

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Belkin International, Inc.
Applicant Address	12045 East Waterfront Drive, Playa Vista, CA 90094
FCC ID	K7SF9K1102V2

Product Name	N600 DB Wireless N+ Router		
Brand Name	belkin		
Model No.	F9K1102V4		
Test Rule	7 CFR FCC Part 15 Subpart C § 15.247		
Test Freq. Range	2400 ~ 2483.5MHz		
Received Date	Mar. 04, 2016		
Final Test Date	Jun. 06, 2016		
Submission Type	Class II Change		

Statement

Test result included in this report is for the IEEE 802.11n and IEEE 802.11b/g of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C, KDB558074 D01 v03r05 and KDB 662911 D01 v02r01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	VERI	FICATION OF COMPLIANCE	. 1
2.	SUMI	MARY OF THE TEST RESULT	. 2
3.	GEN	ERAL INFORMATION	. 3
	3.1.	Product Details	3
	3.2.	Accessories	4
	3.3.	Table for Filed Antenna	5
	3.4.	Table for Carrier Frequencies	6
	3.5.	Table for Test Modes	7
	3.6.	Table for Testing Locations	7
	3.7.	Table for Class II Change	
	3.8.	Table for Supporting Units	8
	3.9.	Test Configurations	9
4.	TEST	RESULT	11
	4.1.	AC Power Line Conducted Emissions Measurement	.11
	4.2.	Radiated Emissions Measurement	
	4.3.	Antenna Requirements	.21
5.	list (OF MEASURING EQUIPMENTS	22
6.	MEA		23
AP	PEND	DIX A. TEST PHOTOS	A3

History of This Test Report

VERSION	DESCRIPTION	ISSUED DATE
Rev. 01	Initial issue of report	Jun. 22, 2016

Project No: CB10506093

1. VERIFICATION OF COMPLIANCE

Product Name	:	N600 DB Wireless N+ Router
Brand Name	:	belkin
Model No.	:	F9K1102V4
Applicant	:	Belkin International, Inc.
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 04, 2016 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

P m

Sam Chen SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Part Rule Section Description of Test				
4.1	15.207	AC Power Line Conducted Emissions	Complies		
4.2	15.247(d) Radiated Emissions		Complies		
4.3	15.203	Antenna Requirements	Complies		

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	IEEE 802.11b/g: WLAN (1TX, 1RX)
	IEEE 802.11n: WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	IEEE 802.11b: DSSS
	IEEE 802.11g: OFDM
	IEEE 802.11n: see the below table
Data Modulation	IEEE 802.11b: DSSS (BPSK / QPSK / CCK)
	IEEE 802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	IEEE 802.11b: DSSS (1/ 2/ 5.5/11)
	IEEE 802.11g: OFDM (6/9/12/18/24/36/48/54)
	IEEE 802.11n: see the below table
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description		
Beamforming Function	With beamforming	☑ Without beamforming	

Antenna and Band width

Antenna	Singl	e (TX)	Two (TX)		
Band width Mode	20 MHz 40 MHz		20 MHz	40 MHz	
IEEE 802.11b	V	X X		х	
IEEE 802.11g	V	х	х	х	
IEEE 802.11n	х	х	V	V	

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS			
802.11n (HT20)	MCS 8-15				
802.11n (HT40)	MCS 8-15				
Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput).					
Then EUT supports HT20 and HT40.					
Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n					

3.2. Accessories

Power	Brand	Model	Rating			
Adapter	LEI MU12AR120100-A1		Input: 100-240V ~ 50/60Hz 0.3A Output: 12V, 1A			
	Others					
RJ-45 Cable*1, Non-shielded, 1.2m						

3.3. Table for Filed Antenna

Ant.	Ant. Brand Model Name Antenna Type Connector	Gain (dBi)		Domark			
	ыана		America type	Connector	2.4GHz	5GHz	Remark
1	-	-	PIFA Antenna	I-PEX	3.95	6.27	TX/RX
2	-	-	PIFA Antenna	I-PEX	3.80	4.51	TX/RX

Note: The EUT has two antennas.

<For 2.4GHz Band>:

For IEEE 802.11b/g mode (1TX/1RX):

Only Chain 1 can be used as transmitting/receiving antenna.

For IEEE 802.11n mode (2TX/2RX):

Both Chain 1 and Chain 2 could transmit/receive simultaneously.

<For 5GHz Band>:

For IEEE 802.11a mode (1TX/1RX):

Only Chain 1 can be used as transmitting/receiving antenna.

For IEEE 802.11n mode (2TX/2RX):

Both Chain 1 and Chain 2 could transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

There are two bandwidth systems.

For 20MHz bandwidth systems, use Channel 1~Channel 11.

For 40MHz bandwidth systems, use Channel $3\sim$ Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400~2483.5MHz	3	2422 MHz	9	2452 MHz
2400~2463.5WHz	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
AC Power Line Conducted Emissions	Normal Link	-	-	-
Radiated Emissions 9kHz~1GHz	Normal Link	-	-	-

Note: The EUT can only be used at Y axis position

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. Normal Link

For Radiated Emission test:

Mode 1. Normal Link

For Co-location MPE:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Co-location Maximum Permissible Exposure (Please refer to FA4N172-29AA) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

3.6. Table for Testing Locations

Test Site Location										
Address:	No.8, L	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.								
TEL:	886-3-	656-9065								
FAX:	886-3-	656-9085								
Test Site	No.	Site Category	Location	FCC Designation No.	IC File No.					
03CH01-CB SAC Hsin Chu TW0006 IC 4086D										
CO01-	CO01-CB Conduction Hsin Chu TW0006 IC 4086D									

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Class II Change

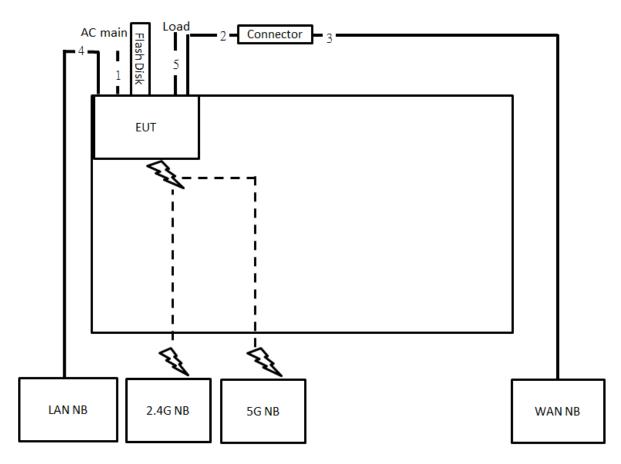
This product is an extension of original one reported under Sporton project number: FR241874AC Below is the table for the change of the product with respect to the original one.

Description	Performance Checking
1. Adding a new power adapter	
(Model Name: MU12AR120100-A1).	1. AC Power Line Conducted Emissions
2. Updating the flash memory.	2. Radiated Emissions Below 1GHz
3. Adding RJ-45 Cable	
4. Updating brand name to "belkin" from "Belkin".	
5. Updating model name to "F9K1102V4" from "F9K1102V2".	
6. Updating applicant to applicant address to "12045 East	After evaluating, it is not necessary to
Waterfront Drive, Playa Vista, CA 90094 " from "12045 E.	verify.
Waterfront Driv Playa Viste, CA 90094, USA".	, comy:
7. Removing two adapters (Model No.: DSA-12PFE-12 BUS	
120100 and Model No.: SYS1381-1212-W2).	

3.8. Table for Supporting Units

For Test Site No: 03CH01-CB

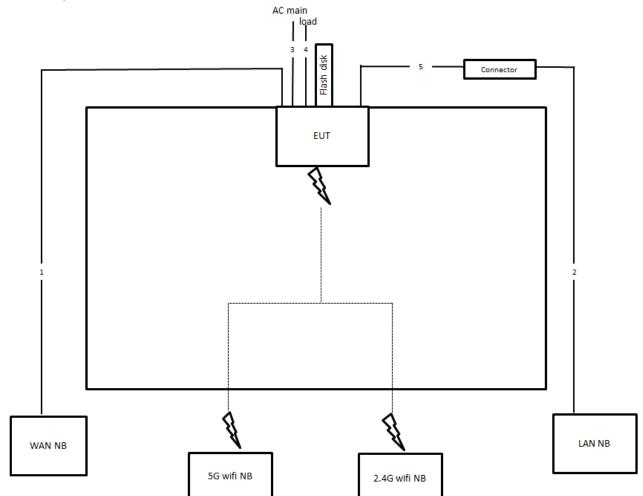
Support Unit	Brand	Model	FCC ID
NB*4	DELL	E4300	DoC
Flash disk	Silicon Power	Touch 835	DoC


For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID	
NB*4	DELL	E6430	DoC	
Flash disk	Silicon	I-Series	DoC	

3.9. Test Configurations

3.9.1. AC Power Line Conduction Emissions Test Configuration



ltem	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	1.2m
3	RJ-45 cable	No	10m
4	RJ-45 cable	No	10m
5	RJ-45 cable*3	No	1.5m

3.9.2. Radiation Emissions Test Configuration

Test Configuration: 30MHz $\sim\!1\text{GHz}$

ltem	Connection	Shielded	Length
1	RJ-45 cable	No	10m
2	RJ-45 cable	No	10m
3	Power cable	No	1.5m
4	RJ-45 cable*3	No	1.5m
5	RJ-45 cable	No	1.2m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

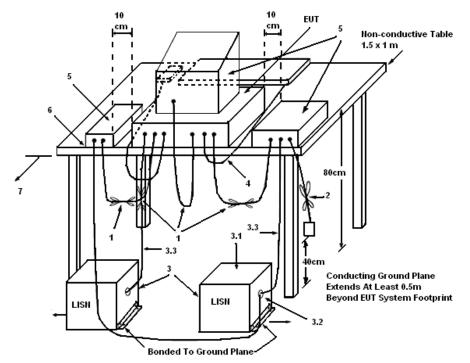
For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

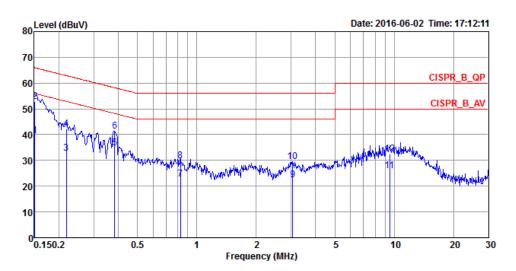
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

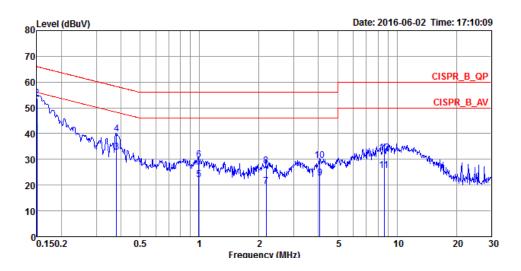
4.1.5. Test Deviation

There is no deviation with the original standard.


4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	Temperature 23°C		58%
Test Engineer Da Deng		Phase	Line
Configuration	Normal Link		

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1508	39.69	-16.27	55.96	29.57	9.96	0.16	Average	LINE
2	0.1508	52.92	-13.04	65.96	42.80	9.96	0.16	QP	LINE
3	0.2185	32.84	-20.04	52.88	22.70	9.96	0.18	Average	LINE
4	0.2185	42.27	-20.61	62.88	32.13	9.96	0.18	QP	LINE
5	0.3832	34.92	-13.29	48.21	24.71	10.01	0.20	Average	LINE
6	0.3832	41.19	-17.02	58.21	30.98	10.01	0.20	QP	LINE
7	0.8261	22.85	-23.15	46.00	12.62	10.04	0.19	Average	LINE
8	0.8261	29.79	-26.21	56.00	19.56	10.04	0.19	QP	LINE
9	3.0576	22.45	-23.55	46.00	12.05	10.10	0.30	Average	LINE
10	3.0576	29.39	-26.61	56.00	18.99	10.10	0.30	QP	LINE
11	9.5016	25.93	-24.07	50.00	15.40	10.15	0.38	Average	LINE
12	9.5016	32.53	-27.47	60.00	22.00	10.15	0.38	QP	LINE

Temperature	23° C	Humidity	58%
Test Engineer	igineer Da Deng		Neutral
Configuration	Normal Link		

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1500	40.03	-15.97	56.00	29.91	9.96	0.16	Average	NEUTRAL
2	0.1500	53.64	-12.36	66.00	43.52	9.96	0.16	QP	NEUTRAL
3	0.3791	32.65	-15.65	48.30	22.48	9.97	0.20	Average	NEUTRAL
4	0.3791	39.71	-18.59	58.30	29.54	9.97	0.20	QP	NEUTRAL
5	0.9891	22.05	-23.95	46.00	11.89	9.97	0.19	Average	NEUTRAL
6	0.9891	29.80	-26.20	56.00	19.64	9.97	0.19	QP	NEUTRAL
7	2.1783	19.41	-26.59	46.00	9.15	9.99	0.27	Average	NEUTRAL
8	2.1783	27.40	-28.60	56.00	17.14	9.99	0.27	QP	NEUTRAL
9	4.0704	22.72	-23.28	46.00	12.37	10.02	0.33	Average	NEUTRAL
10	4.0704	29.54	-26.46	56.00	19.19	10.02	0.33	QP	NEUTRAL
11	8.5917	25.72	-24.28	50.00	15.22	10.13	0.37	Average	NEUTRAL
12	8.5917	32.38	-27.62	60.00	21.88	10.13	0.37	QP	NEUTRAL

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. Radiated Emissions Measurement

4.2.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

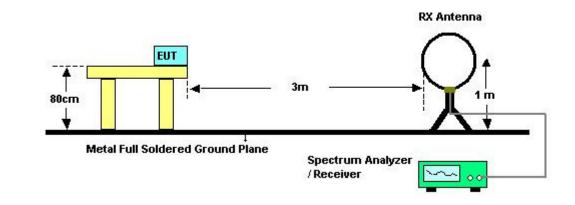
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.2.2. Measuring Instruments and Setting

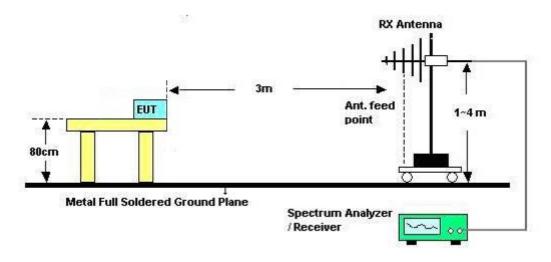
Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1 MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP


4.2.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1m & 3m far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



4.2.4. Test Setup Layout

For Radiated Emissions: $9kHz \sim 30MHz$

For Radiated Emissions: 30MHz~1GHz

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

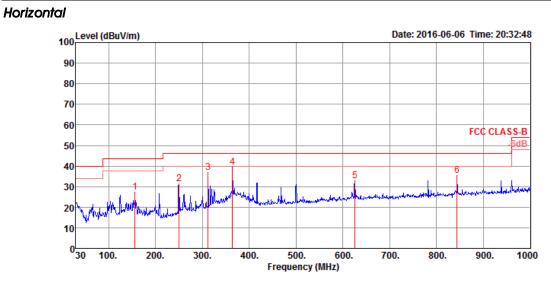
4.2.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	22.6° C	Humidity	51%
Test Engineer	Serway Li	Configurations	Normal Link
Test Date	Jun. 06, 2016		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	22.6°C	Humidity	51%
Test Engineer	Serway Li	Configurations	Normal Link

	Freq	Level						Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	156.10	27.14	43.50	-16.36	41.36	1.07	17.06	32.35	300	172	Peak	HORIZONTAL
2	250.19	31.19	46.00	-14.81	43.05	1.34	19.10	32.30	125	235	Peak	HORIZONTAL
3	312.27	36.89	46.00	-9.11	47.32	1.51	20.35	32.29	125	138	Peak	HORIZONTAL
4	364.65	39.61	46.00	-6.39	48.50	1.64	21.78	32.31	125	138	Peak	HORIZONTAL
5	625.58	32.83	46.00	-13.17	37.30	2.16	25.77	32.40	150	207	Peak	HORIZONTAL
6	843.83	35.25	46.00	-10.75	37.43	2.51	27.33	32.02	125	37	Peak	HORIZONTAL

Vertical

100 Level (dBuV/m) Date: 2016-06-06 Time: 20:33:26 90 80 70 60 FCC CLASS-B 50 idF 40 5 6 30 **.** 20 10 0<mark>____</mark> 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000 Frequency (MHz)

	Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	63.95	33.25	40.00	-6.75	51.58	0.70	13.37	32.40	150	314	QP	VERTICAL
2	312.27	36.01	46.00	-9.99	46.44	1.51	20.35	32.29	200	155	Peak	VERTICAL
3	364.65	35.90	46.00	-10.10	44.79	1.64	21.78	32.31	125	155	Peak	VERTICAL
4	468.44	35.04	46.00	-10.96	41.98	1.88	23.52	32.34	150	184	Peak	VERTICAL
5	625.58	33.03	46.00	-12.97	37.50	2.16	25.77	32.40	100	324	Peak	VERTICAL
6	843.83	32.40	46.00	-13.60	34.58	2.51	27.33	32.02	100	1	Peak	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.3. Antenna Requirements

4.3.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.3.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 27, 0216	Conduction
EIVII Keceivei	Aglieni	NYUJOA	101952200125	9KHZ ~ 0.45GHZ	Jun. 27, 0210	(CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Dec. 08. 2015	Conduction
LIJIN	F.C.C.	FCC-LISIN-50-10-2	04065		Dec. 06, 2015	(CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 23, 2015	Conduction
LIJIN	SCHWOIZDECK	INJEK 0127	0127047		Dec. 23, 2015	(CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz ~ 30MHz	Dec. 01, 2015	Conduction
	WOREIT		01		Dec. 01, 2013	(CO01-CB)
Software	Audix	E3	6.120210n	_	N.C.R.	Conduction
Soliwale		L3	0.12021011	-	N.C.K.	(CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	37880	20 MHz ~ 2 GHz	Sep. 03, 2015	Radiation
DIEGO ANTENNA	Schumer	CBEOTTED	57000	2010112 - 20112	3ep. 03, 2013	(03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2016*	Radiation
	leseq		24100	7KHZ - 50 WHZ	Widi. 10, 2010	(03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	2944A10991 0.1MHz ~ 1.3GHz	Mar. 15, 2016	Radiation
	Aglietti	04470	2/44/(10//1	0.110112 1.00112		(03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz \sim 40GHz	Oct. 27, 2015	Radiation
opeciful Analyzer	KGO	10140	100000	7112 400112	001. 27, 2010	(03CH01-CB)
EMI Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8.4GHz	Jan. 27, 2016	Radiation
EIMI Receivei	Aglietti	NYUJUA	101132200123	9KHZ ~ 0.4GHZ	Juli. 27, 2010	(03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 02, 2015	Radiation
KF CODIE-IOW	WOREIT		N/A		1000. 02, 2013	(03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	Radiation
		25	0.2009-10-7	IN/A	IN/A	(03CH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

NCR means Non-Calibration required.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%