



EMC TEST REPORT

**Report No.: TS12010105-EME** 

Model No.: RB4000HM-a, RB4000HM-c,

RB4000, H4000CE

**Issued Date: May. 16, 2012** 

**Applicant:** Radicom Research Inc.

2148 Bering Dr., San Jose, CA. 95131, USA

Test Method/Standard: FCC Part 15 Subpart C Section §15.205 \ §15.207 \ §15.209 \

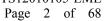
§15.247, DA 00-705 and ANSI C63.4/2003.

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

The test report was prepared by: Sign on File


Julie Wang / Senior Assistant

**These measurements were taken by:** Sign on File

Terry Hsu / Engineer

The test report was reviewed by:

Name Jimmy Yang
Title Engineer





# **Table of Contents**

| Summary of Tests                                                      | 3  |
|-----------------------------------------------------------------------|----|
| 1. General information                                                | 4  |
| 2. Test specifications                                                | 6  |
| 3. 20dB Bandwidth test                                                | 8  |
| 4. Carrier Frequency Separation test                                  | 14 |
| 5. Number of hopping frequencies test                                 | 17 |
| 6. Time of Occupancy (dwell time) & Duty Cycle Correction Factor test | 20 |
| 7. Maximum Output Power test                                          | 31 |
| 8. RF Antenna Conducted Spurious test                                 | 32 |
| 9. Radiated Emission test                                             | 38 |
| 10. Emission on the band edge §FCC 15.247(d)                          | 53 |
| 11. Power Line Conducted Emission test §FCC 15.207                    | 63 |





# **Summary of Tests**

| Test                                  | Reference      | Results |
|---------------------------------------|----------------|---------|
| 20dB Bandwidth test                   | 15.247(a)(1)   | Pass    |
| Carrier Frequency Separation test     | 15.247(a)(1)   | Pass    |
| Number of hopping frequencies test    | 15.247(a)(1)   | Pass    |
| Time of Occupancy (dwell time) test   | 15.247(a)(1)   | Pass    |
| Maximum Output Power test             | 15.247(b)      | Pass    |
| RF Antenna Conducted Spurious test    | 15.247(d)      | Pass    |
| Radiated Spurious Emission test       | 15.205, 15.209 | Pass    |
| Emission on the Band Edge test        | 15.247(d)      | Pass    |
| AC Power Line Conducted Emission test | 15.207         | Pass    |



FCC ID. K7T-RB4000 Report No.: TS12010105-EME

Page 4 of 68

#### 1. General information

#### 1.1 Identification of the EUT

Product: Bluetooth Module

Model No.: RB4000HM-a, RB4000HM-c

FCC ID.: K7T-RB4000

Frequency Range: 2402 MHz ~ 2480 MHz

Channel Number: 79 channels

Frequency of Each Channel: 2402 + k MHz;  $k = 0 \sim 78$ 

Type of Modulation: GFSK,  $\pi/4$ DPSK, 8DPSK

Rated Power: DC 5 V
Power Cord: N/A

Sample Received: Jan. 04, 2012

Test Date(s): Jan. 04, 2012 ~ May. 15, 2012

Note 1: This report is for the exclusive use of Intertek's Client and is

provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek

certification program.

Note 2: When determining the test conclusion, the Measurement

Uncertainty of test has been considered.



FCC ID. K7T-RB4000 Report No.: TS12010105-EME

Page 5 of 68

#### 1.2 Additional information about the EUT

The EUT is a Bluetooth Module, and was defined as information technology equipment.

The customer confirmed the models listed as below were series model to model RB4000HM-a, RB4000HM-c (EUT), the difference between main model and series model are listed as below.

| Model Number | Product Description                   |
|--------------|---------------------------------------|
| RB4000HM-a   | Modules (with on- board antenna)      |
| RB4000HM-c   | Modules (with two antenna connectors) |
| RB4000       | Modules (with on- board antenna)      |
| H4000CE      | Identical model to RB4000             |

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

### 1.3 Antenna description

#### (1) Antenna 1

The EUT uses a permanently connected antenna.

Antenna Gain : 1 dBi

Antenna Type : Printed antenna

Connector Type : N/A

#### (2) Antenna 2

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna Gain : 2 dBi

Antenna Type : Dipole antenna

Connector Type : IPX



Intertek

1.4 Peripherals equipment

| Peripherals   | Brand | Model No.     | Serial No. | Description of Data Cable                                                       |
|---------------|-------|---------------|------------|---------------------------------------------------------------------------------|
| Notebook PC   | DELL  | Latitude D610 | IYW7K1S    | 1. USB shielded cable 1.8<br>meter × 1<br>2. LPT console cable 0.2 meter<br>× 1 |
| Carrier board | N/A   | N/A           | N/A        | N/A                                                                             |

#### 2. Test specifications


#### 2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section § 15.205 \ §15.207 \ §15.209 \ §15.247, DA 00-705 and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

#### 2.2 Operation mode

The EUT was supplied with DC 5 V from adapter (Test voltage: 120 Vac, 60 Hz) and the transmission mode was tested by using a software named "CSR Bluetest 3" program.



Page 7 of 68



# 2.3 Test equipment

| Equipment                                | Brand           | Model No.                   | Serial No.  | Calibration<br>Date | Next<br>Calibration<br>Date |
|------------------------------------------|-----------------|-----------------------------|-------------|---------------------|-----------------------------|
| EMI Test<br>Receiver                     | Rohde & Schwarz | ESCI                        | 100018      | 2011/12/6           | 2012/12/4                   |
| Spectrum<br>Analyzer                     | Rohde&schwarz   | FSP30                       | 100137      | 2011/6/29           | 2012/6/28                   |
| Spectrum<br>Analyzer                     | Rohde&schwarz   | FSEK30                      | 100186      | 2012/2/6            | 2013/2/5                    |
| Horn Antenna<br>(1-18G)                  | Schwarzbeck     | BBHA 9120 D                 | 9120D-456   | 2010/8/31           | 2012/8/30                   |
| Horn Antenna<br>(14-42G)                 | SHWARZBECK      | BBHA 9170                   | BBHA9170159 | 2010/9/3            | 2012/9/2                    |
| Broadband<br>Antenna                     | SCHWARZBECK     | VULB 9168                   | 9168-172    | 2011/7/26           | 2013/7/25                   |
| Pre-Amplifier                            | MITEQ           | AFS44-0010265<br>042-10P-44 | 1495287     | 2011/10/27          | 2013/10/26                  |
| Pre-Amplifier                            | MITEQ           | JS4-26004000<br>27-8A       | 828825      | 2010/9/8            | 2012/9/7                    |
| Power Meter                              | Anritsu         | ML2495A                     | 0844001     | 2011/10/13          | 2012/10/12                  |
| Power Senor                              | Anritsu         | MA2411B                     | 0738452     | 2011/10/13          | 2012/10/12                  |
| Temperature&H<br>umidity Test<br>Chamber | TERCHY          | MHU-225LRU<br>(SA)          | 950838      | 2011/6/17           | 2012/6/16                   |
| Two-Line<br>V-Network                    | Rohde&schwarz   | ESH3-Z5                     | 838979/014  | 2011/10/19          | 2012/10/18                  |

Note: The above equipments are within the valid calibration period.

FCC ID. K7T-RB4000 Report No.: TS12010105-EME

Report No.: TS12010105-EME Page 8 of 68



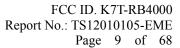
#### 3. 20dB Bandwidth test

### 3.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

#### 3.2 Test setup & procedure

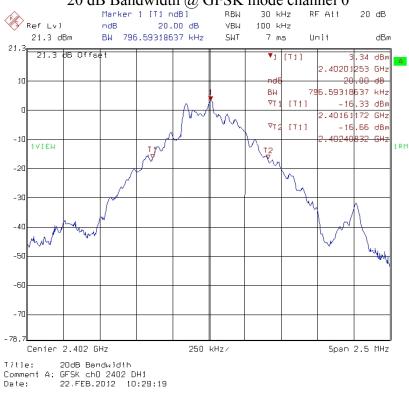
## The test procedure was according to FCC measurement guidelines DA 00-705.


The 20dB bandwidth per FCC  $\S15.247(a)(1)$  was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100 kHz, the video bandwidth  $\ge RBW$ , and the SPAN may equal to approximately 2 to 3 times the 20dB bandwidth. The test was performed at 3 channels (lowest, middle and highest channel). The maximum 20dB modulation bandwidth is in the following Table.

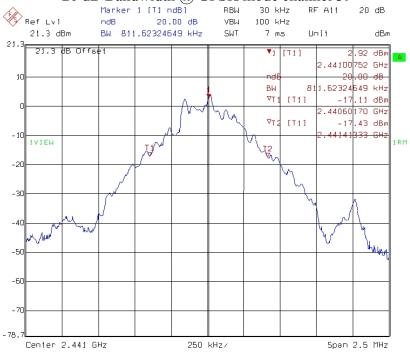
#### 3.3 Measured data of modulated bandwidth test results

EUT : RB4000HM-a & RB4000HM-c

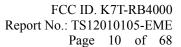
| Mode    | Channel | Frequency (MHz) | 20dB Bandwidth (kHz) |
|---------|---------|-----------------|----------------------|
|         | 0       | 2402            | 797                  |
| GFSK    | 39      | 2441            | 812                  |
|         | 78      | 2480            | 817                  |
|         | 0       | 2402            | 1222.44              |
| π/4DPSK | 39      | 2441            | 1227.45              |
|         | 78      | 2480            | 1222.44              |
|         | 0       | 2402            | 1212.42              |
| 8DPSK   | 39      | 2441            | 1207.41              |
|         | 78      | 2480            | 1272.54              |


Please see the plot below.



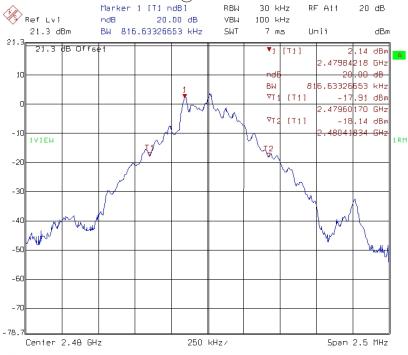



#### For RB4000HM-a & RB4000HM-c


#### 20 dB Bandwidth @ GFSK mode channel 0



# 20 dB Bandwidth @ GFSK mode channel 39

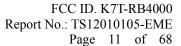



Title: 20dB Bandwidth Comment A: GFSK ch39 2441 DH1 Date: 22.FEB.2012 10:45:11










Title: 20dB Bandwidth
Comment A: GFSK ch78 2480 DH1
Date: 22.FEB.2D12 10:5D:43


#### 20 dB Bandwidth @ $\pi/4$ DPSK mode channel 0

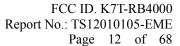


Title: 20dB Bandwidth Comment A: pi/4-QP5K ch0 2402 DH1 Date: 26.MAR.2012 11:01:29










Title: 20dB Bandwidth Comment A: pi/4-QP5K ch39 2441 DH1 Date: 26.MAR.2012 11:15:04

### 20 dB Bandwidth @ π/4DPSK mode channel 78

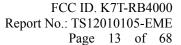


Title: 20dB Bandwidth Comment A: pi/4-QP5k ch78 2480 DH1 Date: 26.MAR.2D12 11:23:56



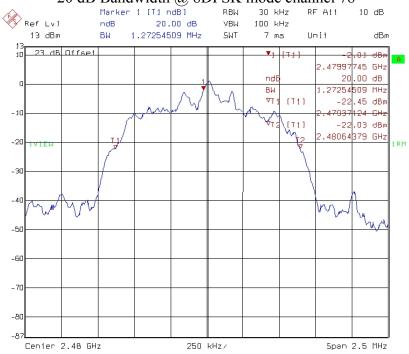







Title: 20dB Bandwidth
Comment A: 8DPSK chD 2402 DH1
Date: 26.MAR.2012 11:36:23

# 20 dB Bandwidth @ 8DPSK mode channel 39




Title: 20dB Bandwidth Comment A: 8DPSK ch39 2441 DH1 Date: 26.MAR.2D12 11:47:54





20 dB Bandwidth @ 8DPSK mode channel 78



Title: 20dB Bandwidth Comment A: 8DPSk ch78 2480 DH1 Date: 26.MAR.2D12 11:53:37

FCC ID. K7T-RB4000 Report No.: TS12010105-EME

Report No.: TS12010105-EME Page 14 of 68



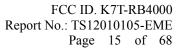
#### 4. Carrier Frequency Separation test

#### **4.1** Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

#### 4.2 Test setup & procedure

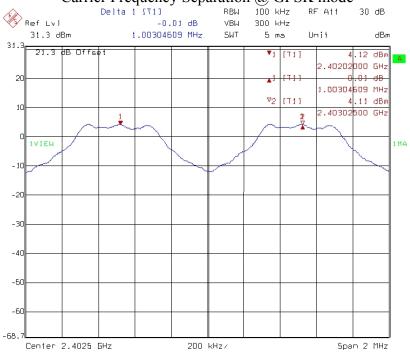
## The test procedure was according to FCC measurement guidelines DA 00-705.


The carrier frequency separation per FCC 15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at  $\ge 1\%$  of the span, the video bandwidth RBW, and the SPAN was wide enough to capture the peaks of two adjacent channels. The carrier frequency separation result is in the following Table.

#### 4.3 Measured data of Carrier Frequency Separation test result

EUT : RB4000HM-a & RB4000HM-c

| Mode         | Channel | Frequency (MHz) | Carrier freq. Separation (MHz) | Limit<br>20dB BW*2/3(kHz) |
|--------------|---------|-----------------|--------------------------------|---------------------------|
| GFSK         | 0       | 2402            | 1.003                          | 544.67                    |
| Grak         | 1       | 2403            | 1.003                          | 344.07                    |
| $\pi$ /4DPSK | 0       | 2402            | 1.006                          | 818.30                    |
| n/4DI SK     | 1       | 2403            | 1.000                          | 818.30                    |
| 8DPSK        | 0       | 2402            | 1.004                          | 848.36                    |
| ODI SK       | 1       | 2403            | 1.004                          | 040.30                    |

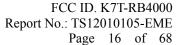

Please see the plot below.



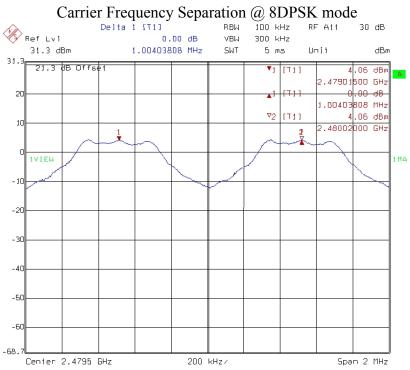



#### For RB4000HM-a & RB4000HM-c

# Carrier Frequency Separation @ GFSK mode




Title: Carrier freq. separation Comment A: GFSK chO 2402 DH1 Date: 22.FEB.2D12 10:42:26


# Carrier Frequency Separation @ $\pi$ /4DPSK mode



Title: Carrier freq. separation
Comment A: GFSK ch39 2441 DH1
Date: 22.FEB.2012 10:48:41







Title: Cerrier freq. separation
Comment A: GFSK ch77 2479 DH1
Date: 22.FEB.2012 10:56:52



Page 17 of 68



# 5. Number of hopping frequencies test

### **5.1 Operating environment**

Temperature: 25 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

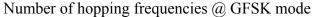
#### 5.2 Test setup & procedure

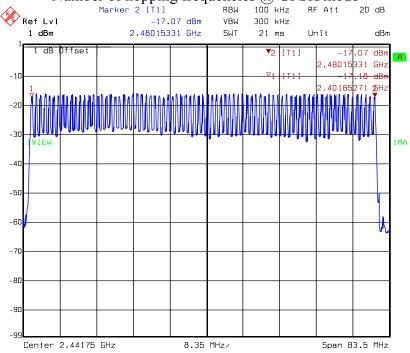
# The test procedure was according to FCC measurement guidelines DA 00-705.

The number of hopping frequencies per FCC  $\S15.247(a)(1)$  was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at  $\ge 1\%$  of the span, the video bandwidth  $\ge$  RBW, and the SPAN was the frequency band of operation. The carrier frequency separation result is in the following Table.

#### 5.3 Measured data of number of hopping frequencies test result

EUT : RB4000HM-a & RB4000HM-c


| Frequency Range (MHz) | Total hopping channels |
|-----------------------|------------------------|
| 2400 ~ 2483.5         | 79                     |


Please see the plot below.





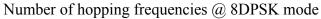

# For RB4000HM-a & RB4000HM-c

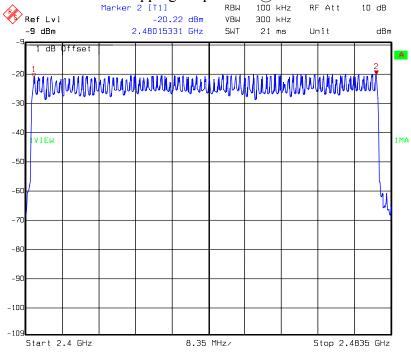




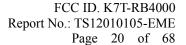
Title: Number of hopping freq Comment A: GFSK ch0 2402 DH1 Date: 22.FEB.2012 10:37:36

# Number of hopping frequencies @ $\pi$ /4DPSK mode





Title: Number of hopping freq Comment A: pi/4-QPSK ch0 2402 DH1 Date: 26.MAR.2012 11:13:20




Page 19 of 68







Title: Number of hopping freq Comment A: 8DPSK ch0 2402 DH1 Date: 26.MAR.2012 11:45:51





#### 6. Time of Occupancy (dwell time) & Duty Cycle Correction Factor test

## **6.1 Operating environment**

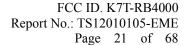
Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1008 hPa

### 6.2 Test setup & procedure

#### The test procedure was according to FCC measurement guidelines DA 00-705.

The time of occupancy (dwell time) per FCC §15.247(a)(1) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 1MHz, the video bandwidth ≥ RBW, and the zero span function of spectrum analyzer was enable. The EUT has its hopping function enable.

The system makes worst case 1600 hops per second or 1 time slot has a length of  $625\mu s$  with 79 channels.


The total sweep time is 0.4(79) = 31.6 seconds

Due to the number of hops in the 31.6s sweep we determined to reduce the sweep time to 3.16s, count the number of hops and multiply by 10. The total number of hops will be multiplied by the measured time of one pulse.

Time of occupancy (dwell time) for DH1 Number of Hops in 3.16s=32, Total Number of Hops in 31.6s = 33(10) =330 Single Pulse Width = 0.000380762 sec Dwell time = Pulse Width \* 330= 125.7 ms

Time of occupancy (dwell time) for DH3 Number of Hops in 3.16s=16, Total Number of Hops in 31.6s = 16(10) =160 Single Pulse Width = 0.001643287 sec Dwell time = Pulse Width \* 160= 262.6 ms

Time of occupancy (dwell time) for DH5 Number of Hops in 3.16s=11, Total Number of Hops in 31.6s = 16(10) =110 Single Pulse Width = 0.002895792 sec Dwell time = Pulse Width \* 10= 318.5 ms

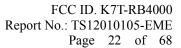




EUT : RB4000HM-a & RB4000HM-c

| Mode    | Mode | Pulse Width (ms) | Time of Occupancy (ms) | Limit (sec) |
|---------|------|------------------|------------------------|-------------|
|         | DH1  | 0.380762         | 125.7                  |             |
| GFSK    | DH3  | 1.643287         | 262.6                  | 0.4         |
|         | DH5  | 2.895792         | 318.5                  |             |
|         | DH1  | 0.380762         | 125.7                  |             |
| π/4DPSK | DH3  | 1.643287         | 262.9                  | 0.4         |
|         | DH5  | 2.895792         | 318.5                  |             |
| 8DPSK   | DH1  | 0.380762         | 125.7                  | 0.4         |
|         | DH3  | 1.643287         | 262.9                  |             |
|         | DH5  | 2.895792         | 318.5                  |             |

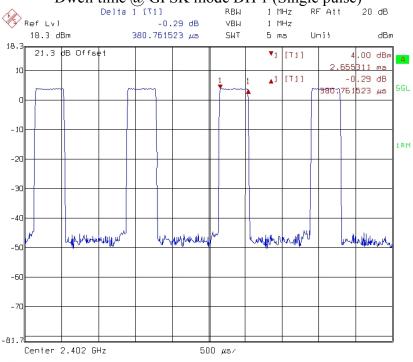
EUT : RB4000HM-a & RB4000HM-c


**Duty Cycle Correction Factor** 

| Mode    | Mode | Time of<br>Occupancy<br>(ms) | Duty Cycle % | Duty Cycle Correction Factor (dB) |
|---------|------|------------------------------|--------------|-----------------------------------|
|         | DH1  | 125.7                        | 0.3960       | -47.95                            |
| GFSK    | DH3  | 262.6                        | 1.6620       | -35.59                            |
|         | DH5  | 318.5                        | 2.9100       | -30.72                            |
|         | DH1  | 125.7                        | 0.4060       | -47.74                            |
| π/4DPSK | DH3  | 262.6                        | 1.6680       | -35.56                            |
|         | DH5  | 318.5                        | 2.9180       | -30.70                            |
|         | DH1  | 125.7                        | 0.4120       | -47.61                            |
| 8DPSK   | DH3  | 262.6                        | 1.6680       | -35.56                            |
|         | DH5  | 318.5                        | 2.9100       | -30.72                            |

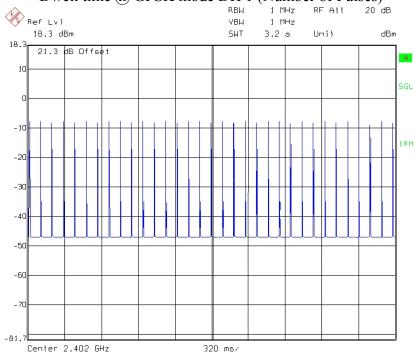
#### Remark:

- 1. Duty Cycle =  $(time\ of\ occupancy)/(31.6*1000)*100\%$
- 2. Duty Cycle Correction Factor = 20 log (duty cycle/100%)
- 3. The worst case of GFSK mode is -30.72 The worse case of  $\pi/4$  DPSK mode is -30.70 The worse case of 8DPSK mode is -30.72

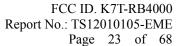

Please see the plot below.



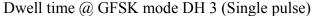


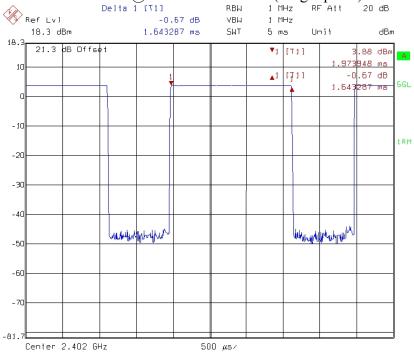

#### For RB4000HM-a & RB4000HM-c

# Dwell time @ GFSK mode DH 1 (Single pulse)



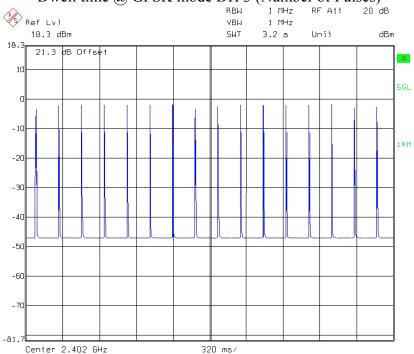

Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2D12 15:0D:31


#### Dwell time @ GFSK mode DH 1 (Number of Pulses)

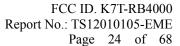



Title: Frequency Range,8(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2D12 17:34:28



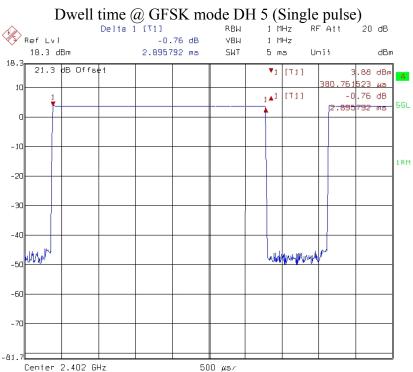




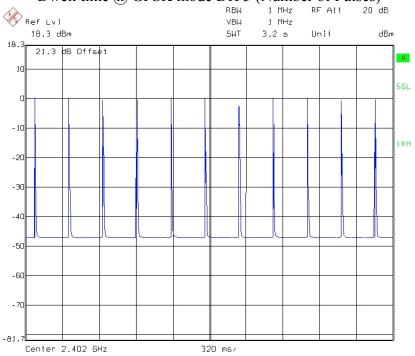

Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2D12 15:47:D8

# Dwell time @ GFSK mode DH 3 (Number of Pulses)

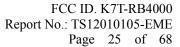



Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2012 17:26:42

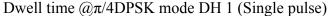


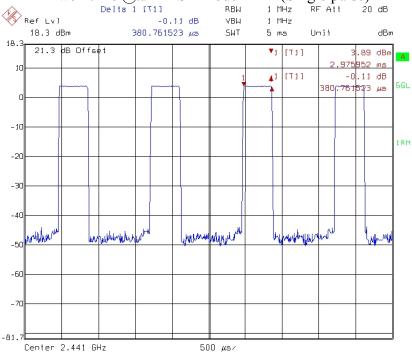




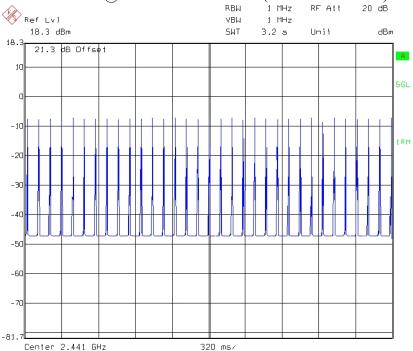

Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2012 15:49:23


# Dwell time @ GFSK mode DH 5 (Number of Pulses)

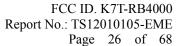



Title: Frequency Range, &(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2012 17:27:42



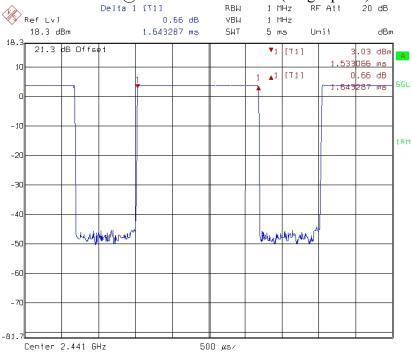




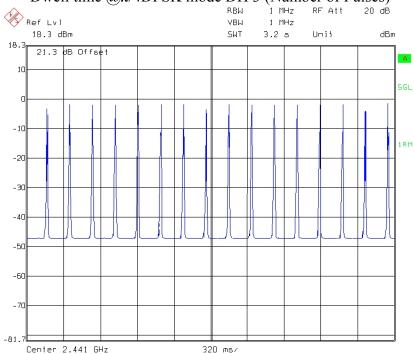

Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2D12 15:15:50


# Dwell time $@\pi/4DPSK$ mode DH 1 (Number of Pulses)




Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2D12 17:23:25

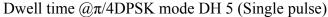








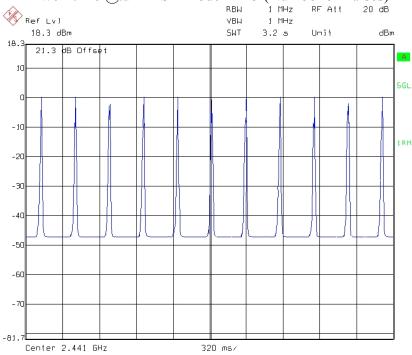

Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2D12 15:42:33


# Dwell time $@\pi/4$ DPSK mode DH 3 (Number of Pulses)

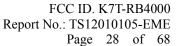


Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2012 17:26:03



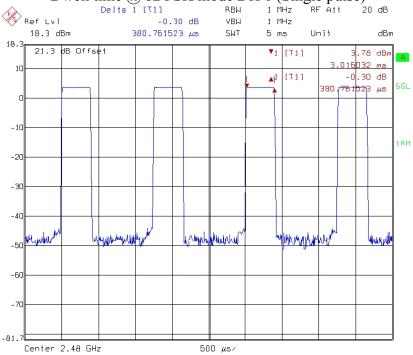




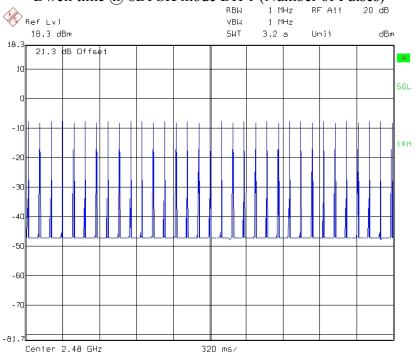

Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2012 15:53:29

## Dwell time $@\pi/4$ DPSK mode DH 5 (Number of Pulses)

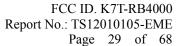



Title: Frequency Range, &(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2012 17:28:16

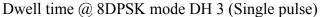


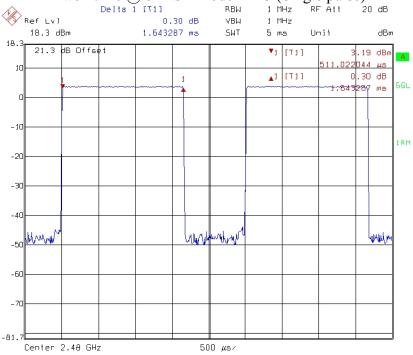




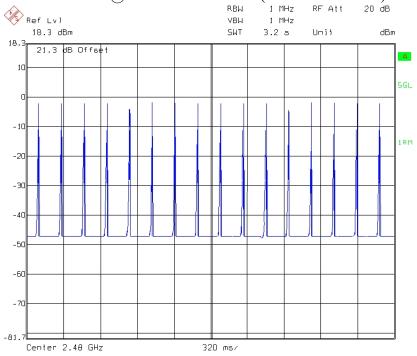

Title: Frequency Range,&(\*Y\_RB4000
Comment A: 11b 24D2 ch-1 ChainO 55c 253v
Date: 21.FEB.2012 15:16:58


#### Dwell time @ 8DPSK mode DH 1 (Number of Pulses)

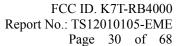



Title: Frequency Range, &(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2012 17:24:28

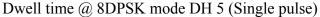


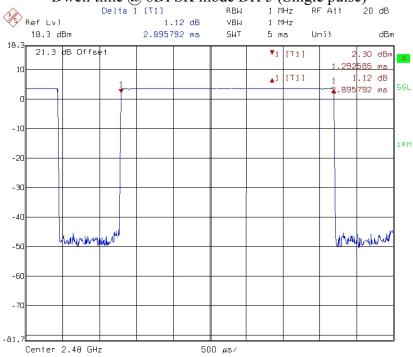




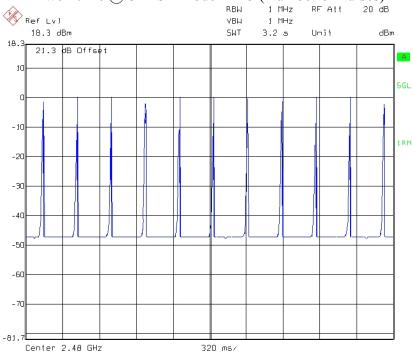

Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2D12 15:41:19


# Dwell time @ 8DPSK mode DH 3 (Number of Pulses)




Title: Frequency Range,&(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2012 17:25:29










Title: Frequency Range,&(\*Y\_RB4000
Comment A: 11b 24D2 ch-1 ChainD 55c 253v
Date: 21.FEB.2012 15:55:03

# Dwell time @ 8DPSK mode DH 5 (Number of Pulses)



Title: Frequency Range, &(\*Y\_RB4000 Comment A: 11b 24D2 ch-1 ChainD 55c 253v Date: 21.FEB.2012 17:28:52

FCC ID. K7T-RB4000

Report No.: TS12010105-EME Page 31 of 68



#### 7. Maximum Output Power test

## 7.1 Operating environment

Temperature:  $^{\circ}$ C 23 Relative Humidity: 50 % Atmospheric Pressure: 1022 hPa

#### 7.2 Test setup & procedure

#### The test procedure was according to FCC measurement guidelines DA 00-705.

The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (2 dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

## 7.3 Measured data of Maximum Output Power test results

**EUT** : RB4000HM-a & RB4000HM-c

| Mode    | Channel | Frequency (MHz) | Output Power<br>(PK)<br>(dBm) | Total Power (PK) (mw) | Limit (dBm) |
|---------|---------|-----------------|-------------------------------|-----------------------|-------------|
|         | 0       | 2402            | 4.67                          | 2.93                  | 30          |
| GFSK    | 39      | 2441            | 4.90                          | 3.09                  | 30          |
|         | 78      | 2480            | 4.79                          | 3.01                  | 30          |
|         | 0       | 2402            | 3.07                          | 2.03                  | 30          |
| π/4DPSK | 39      | 2441            | 3.22                          | 2.10                  | 30          |
|         | 78      | 2480            | 3.33                          | 2.15                  | 30          |
|         | 0       | 2402            | 3.10                          | 2.04                  | 30          |
| 8DPSK   | 39      | 2441            | 3.25                          | 2.11                  | 30          |
|         | 78      | 2480            | 3.47                          | 2.22                  | 30          |