, RW8300E-NW, RW8300E-NL, Mar. 06, 2018
Applicant:	Radicom Research Inc. 2148 Bering Drive San Jose, CA 95131	
Test Method/ Standard:	47 CFR FCC Part 15.247 \& ANSI C63.10 2013 KDB 558074 D01 v04 KDB 662911 D01 v02r01	
Registration No.:	960839	
Test By:	Intertek Testing Services Taiwan Ltd.,	
	Hsinchu Laboratory No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan	

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test results) in this report only applies to the tested samples).

These measurements were taken by:

Durant Wei / Engineer
The test report was reviewed by:

Total Quality. Assured.

Revision History

Report No.	Issue Date	Revision Summary
		Add serial models and enclosure. After engineer judgment, the difference does not affect the RF characteristic; the
180300382TWN-001	Mar. 06, 2018	model was evaluated and deemed as meet the standards requirement, no additional tests were considered necessary. Then all test data and test items in this report based on report of 170300545TWN-001.(FCC ID: K7T-RW8300)

Table of Contents

Summary of Test Data 5

1. General information 6
1.1. Identification of the EUT 6
1.2. Description of the EUT 7
1.3. Antenna description 7
1.4. Operation mode 8
1.5. Applied test modes and channels 10
1.6. Power setting of test software 11
1.7. Peripherals equipment 14
2. Minimum 6 dB Bandwidth 15
2.1. Instrument Setting 15
2.2. Test Procedure 15
2.3. Test Diagram 15
2.4. Limit 15
2.5. Operating Environment Condition 15
2.6. Test Results 16
3. Maximum Peak Conducted Output Power 25
3.1. Instrument Setting 25
3.2. Test Procedure 25
3.3. Test Diagram 25
3.4. Limit 25
3.5. Operating Environment Condition 25
3.6. Test Results 26
4. Power Spectral Density 27
4.1. Instrument Setting 27
4.2. Test Procedure 27
4.3. Test Diagram 27
4.4. Limit 27
4.5. Operating Environment Condition 27
4.6. Test Results 28
5. Emissions in Non-Restricted Frequency Bands 37
5.1. Instruments Setting 37
5.2. Test Procedure 37
5.3. Test Diagram 37
5.4. Limit 37
5.5. Operating Environment Condition 37
5.6. Test Results 38
6. Emissions in Restricted Frequency Bands (Radiated emission measurements) 54
6.1. Instrument Setting 54
6.2. Test Procedure 54
6.3. Test Diagram 55
6.4. Limit 56
6.5. Operating Environment Condition 56
6.6. Test Result 57
7. Emission on Band Edge 68
7.1. Instrument Setting 68
7.2. Test Procedure 68
7.3. Operating Environment Condition 68
7.4. Test Results 69
8. AC Power Line Conducted Emission 88
8.1. Measuring instrument setting. 88
8.2. Test Procedure 88
8.3. Test Diagram 88
8.4. Limit 89
8.5. Operating Environment Condition 89
8.6. Test Results 90
Appendix A: Test equipment list 92
Appendix B: Measurement Uncertainty 94

Total Quality. Assured.

Summary of Test Data

Test Requirement	Applicable Rule (Section 15.247)	Result
Minimum 6 dB Bandwidth	$15.247(\mathrm{a})(2)$	Pass
Maximum Peak Conducted Output Power	$15.247(\mathrm{~b})(3)$	Pass
Power Spectral Density	$15.247(\mathrm{e})$	Pass
Emissions In Non-Restricted Frequency Bands	$15.247(\mathrm{~d})$	Pass
Emissions In Restricted Frequency Bands (Radiated emission measurements)	$15.205,15.209$	Pass
Emission On The Band Edge	$15.207(\mathrm{~d}), 15.205$	Pass
AC Power Line Conducted Emission	15.203	Pass
Antenna Requirement	Pass	

Total Quality. Assured.

1. General information

1.1. Identification of the EUT

Product:	Wireless universal adapter
Model No.:	RW8300E-B3-a
Operating Frequency:	1. $2412 \mathrm{MHz} \sim 2462 \mathrm{MHz}$ for $802.11 \mathrm{~b}, 802.11 \mathrm{~g}, 802.11 \mathrm{n} \mathrm{HT} 20$ 2. $2422 \mathrm{MHz} \sim 2452 \mathrm{MHz}$ for 802.11 n HT40
Channel Number:	1. 11 channels for $2412 \mathrm{MHz} \sim 2462 \mathrm{MHz}$ 2. 9 channels for $2422 \mathrm{MHz} \sim 2452 \mathrm{MHz}$
Frequency of Each Channel:	1. $2412+5 \mathrm{k}, \mathrm{k}=0 \sim 10$ for $802.11 \mathrm{~b}, 802.11 \mathrm{~g}, 802.11 \mathrm{n}$ HT20 2. $2422+5 \mathrm{k}, \mathrm{k}=0 \sim 6$ for $802.11 \mathrm{~b}, 802.11 \mathrm{~g}, 802.11 \mathrm{n}$ HT4O
Access scheme:	DSSS, OFDM
Rated Power:	DC 5V
Power Cord:	N/A
Sample Received:	Workable
Test Date(s):	Mar. 1, 2018 ~ Mar. 9, 2018
Note:	1. The BT4.2(BLE) module has been granted under the FCC ID: K7T-RB8762 2. This case is host application.
	 Intertek's responsibility and liability are limited to the terms and conditions of the agreement. of your instructions and / or information and materials supplied by you and provide no warranty on the tested sample(s) be truly representative of the ded to be a recommendation for any particular course of action, you are responsible for acting as you see fit on the basis of the report results. Intertek is rt upon any facts or circumstances which are outside the specific instructions received and accepts no responsibility to any parties whatsoever, following arising outside the agreed scope of the works. This report does not discharge or release you from your legal obligations and duties to any other person. mit copying or distribution of this report (and then only in its entirety). Any such third parties to whom this report may be circulated rely on the content of

1.2. Description of the EUT

Modulation mode	Transmit path	
	Chain 0	Chain 1
802.11 b	V	V
802.11 g	V	V
$802.11 \mathrm{n}(\mathrm{HT} 20)$	V	V
$802.11 \mathrm{n}(\mathrm{HT} 40)$	V	V

Classification	Model name	Different
mini USB, RJ45 jack w/o enclosure	RW8300E-B3-a	RW8300E-NW
	RW8300E-NL	produce with enclosure, no WLAN(w/o PIFA, IPEX)
	RW80duce with enclosure, with PIFA, no LAN(w/o RJ45 jack	

Note: The BT4.2(BLE) module has been granted under the FCC ID: K7T-RB8762

1.3. Antenna description

The EUT uses a permanently connected antenna.

Antenna Gain	$: 2 \mathrm{dBi}$
Antenna Type	$:$ PIFA antenna
Connector Type	$:$ Fixed

Total Quality. Assured.

1.4. Operation mode

The EUT was supplied with DC 5.0 V from Notebook PC.
TX-MODE is based on a specific test program "RTL819x 3.3 ", and the program can select different frequency and modulation.

The signal is maximized through rotation and placement in the three orthogonal axes.

X axis

Y axis

Z axis

After verifying three axes, we found the maximum electromagnetic field was occurred at Z axis. The final test data was executed under this configuration.

Total Quality. Assured.

With individual verifying, the maximum output power were found out 1 Mbps data rate for 802.11b mode, 6 Mbps data rate for 802.11 g mode, 6.5 Mbps data rate for $802.11 \mathrm{n}(\mathrm{HT20})$ mode and, 13.5 Mbps data rate for 802.11 n (HT40) mode the final tests were executed under these conditions recorded in this report individually.

Mode	Channel	Data rate	Chain0 AV (dBm)	Chain1 AV (dBm)
802.11b	ch6	1	14.49	15.45
802.11b	ch6	2	14.37	15.38
802.11b	ch6	5.5	14.31	15.33
802.11b	ch6	11	14.25	15.24
802.11 g	ch6	6	2.16	6.86
802.11g	ch6	9	2.09	6.82
802.11 g	ch6	12	2.03	6.74
802.11 g	ch6	18	1.99	6.71
802.11g	ch6	24	1.92	6.65
802.11g	ch6	36	1.88	6.62
802.11g	ch6	48	1.86	6.58
802.11g	ch6	54	1.77	6.54
802.11n(HT20)	ch6	MCSO	2.29	6.88
802.11n(HT20)	ch6	MCS1	2.24	6.84
802.11n(HT20)	ch6	MCS2	2.20	6.79
802.11n(HT20)	ch6	MCS3	2.17	6.77
802.11n(HT20)	ch6	MCS4	2.12	6.71
802.11n(HT20)	ch6	MCS5	2.09	6.64
802.11n(HT20)	ch6	MCS6	2.03	6.60
802.11n(HT20)	ch6	MCS7	1.99	6.52
802.11n(HT40)	ch6	MCSO	9.29	14.13
802.11n(HT40)	ch6	MCS1	9.22	14.03
802.11n(HT40)	ch6	MCS2	9.18	13.98
802.11n(HT40)	ch6	MCS3	9.15	13.94
802.11n(HT40)	ch6	MCS4	9.09	13.89
802.11n(HT40)	ch6	MCS5	9.04	13.86
802.11n(HT40)	ch6	MCS6	9.01	13.81
802.11n(HT40)	ch6	MCS7	8.95	13.77

Total Quality. Assured.

1.5. Applied test modes and channels

Test items	Mode	Data Rate (Mbps)	Channel	Antenna
Maximum Conducted Output Power	802.11b	1	1,6,11	Chain0/Chain1
	802.11g	6	1,6,11	Chain0/Chain1
	$\begin{gathered} 802.11 n \\ \text { (HT20) } \end{gathered}$	6.5	1,6,11	Chain0/Chain1
	$\begin{gathered} 802.11 n \\ (H T 40) \end{gathered}$	13.5	3,6,9	Chain0/Chain1
Power Spectrum Density	802.11b	1	1,6,11	Chain0/Chain1
	802.11g	6	1,6,11	Chain0/Chain1
	$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	6.5	1,6,11	Chain0/Chain1
	$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	13.5	3,6,9	Chain0/Chain1
Emission BW	802.11b	1	1,6,11	Chain0/Chain1
	802.11g	6	1,6,11	Chain0/Chain1
	$\begin{gathered} 802.11 n \\ \text { (HT20) } \end{gathered}$	6.5	1,6,11	Chain0/Chain1
	$\begin{gathered} 802.11 n \\ (H T 40) \end{gathered}$	13.5	3,6,9	Chain0/Chain1
Radiated spurious Emission $9 \mathrm{kHz} \sim 1 \mathrm{GHz}$	Worst case			
Emissions In Restricted Frequency Bands (Radiated emission measurements)	802.11b	1	1,6,11	Chain0/Chain1
	802.11g	6	1,6,11	Chain0/Chain1
	$\begin{gathered} \hline 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	6.5	1,6,11	Chain0/Chain1
	$\begin{gathered} 802.11 \mathrm{n} \\ (\mathrm{HT} 40) \\ \hline \end{gathered}$	13.5	3,6,9	Chain0/Chain1
Emission on The Band Edge	802.11b	1	1,6,11	Chain0/Chain1
	802.11g	6	1,6,11	Chain0/Chain1
	$\begin{gathered} 802.11 n \\ (H T 20) \end{gathered}$	6.5	1,6,11	Chain0/Chain1
	$\begin{gathered} 802.11 \mathrm{n} \\ (\mathrm{HT} 40) \end{gathered}$	13.5	3,6,9	Chain0/Chain1
AC Line Conducted Emission	Normal Link			

Total Quality. Assured.

1.6. Power setting of test software

Channels \& power setting software provided by the client was used to change the operating channels as well as the output power level and is going to be installed in the final end product.

Mode	Channel	Frequency	Power setting (Chain0)	Power setting (Chain1)
802.11b	1	2412	38	38
	6	2437	38	37
	11	2462	37	38
802.11g	1	2412	37	44
	6	2437	21	28
	11	2462	23	28
802.11n(HT 20)	1	2412	37	44
	6	2437	21	28
	11	2462	23	28
802.11n(HT40)	3	2422	38	45
	6	2437	38	45
	9	2452	39	44

Note: The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

Mode	Chain	Channel	Frequency (MHz)	Data rate (Mbps)	Signal on time(s)	Total signal transmit time(s)	Duty cycle	Duty Cycle factor
802.11b	Chain 0	6	2437	1.00	1.00	1.00	1.00	0.00
802.11 g	Chain 0	6	2437	6.00	1.00	1.00	1.00	0.00
802.11 n (HT20)	Chain 0	6	2437	6.50	1.00	1.00	1.00	0.00
802.11 n (HT40)	Chain 0	6	2437	13.50	1.00	1.00	1.00	0.00
802.11 b	Chain 1	6	2437	1.00	1.00	1.00	1.00	0.00
802.11 g	Chain 1	6	2437	6.00	1.00	1.00	1.00	0.00
802.11 n (HT20)	Chain 1	6	2437	6.50	1.00	1.00	1.00	0.00
802.11 n (HT40)	Chain 1	6	2437	13.50	1.00	1.00	1.00	0.00

Total Quality. Assured.

Chain0 : Ducty Cycle @ 802.11b Mode

Chain1 : Ducty Cycle @ 802.11b Mode

Chain0 : Ducty Cycle @ 802.11g Mode

Total Quality. Assured.

Chain1 : Ducty Cycle @ 802.11g Mode

Chain0 : Ducty Cycle @ 802.11n(HT20) Mode

Chain1 : Ducty Cycle @ 802.11n(HT20) Mode

Total Quality. Assured.

Chain0 : Ducty Cycle @ 802.11n(HT40) Mode

Chain1 : Ducty Cycle @ 802.11n(HT40) Mode

1.7. Peripherals equipment

Peripherals	Brand	Model No.	Serial No.	Data cable
Notebook PC	ASUS	UL20A	N/A	1. RJ-45 STP Cat.5 1meter $\times 1$ 2. USB shielded cable 1 meter $\times 1$ 3. Mini USB 1 meter $\times 1$

Total Quality. Assured.

2. Minimum 6 dB Bandwidth

2.1. Instrument Setting

Spectrum Parameter	Setting
Detector	Peak
RBW	100 kHz
VBW	$\geqq 3 \times$ RBW
Sweep	Auto couple
Trace	Allow the trace to stabilize.
Span	Between two times and five times the occupied bandwidth
Attenuation	Auto

2.2. Test Procedure

Step 1 The transmitter output was connected to the spectrum analyzer.
Step 2 Test was performed in accordance with clause 8.1 option1 of KDB 558074 D01.

Step 3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

2.3. Test Diagram

2.4. Limit

The minimum 6 dB bandwidth shall be at least 500 kHz .

2.5. Operating Environment Condition

Temperature $\left({ }^{\circ} \mathrm{C}\right): \quad 25$
Relative Humidity (\%) : 50
Atmospheric Pressure (hPa) : 1008
Test Date: 2018/3/6

Total Quality. Assured.

2.6. Test Results

Mode	Chain	Channel	Frequency (MHz)	6dB BW (MHz)	$\begin{aligned} & \text { Limit } \\ & (\mathrm{MHz}) \end{aligned}$
802.11b	Chain0	1	2412	10.027	>0.5
802.11 b	Chain0	6	2437	10.023	>0.5
802.11b	Chain0	11	2462	10.032	>0.5
802.11b	Chain1	1	2412	10.047	>0.5
802.11b	Chain1	6	2437	10.073	>0.5
802.11b	Chain1	11	2462	10.051	>0.5
802.11g	Chain0	1	2412	16.580	>0.5
802.11g	Chain0	6	2437	16.554	>0.5
802.11 g	Chain0	11	2462	16.558	>0.5
802.11g	Chain1	1	2412	16.595	>0.5
802.11g	Chain1	6	2437	16.563	>0.5
802.11 g	Chain1	11	2462	16.584	>0.5
802.11n(HT20)	Chain0	1	2412	17.792	>0.5
802.11n(HT20)	Chain0	6	2437	17.784	>0.5
802.11n(HT20)	Chain0	11	2462	17.828	>0.5
802.11n(HT20)	Chain1	1	2412	17.715	>0.5
802.11n(HT20)	Chain1	6	2437	17.733	>0.5
802.11n(HT20)	Chain1	11	2462	17.792	>0.5
802.11n(HT40)	Chain0	3	2422	36.432	>0.5
802.11n(HT40)	Chain0	6	2437	36.405	>0.5
802.11n(HT40)	Chain0	9	2452	36.386	>0.5
802.11n(HT40)	Chain1	3	2422	36.429	>0.5
802.11n(HT40)	Chain1	6	2437	36.401	>0.5
802.11n(HT40)	Chain1	9	2452	36.372	>0.5

Total Quality. Assured.

Chain0 : 6dB Bandwidth @ 802.11b Mode Ch 1

Chain0 : 6dB Bandwidth @ 802.11b Mode Ch 6

Chain0 : 6dB Bandwidth @ 802.11b Mode Ch11

Total Quality. Assured.

Chain1 : 6dB Bandwidth @ 802.11b Mode Ch 1

Chain1 : 6dB Bandwidth @ 802.11b Mode Ch 6

Chain1 : 6dB Bandwidth @ 802.11b Mode Ch11

Total Quality. Assured.

Chain0 : 6dB Bandwidth @ 802.11g Mode Ch 1

Chain0 : 6dB Bandwidth @ 802.11g Mode Ch 6

Chain0 : 6dB Bandwidth @ 802.11g Mode Ch11

Total Quality. Assured.

Chain1 : 6dB Bandwidth @ 802.11g Mode Ch 1

Chain1 : 6dB Bandwidth @ 802.11g Mode Ch 6

Chain1 : 6dB Bandwidth @ 802.11g Mode Ch11

Total Quality. Assured.

Chain0 : 6dB Bandwidth @ 802.11n(HT20) Mode Ch 1

Chain0 : 6dB Bandwidth @ 802.11n(HT20) Mode Ch 6

Chain0 : 6dB Bandwidth @ 802.11n(HT20) Mode Ch11

Total Quality. Assured.

Chain1: 6dB Bandwidth @ 802.11n(HT20) Mode Ch 1

Chain1 : 6dB Bandwidth @ 802.11n(HT20) Mode Ch 6

Chain1 : 6dB Bandwidth @ 802.11n(HT20) Mode Ch11

Total Quality. Assured.

Chain0 : 6dB Bandwidth @ 802.11n(HT40) Mode Ch 3

Chain0 : 6dB Bandwidth @ 802.11n(HT40) Mode Ch 6

Chain0 : 6dB Bandwidth @ 802.11n(HT40) Mode Ch 9

Total Quality. Assured.

Chain1: 6dB Bandwidth @ 802.11n(HT40) Mode Ch 3

Chain1 : 6dB Bandwidth @ 802.11n(HT40) Mode Ch 6

Chain1 : 6dB Bandwidth @ 802.11n(HT40) Mode Ch 9

3. Maximum Peak Conducted Output Power

3.1. Instrument Setting

Power Meter Parameter	Setting
Bandwidth	65 MHz bandwidth is greater than the EUT emission bandwidth
Detector	Peak \& Average

3.2. Test Procedure

Test procedures refer to clause 9.1.3 peak power meter method and clause 9.2.3.2 measurement using a gated RF average power meter of KDB 558074 D01.

3.3. Test Diagram

3.4. Limit

For systems using digital modulation in the $2400-2483.5 \mathrm{MHz}$: 1 Watt (30 dBm)

3.5. Operating Environment Condition

Temperature $\left({ }^{\circ} \mathrm{C}\right):$	25
Relative Humidity $(\%):$	50
Atmospheric Pressure (hPa) :	1008
Test Date :	$2018 / 3 / 9$

3.6. Test Results

Single Tx

Chain 0

Mode	Channel	Frequency (MHz)	Output Power (AV) (dBm)	Total Power (AV) (mW)	Maximun power (PK) (dBm)	Maximun power (PK) (mW)	Limit (dBm)	Margin (dB)
802.11b	1	2412	14.15	26.00	16.40	43.65	30	-13.60
	6	2437	14.49	28.12	16.65	46.24	30	-13.35
	11	2462	13.65	23.17	15.65	36.73	30	-14.35
802.11g	1	2412	9.64	9.20	19.87	97.05	30	-10.13
	6	2437	2.16	1.64	11.42	13.87	30	-18.58
	11	2462	3.02	2.00	12.20	16.60	30	-17.80

Chain 1

Mode	Channel	Frequency (MHz)	Output Power (AV) (dBm)	Total Power (AV) (mW)	Maximun power (PK) (dBm)	Maximun power (PK) (mW)	$\begin{aligned} & \text { Limit } \\ & (\mathrm{dBm}) \end{aligned}$	Margin (dB)
802.11b	1	2412	14.85	30.55	16.91	49.09	30	-13.09
	6	2437	15.45	35.08	17.48	55.98	30	-12.52
	11	2462	16.38	43.45	18.46	70.15	30	-11.54
802.11g	1	2412	13.66	23.23	23.01	199.99	30	-6.99
	6	2437	6.86	4.85	16.61	45.81	30	-13.39
	11	2462	7.72	5.92	17.65	58.21	30	-12.35

Mode	Ch	Freq. (MHz)	Output Power (dBm)				Output Power (mW)				Total Power (dBm)				Limit (dBm)	Margin (dB)
			Chian 0		Chain 1		Chain 0		Chian 1		AV		PK			
			AV	PK	AV	PK	AV	PK	AV	PK	$\begin{gathered} 0+1 \\ (\mathrm{~mW}) \end{gathered}$	$\begin{gathered} 0+1 \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} 0+1 \\ (\mathrm{~mW}) \end{gathered}$	$\begin{gathered} 0+1 \\ (\mathrm{dBm}) \end{gathered}$		
$\begin{gathered} 802.11 n \\ (H T 20) \end{gathered}$	1	2412	10.07	19.05	13.72	22.89	10.16	80.35	23.55	194.54	33.71	15.28	274.89	24.39	30	-5.61
	6	2437	2.29	9.97	6.88	15.82	1.69	9.93	4.88	38.19	6.57	8.18	48.13	16.82	30	-13.18
	11	2462	3.11	11.38	7.62	17.4	2.05	13.74	5.78	54.95	7.83	8.94	68.69	18.37	30	-11.63
$\begin{gathered} 802.11 n \\ (\mathrm{HT} 40) \end{gathered}$	3	2422	9.27	18.10	13.56	21.27	8.45	64.57	22.70	133.97	31.15	14.93	198.53	22.98	30	-7.02
	6	2437	9.29	17.99	14.13	21.96	8.49	62.95	25.88	157.04	34.37	15.36	219.99	23.42	30	-6.58
	9	2452	9.62	18.49	14.05	22.18	9.16	70.63	25.41	165.20	34.57	15.39	235.83	23.73	30	-6.27

Total Quality. Assured.

4. Power Spectral Density

4.1. Instrument Setting

Spectrum Function	Setting
Detector	Peak
RBW	$\geqq 3 \mathrm{kHz}$
VBW	$\geqq 3 \times$ RBW
Sweep	Auto couple
Trace	Max hold
Span	1.5 times $\times 6 \mathrm{~dB}$ bandwidth
Attenuation	Auto

4.2. Test Procedure

Step 1 Test procedure refer to clause 10.2 method PKPSD (peak PSD) of KDB 558074 D01 and clause E) 2) c) of KDB 662911 D01 measure and sum spectral maxima across the outputs.
Step 2 Using the maximum conducted output power in the fundamental emission demonstrates compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
Step 3 Use the peak marker function to determine the maximum amplitude level within the RBW.

4.3. Test Diagram

4.4. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

4.5. Operating Environment Condition

```
Temperature ( }\mp@subsup{}{}{\circ}\textrm{C})25
```

Relative Humidity (\%) : 50
Atmospheric Pressure (hPa) : 1008
Test Date : 2018/3/6

Total Quality. Assured.

4.6. Test Results

Note1: RBW Correction $=10 * \log (10 \mathrm{kHz} / 3 \mathrm{kHz})=5.229$
Note2: PSD in $3 \mathrm{kHz}=$ PSD in $10 \mathrm{kHz}-$ RBW Correction
Note3: Because using KDB 662911 v02r01 D01 E) 2) c), we found the peak PSD and add 10 $\log \left(N_{\text {ANT }}\right) d B$, where $N_{\text {ANT }}$ is the number of outputs. Before adding $10 \log \left(N_{\text {ANT }}\right)$, each PSD was subtracted by RBW factor.

Single TX

Chain 0

Mode	Channel	Frequency (MHz)	RBW factor	$\begin{aligned} & \hline \text { PSD in } \\ & 10 \mathrm{kHz} \end{aligned}$	PSD in 3kHz		$\begin{aligned} & \hline \text { Limit } \\ & (\mathrm{dBm}) \end{aligned}$	Margin (dB)
					(dBm)	(mw)		
$\begin{aligned} & 802.11 \mathrm{~b} \\ & \text { (chain0) } \end{aligned}$	1	2412	5.23	-2.77	-8.00	0.16	8	-16.00
	6	2437	5.23	-2.82	-8.05	0.16	8	-16.05
	11	2462	5.23	-3.36	-8.59	0.14	8	-16.59
802.11g (chain0)	1	2412	5.23	-9.22	-14.45	0.04	8	-22.45
	6	2437	5.23	-17.34	-22.57	0.01	8	-30.57
	11	2462	5.23	-16.39	-21.62	0.01	8	-29.62

Chain 1

Mode	Channel	Frequency (MHz)	RBW factor	PSD in 10kHz	PSD in 3kHz		Limit (dBm)	Margin (dB)
					(dBm)	(mw)		
$\begin{aligned} & 802.11 \mathrm{~b} \\ & \text { (chain1) } \end{aligned}$	1	2412	5.23	-1.87	-7.10	0.20	8	-15.10
	6	2437	5.23	-1.75	-6.98	0.20	8	-14.98
	11	2462	5.23	-0.69	-5.92	0.26	8	-13.92
802.11g (chain1)	1	2412	5.23	-5.44	-10.67	0.09	8	-18.67
	6	2437	5.23	-12.29	-17.52	0.02	8	-25.52
	11	2462	5.23	-11.21	-16.44	0.02	8	-24.44

MIMO

Mode	Channel	Freq. (MHz)	Correction Factor	$\begin{gathered} \text { PSD (dBm) in } \\ 10 \mathrm{kHz} \end{gathered}$		$\begin{gathered} \hline \text { PSD }(\mathrm{dBm}) \text { in } \\ 3 \mathrm{kHz} \end{gathered}$		Total PSD		MIMO Corr.n	Result	Limit (dBm)	Margin (dB)
				chain0	chain1	chain0	chain1	mW	dBm				
$\begin{aligned} & \text { 802.11n } \\ & \text { (HT20) } \end{aligned}$	1	2412	5.23	-8.74	-5.03	-13.97	-10.26	0.13	-8.72	3.00	-5.71	8	-13.71
	6	2437	5.23	-16.78	-11.77	-22.01	-17.00	0.03	-15.81	3.00	-12.80	8	-20.80
	11	2462	5.23	-15.15	-10.8	-20.38	-16.03	0.03	-14.67	3.00	-11.66	8	-19.66
$\begin{aligned} & \text { 802.11n } \\ & \text { (HT40) } \end{aligned}$	3	2422	5.23	-10.63	-6.2	-15.86	-11.43	0.10	-10.09	3.00	-7.08	8	-15.08
	6	2437	5.23	-11.27	-5.95	-16.50	-11.18	0.10	-10.06	3.00	-7.05	8	-15.05
	9	2452	5.23	-10.13	-6.83	-15.36	-12.06	0.09	-10.39	3.00	-7.38	8	-15.38

Note: MIMO Correction: 10log(Nant)=10log(2) = 3
Correction Factor $=10 \log (10 \mathrm{kHz} / 3 \mathrm{kHz})$

Chain0 : Power Spectral Density @ 802.11b Mode Ch 1

Chain0 : Power Spectral Density @ 802.11b Mode Ch 6

Chain0 : Power Spectral Density @ 802.11b Mode Ch11

Total Quality. Assured.

Chain1 : Power Spectral Density @ 802.11b Mode Ch 1

Chain1 : Power Spectral Density @ 802.11b Mode Ch 6

Chain1 : Power Spectral Density @ 802.11b Mode Ch11

Chain0 : Power Spectral Density @ 802.11g Mode Ch 1

Chain0 : Power Spectral Density @ 802.11g Mode Ch 6

Chain0 : Power Spectral Density @ 802.11g Mode Ch11

Chain1 : Power Spectral Density @ 802.11g Mode Ch 1

Chain1 : Power Spectral Density @ 802.11g Mode Ch 6

Chain1 : Power Spectral Density @ 802.11g Mode Ch11

Chain0 : Power Spectral Density @ 802.11n(HT20) Mode Ch 1

Chain0 : Power Spectral Density @ 802.11n(HT20) Mode Ch 6

Chain0 : Power Spectral Density @ 802.11n(HT20) Mode Ch11

Chain1 : Power Spectral Density @ 802.11n(HT20) Mode Ch 1

Chain1 : Power Spectral Density @ 802.11n(HT20) Mode Ch 6

Chain1 : Power Spectral Density @ 802.11n(HT20) Mode Ch11

Chain0 : Power Spectral Density @ 802.11n(HT40) Mode Ch 3

Chain0 : Power Spectral Density @ 802.11n(HT40) Mode Ch 6

Chain0 : Power Spectral Density @ 802.11n(HT40) Mode Ch 9

Chain1 : Power Spectral Density @ 802.11n(HT40) Mode Ch 3

Chain1 : Power Spectral Density @ 802.11n(HT40) Mode Ch 6

Chain1 : Power Spectral Density @ 802.11n(HT40) Mode Ch 9

Total Quality. Assured.

5. Emissions in Non-Restricted Frequency Bands

5.1. Instruments Setting

Spectrum Function	Setting (Reference Level)	Setting (Emission Level)
Detector	Peak	Peak
RBW	$\geqq 100 \mathrm{kHz}$	$\geqq 100 \mathrm{kHz}$
VBW	$\geqq 3 \times \mathrm{RBW}$	$\geqq 3 \times \mathrm{RBW}$
Sweep	Auto couple	Auto couple
Trace	Max hold	Max hold
Span	$\geqq 1.5$ time 6 dB bandwidth	Auto
Attenuation	Auto	A

5.2. Test Procedure

Step 1 The procedure was used in antenna-port conducted and connected to the spectrum analyzer.
Step 2 Set instrument center frequency to center frequency.
Step 3 Use the parameter configured in clause 5.1 to measure.
Step 4 Use the peak marker function to determine the maximum amplitude level.

5.3. Test Diagram

5.4. Limit

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz

5.5. Operating Environment Condition

Temperature $\left({ }^{\circ} \mathrm{C}\right): \quad 25$

Relative Humidity (\%) : 50
Atmospheric Pressure (hPa) : 1008
Test Date :

Total Quality. Assured.

5.6. Test Results

Chain0 : Conducted Spurious @ 802.11b Mode Ch 1

Chain0 : Conducted Spurious @ 802.11b Mode Ch 1

Chain0 : Conducted Spurious @ 802.11b Mode Ch 6

Total Quality. Assured.

Chain0 : Conducted Spurious @ 802.11b Mode Ch 6

Chain0 : Conducted Spurious @ 802.11b Mode Ch11

Chain0 : Conducted Spurious @ 802.11b Mode Ch11

Chain1 : Conducted Spurious @ 802.11b Mode Ch 1

Chain1 : Conducted Spurious @ 802.11b Mode Ch 1

Chain1 : Conducted Spurious @ 802.11b Mode Ch 6

Chain1 : Conducted Spurious @ 802.11b Mode Ch 6

Chain1 : Conducted Spurious @ 802.11b Mode Ch11

Chain1 : Conducted Spurious @ 802.11b Mode Ch11

Chain0 : Conducted Spurious @ 802.11g Mode Ch 1

Chain0 : Conducted Spurious @ 802.11g Mode Ch 1

Chain0 : Conducted Spurious @ 802.11g Mode Ch 6

Chain0 : Conducted Spurious @ 802.11g Mode Ch 6

Chain0 : Conducted Spurious @ 802.11g Mode Ch11

Chain0 : Conducted Spurious @ 802.11g Mode Ch11

Chain1 : Conducted Spurious @ 802.11g Mode Ch 1

Chain1 : Conducted Spurious @ 802.11g Mode Ch 1

Chain1 : Conducted Spurious @ 802.11g Mode Ch 6

Chain1 : Conducted Spurious @ 802.11g Mode Ch 6

Chain1 : Conducted Spurious @ 802.11g Mode Ch11

Chain1 : Conducted Spurious @ 802.11g Mode Ch11

Chain0 : Conducted Spurious @ 802.11n(HT20) Mode Ch 1

Chain0 : Conducted Spurious @ 802.11n(HT20) Mode Ch 1

Chain0 : Conducted Spurious @ 802.11n(HT20) Mode Ch 6

Total Quality. Assured.

Chain0 : Conducted Spurious @ 802.11n(HT20) Mode Ch 6

Chain0 : Conducted Spurious @ 802.11n(HT20) Mode Ch11

Chain0 : Conducted Spurious @ 802.11n(HT20) Mode Ch11

Chain1 : Conducted Spurious @ 802.11n(HT20) Mode Ch 1

Chain1 : Conducted Spurious @ 802.11n(HT20) Mode Ch 1

Chain1 : Conducted Spurious @ 802.11n(HT20) Mode Ch 6

Chain1 : Conducted Spurious @ 802.11n(HT20) Mode Ch 6

Chain1 : Conducted Spurious @ 802.11n(HT20) Mode Ch11

Chain1 : Conducted Spurious @ 802.11n(HT20) Mode Ch11

Total Quality. Assured.

Chain0 : Conducted Spurious @ 802.11n(HT40) Mode Ch 3

Chain0 : Conducted Spurious @ 802.11n(HT40) Mode Ch 3

Chain0 : Conducted Spurious @ 802.11n(HT40) Mode Ch 6

Total Quality. Assured.

Chain0 : Conducted Spurious @ 802.11n(HT40) Mode Ch 6

Chain0 : Conducted Spurious @ 802.11n(HT40) Mode Ch 9

Chain0 : Conducted Spurious @ 802.11n(HT40) Mode Ch 9

Chain1 : Conducted Spurious @ 802.11n(HT40) Mode Ch 3

Chain1 : Conducted Spurious @ 802.11n(HT40) Mode Ch 3

Chain1 : Conducted Spurious @ 802.11n(HT40) Mode Ch 6

Total Quality. Assured.

Chain1 : Conducted Spurious @ 802.11n(HT40) Mode Ch 6

Chain1 : Conducted Spurious @ 802.11n(HT40) Mode Ch 9

Chain1 : Conducted Spurious @ 802.11n(HT40) Mode Ch 9

6. Emissions in Restricted Frequency Bands (Radiated emission measurements)

6.1. Instrument Setting

Receiver Function	Setting (Below 1GHz)	Setting (Above 1GHz)
Detector	QP	Peak and Average
	$9-150 \mathrm{kHz} ; 200-300 \mathrm{~Hz}$	1 MHz
RBW	$0.15-30 \mathrm{MHz} ; 9-10 \mathrm{kHz}$	
$30-1000 \mathrm{MHz} ; 100-120 \mathrm{kHz}$		
VBW	$\geqq 3 \times$ RBW	3 MHz
Sweep	Auto couple	Auto couple
Start Frequency	9 kHz	1 GHz
Stop Frequency	1 GHz	Tenth harmonic
Attenuation	Auto	Auto

6.2. Test Procedure

Step 1 Configure the EUT according to ANSI C63.10:2013. The EUT was placed on the top of the turntable 0.8 meter (below 1 GHz) and 1.5 meter (above 1 GHz) above ground. The center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
Step 2 Power on the EUT and all the companion devices. The turntable was rotated by 360 degree to find the position of the maximum emission level.
Step 3 The height of the receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of the both horizontal and vertical polarization.
Step 4 If find the frequencies above the limit or below within 3 dB , the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated to find the maximum reading.
Step 5 Set the test-receiver system to peak or CISPR quasi-peak detector with specified bandwidth under maximum hold mode.
Step 6 For emissions above 1 GHz , use 1 MHz VBW and 3 MHz RBW for reading in spectrum analyzer.
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
Step 7 If the emissions level of the EUT in peak mode was 3dB lower than the average limit specified then testing will be stopped and peak values of the EUT will be reported. Otherwise, the emissions which do not have 3 dB margin will be measured using the quasi-peak method for below 1 GHz .
Step 8 For testing above 1 GHz , The emissions level of the EUT in peak mode was lower than average limit, then testing will be stopped and peak values of the EUT will be reported, otherwise, the emission will be measured in average mode again and reported.

intertek

Total Quality. Assured.

Step 9 In case the emission is lower than 30 MHz , loop antenna has to be used for measurement and the recorded data should be quasi-peak measured by receiver.

6.3. Test Diagram

6.3.1. Radiated emission from 9 kHz to 30 MHz uses Loop Antenna:

6.3.2. Radiated emission below 1 GHz using Bilog Antenna

Total Quality. Assured.

6.3.3. Radiated emission above 1 GHz using Horn Antenna

6.4. Limit

Frequency(MHz)	Field Strength(uV/m)	Measurement distance (\mathbf{m})
$0.009^{\sim} 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490^{\sim} 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705^{\sim 30}$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	3

Remark:

1. In the above table, the tighter limit applies at the band edges.
2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

6.5. Operating Environment Condition

Temperature $\left({ }^{\circ} \mathrm{C}\right):$	25
Relative Humidity $(\%):$	50
Atmospheric Pressure (hPa) :	1008
Test Date :	$2018 / 3 / 1 \sim 2018 / 3 / 5$

Total Quality. Assured.

6.6. Test Result

6.6.1. Measurement results: frequencies 9 kHz to 30 MHz

The test was performed on EUT under $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$ continuously transmitting mode. The worst case occurred at 802.11 b ch1

EUT: RW8300E-B3-a

Mode	Chain	Channel	Detector	Frequency $(\mathbf{M H z})$	Factor $(\mathbf{d B} / \mathbf{m})$	Reading $(\mathbf{d B u V})$	Corrected Reading $(\mathbf{d B u V} / \mathbf{m})$	Limit $(\mathbf{d B} \boldsymbol{\mu V} / \mathrm{m})$	Margin $(\mathbf{d B})$
802.11 b	Chain0	1	QP	0.03	20.4	20.53	40.92	118.06	-77.14
$802.11 b$	Chain0	1	QP	0.05	19.86	22.19	42.05	113.62	-71.57
$802.11 b$	Chain0	1	QP	0.07	19.55	23.39	42.94	110.7	-67.76
$802.11 b$	Chain0	1	QP	0.09	19.2	24.38	43.58	108.52	-64.94
$802.11 b$	Chain0	1	QP	0.12	19.11	21.97	41.09	106.02	-64.93
$802.11 b$	Chain0	1	QP	0.13	19.1	19.67	38.77	105.33	-66.56

Remark: Corr. Factor = Antenna Factor + Cable Loss

EUT: RW8300E-B3-a

Mode	Chain	Channel	Detector	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Corrected Reading (dBuV/m)	$\begin{gathered} \text { Limit } \\ (\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}) \end{gathered}$	Margin (dB)
802.11b	Chain0	1	QP	0.15	19.09	29.09	48.18	104.08	-55.9
802.11b	Chain0	1	QP	0.39	18.95	23.33	42.28	95.78	-53.5
802.11b	Chain0	1	QP	0.69	18.99	25.53	44.52	70.83	-26.31
802.11b	Chain0	1	QP	1.16	19.07	16.97	36.04	66.32	-30.28
802.11b	Chain0	1	QP	2.00	18.87	15.55	34.42	70	-35.58
802.11b	Chain0	1	QP	4.45	19.83	9.75	29.58	70	-40.42

Remark: Corr. Factor $=$ Antenna Factor + Cable Loss

Total Quality. Assured.

6.6.2. Measurement results: frequencies below 1 GHz

The test was performed on EUT under $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$ continuously transmitting mode. The worst case occurred at 802.11 b ch1

EUT: RW8300E-B3-a

Mode	Chain	Channel	Ant Polarity	Detector	Frequency $(\mathbf{M H z})$	Factor $(\mathbf{d B} / \mathbf{m})$	Reading $(\mathbf{d B u V})$	Corrected Reading $(\mathbf{d B u V / m})$	Limit $(\mathbf{d B} \mu \mathrm{V} / \mathrm{m})$	Margin $(\mathbf{d B})$
802.11 b	Chain0	1	H	QP	97.9	15.12	20.98	36.1	43.5	-7.4
802.11 b	Chain0	1	H	QP	145.82	20.45	13.85	34.3	43.5	-9.2
802.11 b	Chain0	1	H	QP	208.48	18.36	21.64	40	43.5	-3.5
802.11 b	Chain0	1	H	QP	224	18.85	19.95	38.8	46	-7.2
802.11 b	Chain0	1	H	QP	297.72	21.7	15.2	36.9	46	-9.1
802.11 b	Chain0	1	H	QP	522.76	27.45	11.25	38.7	46	-7.3

Remark: Corr. Factor $=$ Antenna Factor + Cable Loss

EUT: RW8300E-B3-a

Mode	Chain Channel	Ant Polarity	Detector	Frequency $(\mathbf{M H z})$	Factor $(\mathbf{d B} / \mathbf{m})$	Reading $(\mathbf{d B u V})$	Corrected Reading $(\mathbf{d B u V / m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	
802.11 b	Chain0	1	V	QP	148.34	20.51	11.59	32.1	43.5	-11.4
802.11 b	Chain0	1	V	QP	224	18.85	19.45	38.3	46	-7.7
802.11 b	Chain0	1	V	QP	299.39	21.74	13.76	35.5	46	-10.5
802.11 b	Chain0	1	V	QP	375.32	23.69	9.91	33.6	46	-12.4
802.11 b	Chain0	1	V	QP	522.76	27.45	12.05	39.5	46	-6.5
802.11 b	Chain0	1	V	QP	625.58	29.48	8.12	37.6	46	-8.4

Remark: Corr. Factor $=$ Antenna Factor + Cable Loss

intertek

Total Quality. Assured.

FCC ID: K7T-RW8300E Report No.: 180300382TWN-001

6.6.3. Measurement results: frequency above 1 GHz to 25 GHz

EUT:
RW8300E-B3-a

Mode	Chain	Channel	Ant Polarity	Detector	Frequency (MHz)	Preamp (dB)	$\begin{aligned} & \text { Factor } \\ & (\mathrm{dB} / \mathrm{m}) \end{aligned}$	Reading ($\mathrm{dB} \mu \mathrm{V}$)	Corrected Reading ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	$\begin{gathered} \text { Limit } \\ (\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}) \end{gathered}$	Margin (dB)
802.11b	Chain0	1	H	PK	1232	37.3	29.5	14.12	43.62	74	-30.38
802.11b	Chain0	1	H	PK	4824	37.14	5.76	48.55	54.31	74	-19.69
802.11b	Chain0	1	H	AV	4824	37.14	5.76	46.69	52.45	54	-1.55
802.11b	Chain0	1	H	PK	4995	37.08	6.47	38.75	45.22	74	-28.78
802.11b	Chain0	1	H	PK	7236	36.5	12.36	36.45	48.81	74	-25.19
802.11b	Chain0	1	V	PK	1028	37.25	29.13	13.92	43.05	74	-30.95
802.11b	Chain0	1	V	PK	1200	37.29	29.44	15.86	45.31	74	-28.69
802.11b	Chain0	1	V	PK	1232	37.3	29.5	20.56	50.06	74	-23.94
802.11b	Chain0	1	V	PK	1652	37.37	31.8	14.87	46.66	74	-27.34
802.11b	Chain0	1	V	PK	4824	37.14	5.76	48.98	54.74	74	-19.26
802.11b	Chain0	1	V	AV	4824	37.14	5.76	46.9	52.66	54	-1.34
802.11b	Chain0	1	V	PK	7236	36.5	12.36	38.62	50.98	74	-23.02
802.11b	Chain0	1	V	PK	9648	35.93	16.74	30.17	46.91	74	-27.09
802.11b	Chain0	6	H	PK	1236	37.3	29.51	15.23	44.74	74	-29.26
802.11b	Chain0	6	H	PK	4874	37.12	5.97	51.6	57.57	74	-16.43
802.11b	Chain0	6	H	AV	4874	37.12	5.97	47.36	53.33	54	-0.67
802.11b	Chain0	6	H	PK	4995	37.08	6.47	37.64	44.11	74	-29.89
802.11b	Chain0	6	H	PK	7311	36.47	12.65	38.02	50.66	74	-23.34
802.11b	Chain0	6	V	PK	1168	37.28	29.39	12.53	41.92	74	-32.08
802.11b	Chain0	6	V	PK	1208	37.29	29.46	15.87	45.33	74	-28.67
802.11b	Chain0	6	V	PK	1232	37.3	29.5	21.96	51.46	74	-22.54
802.11b	Chain0	6	V	PK	1644	37.37	31.7	15.98	47.69	74	-26.31
802.11b	Chain0	6	V	PK	4874	37.12	5.97	51	56.97	74	-17.03
802.11b	Chain0	6	V	AV	4874	37.12	5.97	47.28	53.25	54	-0.75
802.11b	Chain0	6	V	PK	4995	37.08	6.47	38.3	44.77	74	-29.23
802.11b	Chain0	6	V	PK	7311	36.47	12.65	40.35	53	74	-21
802.11b	Chain0	11	H	PK	1236	37.3	29.51	15.13	44.64	74	-29.36
802.11b	Chain0	11	H	PK	4924	37.1	6.18	49.63	55.81	74	-18.19
802.11b	Chain0	11	H	AV	4924	37.1	6.18	46.54	52.72	54	-1.28
802.11b	Chain0	11	H	PK	4995	37.08	6.47	37.43	43.9	74	-30.1
802.11b	Chain0	11	H	PK	7386	36.44	12.94	37.18	50.11	74	-23.89
802.11b	Chain0	11	V	PK	1212	37.3	29.47	12.99	42.46	74	-31.54
802.11b	Chain0	11	V	PK	1236	37.3	29.51	20.9	50.41	74	-23.59
802.11b	Chain0	11	V	PK	1300	37.32	29.63	11.87	41.5	74	-32.5
802.11b	Chain0	11	V	PK	1648	37.37	31.75	15.74	47.49	74	-26.51
802.11b	Chain0	11	V	PK	4924	37.1	6.18	47.08	53.25	74	-20.75
802.11b	Chain0	11	V	PK	7386	36.44	12.94	37.83	50.76	74	-23.24
802.11b	Chain0	11	V	PK	9848	35.94	17.25	29.4	46.65	74	-27.35

Mode	Chain	Channel	Ant Polarity	Detector	Frequency (MHz)	$\begin{gathered} \text { Preamp } \\ \text { (dB) } \end{gathered}$	Factor (dB/m)	Reading ($\mathrm{dB} \mu \mathrm{V}$)	Corrected Reading ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	$\begin{gathered} \text { Limit } \\ (\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}) \end{gathered}$	Margin (dB)
802.11b	Chain1	1	H	PK	1236	37.3	29.51	13.63	43.14	74	-30.86
802.11b	Chain1	1	H	PK	4824	37.14	5.76	41.77	47.53	74	-26.47
802.11b	Chain1	1	H	PK	4995	37.08	6.47	37.32	43.79	74	-30.21
802.11b	Chain1	1	H	PK	7236	36.5	12.36	38.57	50.93	74	-23.07
802.11b	Chain1	1	V	PK	1032	37.25	29.14	12.63	41.76	74	-32.24
802.11b	Chain1	1	V	PK	1212	37.3	29.47	14.32	43.79	74	-30.21
802.11b	Chain1	1	V	PK	1236	37.3	29.51	21.1	50.61	74	-23.39
802.11b	Chain1	1	V	PK	1644	37.37	31.7	14.27	45.98	74	-28.02
802.11b	Chain1	1	V	PK	4824	37.14	5.76	44.74	50.5	74	-23.5
802.11b	Chain1	1	V	PK	4995	37.08	6.47	37.06	43.53	74	-30.47
802.11b	Chain1	1	V	PK	7236	36.5	12.36	44.14	56.5	74	-17.5
802.11b	Chain1	1	V	AV	7236	36.5	12.36	41.07	53.43	54	-0.57
802.11b	Chain1	6	H	PK	1236	37.3	29.51	15.67	45.18	74	-28.82
802.11b	Chain1	6	H	PK	4874	37.12	5.97	45.39	51.36	74	-22.64
802.11b	Chain1	6	H	PK	4995	37.08	6.47	37.63	44.1	74	-29.9
802.11b	Chain1	6	H	PK	7311	36.47	12.65	38.14	50.78	74	-23.22
802.11b	Chain1	6	V	PK	1024	37.25	29.12	16.19	45.32	74	-28.68
802.11b	Chain1	6	V	PK	1232	37.3	29.5	22.06	51.56	74	-22.44
802.11b	Chain1	6	V	PK	1644	37.37	31.7	15.33	47.03	74	-26.97
802.11b	Chain1	6	V	PK	4874	37.12	5.97	45.16	51.12	74	-22.88
802.11b	Chain1	6	V	PK	4995	37.08	6.47	35.82	42.29	74	-31.71
802.11b	Chain1	6	V	PK	7311	36.47	12.65	42.63	55.28	74	-18.72
802.11b	Chain1	6	V	AV	7311	36.47	12.65	40.3	52.95	54	-1.05
802.11b	Chain1	11	H	PK	1172	37.28	29.39	12.52	41.91	74	-32.09
802.11b	Chain1	11	H	PK	1232	37.3	29.5	14.2	43.7	74	-30.3
802.11b	Chain1	11	H	PK	4924	37.1	6.18	44.7	50.88	74	-23.12
802.11b	Chain1	11	H	PK	4995	37.08	6.47	37.28	43.75	74	-30.25
802.11b	Chain1	11	H	PK	7386	36.44	12.94	39.18	52.12	74	-21.88
802.11b	Chain1	11	V	PK	1236	37.3	29.51	22.34	51.85	74	-22.15
802.11b	Chain1	11	V	PK	1644	37.37	31.7	14.36	46.06	74	-27.94
802.11b	Chain1	11	V	PK	4924	37.1	6.18	45.6	51.77	74	-22.23
802.11b	Chain1	11	V	PK	4995	37.08	6.47	36.16	42.63	74	-31.37
802.11b	Chain1	11	V	PK	7386	36.44	12.94	41.38	54.31	74	-19.69
802.11g	Chain0	1	H	PK	1236	37.3	29.51	15.02	44.53	74	-29.47
802.11g	Chain0	1	H	PK	4824	37.14	5.76	39.56	45.32	74	-28.68
802.11g	Chain0	1	H	PK	4995	37.08	6.47	38.26	44.73	74	-29.27
802.11g	Chain0	1	H	PK	7236	36.5	12.36	34.95	47.31	74	-26.69
802.11g	Chain0	1	V	PK	1120	37.27	29.3	13.21	42.51	74	-31.49
802.11g	Chain0	1	V	PK	1236	37.3	29.51	20.97	50.48	74	-23.52
802.11 g	Chain0	1	V	PK	1500	37.37	29.99	11.45	41.44	74	-32.56
802.11g	Chain0	1	V	PK	1652	37.37	31.8	16.31	48.11	74	-25.89
802.11 g	Chain0	1	V	PK	4824	37.14	5.76	40.95	46.71	74	-27.29
802.11g	Chain0	1	V	PK	4995	37.08	6.47	36.19	42.66	74	-31.34

Mode	Chain	Channel	Ant Polarity	Detector	Frequency (MHz)	Preamp (dB)	$\begin{aligned} & \text { Factor } \\ & (\mathrm{dB} / \mathrm{m}) \end{aligned}$	Reading ($\mathrm{dB} \mu \mathrm{V}$)	Corrected Reading ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	$\begin{gathered} \text { Limit } \\ (\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}) \end{gathered}$	Margin (dB)
802.11g	Chain0	1	V	PK	7236	36.5	12.36	34.21	46.57	74	-27.43
802.11g	Chain0	1	V	PK	9648	35.93	16.74	29.81	46.55	74	-27.45
802.11g	Chain0	6	H	PK	1168	37.28	29.39	13.65	43.04	74	-30.96
802.11g	Chain0	6	H	PK	1236	37.3	29.51	14.84	44.35	74	-29.65
802.11g	Chain0	6	H	PK	4874	37.12	5.97	43.49	49.45	74	-24.55
802.11g	Chain0	6	H	PK	4995	37.08	6.47	38.38	44.85	74	-29.15
802.11 g	Chain0	6	H	PK	7311	36.47	12.65	36.09	48.73	74	-25.27
802.11g	Chain0	6	V	PK	1056	37.25	29.18	12.75	41.93	74	-32.07
802.11 g	Chain0	6	V	PK	1236	37.3	29.51	22.38	51.89	74	-22.11
802.11g	Chain0	6	V	PK	1264	37.31	29.56	13.02	42.58	74	-31.42
802.11g	Chain0	6	V	PK	1648	37.37	31.75	15.58	47.34	74	-26.66
802.11 g	Chain0	6	V	PK	4874	37.12	5.97	44.17	50.14	74	-23.86
802.11 g	Chain0	6	V	PK	4995	37.08	6.47	37.41	43.88	74	-30.12
802.11g	Chain0	6	V	PK	7311	36.47	12.65	35.62	48.27	74	-25.73
802.11 g	Chain0	11	H	PK	1236	37.3	29.51	15.14	44.65	74	-29.35
802.11g	Chain0	11	H	PK	4924	37.1	6.18	42.23	48.4	74	-25.6
802.11g	Chain0	11	H	PK	4995	37.08	6.47	38.21	44.68	74	-29.32
802.11g	Chain0	11	H	PK	7386	36.44	12.94	34.05	46.98	74	-27.02
802.11g	Chain0	11	V	PK	1056	37.25	29.18	12.35	41.53	74	-32.47
802.11 g	Chain0	11	V	PK	1196	37.29	29.44	13	42.44	74	-31.56
802.11g	Chain0	11	V	PK	1236	37.3	29.51	21.5	51.01	74	-22.99
802.11g	Chain0	11	V	PK	1648	37.37	31.75	15.19	46.94	74	-27.06
802.11 g	Chain0	11	V	PK	4924	37.1	6.18	41.75	47.92	74	-26.08
802.11g	Chain0	11	V	PK	4995	37.08	6.47	36.82	43.29	74	-30.71
802.11 g	Chain0	11	V	PK	7386	36.44	12.94	35.32	48.25	74	-25.75
802.11g	Chain1	1	H	PK	1236	37.3	29.51	15.16	44.67	74	-29.33
802.11g	Chain1	1	H	PK	4824	37.14	5.76	36.07	41.83	74	-32.17
802.11g	Chain1	1	H	PK	4995	37.08	6.47	38.03	44.5	74	-29.5
802.11 g	Chain1	1	H	PK	7236	36.5	12.36	34	46.36	74	-27.64
802.11 g	Chain1	1	V	PK	1164	37.28	29.38	13.89	43.27	74	-30.73
802.11g	Chain1	1	V	PK	1216	37.3	29.47	17.43	46.9	74	-27.1
802.11g	Chain1	1	V	PK	1236	37.3	29.51	21.73	51.24	74	-22.76
802.11g	Chain1	1	V	PK	1652	37.37	31.8	18.06	49.86	74	-24.14
802.11g	Chain1	1	V	PK	4824	37.14	5.76	39.75	45.51	74	-28.49
802.11g	Chain1	1	V	PK	4995	37.08	6.47	35.63	42.1	74	-31.9
802.11 g	Chain1	1	V	PK	7236	36.5	12.36	42.42	54.78	74	-19.22
802.11g	Chain1	1	V	AV	7236	36.5	12.36	39.75	52.11	54	-1.89
802.11g	Chain1	6	H	PK	1236	37.3	29.51	13.78	43.29	74	-30.71
802.11g	Chain1	6	H	PK	4874	37.12	5.97	35.11	41.08	74	-32.92
802.11 g	Chain1	6	H	PK	4995	37.08	6.47	39.11	45.58	74	-28.42
802.11g	Chain1	6	H	PK	7311	36.47	12.65	29.98	42.63	74	-31.37
802.11g	Chain1	6	V	PK	1032	37.25	29.14	13.84	42.98	74	-31.02
802.11g	Chain1	6	V	PK	1236	37.3	29.51	21.09	50.61	74	-23.39

Mode	Chain	Channel	Ant Polarity	Detector	Frequency (MHz)	Preamp (dB)	$\begin{aligned} & \text { Factor } \\ & \text { (dB/m) } \end{aligned}$	Reading ($\mathrm{dB} \mu \mathrm{V}$)	Corrected Reading ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	$\begin{aligned} & \text { Limit } \\ & (\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}) \end{aligned}$	Margin (dB)
802.11 g	Chain1	6	V	PK	1648	37.37	31.75	14.3	46.05	74	-27.95
802.11 g	Chain1	6	V	PK	4874	37.12	5.97	35.63	41.59	74	-32.41
802.11g	Chain1	6	V	PK	4995	37.08	6.47	37.1	43.57	74	-30.43
802.11g	Chain1	6	V	PK	7311	36.47	12.65	32.39	45.04	74	-28.96
802.11 g	Chain1	11	H	PK	1236	37.3	29.51	13.17	42.68	74	-31.32
802.11g	Chain1	11	H	PK	4924	37.1	6.18	34.67	40.85	74	-33.15
802.11 g	Chain1	11	H	PK	4995	37.08	6.47	37.4	43.87	74	-30.13
802.11 g	Chain1	11	H	PK	7386	36.44	12.94	29.81	42.74	74	-31.26
802.11 g	Chain1	11	V	PK	1080	37.26	29.23	12.92	42.15	74	-31.85
802.11 g	Chain1	11	V	PK	1236	37.3	29.51	21.19	50.7	74	-23.3
802.11g	Chain1	11	V	PK	1648	37.37	31.75	16.97	48.72	74	-25.28
802.11 g	Chain1	11	V	PK	4924	37.1	6.18	35.13	41.31	74	-32.69
802.11g	Chain1	11	V	PK	4995	37.08	6.47	37.03	43.5	74	-30.5
802.11g	Chain1	11	V	PK	7386	36.44	12.94	30.71	43.64	74	-30.36
$\begin{array}{\|l} \hline 802.11 \mathrm{n} \\ \text { (HT20) } \end{array}$	Chain0+1	1	H	PK	1236	37.3	29.51	14.63	44.14	74	-29.86
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	1	H	PK	4824	37.14	5.76	38.79	44.55	74	-29.45
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	1	H	PK	4995	37.08	6.47	37.95	44.42	74	-29.58
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	1	H	PK	7236	36.5	12.36	36.33	48.69	74	-25.31
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	1	V	PK	1236	37.3	29.51	20.13	49.64	74	-24.36
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	1	V	PK	1648	37.37	31.75	17.71	49.46	74	-24.54
$\begin{gathered} 802.11 \mathrm{n} \\ (\mathrm{HT} 20) \end{gathered}$	Chain0+1	1	V	PK	4824	37.14	5.76	41.12	46.88	74	-27.12
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	1	V	PK	4995	37.08	6.47	36.68	43.15	74	-30.85
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	1	V	PK	7236	36.5	12.36	41.33	53.69	74	-20.31
$\begin{gathered} 802.11 n \\ \text { (HT20) } \end{gathered}$	Chain $0+1$	1	V	AV	7236	36.5	12.36	39.48	51.84	54	-2.16
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	6	H	PK	1232	37.3	29.5	13.06	42.56	74	-31.44
$\begin{array}{\|c\|} \hline 802.11 \mathrm{n} \\ \text { (HT20) } \end{array}$	Chain0+1	6	H	PK	4874	37.12	5.97	35.88	41.85	74	-32.15
$\begin{array}{\|c\|} \hline 802.11 \mathrm{n} \\ \text { (HT20) } \end{array}$	Chain $0+1$	6	H	PK	4995	37.08	6.47	37.32	43.79	74	-30.21
$\begin{gathered} 802.11 n \\ \text { (HT20) } \end{gathered}$	Chain $0+1$	6	H	PK	7311	36.47	12.65	29.8	42.45	74	-31.55

Mode	Chain	Channel	Ant Polarity	Detector	Frequency (MHz)	Preamp (dB)	Factor (dB/m)	Reading ($\mathrm{dB} \mu \mathrm{V}$)	Corrected Reading ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Margin (dB)
$\begin{gathered} 802.11 n \\ \text { (HT20) } \end{gathered}$	Chain0+1	6	V	PK	1088	37.26	29.24	13.04	42.28	74	-31.72
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	6	V	PK	1212	37.3	29.47	14.75	44.22	74	-29.78
$\begin{gathered} \hline 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	6	V	PK	1236	37.3	29.51	22.36	51.87	74	-22.13
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	6	V	PK	1644	37.37	31.7	15.1	46.81	74	-27.19
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	6	V	PK	4874	37.12	5.97	35.34	41.31	74	-32.69
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	6	V	PK	4995	37.08	6.47	36.36	42.83	74	-31.17
$\begin{array}{\|c} 802.11 \mathrm{n} \\ \text { (HT20) } \end{array}$	Chain0+1	6	V	PK	7311	36.47	12.65	30.15	42.79	74	-31.21
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	11	H	PK	1236	37.3	29.51	13.38	42.89	74	-31.11
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	11	H	PK	4924	37.1	6.18	34.61	40.78	74	-33.22
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	11	H	PK	4995	37.08	6.47	37.61	44.08	74	-29.92
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	11	H	PK	7386	36.44	12.94	29.01	41.95	74	-32.05
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	11	V	PK	1196	37.29	29.44	12.78	42.22	74	-31.78
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	11	V	PK	1216	37.3	29.47	15.43	44.9	74	-29.1
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \end{gathered}$	Chain0+1	11	V	PK	1236	37.3	29.51	19.4	48.91	74	-25.09
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	11	V	PK	1644	37.37	31.7	16.15	47.85	74	-26.15
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	11	V	PK	4924	37.1	6.18	34.71	40.89	74	-33.11
$\begin{gathered} \hline 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	11	V	PK	4995	37.08	6.47	36.22	42.69	74	-31.31
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \hline \end{gathered}$	Chain0+1	11	V	PK	7386	36.44	12.94	30.74	43.67	74	-30.33
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	3	H	PK	1232	37.3	29.5	13.63	43.13	74	-30.87
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	3	H	PK	4844	37.13	5.84	39.33	45.17	74	-28.83
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	3	H	PK	4995	37.08	6.47	38.31	44.79	74	-29.21

Mode	Chain	Channel	Ant Polarity	Detector	Frequency (MHz)	Preamp (dB)	$\begin{aligned} & \text { Factor } \\ & (\mathrm{dB} / \mathrm{m}) \end{aligned}$	Reading ($\mathrm{dB} \mu \mathrm{V}$)	Corrected Reading ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Margin (dB)
$\begin{array}{\|c\|} 802.11 n \\ \text { (HT40) } \end{array}$	Chain0+1	3	V	PK	1032	37.25	29.14	13.74	42.88	74	-31.12
$\begin{gathered} 802.11 n \\ \text { (HT40) } \end{gathered}$	Chain0+1	3	V	PK	1232	37.3	29.5	20.38	49.88	74	-24.12
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	3	V	PK	1652	37.37	31.8	17.27	49.07	74	-24.93
$\begin{array}{r} \hline 802.11 \mathrm{n} \\ \text { (HT40) } \\ \hline \end{array}$	Chain0+1	3	V	PK	2056	37.37	35.86	11.87	47.73	74	-26.27
$\begin{gathered} 802.11 n \\ (H T 40) \end{gathered}$	Chain0+1	3	V	PK	4844	37.13	5.84	37.44	43.28	74	-30.72
$\begin{array}{\|c} \hline 802.11 \mathrm{n} \\ \text { (HT40) } \\ \hline \end{array}$	Chain0+1	3	V	PK	4995	37.08	6.47	35.44	41.91	74	-32.09
$\begin{gathered} 802.11 n \\ \text { (HT40) } \end{gathered}$	Chain0+1	3	V	PK	7266	36.49	12.48	38.34	50.81	74	-23.19
$\begin{gathered} 802.11 \mathrm{n} \\ (\mathrm{HT} 40) \end{gathered}$	Chain0+1	6	H	PK	1236	37.3	29.51	14.32	43.83	74	-30.17
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	6	H	PK	4874	37.12	5.97	38.73	44.69	74	-29.31
$\begin{array}{\|c\|} \hline 802.11 \mathrm{n} \\ \text { (HT40) } \end{array}$	Chain0+1	6	H	PK	4995	37.08	6.47	38.21	44.68	74	-29.32
$\begin{array}{\|c} 802.11 n \\ \text { (HT40) } \end{array}$	Chain0+1	6	H	PK	7311	36.47	12.65	34.1	46.75	74	-27.25
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \\ \hline \end{gathered}$	Chain0+1	6	V	PK	1032	37.25	29.14	13.41	42.55	74	-31.45
$\begin{gathered} 802.11 n \\ (H T 40) \end{gathered}$	Chain0+1	6	V	PK	1232	37.3	29.5	21.24	50.75	74	-23.25
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \\ \hline \end{gathered}$	Chain0+1	6	V	PK	1652	37.37	31.8	15.9	47.7	74	-26.3
$\begin{array}{\|c\|} \hline 802.11 \mathrm{n} \\ \text { (HT40) } \end{array}$	Chain0+1	6	V	PK	1672	37.37	32.04	13.01	45.05	74	-28.95
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	6	V	PK	4874	37.12	5.97	37.23	43.2	74	-30.8
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	6	V	PK	4995	37.08	6.47	37.74	44.21	74	-29.79
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	6	V	PK	7311	36.47	12.65	36.9	49.55	74	-24.45
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	9	H	PK	1232	37.3	29.5	15.04	44.54	74	-29.46
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	9	H	PK	4904	37.11	6.09	40.03	46.12	74	-27.88
$\begin{gathered} 802.11 \mathrm{n} \\ (\mathrm{HT} 40) \end{gathered}$	Chain0+1	9	H	PK	4995	37.08	6.47	37.86	44.33	74	-29.67

intertek
Total Quality. Assured.

FCC ID: K7T-RW8300E
Report No.: 180300382TWN-001
Page 67 of 94

Mode	Chain	Channel	Ant Polarity	Detector	Frequency (MHz)	Preamp (dB)	$\begin{aligned} & \text { Factor } \\ & \text { (dB/m) } \end{aligned}$	Reading ($\mathrm{dB} \mu \mathrm{V}$)	Corrected Reading ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	$\begin{aligned} & \text { Limit } \\ & (\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}) \end{aligned}$	Margin (dB)
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	3	H	PK	7266	36.49	12.48	32.41	44.88	74	-29.12
$\begin{array}{\|c} \hline 802.11 \mathrm{n} \\ \text { (HT40) } \\ \hline \end{array}$	Chain0+1	9	H	PK	7356	36.45	12.82	33.03	45.85	74	-28.15
$\begin{gathered} 802.11 \mathrm{n} \\ (\mathrm{HT} 40) \\ \hline \end{gathered}$	Chain0+1	9	V	PK	1032	37.25	29.14	12.63	41.77	74	-32.23
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \end{gathered}$	Chain0+1	9	V	PK	1164	37.28	29.38	12.12	41.49	74	-32.51
$\begin{gathered} 802.11 n \\ \text { (HT40) } \end{gathered}$	Chain0+1	9	V	PK	1232	37.3	29.5	20.36	49.86	74	-24.14
$\begin{gathered} 802.11 n \\ \text { (HT40) } \end{gathered}$	Chain0+1	9	V	PK	1648	37.37	31.75	14.71	46.46	74	-27.54
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \\ \hline \end{gathered}$	Chain0+1	9	V	PK	4904	37.11	6.09	38.01	44.1	74	-29.9
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \\ \hline \end{gathered}$	Chain0+1	9	V	PK	4995	37.08	6.47	36.12	42.59	74	-31.41
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT4O) } \end{gathered}$	Chain0+1	9	V	PK	7356	36.45	12.82	34.89	47.71	74	-26.29

Remark: Correction Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Pre_Amplifier Gain

Total Quality. Assured.

7. Emission on Band Edge

7.1. Instrument Setting

Spectrum Function	Setting
Detector	Peak and Average
RBW	1 MHz
VBW	3 MHz
Sweep	Auto couple
Restrict bands	$2310 \mathrm{MHz} \sim 2390 \mathrm{MHz}$
Attenuation	$2483.5 \mathrm{MHz} \sim 2500 \mathrm{MHz}$
	Auto

7.2. Test Procedure

The test procedure is the same as Emissions in Restricted Frequency Bands (Radiated emission measurements).

7.3. Operating Environment Condition

Temperature $\left({ }^{\circ} \mathrm{C}\right)$:25
Relative Humidity (\%) : 50
Atmospheric Pressure (hPa) : 1008
Test Date : 2018/3/1~2018/3/9

Total Quality. Assured.

7.4. Test Results

EUT: RW8300E-B3-a

Mode	Spectrum Analyzer Detector	Ant. Pol. (H/V)	Correction Factor (dB/m)	Reading $(\mathrm{dB} \mu \mathrm{~V})$	Corrected Reading ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	$\begin{array}{\|c\|} \hline \text { Limit } \\ @ 3 \mathrm{~m} \\ (\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}) \\ \hline \end{array}$	Margin (dB)	Restricted band (MHz)
$\begin{gathered} 802.11 \mathrm{~b} \\ \text { Chain0 } \end{gathered}$	PK	V	35.38	12.52	47.90	74	-26.10	2310~2390
	AV	V	35.37	-0.26	35.11	54	-18.89	
	PK	V	35.21	11.20	46.41	74	-27.59	$2483.5 \sim 2500$
	AV	V	35.22	-0.89	34.33	54	-19.67	
802.11b Chain1	PK	V	35.37	10.02	45.39	74	-28.61	2310~2390
	AV	V	35.37	-2.58	32.79	54	-21.21	
	PK	V	35.22	12.23	47.45	74	-26.55	2483.5~2500
	AV	V	35.22	0.13	35.35	54	-18.65	
802.11gChain0	PK	V	35.36	15.31	50.67	74	-23.33	2310~2390
	AV	V	35.36	1.56	36.92	54	-17.08	
	PK	V	35.22	17.17	52.39	74	-21.61	2483.5~2500
	AV	V	35.23	2.65	37.88	54	-16.12	
$802.11 \mathrm{~g}$ Chain1	PK	V	35.37	15.66	51.03	74	-22.97	2310~2390
	AV	V	35.36	2.15	37.51	54	-16.49	
	PK	V	35.22	13.45	48.67	74	-25.33	$2483.5 \sim 2500$
	AV	V	35.23	0.49	35.72	54	-18.28	
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT20) } \\ \text { ChainO+1 } \end{gathered}$	PK	V	35.36	15.23	50.59	74	-23.41	2310~2390
	AV	V	35.36	3.99	39.35	54	-14.65	
	PK	V	35.22	11.13	46.35	74	-27.65	2483.5~2500
	AV	V	35.23	-0.43	34.80	54	-19.20	
$\begin{gathered} 802.11 \mathrm{n} \\ \text { (HT40) } \\ \text { ChainO+1 } \end{gathered}$	PK	V	35.37	19.03	54.40	74	-19.60	2310~2390
	AV	V	35.36	7.05	42.41	54	-11.59	
	PK	V	35.22	21.26	56.48	74	-17.52	2483.5~2500
	AV	V	35.23	7.39	42.62	54	-11.38	

Remark: Correction Factor = Antenna Factor + Cable Loss

Chain0 : Restricted Band Bandedge @ 802.11b Mode Ch11 PK

Chain0 : Restricted Band Bandedge @ 802.11b Mode Ch11 AV

[^0]Chain0 : Restricted Band Bandedge @ 802.11b Mode Ch1 PK

Chain0 : Restricted Band Bandedge @ 802.11b Mode Ch1 AV

[^1]Chain1 : Restricted Band Bandedge @ 802.11b Mode Ch11 PK

patel 1.103:2018 20123177
Chain1 : Restricted Band Bandedge @ 802.11b Mode Ch11 AV

[^2]Chain1 : Restricted Band Bandedge @ 802.11b Mode Ch1 PK

Chain1 : Restricted Band Bandedge @ 802.11b Mode Ch1 AV

[^3]Chain0 : Restricted Band Bandedge @ 802.11g Mode Ch11 PK

Chain0 : Restricted Band Bandedge @ 802.11g Mode Ch11 AV

[^4]Chain0 : Restricted Band Bandedge @ 802.11g Mode Ch1 PK

petel 子.mes,203! 17509120
Chain0 : Restricted Band Bandedge @ 802.11g Mode Ch1 AV

[^5]Chain1 : Restricted Band Bandedge @ 802.11g Mode Ch11 PK

petel 1.mes:2018 20140120
Chain1 : Restricted Band Bandedge @ 802.11g Mode Ch11 AV

[^6]Chain1 : Restricted Band Bandedge @ 802.11g Mode Ch1 PK

Chain1 : Restricted Band Bandedge @ 802.11g Mode Ch1 AV

Detel 2.000 2018 20125126

Chain0+1 : Restricted Band Bandedge @ 802.11n(HT20) Mode Ch11 PK

Chain0+1 : Restricted Band Bandedge @ 802.11n(HT20) Mode Ch11 AV

[^7]Chain0+1 : Restricted Band Bandedge @ 802.11n(HT20) Mode Ch1 PK

Chain0+1 : Restricted Band Bandedge @ 802.11n(HT20) Mode Ch1 AV

[^8]Chain0+1 : Restricted Band Bandedge @ 802.11n(HT40) Mode Ch11 PK

Chain0+1 : Restricted Band Bandedge @ 802.11n(HT40) Mode Ch11 AV

[^9]Chain0+1 : Restricted Band Bandedge @ 802.11n(HT40) Mode Ch1 PK

Chain0+1 : Restricted Band Bandedge @ 802.11n(HT40) Mode Ch1 AV

[^10]Total Quality. Assured.

Chain0 : Authorized Band Bandedge @ 802.11b Mode High

Chain0 : Authorized Band Bandedge @ 802.11b Mode Low

Chain1 : Authorized Band Bandedge @ 802.11b Mode High

Total Quality. Assured.

Chain1 : Authorized Band Bandedge @ 802.11b Mode Low

Chain0 : Authorized Band Bandedge @ 802.11g Mode High

Chain0 : Authorized Band Bandedge @ 802.11g Mode Low

Chain1 : Authorized Band Bandedge @ 802.11g Mode High

Chain1 : Authorized Band Bandedge @ 802.11g Mode Low

Chain0 : Authorized Band Bandedge @ 802.11n(HT20) Mode High

Chain0 : Authorized Band Bandedge @ 802.11n(HT20) Mode Low

Chain1 : Authorized Band Bandedge @ 802.11n(HT20) Mode High

Chain1 : Authorized Band Bandedge @ 802.11n(HT20) Mode Low

Chain0 : Authorized Band Bandedge @ 802.11n(HT40) Mode High

Chain0 : Authorized Band Bandedge @ 802.11n(HT40) Mode Low

Chain1 : Authorized Band Bandedge @ 802.11n(HT40) Mode High

Chain1 : Authorized Band Bandedge @ 802.11n(HT40) Mode Low

Total Quality. Assured.

8. AC Power Line Conducted Emission

8.1. Measuring instrument setting

Receiver Function	Setting
Detector	QP
Start frequency	0.15 MHz
Stop frequency	30 MHz
IF bandwidth	9 kHz
Attenuation	10 dB

8.2. Test Procedure

Step 1 Configure the EUT according to ANSI C63.10:2013. The EUT or host of EHT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.

Step 2 Connect EUT or host of EUT to the power mains through a line impedance stabilization network.

Step 3 All the companion devices are connected to the other LISN. The LISN should provide 50Uh/50ohms coupling impedance.

Step 4 The frequency range from 150 kHz to 30 MHz was searched.

Step 5 Set the test-receiver system to peak detector and specified bandwidth with maximum hold mode.

Step 6 The measurement has to be done between each power line and ground at the power terminal.

8.3. Test Diagram

Total Quality. Assured.

8.4. Limit

Freq. (MHz)	Conducted Limit (dBuV)	
	Q.P.	Ave.
$0.15^{\sim} 0.50$	$66-56$	$56-46$
$0.50^{\sim} 5.00$	56	46
$5.00^{\sim} 30.0$	60	50

8.5. Operating Environment Condition

Temperature $\left({ }^{\circ} \mathrm{C}\right): \quad 23$
Relative Humidity (\%) : 54
Atmospheric Pressure (hPa) : 1009
Test Date :
2018/3/8

Total Quality. Assured.

8.6. Test Results

Phase:	Live Line
Model No.:	RW8300E-B3-a
Test Condition:	Tx mode

Frequency (MEs)	Gorr Factar (dB)	$\begin{aligned} & \text { Reading } \\ & \underset{\mathrm{DF}}{ } \\ & (\mathrm{dBu}) \end{aligned}$	$\begin{gathered} \text { Level } \\ \text { OF } \\ (\mathrm{dFu} \mathrm{~F}) \end{gathered}$		$\begin{aligned} & \text { Reading } \\ & \text { AY } \\ & \text { (dBur) } \end{aligned}$			${\underset{V Z}{ }}_{(\mathrm{Margin}}^{(\mathrm{dB})} \mathrm{AT}$	
0.152	9.36	40.88	50.23	65.91	18.35	27.70	55.91	-15.68	-28.21
0.167	9.36	38.68	48.04	65.12	26.10	35.46	55.12	-17.08	-19.66
0.175	9.36	37.60	46.96	64.72	19.52	26.86	54.72	-17.77	-25. 84
2.358	9.52	22.16	31.68	56.00	16.09	25.61	46.00	-24.32	-20.39
4.478	9.54	21.78	31.35	56.00	16.27	25.81	46.00	-24.67	-20.19
17.291	9.57	24.76	34.33	60.00	19.81	29.38	50.00	-25.67	-20.62

Remark:

1. Corr. Factor $(\mathrm{dB})=$ LISN Factor $(\mathrm{dB})+$ Cable Loss (dB)
2. Level $(\mathrm{dBuV})=$ Corr. Factor $(\mathrm{dB})+$ Reading (dBuV)
3. Margin (dB) = Level (dBuV) - Limit (dBuV)

Phase:	Neutral Line
Model No.:	RW8300E-B3-a
Test Condition:	Tx mode

Frequency (MHz)	Gorr. Factor (dB)	$\begin{aligned} & \text { Reading } \\ & \text { QF } \\ & (\mathrm{dBur}) \end{aligned}$	$\begin{gathered} \text { Level } \\ \frac{0 p}{} \\ (\mathrm{dBu} \mu) \end{gathered}$		$\begin{aligned} & \text { Reading } \\ & \text { AY } \\ & (d B u r) \end{aligned}$	$\begin{gathered} \text { Level } \\ \text { AY } \\ (\mathrm{dBu} \mathrm{~F}) \end{gathered}$		Margin (dB)	
0.151	9.62	40.03	49.65	65.96	23.97	33.59	55.96	-16.31	-22.37
0.155	9.62	39.84	49.46	65.74	25.35	34.97	55.74	-16.28	-20.77
0.209	9.62	31.02	40.64	63.23	21.32	30.94	53.23	-22.58	-22.28
0.369	9.63	27.92	37.55	58.52	19.03	28.65	48.52	-20.97	-19.87
4.247	9.79	22.67	32.46	56.00	17.13	26.93	46.00	-23. 54	-19.07
12.384	9.67	23.43	33.30	60.00	17.19	27.05	50.00	-26.70	-22.95

Remark:

1. Corr. Factor $(\mathrm{dB})=$ LISN Factor $(\mathrm{dB})+$ Cable Loss (dB)
2. Level (dBuV) = Corr. Factor (dB) + Reading (dBuV)
3. Margin (dB) = Level (dBuV) - Limit (dBuV)

Total Quality. Assured.

Appendix A: Test equipment list

Test Equipment/ Test site	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
ESCI EMI Test Receiver	Rohde \& Schwarz	ESCI	100018	2017/11/21	2018/11/20
Spectrum Analyzer	Rohde \& Schwarz	FSP30	100245	2018/02/23	2019/02/22
Horn Antenna (1-18G)	SHWARZBECK	BBHA 9120 D	9120D-456	2018/01/23	2019/01/22
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	201709/04	2020/09/02
Broadband Antenna	SHWARZBECK	VULB 9168	9168-172	2017/04/05	2018/04/04
Pre-Amplifier	EMC Co.	EMC12635SE	980205	2017/11/28	2018/11/27
Pre-Amplifier	MITEQ	$\begin{gathered} \hline \text { JS4-26004000--27 } \\ -8 \mathrm{~A} \end{gathered}$	828825	2017/08/23	2018/08/22
Power Meter	Anritsu	ML2495A	0844001	2017/10/18	2018/10/17
Power Sensor	Anritsu	MA2411B	0738452	2017/05/23	2018/05/22
Signal Analyzer	Agilent	N9030A	MY51380492	2017/08/29	2018/08/28
$\begin{aligned} & 966-2(\mathrm{~A}) \text { Cable } \\ & 9 \mathrm{kHz} \sim 26.5 \mathrm{GHz} \end{aligned}$	SUHNER	SMA / EX 100	N/A	2017/08/15	2018/08/14
966-2(B) Cable $9 \mathrm{kHz} \sim 26.5 \mathrm{GHz}$	SUHNER	SUCOFLEX 104P	CB0005	2017/08/15	2018/08/14
$\begin{gathered} \text { RF Cable } \\ 9 \mathrm{kHz} \sim 26.5 \mathrm{GHz} \end{gathered}$	SUHNER	SUCOFLEX 102	CB0006	2017/05/04	2018/05/03
966-2_3m Semi-Anechoic Chamber	966_2	CEM-966_2	N/A	2017/03/29	2018/03/28
High Pass Filter	Wainwright	$\begin{aligned} & \text { WнкX3.0/ } \\ & \text { 18G-12SS } \end{aligned}$	N/A	2017/06/02	2018/06/01
Active Loop Antenna	SCHWARZBECK MESS-ELEKTRONIC	FMZB1519	1519-067	2017/03/30	2018/03/29

Note: No Calibration Required (NCR).

Total Quality. Assured.

Test Equipment/ Test site	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Receiver	R\&S	ESCl	100059	$2017 / 11 / 13$	$2018 / 11 / 12$
Two-Line V-Network	R\&S	ENV216	101159	$2017 / 06 / 03$	$2018 / 06 / 02$
Artificial Mains Network (LISN)	SCHAFFNER	MN2050D	1586	$2017 / 05 / 31$	$2018 / 05 / 30$
CON-1 Shielded Room	N/A	N/A	N/A	NCR	NCR
CON-1 Cable	SUHNER	SUCOFLEX-104	26438414	$2017 / 05 / 04$	$2018 / 05 / 03$
Test software	Audix	e3	$4.20040112 L$	NCR	NCR

Note: No Calibration Required (NCR).

Total Quality. Assured.

Appendix B: Measurement Uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

Item	Uncertainty
Vertically polarized radiated disturbances from $30 \mathrm{MHz}^{\sim} 1 \mathrm{GHz}$ in a semi-anechoic chamber at a distance of 3 m	5.14 dB
Horizontally polarized radiated disturbances from $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$ in a semi-anechoic chamber at a distance of 3 m	5.22 dB
Vertically polarized Radiated disturbances from $1 \mathrm{GHz} \sim 18 \mathrm{GHz}$ in a semi-anechoic chamber at a distance of 3 m	3.64 dB
Horizontally polarized Radiated disturbances from $1 \mathrm{GHz} \sim 18 \mathrm{GHz}$ in a semi-anechoic chamber at a distance of 3 m	3.64 dB
Vertically polarized Radiated disturbances from $18 \mathrm{GHz} \sim 40 \mathrm{GHz}$ in a semi-anechoic chamber at a distance of 3 m	2.68 dB
Horizontally polarized Radiated disturbances from $18 \mathrm{GHz} \sim 40 \mathrm{GHz}$ in a semi-anechoic chamber at a distance of 3 m	2.68 dB
Radiated disturbances from $9 \mathrm{kHz} \sim 30 \mathrm{MHz}$ in a semi-anechoic chamber at a distance of 3 m	3.54 dB
Emission on the Band Edge Test	3.64 dB
Minimum 6dB Bandwidth	0.85 dB
Maximum Conducted Output Power	0.42 dB
Power Spectral Density	0.85 dB
Emissions In Non-Restricted Frequency Bands	0.85 dB
AC Power Line Conducted Emission	2.48 dB

[^0]: Datel 3 .Nus,2018 18157442

[^1]: Datel $3.90 x, 2018$ 18129160

[^2]: fintel $3.900,2018$ 28124104

[^3]: fintel $1.900,2018$ 28121313

[^4]: Datel $2.008,2018$ 19123106

[^5]: Datel $2.008,201819130142$

[^6]: Datel $2.006,2018$ 2849120

[^7]: Datel $2.008,201819142156$

[^8]: Datel $2.008,201819121144$

[^9]: Datel $2.00 x, 2018$ 28105160

[^10]: Datel $3.90 x, 2018$ 19150410

