TEST REPORT

of

FCC Part 15 Subpart C AND CANADA RSS-210

 \boxtimes New Application; \square Class I PC; \square Class II PC

Full Modular Approval

Product :	BT Module
Brand:	Radicom
Model:	RB1000, RB1000HM;BPM1000FCE
Model Difference:	RB1000, BPM1000FCE: Market Segmentation
	RB1000HM: Add a DIP test kit
FCC ID:	K7T-RB1000
IC:	2377A-RB1000
FCC Rule Part:	§15.247, Cat: DTS
IC Rule Part:	RSS-210 issue 8:2010, Annex 8
Applicant:	Radicom Research, Inc.
Address:	2148 Bering Drive, San Jose, California 95131 United States

Test Performed by: International Standards Laboratory

<Lung-Tan LAB> *Site Registration No. BSMI: SL2-IN-E-0013; MRA TW1036; TAF: 0997; IC: IC4067B-3;

*Address:

No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325, Taiwan *Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: **ISL-12LR159FC** Issue Date : **2012/10/02**

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

-2 of 53-

VERIFICATION OF COMPLIANCE

Applicant:	Radicom Research, Inc.
Product Description:	BT Module
Brand Name:	Radicom
Model No.:	RB1000, RB1000HM;BPM1000FCE
Model Difference:	RB1000, BPM1000FCE: Market Segmentation
woder Difference.	RB1000HM: Add a DIP test kit
FCC ID:	K7T-RB1000
IC:	2377A-RB1000
Date of test:	2012/09/23 ~ 2012/09/28
Date of EUT Received:	2012/09/23

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	DinoChen	Date:	2012/10/02
	Dion Chang / Engineer		
Prepared By:	makas	Date:	2012/10/02
	Eva Kao / Technical Supervisor		
Approved By:	Timent In	Date:	2012/10/02
	Vincent Su / Technical Manager		

Version

Version No.	Date	Description
00 2012/10/02		Initial creation of document

Table of Contents

1	GEN	ERAL INFORMATION	6
	1.1	Related Submittal(s) / Grant (s)	7
	1.2	Test Methodology	7
	1.3	Test Facility	
	1.4	Special Accessories	
	1.5	Equipment Modifications	7
2	SYS	TEM TEST CONFIGURATION	8
	2.1	EUT Configuration	8
	2.2	EUT Exercise	
	2.3	Test Procedure	
	2.4	Configuration of Tested System	9
3	SUM	IMARY OF TEST RESULTS	
4	DES	CRIPTION OF TEST MODES	
5	AC I	POWER LINE CONDUCTED EMISSION TEST	
	5.1	Standard Applicable:	
	5.2	Measurement Equipment Used:	11
	5.3	EUT Setup:	
	5.4	Measurement Procedure:	
	5.5	Measurement Result:	12
6	PEA	K OUTPUT POWER MEASUREMENT	
	6.1	Standard Applicable:	
	6.2	Measurement Equipment Used:	
	6.3	Test Set-up:	
	6.4	Measurement Procedure:	
	6.5	Measurement Result:	
7	6dB	Bandwidth & 99% Bandwidth	
	7.1	Standard Applicable:	
	7.2	Measurement Equipment Used:	
	7.3	Test Set-up:	
	7.4	Measurement Procedure:	
	7.5	Measurement Result:	
8		KHz BANDWIDTH OF BAND EDGES MEASUREMENT	
	8.1	Standard Applicable:	
	8.2 8.3	Measurement Equipment Used: Test SET-UP:	
	8.3 8.4	Measurement Procedure:	
	8.5	Field Strength Calculation:	
	8.6	Measurement Result:	
9	SPU	RIOUS RADIATED EMISSION TEST	
-	9.1	Standard Applicable	
	9.2	Measurement Equipment Used:	
	9.3	Test SET-UP:	
	9.4	Measurement Procedure:	
	9.5	Field Strength Calculation	
	9.6	Measurement Result:	

10	Peak	Power Spectral Density	
		Standard Applicable:	
		Measurement Equipment Used:	
		Test Set-up:	
		Measurement Procedure:	
	10.5	Measurement Result:	
11	ANTI	ENNA REQUIREMENT	
		Standard Applicable:	
	11.2	Antenna Connected Construction:	46
12	RF E	XPOSURE	
		Standard Applicable	
		Measurement Result:	

1 GENERAL INFORMATION

General:	
Product Name	BT Module
Brand Name	Radicom
Model Name	RB1000, RB1000HM, BPM1000FCE
Model Difference	RB1000, BPM1000FCE: Market Segmentation RB1000HM: Add a DIP test kit
Power Supply	3Vdc

Bluetooth:

Frequency Range:	2402 – 2480MHz		
Bluetooth Version:	V4.0(GFSK)		
Channel number:	40 channels		
Modulation type:	Digital Modulation (Direct Sequence Spread Spectrum)		
Transmit Power:	0.27 dBm		
Dwell Time:	N/A		
Operating Mode:	Point-to-Point		
Antenna Designation:	Printed Antenna, 1.07dBi		
Type of Emission:	1M05FXD		

The EUT is compliance with Bluetooth 4.0 Standard.

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.1 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: <u>K7T-RB1000</u> filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules and IC: <u>2377A-RB1000</u> filing to comply with Industry Canada RSS-210 issue 8: 2010 Annex 8. The composite system (digital device) is compliance with Subpart B is authorized under a DoC procedure.

1.2 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2003) and RSS-Gen: 2010. Radiated testing was performed at an antenna to EUT distance 3 meters.

Tested in accordance with Oct 2002 KDB558074 for compliance to FCC 47CFR 15.247 requirements

1.3 Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of **International Standards Laboratory** <Lung-Tan LAB> No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd., Lung-Tan Hsiang, Tao Yuan County 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003. FCC Registration Number is: TW1036, Canada Registration Number: 4067B-3.

1.4 Special Accessories

Not available for this EUT intended for grant.

1.5 Equipment Modifications

Not available for this EUT intended for grant.

2 SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

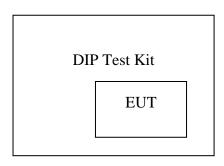
2.2 EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 7 and 13 of ANSI C63.4-2003.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and Average detector mode.


2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4-2003.

2.4 Configuration of Tested System

Fig. 1 Radiated Emission Configuration

Table 1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	Test Kit	N/A	N/A	N/A	N/A	N/A

3 SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result	
§15.207(a)	AC Power Line Conducted Emission	Compliant	
RSS-Gen §7.2.4		Compliant	
§15.247(b) (3),(4)	Peak Output Power	Compliant	
§A8.4(4)		Compliant	
§15.247(a)(2)	6dB Bandwidth		
§A8.2(a)	&	Compliant	
RSS-Gen §4.6.1	99% Power Bandwidth		
§15.247(d)	100 KHz Bandwidth Of		
§A8.5	Frequency Band Edges	Compliant	
§15.247(d)	Spurious Emission	Compliant	
§A8.5		Compliant	
§15.247(e)	Peak Power Density	Compliant	
§A8.2(b) & §A8.3(2)		Compliant	
§15.203			
RSS-GEN 7.1.2,	Antenna Requirement	Compliant	
RSS-210 issue 8,§A8.4			

4 DESCRIPTION OF TEST MODES

The EUT has been tested under engineering operating condition. Test program used to control the EUT for staying in continuous transmitting mode is programmed.

BT LE mode: Channel low (2402MHz), mid (2441MHz) and high (2480MHz) are chosen for full testing.

5 AC POWER LINE CONDUCTED EMISSION TEST

5.1 Standard Applicable:

According to \$15.207 and RSS-Gen \$7.2.4, frequency range within 150KHz to 30MHz shall not exceed the Limit table as below.

Frequency range		mits (uV)
MHz	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50
Note		

1. The lower limit shall apply at the transition frequencies

2.The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.2 Measurement Equipment Used:

AC Power Line Test Site						
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.	
TYPE		NUMBER	NUMBER	CAL.		
Conduction 03 -1 Cable	WOKEN	CFD 300-NL	Conduction 0-1	06/28/2012	06/28/2013	
EMI Receiver 12	ROHDE & SCHWARZ	ESCI	100804	07/13/2012	07/13/2013	
LISN 07	FCC Inc.	FCC-LISN-50-100-4 -02	07040	07/13/2012	07/13/2013	
LISN 08	FCC	FCC-LISN50-25-2-0 1	07039	07/13/2012	07/13/2013	

5.3 EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2003.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.

5.4 Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

5.5 Measurement Result:

N/A

-13 of 53-

6 PEAK OUTPUT POWER MEASUREMENT

6.1 Standard Applicable:

According to §15.247(b)(3),(4)(b)

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

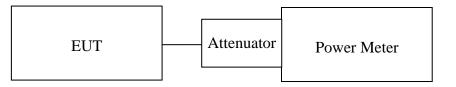
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.


According to RSS-210 issue 8,§A8.4(4), For systems employing digital modulation techniques operating in the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz, the maximum peak conducted output power shall not exceed 1 W. Except as provided in Section A8.4(5), the e.i.r.p. shall not exceed 4 W.

	Conducted Emission Test Site								
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.				
ТҮРЕ		NUMBER	NUMBER	CAL.					
Power Meter 05	Anritsu	ML2495A	1116010	04/17/2012	04/16/2013				
Power Sensor 05	Anritsu	MA2411B	34NKF50	04/16/2012	04/15/2013				
Temperature Chamber	KSON	THS-B4H100	2287	03/03/2012	03/02/2013				
DC Power supply	ABM	51850	N/A	06/17/2012	06/16/2013				
AC Power supply	EXTECH	CFC105W	NA	12/19/2011	12/18/2012				
Splitter	MCLI	PS4-199	12465	07/18/2012	07/17/2013				
Spectrum analyzer	Agilent	N9030A	MY51360021	03/11/2012	03/10/2013				

6.2 Measurement Equipment Used:

6.3 Test Set-up:

6.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

6.5 Measurement Result:

LE Mode

Frequency (MHz)	Peak Reading Power (dBm)	Cable Loss	Output Power (dBm)	Output Power (W)	Limit (W)
2402.00	-1.81	0.50	-1.31	0.00074	1
2442.00	-0.23	0.50	0.27	0.00106	1
2480.00	-0.82	0.50	-0.32	0.00093	1

7 6dB Bandwidth & 99% Bandwidth

7.1 Standard Applicable:

According to §15.247(a)(2), Systems using digital modulation techniques may operate in the 902 - 928 MHz,2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

According to RSS 210 issue 8, §8.2(a) Systems employing digital modulation techniques (which includes direct sequence) can now be certified under RSS-210 provided they comply with the following requirements: The minimum -6 dB bandwidth shall be at least 500 kHz.

7.2 Measurement Equipment Used:

Refer to section 6.2 for details.

7.3 Test Set-up:

Refer to section 6.3 for details.

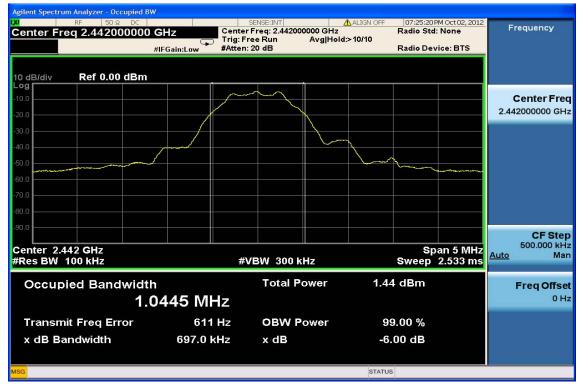
7.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100KHz, VBW = 3*RBW, Span= cover the complete power envelope of the signal of the UUT Sweep=auto
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

7.5 Measurement Result:

LE Mode

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Bandwidth (KHz)	Result
2402	0.694	1.045	> 500	PASS
2441	0.697	1.044	> 500	PASS
2480	0.694	1.041	> 500	PASS


Note: Refer to next page for plots.

SENSE:INT ALIGN OFF Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hold:>10/10 #Atten: 20 dB 23:41 PM Oct 02, 2012 Save State Span 5.0000 MHz Radio Std: None Ð Radio Device: BTS **Register 1** #IFGain:Low (empty) 10 dB/div Ref 0.00 dBm Loa **Register 2** (empty) **Register 3** (empty) **Register** 4 (empty) **Register 5** Span 5 MHz Sweep 2.533 ms (empty) Center 2.402 GHz #Res BW 100 kHz #VBW 300 kHz Total Power -0.91 dBm **Register 6** Occupied Bandwidth (empty) 1.0450 MHz **OBW Power** Transmit Freq Error 1.839 kHz 99.00 % x dB Bandwidth -6.00 dB To File .. 694.1 kHz x dB STATUS

6dB Band Width Test Data CH-Low

6dB Band Width Test Data CH-Mid

6dB Band Width Test Data CH-High

8 100KHz BANDWIDTH OF BAND EDGES MEASUREMENT

8.1 Standard Applicable:

According to §15.247(c), in any 100 KHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

According to RSS-210 issue 8, §A8.5, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

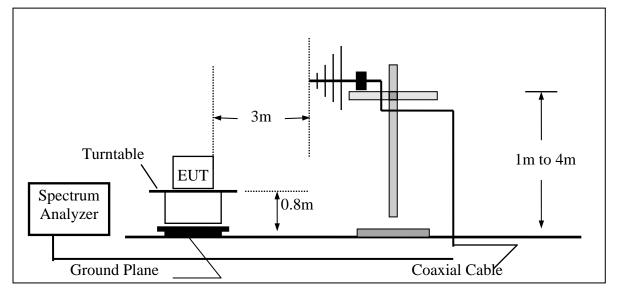
8.2 Measurement Equipment Used:

8.2.1 Conducted Emission at antenna port:

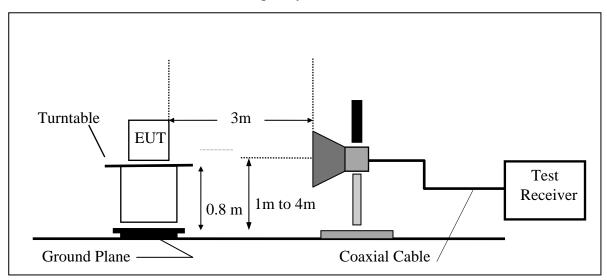
Refer to section 6.2 for details.

8.2.2 Radiated emission:

Chamber 14(966)								
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.			
ТҮРЕ		NUMBER	NUMBER	CAL.				
Spectrum Analyzer 21(26.5GHz)	Agilent	N9010A	MY49060537	07/17/2012	07/16/2013			
Spectrum Analyzer 20(6.5GHz)	Agilent	E4443A	MY48250315	05/24/2012	05/23/2013			
Dipole antenna	SCHWARZBECK	VHAP,30-300	919	11/16/2011	11/15/2013			
Dipole antenna	SCHWARZBECK	UHAP,300-100 0	1195	10/25/2011	10/24/2013			
Bilog Antenna30-1G	Schaffner	CBL 6111B	2756	12/27/2011	12/26/2012			
Horn antenna1-18G	COM-POWER	AH118	2011071401	03/01/2012	02/29/2013			
Horn antenna1-18G(06)	EMCO	3117	0006665	09/21/2011	09/20/2012			
Horn antenna18-26G(04)	Com-power	AH-826	081001	05/04/2011	05/03/2013			
Preamplifier9-1000M	HP	8447D	NA	02/10/2012	02/09/2013			
Preamplifier1-18G	MITEQ	AFS44-001018 00-25-10P-44	1329256	07/23/2012	07/22/2013			
Preamplifier1-26G	EM	EM01M26G	NA	02/21/2012	02/202013			
Cable1-18G	HUBER SUHNER	Sucoflex 106	NA	02/10/2012	02/09/2013			
Cable UP to 1G	HUBER SUHNER	RG 214/U	NA	12/14/2011	12/13/2012			
SUCOFLEX 1GHz~40GHz cable	HUBER SUHNER	Sucoflex 102	27963/2&3742 1/2	09/21/2011	09/20/2012			
Signal Generator	R&S	SMU200A	102330	02/07/2012	02/06/2013			
Signal Generator	Anritsu	MG3692A	20311	05/07/2011	05/06/2012			
2.4G Filter	Micro-Tronics	Brm50702	76	10/22/2011	10/21/2012			


8.3 Test SET-UP:

8.3.1 Conducted Emission at antenna port:


Refer to section 6.3 for details.

8.3.2 Radiated emission:

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

8.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span=25MHz, Sweep = auto
- $5.\ Mark Peak, 2.390GHz and 2.4835GHz and record the max. level.$
- 6. Repeat above procedures until all frequency measured were complete.

8.5 Field Strength Calculation:

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$\mathbf{FS} = \mathbf{RA} + \mathbf{AF} + \mathbf{CL} - \mathbf{AG}$

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

8.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

Band Edges Test Data CH-Low

Band Edges Test Data CH-High

Radiated Emission:

Operation ModeTX CH LowTest Date2012/09/27Fundamental Frequency2402 MHzTest ByLakeTemperature25 °CHumidity60 %									
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H	
1	2373.73	48.25	-11.54	36.71	74.00	-37.29	Peak	VERTICAL	
2	2390.00	46.70	-11.48	35.22	74.00	-38.78	Peak	VERTICAL	
1	2353.90	48.37	-11.58	36.79	74.00	-37.21	Peak	HORIZONTAL	
2	2390.00	45.92	-11.48						

Operation ModeTX CH HighFundamental Frequency2480 MHzTemperature25 °C

Test Date2012/09/27Test ByLakeHumidity60 %

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	2483.50	45.10	-11.25	33.85	54.00	-20.15	Average	VERTICAL
2	2483.50	64.90	-11.25	53.65	74.00	-20.35	Peak	VERTICAL
1	2483.50	54.70	-11.25	43.45	74.00	-30.55	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

9 SPURIOUS RADIATED EMISSION TEST

9.1 Standard Applicable

According to \$15.247(c), all other emissions outside these bands shall not exceed the general radiated emission limits specified in \$15.209(a). And according to \$15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

According to RSS-210 issue 8, §A8.5, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

9.2 Measurement Equipment Used:

9.2.1 Conducted Emission at antenna port: Refer to section 6.2 for details.

9.2.2 Radiated emission:

Refer to section 7.2 for details.

9.3 Test SET-UP:

9.3.1 Conducted Emission at antenna port: Refer to section 6.3 for details.

9.3.2 Radiated emission:

Refer to section 7.3 for details.

-26 of 53-

9.4 Measurement Procedure:

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 4. When measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Repeat above procedures until all frequency measured were complete.

9.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$\mathbf{FS} = \mathbf{RA} + \mathbf{AF} + \mathbf{CL} - \mathbf{AG}$

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

9.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

Conducted Spurious Emission Measurement Result (LT mode) Ch Low 30MHz – 3GHz

		ectru	m Ani	alyzer - Swept S	SA							
L XI F			RF			SE	NSE:INT		ALIGN OFF		M Sep 25, 2012	Marker
Ma	rker	2 :	o15	.31000000	DO MHZ PNO: Fast	Trig: Fre	e Run		ype: Log-Pwr old:>100/100	TY	CE 123456 PE MWWWWW	
					IFGain:Low					D	ET P N N N N N	Select Marker
									N	lkr2 51	5.3 MHz	
40.4	lB/di∖		Dof	⁻ 10.00 dBr	~					-66.4	71 dBm	4
Log		4	Re	то.оо цы						1		
0.0										₽'		
-10.0												Normal
-20.0			-								-23.57 dBm	
-30.0) <u> </u>											
-40.0) —											Delta
-50.0	i 🗕											
-60.0				<u>^</u> 2						hun		
				•						Վլլլլլլ		
-70.0	utt.	-	acore a	and the second second	and the second second	astronomer and a second second second	and the second	and and a start of the start of	And have a second designed and the second designed and			Fixed⊳
-80.0	· —											
- 4 -										C t		
	rt 10				40.0				0	Stop 3	.000 GHz	
#RO	es B	VV 1	υu	КПZ	#V	BW 300 kHz			sweep	280 ms (1001 pts)	Off
MKB	MODE				×	Y		NCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	5 19 H H H
1	N	1	f		2.402 0 GHz 515.3 MHz	-3.576 d -66.471 d						
2					515.3 WIFIZ	-00.471 0	- me					
4												Properties ►
5												
7												
8												
9 10												More
11												1 of 2
12												6
MSG									STATUS			

Ch Low 3GHz – 26.5GHz

Wikright Stop Chool of Children Next Pk Right 10 46/4/w 4/200<	Agilent Spectrum Analyzer - Swept SA						
Marker T 4.794000000000 GHz Trig: Free Run Atten: 20 dB Avg Hold: 9/100 Mitre Ker Z 2 4 8 4 5 4 4 7 4 4 7 9 4 GHz 0 dB/div Ref 10.00 dBm -53.629 dBm Mkr14.794 GHz Next Peak 0 dB/div Ref 10.00 dBm -53.629 dBm Next Pk Right 100			SENSE:INT				Peak Search
Image: Start 3.00 GHz Y Function	Marker 1 4.79400000000		Tria: Free Run			TYPE M MANAAAAAA	
Mkr1 4.794 GHz Next Peak 10 dE/div Ref 10.00 dBm -53.629 dBm Next Pk Right 000		IFGain:Low				DET PNNNN	
10 dB/div Ref 10.00 dBm -53.629 dBm 000					R.	1kr1 4 704 CH-	Next Peak
Log Intervention Interven					IV	52 629 dBm	
000 0	10 dB/div Ref 10.00 dBm					-33.029 uBm	
100 1							
200 23.57 dBm 300 1 400 1 500 1 6 1 6 1 6 1 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Next Pk Right</td>							Next Pk Right
33.0 30.0 Marker Delta 30.0 Marker Delta Marker Delta 30.0 Marker Delta Marker Delta 30.0 Marker Delta Marker Delta Marker Delta Marker Delta Marker Delta Marker Delta Mkr Mkr CF Mkr Mkr Mkr Mkr Mkr CF Mkr More 10.0 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
40.0 1	-20.0					-23.57 dBm	
-50.0 -1	-30.0						
60.0	-40.0						Next Pk Left
60.0	-50.0						
KIR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 1 4.794 GHz 53.629 dBm 3 4 <th>CO.0</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CO.0						
Start 3.00 GHz Stop 26.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.20 s (1001 pts) Mkr MoDe TRC SCL X Y FUNCTION FUNCTION VIDTH FUNCTION VALUE 1 N 1 f 4.794 GHz -53.629 dBm - - - - - - Mkr → Ref Lvi 3 - <th>-80.0</th> <td>electron warming</td> <td>on & Law Manager Manager of the</td> <td>And a state of the second</td> <td>mannantan</td> <td>orginary half lange lange of the Ling of March</td> <td></td>	-80.0	electron warming	on & Law Manager Manager of the	And a state of the second	mannantan	orginary half lange lange of the Ling of March	
Start 3.00 GHz Stop 26.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.20 s (1001 pts) Mkr, MODE, TBC, SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 f 4.794 GHz -53.629 dBm Mkr, Sweep 2.20 s (1001 pts) Mkr, CF 3 4	-70.0 -70.0						Marker Delta
#Res BW 100 kHz #VBW 300 kHz Sweep 2.20 s (1001 pts) MKR Mode TRC Scl X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 f 4.794 GHz -53.629 dBm Here	-80.0						
#Res BW 100 kHz #VBW 300 kHz Sweep 2.20 s (1001 pts) MKR Mode TRC Scl X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 f 4.794 GHz -53.629 dBm Here					_	Â	
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 f 4.794 GHz -53.629 dBm - - 3 - - - - - - 4 - - - - - - 6 - - - - - - 7 - - - - - - 9 - - - - - - 10 - - - - - 1 of 2		40.000.00			0	Stop 26.00 GHz	
1 N 1 f 4.794 GHz -53.629 dBm 2 3 3 3 3 3 Mkr→Ref Lvl 4	#Res BW 100 KHZ	#VBW	300 KHZ		sweep	2.20 s (1001 pts)	Mkr→CF
2 1 </td <th></th> <td>2</td> <td></td> <td>FUNCTION</td> <td>FUNCTION WIDTH</td> <td>FUNCTION VALUE</td> <td></td>		2		FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
3 4		4.794 GHz ·	53.629 dBm				
6 6 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
6 0 0 0 7 0 0 0 9 0 0 0 10 0 0 0 11 0 0 0							Mkr→RefLvl
7 8 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>and a second second</td>							and a second
9 Amount More 10 Amount 1 of 2 11 Amount 1 of 2							
10 10 10 10 10 10 10 10 10 10 10 10 10 1							
							1 of 2
	12						
MSG STATUS	MSG				STATUS		

Ch Mid 30MHz – 3GHz

LXI RL RF 50 Q DC						
Marker 2 898.030000000	MHz	SENSE:IN		ALIGN OFF	07:21:28 PM Sep 25, 2012 TRACE 1 2 3 4 5 1	Marker
	PNO: Fast IFGain:Low	Trig: Free Run Atten: 20 dB	Avgji	Hoid:>100/100	TYPE M WWWWW DET P N N N N	Select Marker
10 dB/div Ref 10.00 dBm				M	lkr2 898.0 MHz -56.012 dBm	2
-20.0					-21.82 dBm	Normal
-30.0 -40.0 -50.0	2					Delta
-60.0 -70.0 -80.0		وم الم من الم	gengellen genigeter vor fotteteter fo	www.mar.Alutationalist	× 44,000,000,000,000,000,000,000,000,000,	Fixed⊳
Start 10 MHz #Res BW 100 kHz		300 kHz	FUNCTION	Sweep	Stop 3.000 GHz 286 ms (1001 pts) FUNCTION VALUE	Off
1 N 1 f 2.4 2 N 1 f 6 3 4 - - - 5 - - - - 6 - - - - - 7 - - - - - -	140 9 GHz 398.0 MHz	-1.827 dBm -56.012 dBm				Properties▶
8 9 10 11 12						More 1 of 2

Ch Mid 3GHz – 26.5GHz

Agilent Spectrum Analyzer - Swept SA				
Marker 1 4.88600000000000000000000000000000000000) GHz	Avg Type: Log-Pw	r TRACE 123456	Peak Search
	PNO: Fast IFGain:Low Atten: 20 dl		TYPE MWWWWW DET PNNNN	Next Peak
10 dB/div Ref 10.00 dBm			Mkr1 4.886 GHz -53.372 dBm	Nextreak
0.00				Next Pk Right
-20.0			-21.82 dBm	
-30.0				Next Pk Left
-50.0				
-70.0 en prototo and and and and and	Mary Mary & Mary rank and a survey for a survey of the sur	And a state of the second and the second sec	and a second	Marker Delta
			Oton 26 00 Olla	
Start 3.00 GHz #Res BW 100 kHz	#VBW 300 kHz	Swe	Stop 26.00 GHz ep 2.20 s (1001 pts)	
MKR MODE TRC SCL X	4.886 GHz -53.372 dBn	FUNCTION FUNCTION WID	TH FUNCTION VALUE	
3 4				Mkr→RefLvl
5 6 7				
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				More
11 12 12 12 12 12 12 12 12 12 12 12 12 1				1 of 2
MSG		STA	TUS	

Ch High 30MHz – 3GHz

Agilent Spectrum Analyzer - Swept SA WRL RF 50 Q DC Display Line -20.50 dBm	BNO: East Trig: Free Ru	Avg Type: Log-Pwr	07:23:30 PM Sep 25, 2012 TRACE 1 2 3 4 5 6 TYPE M WAAWAAA	Display
10 dB/div Ref 10.00 dBm	PNO: Fast Free Ru IFGain:Low Atten: 20 dB		r2 2.055 2 GHz -68.898 dBm	Annotation►
-10.0			1	Title►
-30.0 -40.0 -60.0				Graticule On Off
-60.0 -70.0 -80.0	ang na sa ang ng n	2		Display Line -20.50 dBm
Start 10 MHz #Res BW 100 kHz	#VBW 300 kHz		Stop 3.000 GHz 286 ms (1001 pts)	
MKR MODE TRC SCL X 1 N 1 f 2.4 2 N 1 f 2.4 3 1 f 2.0 3 4 5 5 5 5 6 7 7 7 7 8 9 9 1 1 10 1 1 1 1 12 1 1 1 1	79 7 GHz 55 2 GHz -68.898 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	System Display≯ Settings

Ch High 3GHz – 26.5GHz

Agilent Spectrum Analyzer - Swept SA				
Marker 1 4.95500000000	0 GHz PN0: Fast C	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M WWWWWWW	Peak Search
10 dB/div Ref 10.00 dBm	IFGain:Low Atten: 20 dB		DET P NNNNN Mkr1 4.955 GHz -56.001 dBm	Next Peak
-10.0			-20.50 dBm	Next Pk Right
-30.0 -40.0 -50.0				Next Pk Left
-60.0 -70.0	Low and the second s	teretighting and a state of the second state of the second state of the second state of the second state of the	alogonoria algania ang ang ang ang ang ang ang ang ang an	Marker Delta
Start 3.00 GHz #Res BW 100 kHz	#VBW 300 kHz 4.955 GHz -56.001 dBm	FUNCTION FUNCTION WIDT	Stop 26.00 GHz p 2.20 s (1001 pts)	Mkr→CF
2 3 4 5 6 7				Mkr→RefLvl
8 9 10 11 12				More 1 of 2
MSG		STAT	US	

Funda	tion Mode amental Fre erature	quency 24	K CH Low 02MHz ℃	MHz T				2012/09/27 Lake 60 %
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	106.63	34.74	-14.56	20.18	43.50	-23.32	Peak	VERTICAL
2	393.75	32.54	-9.71	22.83	46.00	-23.17	Peak	VERTICAL
3	582.90	31.83	-7.54	24.29	46.00	-21.71	Peak	VERTICAL
4	800.18	32.27	-5.42	26.85	46.00	-19.15	Peak	VERTICAL
5	901.06	32.11	-4.36	27.75	46.00	-18.25	Peak	VERTICAL
6	976.72	32.19	-3.39	28.80	54.00	-25.20	Peak	VERTICAL
1	106.63	35.52	-14.56	20.96	43.50	-22.54	Peak	HORIZONTAL
2	461.65	33.30	-9.13	24.17	46.00	-21.83	Peak	HORIZONTAL
3	593.57	32.32	-7.48	24.84	46.00	-21.16	Peak	HORIZONTAL
4	688.63	31.30	-6.60	24.70	46.00	-21.30	Peak	HORIZONTAL
5	782.72	31.76	-5.57	26.19	46.00	-19.81	Peak	HORIZONTAL
6	881.66	31.97	-4.48	27.49	46.00	-18.51	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Funda	tion Mode amental Fre erature	equency 24	X CH Mid 41MHz 5 ℃	l		Test Date2012/09/27Test ByLakeHumidity60 %		
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	106.63	35.00	-14.56	20.44	43.50	-23.06	Peak	VERTICAL
2	498.51	32.67	-8.76	23.91	46.00	-22.09	Peak	VERTICAL
3	632.37	32.00	-7.02	24.98	46.00	-21.02	Peak	VERTICAL
4	744.89	31.67	-5.95	25.72	46.00	-20.28	Peak	VERTICAL
5	863.23	32.62	-4.61	28.01	46.00	-17.99	Peak	VERTICAL
6	942.77	32.12	-3.67	28.45	46.00	-17.55	Peak	VERTICAL
1	106.63	36.39	-14.56	21.83	43.50	-21.67	Peak	HORIZONTAL
2	461.65	33.82	-9.13	24.69	46.00	-21.31	Peak	HORIZONTAL
3	611.03	31.82	-7.29	24.53	46.00	-21.47	Peak	HORIZONTAL
4	681.84	31.30	-6.64	24.66	46.00	-21.34	Peak	HORIZONTAL
5	864.20	31.86	-4.59	27.27	46.00	-18.73	Peak	HORIZONTAL
6	935.01	32.58	-3.79	28.79	46.00	-17.21	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Operation ModeTX CH HighFundamental Frequency2480MHzTemperature25 °C						7	Test Date Test By Iumidity	2012/09/27 Lake 60 %	
	No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	106.63	32.22	-14.56	17.66	43.50	-25.84	Peak	VERTICAL
	2	386.96	31.87	-9.84	22.03	46.00	-23.97	Peak	VERTICAL
	3	494.63	31.52	-8.81	22.71	46.00	-23.29	Peak	VERTICAL
	4	647.89	31.75	-6.82	24.93	46.00	-21.07	Peak	VERTICAL

-4.54

-3.51

-14.56

-9.13

-7.48

-6.09

-4.85

-4.09

Remark:

5

6

 $\frac{1}{2}$

3

4

5

6

871.96

957.32

106.63

461.65

593.57

735.19

838.98

916.58

31.62

32.61

35.69

33.25

32.91

32.08

31.26

32.50

1 No further spurious emissions detected from the lowest internal frequency and 30MHz.

46.00

46.00

43.50

46.00

46.00

46.00

46.00

46.00

-18.92

-16.90

-22.37

-21.88

-20.57

-20.01

-19.59

-17.59

Peak

Peak

Peak

Peak

Peak

Peak

Peak

Peak

VERTICAL VERTICAL

HORIZONTAL

HORIZONTAL

HORIZONTAL

HORIZONTAL

HORIZONTAL

HORIZONTAL

2 Measuring frequencies from the lowest internal frequency to the 1GHz.

27.08

29.10

21.13

24.12

25.43

25.99

26.41

28.41

- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

		-/	
Operation Mode	TX CH Low	Test Date	2012/09/27
Fundamental Frequency	2402MHz	Test By	Lake
Temperature	25 °C	Pol	Ver.
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4804.00	45.74	-2.65	43.09	74.00	-30.91	Peak	VERTICAL
2	7206.00							VERTICAL
3	9608.00							VERTICAL
4	12010.00							VERTICAL
1	4824.00	45.71	-2.65	43.06	74.00	-30.94	Peak	HORIZONTAL
2	7206.00							HORIZONTAL
3	9608.00							HORIZONTAL
4	12010.00							HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

		-,	
Operation Mode	TX CH Mid	Test Date	2012/09/27
Fundamental Frequency	2441MHz	Test By	Lake
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4884.00	46.79	-2.39	44.40	74.00	-29.60	Peak	VERTICAL
2	7323.00							VERTICAL
3	9764.00							VERTICAL
4	12205.00							VERTICAL
1	4884.00	46.81	-2.39	44.42	74.00	-29.58	Peak	HORIZONTAL
2	7323.00							HORIZONTAL
3	9764.00							HORIZONTAL
4	12205.00							HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Radiated Spurious Emission Measurement Result (above 10112)								
Operation Mode	TX CH High	Test Date	2012/09/27					
Fundamental Frequency	2480MHz	Test By	Lake					
Temperature	25 °C	Pol	Ver./Hor					
Humidity	60 %							

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4960.00	44.60	-2.13	42.47	74.00	-31.53	Peak	VERTICAL
2	7440.00							VERTICAL
3	9920.00							VERTICAL
4	12400.00							VERTICAL
1	4960.00	43.75	-2.13	41.62	74.00	-32.38	Peak	HORIZONTAL
2	7440.00							HORIZONTAL
3	9920.00							HORIZONTAL
4	12400.00							HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Opera	tion Mode	RZ	X CH Lov	V		Test Date 2012/09/27		
Funda	amental Fre	equency 24	02MHz			Tes	st By 🛛	Lake
Temp	erature	25	°C			Hu	midity	60 %
Na	Energ	Deeding	Eastan	Laval	T insi4	Over	Damaarla	Del
No	Freq	Reading	Factor	Level	Limit	Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	106.63	35.32	-14.56	20.76	43.50	-22.74	Peak	VERTICAL
2	405.39	32.34	-9.56	22.78	46.00	-23.22	Peak	VERTICAL
3	584.84	31.33	-7.53	23.80	46.00	-22.20	Peak	VERTICAL
4	739.07	31.82	-6.03	25.79	46.00	-20.21	Peak	VERTICAL
5	790.48	31.94	-5.51	26.43	46.00	-19.57	Peak	VERTICAL
6	944.71	32.19	-3.64	28.55	46.00	-17.45	Peak	VERTICAL
1	90.14	36.10	-17.43	18.67	43.50	-24.83	Peak	HORIZONTAL
2	461.65	33.40	-9.13	24.27	46.00	-21.73	Peak	HORIZONTAL
3	547.98	31.67	-7.78	23.89	46.00	-22.11	Peak	HORIZONTAL
4	676.02	31.59	-6.67	24.92	46.00	-21.08	Peak	HORIZONTAL
5	859.35	32.40	-4.63	27.77	46.00	-18.23	Peak	HORIZONTAL
6	935.01	31.53	-3.79	27.74	46.00	-18.26	Peak	HORIZONTAL
0	755.01	51.55	-3.17	27.74	- 0.00	-10.20	ТСАК	TORIZONIA

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Operation ModeRX CH MidTest DateFundamental Frequency2441MHzTest ByTemperature25 °CHumidity								2012/09/27 Lake 50 %
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	259.89	30.24	-12.01	18.23	46.00	-27.77	Peak	VERTICAL
2	398.60	30.84	-9.61	21.23	46.00	-24.77	Peak	VERTICAL
3	567.38	31.84	-7.65	24.19	46.00	-21.81	Peak	VERTICAL
4	648.86	31.79	-6.81	24.98	46.00	-21.02	Peak	VERTICAL
5	823.46	31.77	-5.08	26.69	46.00	-19.31	Peak	VERTICAL
6	941.80	32.00	-3.68	28.32	46.00	-17.68	Peak	VERTICAL
1	332.64	30.90	-10.96	19.94	46.00	-26.06	Peak	HORIZONTAL
2	461.65	35.08	-9.13	25.95	46.00	-20.05	Peak	HORIZONTAL
3	593.57	34.36	-7.48	26.88	46.00	-19.12	Peak	HORIZONTAL
4	666.32	31.91	-6.71	25.20	46.00	-20.80	Peak	HORIZONTAL
5	794.36	31.95	-5.47	26.48	46.00	-19.52	Peak	HORIZONTAL
6	888.45	32.37	-4.44	27.93	46.00	-18.07	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Funda	ation Mode amental Fre erature	equency 24	X CH Hig 80MHz 5 °C	h		Т	est Date est By lumidity	2012/09/27 Lake 60 %
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	284.14	31.41	-12.07	19.34	46.00	-26.66	Peak	VERTICAL
2	416.06	31.78	-9.48	22.30	46.00	-23.70	Peak	VERTICAL
3	573.20	30.80	-7.60	23.20	46.00	-22.80	Peak	VERTICAL
4	712.88	31.18	-6.38	24.80	46.00	-21.20	Peak	VERTICAL
5	763.32	31.99	-5.76	26.23	46.00	-19.77	Peak	VERTICAL
6	981.57	32.08	-3.36	28.72	54.00	-25.28	Peak	VERTICAL

Remark:

 $\frac{1}{2}$

3

4

5

6

394.72

461.65

639.16

756.53

839.95

925.31

31.20

32.21

30.71

32.04

31.96

31.91

-9.70

-9.13

-6.93

-5.82

-4.84

-3.96

1 No further spurious emissions detected from the lowest internal frequency and 30MHz.

46.00

46.00

46.00

46.00

46.00

46.00

-24.50

-22.92

-22.22

-19.78

-18.88

-18.05

Peak

Peak

Peak

Peak

Peak

Peak

HORIZONTAL

HORIZONTAL

HORIZONTAL

HORIZONTAL

HORIZONTAL

HORIZONTAL

2 Measuring frequencies from the lowest internal frequency to the 1GHz.

21.50

23.08

23.78

26.22

27.12

27.95

- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

		_/	
Operation Mode	RX mode	Test Date	2012/09/27
Fundamental Frequency	2402MHz	Test By	Lake
Temperature	25 °C	Pol	Ver.
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4759.00	46.92	-2.80	44.12	74.00	-29.88	Peak	VERTICAL
1	4143.00	46.99	-5.12	41.87	74.00	-32.13	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

		_/	
Operation Mode	RX mode	Test Date	2012/09/27
Fundamental Frequency	2441MHz	Test By	Lake
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		
-			

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	3632.00	48.83	-7.44	41.39	74.00	-32.61	Peak	VERTICAL
1	4304.00	46.10	-4.47	41.63	74.00	-32.37	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

r r r			
Operation Mode	RX mode	Test Date	2012/09/27
Fundamental Frequency	2480MHz	Test By	Lake
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4605.00	45.86	-3.32	42.54	74.00	-31.46	Peak	VERTICAL
1	4724.00	47.90	-2.92	44.98	74.00	-29.02	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

10 Peak Power Spectral Density

10.1 Standard Applicable:

According to §15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

According to RSS-210 issue 8, §A8.2(b) and §A8.3(2), The transmitter power spectral density (into the antenna) shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration.

10.2 Measurement Equipment Used:

Refer to section 6.2 for details.

10.3 Test Set-up:

Refer to section 6.3 for details.

10.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW =100KHz, VBW = 300KHz, Span =5 to 30% greater than emission BW, Sweep=Auto
- 4. Record the max. reading.
- 5. Repeat above procedures until all frequency measured were complete.

10.5 Measurement Result:

LT mode Mode

Frequency		ower Density BWCF Reading		Maximum Limit	
MHz	(dBm)/100KHz	(dB)	Level (dBm)/3KHz	(dBm)	
2402	-3.749	-15.2	-18.949	8	
2441	-1.898	-15.2	-17.098	8	
2480	-0.634	-15.2	-15.834	8	

BWCF(bandwidth correction factor)=10log (3 kHz/100KHz)

= -15.2 dB)

LT mode Power Spectral Density Test Plot (CH-Low)

				10					ım Analyzer - Swe	
Peak Search	M Sep 25, 2012 E 1 2 3 4 5 6	TRAC	ALIGN OFF	Avg Type	ENSE:INT		Hz	DC 00000	RF 50 Ω 2.40199000	Marker 1
NeutBeat		DE		Avg Hold:		Trig: Free Atten: 20	PNO: Wide 😱 Gain:Low			
Next Peak	90 GHz 49 dBm	2.401 9 -3.74	Mkr1					dBm	Ref 10.00 c	10 dB/div Log r
Next Pk Right					1					0.00
Next Pk Lef				<u>\</u>						-10.0
Marker Delta			\							30.0
Mkr→Cf	, mar and	Lange Margare							-	50.0
Mkr→RefLv										70.0
More 1 of 2	.000 MHz 1001 pts)	Span 5 2.53 ms (Sweep		2	300 kHz	#VBW		02000 GHz 100 kHz	Center 2. #Res BW
			STATUS							1SG

Power Spectral Density Test Plot (CH-Mid) Agilent Spectrum Analyzer - Swept SA

Power Spectral Density Test Plot (CH-High)

Arker 1 2.4799900000000	PNO: Wide 😱 Trig: Free Run	Avg Type: Log-Pwr	07:12:31 PM Sep 25, 2012 TRACE 1 2 3 4 5 5 TYPE M M W W W W W	Peak Search
0 dB/div Ref 10.00 dBm	IFGain:Low Atten: 20 dB	Mkr1	2.479 990 GHz -0.634 dBm	Next Pea
0.00		λ		Next Pk Rigi
20.0				Next Pk Le
40.0				Marker De
				Mkr→C
0.0				Mkr→RefL
Center 2.480000 GHz Res BW 100 kHz	#VBW 300 kHz	Sweep	Span 5.000 MHz 2.53 ms (1001 pts)	Mo 1 of

11 ANTENNA REQUIREMENT

11.1 Standard Applicable:

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

According to RSS-GEN 7.1.2, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to RSS-210 Annex 8 (Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands) or RSS-210 Annex 9 (Local Area Network Devices), the total antenna gain shall be ad

ded to the measured RF output power before using the specified power limits. For devices subject to RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

11.2 Antenna Connected Construction:

The directional gins of antenna used for transmitting is 1.07 dBi, and the antenna connector is designed with unique type RF connector and no consideration of replacement. Please see EUT photo and antenna spec. for details.

12 RF EXPOSURE

12.1 Standard Applicable

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a Portable device.

12.2 Measurement Result:

This is a portable device and the Max peak output power is 0.27dBm (0.001 W) lower than low threshold 60/fGHz mW (24.48mW).

The SAR measurement is not necessary.