FCC Test Report

Report No.: FR241874AN

FCC Test Report

Equipment : N600 DB Wireless N+ Router

Brand Name : Belkin

Model No. : F9K1102V2

FCC ID : K7SF9K1102V2

Standard : 47 CFR FCC Part 15.407

Applicant : Belkin International Inc.

Manufacturer 12045 E. Waterfront Drive Playa Viste,

CA 90094, USA

The product sample received on Apr. 18, 2012 and completely tested on Jun. 21, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Wayne Hsu / Assistant Manager

SPORTON INTERNATIONAL INC. Page No. : 1 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

Table of Contents

1	GENERAL DESCRIPTION	5
1.1 1.2	Information Accessories and Support Equipment	
1.3	Testing Applied Standards	
1.4	Testing Location Information	9
1.5	Measurement Uncertainty	10
2	TEST CONFIGURATION OF EUT	11
2.1	The Worst Case Modulation Configuration	
2.2	Test Channel Frequencies Configuration	
2.3	The Worst Case Power Setting Parameter	
2.4	The Worst Case Measurement Configuration	
2.5	Test Setup Diagram	15
3	TRANSMITTER TEST RESULT	17
3.1	AC Power-line Conducted Emissions	17
3.2	Emission Bandwidth	
3.3	RF Output Power	
3.4	Peak Power Spectral Density	
3.5	Peak Excursion	
3.6 3.7	Transmitter Radiated Bandedge Emissions	
3.8	Frequency Stability	
5.0		
4	MAXIMUM PERMISSIBLE EXPOSURE	70
4.1	Maximum Permissible Exposure	70
5	TEST EQUIPMENT AND CALIBRATION DATA	73
6	CERTIFICATION OF TAF ACCREDITATION	75
APPE	NDIX A. TEST PHOTOS	A1 ~ A6
APPE	NDIX B. PHOTOGRAPHS OF EUT	B1 ~ B19

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 2 of 75
Report Version : Rev. 01

FCC ID : K7SF9K1102V2

Summary of Test Result

Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	0.37511MHz: 40.04 (8.35 dB) - AV 42.74 (15.65dB) - QP [Ref. page 18]	FCC 15.207	Complied		
3.2	15.407(a)	Emission Bandwidth	Bandwidth [MHz] 20MHz: 22.72 40MHz: 40.32	Information only	Complied		
3.3	15.407(a)	RF Output Power (Maximum Conducted Output Power)	Power [dBm] 5180-5240MHz: 14.64 5190-5230MHz: 16.16	Power [dBm] 5180-5240MHz: 17 5190-5230MHz: 17	Complied		
3.4	15.407(a)	Peak Power Spectral Density	PPSD [dBm/MHz] 5180-5240MHz: 1.87 5190-5230MHz: 0.93	PPSD [dBm/MHz] 5180-5240MHz: 4 5190-5230MHz: 4	Complied		
3.5	15.407(a)	Peak Excursion	6.16 dB	13 dB	Complied		
3.6	15.407(b)	Transmitter Radiated Bandedge Emissions	Restricted Bands [dBuV/m at 1m]: 5150.00MHz 77.29 (Margin 6.25dB) - PK 62.17 (Margin 1.37dB) - AV [Ref. page 45]		Complied		
3.7	15.407(b)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 15600MHz 60.48 (Margin 3.06dB) - PK [Ref. page 54]	Non-Restricted Bands: ≤ -27 dBm (68.3dBuV/m@3m) Restricted Bands: FCC 15.209	Complied		
3.8	15.407(g)	Frequency Stability	-3.88 ppm	Signal shall remain in-band	Complied		
4.1	2.1091	Maximum Permissible Exposure	0.0292 mW/cm ²	1 mW/cm ²	Complied		

SPORTON INTERNATIONAL INC. : 3 of 75
TEL: 886-3-327-3456 : Report Version : Rev. 01

Revision History

Report No.	Version	Description	Issued Date
FR241874AN	Rev. 01	Initial issue of report	Jun. 27, 2012

SPORTON INTERNATIONAL INC. Page No. : 4 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11 Protocol	Ch. Frequency (MHz)	Channel Number	RF Output Power (dBm)	Designation of Emission		
5150-5250	а	5180-5240	36-48 [4]	13.52	17M1D1D		
5150-5250	n (HT20)	5180-5240	36-48 [4]	14.64	18M0D1D		
5150-5250	n (HT40)	5190-5230	38-46 [2]	16.16	36M5D1D		

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11a-1999.

Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 3: RF output power specifies that Maximum Conducted Output Power.

Transmitter Chains & Receiver Chains Information						
IEEE Std. 802.11 Protocol	Number of Transmit Chains (N _{TX})	Number of Receive Chains (N _{RX})	Correlation Signals with Multiple N _{TX}	99% Emission Bandwidth (MHz)	Co-location	
а	1	1	Correlated	17.12	N/A	
n (HT20)	2	2	Uncorrelated	17.92	N/A	
n (HT40)	2	2	Uncorrelated	36.48	N/A	

Note 1: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

SPORTON INTERNATIONAL INC. : 5 of 75
TEL: 886-3-327-3456 : Report Version : Rev. 01

1.1.2 Antenna Information

	<u> </u>				Antenna Cat	egory			
	Equip	ment place	d on the n	narket withou	ıt antennas				
	Integr	al antenna	(antenna	permanently	attached)				
		Temporary F	RF connec	ctor provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.								
	Exter	nal antenna	(dedicate	ed antennas)					
		Single powe	r level wit	h correspond	ling antenna(s). Power Level (PL):	: 1		
		Multiple pow	er level a	nd correspon	nding antenna	a(s). Power Level (PL): 1~		
	<u> </u>	No RF conn	ector prov	ided					
	Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.								
	F	RF connecto	or provide	d					
	[Unique	antenna o	connector. (e	.g., MMCX, L	J.FL, IPX, and RP-SM	/IA, RP-I	N type)	
	[Standar	rd antenna	a connector.	(e.g., SMA, N	N, BNC, and TNC type	e)		
				Anten	nna General				
		Port (Total 2			1(TX/RX), 2	(TX/RX)			
		RF Output		` ′	1				
Tran	smit	Chains Pov	wer Distri	bution		rical distribution 🗌 a	symme	trical distrib	ution
Ant. No.	PL	Ant. Port [Ant No. X connect to Ant. Port Y]	Ant. Cat.	Ant. Type	Brand	Model	G _{ANT}	DG (dBi) [correlated] N _{TX} = 1	DG (dBi) [uncorrelated] N _{TX} = 2
1	1	1	Integral	PIFA	-	-	6.27	NI/A	5 6
2	2 1 2 Integral PIFA - 4.51 N/A 5.5							5.5	
\boxtimes	☐ The equipment is normally installed and point-to-point or point-to-multipoint systems: Ant. No. <u>1,2</u>								
	Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = G _{ANT} + 10 log(N) dBi All transmit signals are completely uncorrelated, Directional Gain (DG)= G _{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = 10 log[(10 ^{G1/20} + 10 ^{G2/20} + + 10 ^{GN/20}) ² /N] dBi All transmit signals are completely uncorrelated, Directional Gain (DG) = 10 log[(10 ^{G1/10} + 10 ^{G2/10} + + 10 ^{GN/10})/N] dBi								

SPORTON INTERNATIONAL INC. : 6 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

1.1.3 Type of EUT

	Identify EUT				
EU	Γ Serial Number	N/A			
Pre	sentation of Equipment	☐ Production ; ☐ Pre-Production ; ☐ Prototype			
	Type of EUT				
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle				
	Operated normally mode for worst dut	y cycle			
\boxtimes	Operated test mode for worst duty cyc	cle			
	Test Signal Duty Cycle (x)	Power Duty Factor [dB] – (10 log 1/x)	Voltage Duty Factor [dB] – (20 log 1/x)		
	100% - IEEE 802.11a	0.00	0.00		
\boxtimes	100% - IEEE 802.11n (HT20)	0.00	0.00		
\boxtimes	100% - IEEE 802.11n (HT40)	0.00	0.00		

1.1.5 EUT Operational Condition

Supply Voltage		☐ DC	
Type of DC Source		☐ External DC adapter	☐ Battery
Operational Voltage		∨max (126.5 V)	
Operational Climatic	☐ Tnom (20°C)		

SPORTON INTERNATIONAL INC. Page No. : 7 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

1.1.6 DFS and TPC Information

The DFS Related Operating Mode(s) of the Equipment							
Master w/o o							
☐ Client with ra	adar detection						
☐ Client withou	ıt radar detection						
Communication	Mode		ad Based)	☐ Frame Based			
IEEE Std. 802.11 Protocol	Frequency Range (MHz)	TPC (Transmit Power Control)	Ad-hoc (Active Scan)	Hotspot (Active Scan)	Passive Scan (Client)		
а	⊠ 5150-5250	No	No	Yes	No		
n (HT20)	<u> </u>	-	-	-	-		
n (HT40)	5470-5600	-	-	-	-		
	☐ 5600-5650	-	-	-	-		
	☐ 5650-5725	-	-	-	-		

SPORTON INTERNATIONAL INC. Page No. : 8 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

1.2 Accessories and Support Equipment

Accessories						
No. Equipment Brand Name Model Name Serial No.						
1	AC Adapter 1	belkin	DSA-12PFE-12 BUS 120100	-		
2	AC Adapter 2	Sunny	SYS1381-1212-W2	-		

Support Equipment					
No. Equipment Brand Name Model Name Serial No.					
1	Notebook	DELL	E5520	-	

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 789033 Guidance for Performing Compliance Measurements on UNII
- FCC KDB 662911 Emissions Testing of Transmitters with Multiple Outputs
- FCC KDB 412172 Guidelines for Determining the ERP and EIRP

1.4 Testing Location Information

	Testing Location						
\boxtimes	HWA YA	ADD	:	No. 52, Hwa Ya	ı 1st Rd., Kwei-Shan I	Hsiang, Tao Yuan Hsie	en, Taiwan, R.O.C.
		TEL	:	886-3-327-3450	6 FAX : 886	6-3-327-0973	
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724	, Bo-ai St., Jhubei Cit	y, HsinChu County 30	2, Taiwan, R.O.C.
		TEL	:	886-3-656-906	5 FAX : 886	6-3-656-9085	
Test Condition Test Site No. Test Engineer Test Environment Test Da				Test Date			
Conducted Emission				CO04-HY	Sam	23°C / 47%	22-May-12
RF Conducted			TH02-CB	Denis	23℃ / 63%	15-Jun-12 ~ 21- Jun-12	
Ra	adiated Emis	sion		03CH02-HY	Streak	26.3℃ / 68%	20-May-12 ~ 31-May-12

SPORTON INTERNATIONAL INC. : 9 of 75
TEL: 886-3-327-3456 : Report Version : Rev. 01

FCC Test Report

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Report No.: FR241874AN

Measurement Uncertainty - HWA YA					
Test Item		Uncertainty	Limit		
AC power-line conducted emissions		± 2.26 dB	N/A		
All emissions, radiated	30 – 1000 MHz	± 2.54 dB	N/A		
	1 – 18 GHz	±3.59 dB	N/A		
	18 – 40 GHz	±3.82 dB	N/A		
	40 – 200 GHz	N/A	N/A		

Measurement Uncertainty - JHUBEI				
Test Item	Uncertainty	Limit		
Emission bandwidth, 6dB bandwidth	±1.32 %	N/A		
RF output power, conducted	±0.72 dB	N/A		
Power density, conducted	±0.61 dB	N/A		
Temperature	±0.7 ℃	N/A		
Humidity	±2.6 %	N/A		
DC and low frequency voltages	±3.4 %	N/A		
Time	±1.82 %	N/A		
Duty Cycle	±1.69 %	N/A		

SPORTON INTERNATIONAL INC. Page No. : 10 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

	Worst Modulation Used for Conformance Testing						
Power	Level	1					
IEEE 802.11 Protocol	Number of Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Worst Modulation Mode	RF Output Power (dBm)	Peak Power Spectral Density (dBm/MHz)	
а	1	6-54 Mbps	6Mbps	11A5.2G-20M	13.52	1.52	
n (HT20)	2	MCS 0-15	MCS 8	11N5.2G-20M	14.64	1.87	
n (HT40)	2	MCS 0-15	MCS 8	11N5.2G-40M	16.16	0.93	

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11a-1999.

Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40. Worst modulation mode of Guard Interval (GI) is 400ns.

Note 3: Modulation modes consist of 11A5.2G-20M, 11A5.3G-20M, 11A5.6G-20M, 11N5.2G-20M, 11N5.3G-20M, 11N5.6G-20M, 11N5.2G-40M, 11N5.3G-40M, 11N5.6G-40M: 11A: IEEE 802.11a, 11N: IEEE 802.11n. 5.2G: 5.15-5.25 GHz band, 5.3G: 5.25-5.35 GHz band, 5.6G: 5.47-5.725 GHz band. 20M/40M: Channel Bandwidth 20MHz/40MHz

Note 4: RF output power specifies that Maximum Conducted Output Power.

2.2 Test Channel Frequencies Configuration

	Test Channel Frequencies Configur	ation
IEEE 802.11 Protocol	Worst Modulation Mode	Test Channel Frequencies (MHz) – FX (Frequencies Abbreviations)
а	11A5.2G-20M	5180-(F1), 5200-(F2), 5240-(F3)
n (HT20)	11N5.2G-20M	5180-(F1), 5200-(F2), 5240-(F3)
n (HT40)	11N5.2G-40M	5190-(F1'), 5230-(F2')

Note 1: Modulation modes consist of 11A5.2G-20M, 11A5.3G-20M, 11A5.6G-20M, 11N5.2G-20M, 11N5.3G-20M, 11N5.6G-20M, 11N5.2G-40M, 11N5.3G-40M, 11N5.6G-40M: 11A: IEEE 802.11a, 11N: IEEE 802.11n. 5.2G: 5.15-5.25 GHz band, 5.3G: 5.25-5.35 GHz band, 5.6G: 5.47-5.725 GHz band. 20M/40M: Channel Bandwidth 20MHz/40MHz

SPORTON INTERNATIONAL INC. Page No. : 11 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

2.3 The Worst Case Power Setting Parameter

	The Worst Case Power Setting Parameter						
Power	Level	1					
Test Softwa	are Version	DMAX_1.5.1					
The Worst Number of Modulation Transmit Chains (N _{TX})		Frequency (MHz)	Power Setting	Worst Data Rate / MCS	RF Output Power (dBm)		
11A5.2G-20M	1	5180	51	6 Mbps	13.05		
11A5.2G-20M	1	5200	51	6 Mbps	13.52		
11A5.2G-20M	1	5240	51	6 Mbps	13.50		
11N5.2G-20M	2	5180	51/49	MCS 8	13.43		
11N5.2G-20M	2	5200	51/49	MCS 8	14.64		
11N5.2G-20M	2	5240	51/48	MCS 8	14.37		
11N5.2G-40M	2	5190	51/51	MCS 8	14.49		
11N5.2G-40M	2	5230	55/53	MCS 8	16.16		

Note 1: Modulation modes consist of 11A5.2G-20M, 11A5.3G-20M, 11A5.6G-20M, 11N5.2G-20M, 11N5.3G-20M, 11N5.6G-20M, 11N5.2G-40M, 11N5.3G-40M, 11N5.6G-40M: 11A: IEEE 802.11a, 11N: IEEE 802.11n. 5.2G: 5.15-5.25 GHz band, 5.3G: 5.25-5.35 GHz band, 5.6G: 5.47-5.725 GHz band. 20M/40M: Channel Bandwidth 20MHz/40MHz

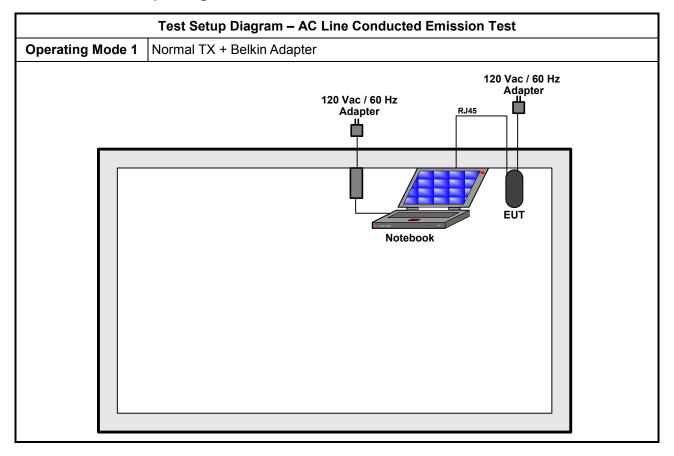
SPORTON INTERNATIONAL INC. Page No. : 12 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

2.4 The Worst Case Measurement Configuration

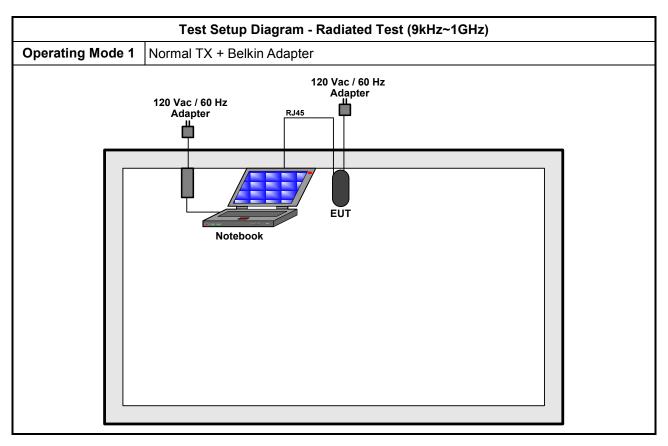
	The Worst Case Mode for Following Conformance Tests						
Tests Item	AC power-line conducted emissions						
Condition	AC power-line conducted measurement for line and neutral						
Operating Mode	Operating Mode Description	Worst Modulation Mode	Test Freq.	Power Level			
1	Normal TX + Belkin Adapter	11N5.2G-40M	F2'	1			
2	Normal TX + Sunny Adapter	11N5.2G-40M	F2'	1			
For operating mode 1 is the worst case and it was record in this test report.							

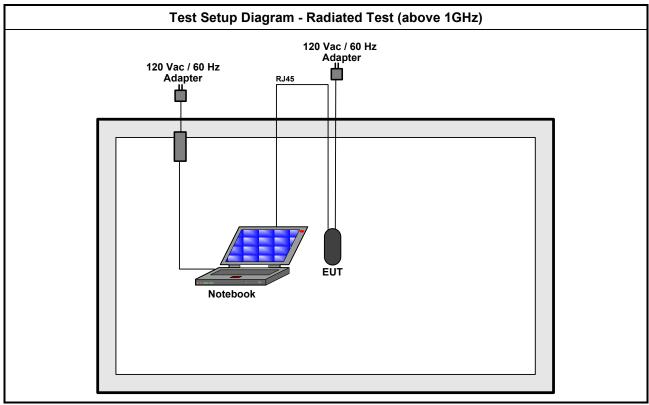
Report No.: FR241874AN

	The Worst Case Mode for Following Conformance Tests					
Tests Item	RF Output Power Peak Power Spectral Emission Bandwidth Peak Excursion	Peak Power Spectral Density Emission Bandwidth				
Test Condition	Conducted measurer	Conducted measurement at transmit chains				
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level		
11A5.2G-20M	1	6Mbps	F1, F2, F3	1		
11N5.2G-20M	2	MCS 8	F1, F2, F3	1		
11N5.2G-40M	2	MCS 8	F1', F2'	1		


	The Worst Case Mode for Following Conformance Tests					
Tests Item	Transmitter Radiated	Bandedge Emissions				
Test Condition	Radiated measureme	ent				
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Transmit Chains Worst Data Rate / Test Frequency Power Level				
11A5.2G-20M	1	6Mbps	F1	1		
11A5.2G-20M	1	6Mbps	F3	1		
11N5.2G-20M	2	MCS 8	F1	1		
11N5.2G-20M	2	MCS 8	F3	1		
11N5.2G-40M	2	MCS 8	F1'	1		
11N5.2G-40M	2	MCS 8	F2'	1		

SPORTON INTERNATIONAL INC. Page No. : 13 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01


The Worst Case Mode for Following Conformance Tests							
Tests Item	Transmitter Ra	ransmitter Radiated Unwanted Emissions					
Test Condition	Radiated meas	surement					
	⊠ EUT will b	e placed in fixe	ed position.				
User Position		pe placed in mo d two or three o		d operating mules.	tiple positions.	EUT shall be	
		EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.					
Operating	□ 1. Norm	al TX + Belkin A	Adapter				
Mode < 1GHz	2. Norm						
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level	Ant No.	Worst Orthogonal Planes of EUT	
11A5.2G-20M	1	6Mbps	F1, F2, F3	1	1,2	Y Plane	
11N5.2G-20M	2	MCS 8	F1, F2, F3	1	1,2	Y Plane	
11N5.2G-40M	2	MCS 8	F1', F2'	1	1,2	Y Plane	
	X PI	lane	Y Plane		Z Plane		
Orthogonal Planes of EUT							
For operating mo	ode 1 is the wor	st case and it w	as record in thi	s test report.			


SPORTON INTERNATIONAL INC. Page No. : 14 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

2.5 Test Setup Diagram

SPORTON INTERNATIONAL INC. Page No. : 15 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 16 of 75

Report Version : Rev. 01

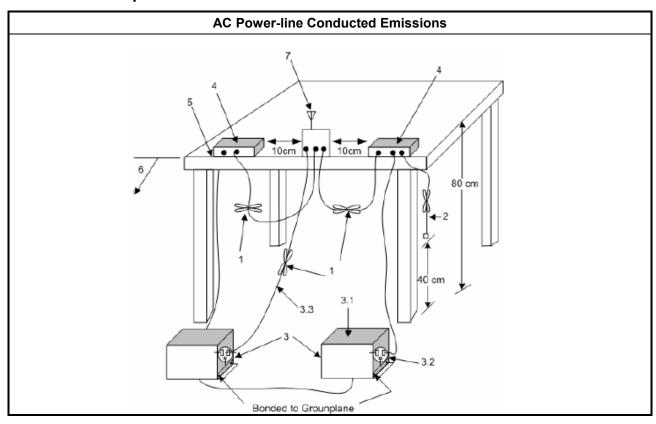
FCC ID : K7SF9K1102V2

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Powe	er-line Conducted Emissions L	imit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50


3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

	Test Method
\boxtimes	Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 17 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

3.1.5 Test Result of AC Power-line Conducted Emissions

dulation Mode	11N5.2G-40	M Pow	er Level	1		Test	Freq. (FX)	F2'
erating Mode	1	Ant.	No.	1+2		Powe	er Phase	Neutral
erating Function	Normal TX	+ Belkin Adap	ter	•		•		•
Level (di	BuV)						Date: 201	2-05-22
80				- 1				
0.00								
							CISPR/CNS/V	ICCLB
					100		CISPRICIPALY	/CCI-B
-								Van Van
11						0	ISPR/CNS/VCC	I-B AV
1 3	9							
40 11 11 5	7 10h							
7 2 N	A AMARIA							
		Allen de la	40 14	Wat a k				
11 11 14	WE TYN WAT THE	TIME MAN JOY		or handler	ALMANA MA			
		A, A, A A A A A A A A A A A A A A A A A	List think		والمنظل بطأ أ	AND	1 6	11
	-					1.144	White the second	3 1 1
	1114 111						THE PROPERTY OF	1
	3 1 4							16.1
0 0.15 0.2	0.5	1	2		5	10	20	30
- distr	2.3		Frequenc	v (88Hz)	3.0		. 24	
				A (mirit)				
				y (miliz)				
				y (miiz)				
				y (mii2)				
				y (miliz)				
				y (mil2)				
				y (mil2)				
	Over	Limit Read	LISN	Cable				
Freq	Over Level Limit		LISN Factor		Remark			
	Level Limit	Line Level	Factor	Cable Loss F	?em≥rk			
Freq			Factor	Cable	demark			
MHz	Level Limit	Line Level	Factor dB	Cable Loss F				
MHz	dBuV dB	dBuV dBuV 64.86 46.95	dB 0.26	Cable Loss F dB				
MHz 1 0.1721540 2 0.1721540	Level Limit dBuV dB 47.31 -17.55	Line Level dBuV dBuV 64.86 46.95 54.86 34.65	dB 0.26 0.26	Cable Loss F dB]p Average			
MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130	Level Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.91 -19.63 33.55 -19.99	dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20	0.26 0.26 0.25 0.25	Cable Loss F dB 0.10 C 0.10 A 0.10 C 0.10 A	DP Average DP Average			
MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130 5 0.2292570	Level Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.91 -19.63 33.55 -19.99 40.23 -22.25	dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20 62.48 39.88	0.26 0.26 0.25 0.25 0.25	Cable Loss F dB 0.10 0 0.10 2 0.10 2 0.10 2 0.10 0	OP Average OP Average			
MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130 5 0.2292570 6 0.2292570	Level Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.91 -19.63 33.55 -19.99 40.23 -22.25 30.83 -21.65	dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20 62.48 39.88 52.48 30.48	0.26 0.26 0.25 0.25 0.25 0.25	Cable Loss F dB 0.10 0 0.10 2 0.10 2 0.10 2 0.10 0 0.10 2	OP Average OP Average OP			
MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130 5 0.2292570 6 0.2292570 7 0.2603570	Level Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.91 -19.63 33.55 -19.99 40.23 -22.25 30.83 -21.65 38.19 -23.23	dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20 62.48 39.88 52.48 30.48 61.42 37.84	0.26 0.26 0.25 0.25 0.25 0.25	Cable Loss F dB 0.10 C 0.10 P 0.10 C 0.10 P 0.10 C 0.10 P 0.10 C	OP Average OP Average OP			
MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130 5 0.2292570 6 0.2292570 7 0.2603570 8 0.2603570	Level Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.91 -19.63 33.55 -19.99 40.23 -22.25 30.83 -21.65 38.19 -23.23 26.30 -25.12	dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20 62.48 39.88 52.48 30.48 61.42 37.84 51.42 25.95	0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25	Cable Loss F dB 0.10 C 0.10 A 0.10 C 0.10 A 0.10 C 0.10 A 0.10 C 0.10 A	OP Average OP Average OP Average			
MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130 5 0.2292570 6 0.2292570 7 0.2603570 8 0.2603570 9 0.3751190	Level Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.91 -19.63 33.55 -19.99 40.23 -22.25 30.83 -21.65 38.19 -23.23 26.30 -25.12 42.74 -15.65	dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20 62.48 39.88 52.48 30.48 61.42 37.84 51.42 25.95 58.39 42.40	0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25	Cable Loss F dB - 0.10 C 0.10 Z 0.10 Z 0.10 C 0.10 Z 0.1	OP Average OP Average OP Average OP			
MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130 5 0.2292570 6 0.2292570 7 0.2603570 8 0.2603570 9 0.3751190 10 80.3751190	Level Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.91 -19.63 33.55 -19.99 40.23 -22.25 30.83 -21.65 38.19 -23.23 26.30 -25.12 42.74 -15.65	dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20 62.48 39.88 52.48 30.48 61.42 37.84 51.42 25.95 58.39 42.40 48.39 39.70	0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25	Cable Loss F dB - 0.10 C 0.10 Z 0.10 Z 0.10 C 0.10 Z 0.1	OP Average OP Average OP Average OP Average			

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 18 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

	tion Mode	11N	5.2G-40	MC	Pow	er Level	I 1		Test	t Freq. (FX)	F2'
eratiı	ng Mode	1			Ant.	No.	1+	·2	Pow	er Phase	Line
erati	ng Functior	Norr	mal TX	+ Belkiı	n Adap	ter	•		•		•
T.	Level (d	BuV)								Date: 201	2-05-22
	80										
					-						
										CISPR/CNS/V	/CCI-B
			-								
		-								CISPR/CNS/VCC	I-B AV
	10.3		0	-	+						
	40		M.								
			h III h	ALC: U							- 11
	William			THE O	1	Make to n	dit	Later on the same			
		MINIA	ALL LAND	ALU M	W. Har		AMALANI	YYY MAYNAY YA KANANA	MAN JAS	and the	- 1
	11.11.14		111 111		Trinks dated		Little In	COLUMN TO STREET	A LALL	May 1611	tak a lin
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T M	111				11	1	1 11	The same of the sa	YM, N
	10 1 (11)										1 1 1 1 1 1 1 1 1
	I HA			Harry .	1					Illa Martin	14.44
	i lina	1 11/1								ullidi karat I	
	1 11/4		100		1				Н	nliditariat I	, if if
	1 1 1		110		1					ullullariant (, dra
	0,150.2		0.5			2		5		10 20	30
	0 0.15 0.2		0.5		1	2 Frequenc	cy (MHz)			10 20	30
	0 0.150.2		0.5		1	T.	cy (MHz)			10 50	30
	0 0.150.2		0.5		1	T.	cy (MHz)			10 20	30
	0.150.2		0.5		1	T.	ey (MHz)			10 20	30
	0 0.15 0.2		0.5		1	T.	cy (MHz)			10 20	30
	0 0.15 0.2		0.5		1	T.	ey (MHz)		,	10 20	30
	0 0.15 0.2		0.5		1	T.	ey (MHz)			10 20	30
	0 0.150.2					Frequenc				10 20	30
			Over	Limit	Read	Frequenc	Cable			10 20	30
		Level			Read	Frequenc	Cable			10 20	30
		Level	Over	Limit	Read	Frequenc LISN Factor	Cable			10 20	30
1	Freq MHz	dBuV	Over Limit	Limit Line dBuV	Read Level	LISN Factor	Cable Loss dB	Remark		10 20	30
1 2	Freq MHz	dBuV 46.69	Over Limit	Limit Line dBuV 64.80	Read Level dBuV 46.29	LISN Factor	Cable Loss dB 0.10	Remark		10 20	30
1 2 3	Freq MHz	dBuV 46.69 34.39	Over Limit dB -18.11 -20.41	Limit Line dBuV 64.80 54.80	Read Level dBuV 46.29	LISN Factor	Cable Loss dB 0.10	Remark OP Average		10 20	30
3	Freq MHz 0.1732800 0.1732800 0.2009660	dBuV 46.69 34.39 43.50	Over Limit dB -18.11 -20.41 -20.07	Limit Line dBuV 64.80 54.80 63.57	Read Level dBuV 46.29 33.99 43.10	LISN Factor dB 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10	Remark OP Average		10 20	30
3	Freq MHz 0.1732800 0.1732800	dBuV 46.69 34.39 43.50 32.97	Over Limit dB -18.11 -20.41 -20.07 -20.60	Limit Line dBuV 64.80 54.80 63.57 53.57	Read Level dBuV 46.29 33.99 43.10 32.57	LISN Factor dB 0.30 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10	Remark QP Average QP Average		10 20	30
3 4 5	Freq MHz 0.1732800 0.1732800 0.2009660 0.2009660	dBuV 46.69 34.39 43.50 32.97 39.98	Over Limit dB -18.11 -20.41 -20.07 -20.60 -22.49	Limit Line dBuV 64.80 54.80 63.57 53.57 62.47	Read Level 46.29 33.99 43.10 32.57 39.58	LISN Factor dB - 0.30 0.30 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP		10 20	30
3 4 5 6	Freq MHz 0.1732800 0.1732800 0.2009660 0.2009660 0.2094330 0.2294330	dBuV 46.69 34.39 43.50 32.97 39.98 29.62	Over Limit dB -18.11 -20.41 -20.60 -22.49 -22.85	Limit Line dBuV 64.80 54.80 63.57 53.57 62.47 52.47	Read Level 46.29 33.99 43.10 32.57 39.58 29.22	LISN Factor dB - 0.30 0.30 0.30 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average QP Average QP Average		10 20	30
3 4 5 6 7	Freq MHz 0.1732800 0.1732800 0.2009660 0.2009660 0.2094330 0.2294330 0.2294330 0.2616370	dBuV 46.69 34.39 43.50 32.97 39.98 29.62 35.80	Over Limit dB -18.11 -20.41 -20.60 -22.49 -22.85 -25.58	Limit Line dBuV 64.80 54.80 63.57 53.57 62.47 52.47 61.38	Read Level 46.29 33.99 43.10 32.57 39.58 29.22 35.40	LISN Factor 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average OP		10 20	30
3 4 5 6 7 8	Freq MHz 0.1732800 0.1732800 0.2009660 0.2009660 0.2094330 0.2294330	dBuV 46.69 34.39 43.50 32.97 39.98 29.62 35.80 21.66	Over Limit dB -18.11 -20.41 -20.07 -20.60 -22.49 -22.85 -25.58 -29.72	Limit Line dBuV 64.80 54.80 63.57 53.57 62.47 61.38 51.38	Read Level 46.29 33.99 43.10 32.57 39.58 29.22 35.40 21.26	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Remark OP Average OP Average OP Average OP Average		10 20	30
3 4 5 6 7 8 9	Freq MHz 0.1732800 0.1732800 0.2009660 0.2009660 0.2294330 0.2294330 0.2294330 0.2616370 0.2616370	dBuV 46.69 34.39 43.50 32.97 39.98 29.62 35.80 21.66 41.28	Over Limit dB -18.11 -20.41 -20.07 -20.60 -22.49 -22.85 -25.58 -29.72 -17.11	Limit Line dBuV 64.80 54.80 63.57 53.57 62.47 51.38 51.38 58.39	Read Level dBuV 46.29 33.99 43.10 32.57 39.58 29.22 35.40 21.26 40.88	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark QP Average QP Average QP Average QP Average QP		10 20	30
3 4 5 6 7 8 9	Freq 0.1732800 0.1732800 0.2009660 0.2009660 0.2294330 0.2294330 0.2616370 0.2616370 0.3751190	dBuV 46.69 34.39 43.50 32.97 39.98 29.62 35.80 21.66 41.28 36.48	Over Limit dB -18.11 -20.41 -20.07 -20.60 -22.49 -22.85 -25.58 -29.72 -17.11 -11.91	Limit Line dBuV 64.80 54.80 63.57 53.57 62.47 52.47 61.38 51.38 58.39 48.39	Read Level 46.29 33.99 43.10 32.57 39.52 29.22 21.26 40.88 36.08	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark QP Average QP Average QP Average QP Average QP Average		10 20	30

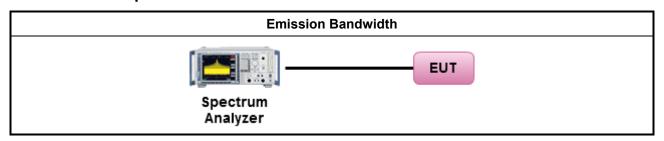
SPORTON INTERNATIONAL INC. Page No. : 19 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth (EBW) Limit

	Emission Bandwidth (EBW) Limit
UNI	I Devices
\boxtimes	For the $5.15-5.25$ GHz band, the maximum conducted output power shall not exceed the lesser of 50 mW or 4 dBm + $10\log$ B, where B is the 26 dB emission bandwidth in MHz.
	For the $5.25-5.35$ GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + $10log$ B, where B is the 26 dB emission bandwidth in MHz.
	For the 5.47-5.725 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz.
	For the 5.725-5.825 GHz band, the maximum conducted output power shall not exceed the lesser of 1 W or 17 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz
LE-	LAN Devices
\boxtimes	For the band 5.15-5.25 GHz, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.725-5.825 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

3.2.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

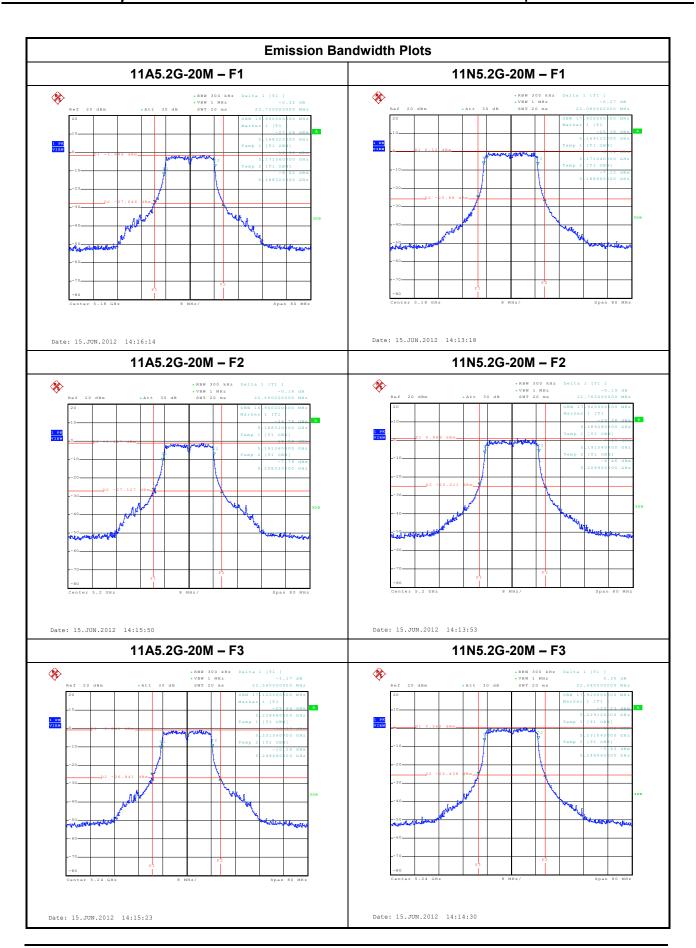
3.2.3 Test Procedures

		Test Method
\boxtimes	For	the emission bandwidth shall be measured using one of the options below:
	\boxtimes	Refer as FCC KDB 789033, clause D for EBW measurement.
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
	\boxtimes	Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.
\boxtimes	For	conducted measurement.
	\boxtimes	For conducted measurements on devices with multiple transmit chains using options given below:
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.
		Option 3: A power splitter/combiner shall be used to combine all the transmit chains (antenna outputs) into a single test point and record a single test point EBW.
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to ain the maximum emitted power level.

SPORTON INTERNATIONAL INC. Page No. : 20 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

3.2.4 Test Setup

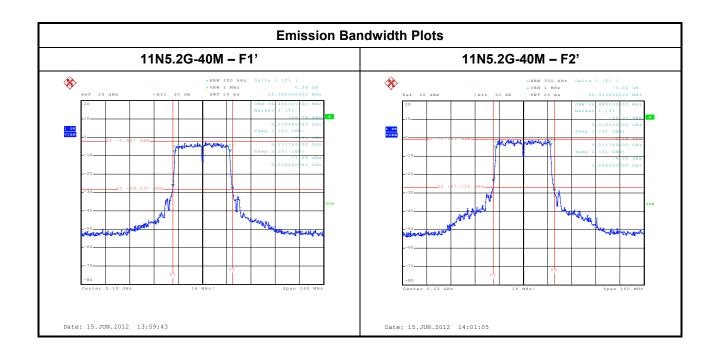
3.2.5 Test Result of Emission Bandwidth


UNII Emission Bandwidth Result									
Power Level		1	Emission Bandwidth (MHz)						
Madulation		Eroa		Conducted Power Limit (dBm)					
Modulation Mode	N _{TX}	Freq. (MHz)	26dB Bandwidth	Calculation Power Limit	Final Power Limit				
11A5.2G-20M	1	5180	22.72	17.6	17.0				
11A5.2G-20M	1	5200	22.56	17.5	17.0				
11A5.2G-20M	1	5240	22.56	17.5	17.0				
11N5.2G-20M	2	5180	22.08	17.4	17.0				
11N5.2G-20M	2	5200	21.76	17.4	17.0				
11N5.2G-20M	2	5240	22.08	17.4	17.0				
11N5.2G-40M	2	5190	39.36	20.0	17.0				
11N5.2G-40M	2	5230	40.32	20.1	17.0				
Resi	ult		С	omplied					
Note 1: N _{TX} = Nur	nber c	of Transm	it Chains						

SPORTON INTERNATIONAL INC. Page No. : 21 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

Power Level		1	Emission Bandwidth (MHz)						
		F		e.i.r.p. Power	r Limit (dBm)				
Modulation Mode	N _{TX}	Freq. (MHz)	99% Bandwidth	Calculation Power Limit	Final Power Limit				
11A5.2G-20M	1	5180	16.96	16.3	16.2				
11A5.2G-20M	1	5200	16.96	16.3	16.2				
11A5.2G-20M	1	5240	17.12	16.3	16.1				
11N5.2G-20M	2	5180	17.92	16.5	15.6				
11N5.2G-20M	2	5200	17.92	16.5	15.6				
11N5.2G-20M	2	5240	17.92	16.5	15.9				
11N5.2G-40M	2	5190	36.48	19.6	17.0				
11N5.2G-40M	2	5230	36.48	19.6	17.0				
Resi	ult		Complied						

SPORTON INTERNATIONAL INC. Page No. : 22 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01


FCC Test Report

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 23 of 75
Report Version : Rev. 01

FCC ID : K7SF9K1102V2

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 24 of 75
Report Version : Rev. 01

FCC ID : K7SF9K1102V2

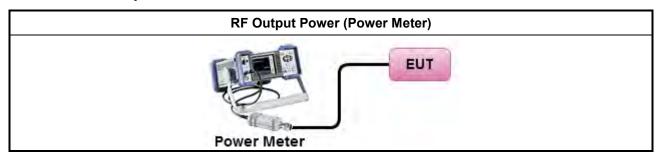
3.3 RF Output Power

3.3.1 RF Output Power Limit

	Maximum Conducted Output Power Limit
UNI	II Devices
\boxtimes	For the 5.15-5.25 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 50 mW or 4 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.
	For the 5.25-5.35 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$.
	For the 5.47-5.725 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 – (G_{TX} – 6).
	For the 5.725-5.825 GHz band:
	Point-to-multipoint systems (P2M): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W or 17 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$.
	Point-to-point systems (P2P): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W or 17 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 23$ dBi, then $P_{Out} = 30 - (G_{TX} - 23)$.
LE-	LAN Devices
	For the 5.15-5.25 GHz band, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.725-5.825 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	Point-to-multipoint systems (P2M): the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	Point-to-point systems (P2P): the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. If e.i.r.p. > 36 dBm, $G_{TX} \le P_{Out}$
	t = maximum conducted output power in dBm, t = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


SPORTON INTERNATIONAL INC. Page No. : 25 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

3.3.3 Test Procedures

		Test Method
\boxtimes	Max	imum Conducted Output Power
	[duty	y cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 789033, clause C Method SA-1 (spectral trace averaging).
		Refer as FCC KDB 789033, clause C Method SA-1 Alt. (RMS detection with slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor (refer as clause 1.1.4)
		Refer as FCC KDB 789033, clause C Method SA-2 (spectral trace averaging).
		Refer as FCC KDB 789033, clause C Method SA-2 Alt. (RMS detection with slow sweep speed)
	With	nout duty cycle restriction
		Refer as FCC KDB 789033, clause C Method SA-3 (band power max-hold).
		Refer as FCC KDB 789033, clause C Method SA-3 Alt. (reduced VBW and band power max-hold)
	Wid	eband RF power meter and average over on/off periods with duty factor (refer as clause 1.1.4)
	\boxtimes	Refer as FCC KDB 789033, clause C Method PM (using an RF average power meter).
		Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold).
\boxtimes	For	conducted measurement.
		For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods:
		Method 1:
		Method 2: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG
	obta equi max	radiated measurement. The equipment to be measured and the test antenna shall be oriented to in the maximum emitted power level. The measured radiated field strength or power levels to valent isotropic radiated power (EIRP) (see FCC KDB 412172 for guidance). The equivalent imum conducted output power can then be determined by subtracting the EUT transmit antenna from the EIRP.

SPORTON INTERNATIONAL INC. Page No. : 26 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Maximum Conducted Output Power Result										
Power Level 1				RF Output Power (dBm)						
Directional Gain	(dBi)	6.27			KF	Output F	ower (ar	3111 <i>)</i>		
Modulation Mode	N _{TX}	Freq. (MHz)					EIRP Limit			
11A5.2G-20M	1	5180	13.05	-	1	-	13.05	17.0	19.32	23.0
11A5.2G-20M	1	5200	13.52	-	-	-	13.52	17.0	19.79	23.0
11A5.2G-20M	1	5240	13.50 13.50 17.0 19.77 23.0			23.0				
Resu	ult	Result				Com	plied			

Note 1: N_{TX} = Number of Transmit Chains

Note 2: EUT support diversity transmit and transmit chains port 1 is the worst than other transmit chains.

Maximum Conducted Output Power Result										
Power Level 1			RF Output Power (dBm)							
Directional Gain (dBi)		5.5			KF	Output F	ower (ai	3111 <i>)</i>		
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit
11N5.2G-20M	2	5180	10.01	10.80	-	ı	13.43	17.0	18.93	23.0
11N5.2G-20M	2	5200	11.03	12.15	-	-	14.64	17.0	20.14	23.0
11N5.2G-20M	2	5240	11.31	11.40	-	-	14.37	17.0	19.87	23.0
Resi		Complied								
Note 1: N _{TX} = Num	nber of	Transmit	Chains							

SPORTON INTERNATIONAL INC. Page No. : 27 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

Maximum Conducted Output Power Result										
Power Level 1				RF Output Power (dBm)						
Directional Gain (dBi) 5.5					KF	Output r	ower (ai	3111 <i>)</i>		
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit
11N5.2G-40M	2	5190	10.55	12.25	-	-	14.49	17.0	19.99	23.0
11N5.2G-40M	2	5230	12.79	13.48	-	-	16.16	17.0	21.66	23.0
Res		Complied								
Note 1: N _{TX} = Nun	nber of	Transmit	Chains							

SPORTON INTERNATIONAL INC. Page No. : 28 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

3.4 Peak Power Spectral Density

3.4.1 Peak Power Spectral Density Limit

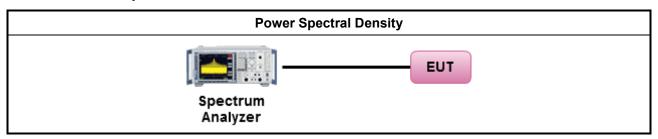
	Peak Power Spectral Density Limit
UNI	II Devices
	For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) \leq 4 dBm/MHz. If $G_{TX} >$ 6 dBi, then PPSD = 4 – ($G_{TX} -$ 6).
	For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If $G_{TX} >$ 6 dBi, then PPSD= 11 – $(G_{TX} - 6)$.
	For the 5.47-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If $G_{TX} > 6$ dBi, then PPSD= 11 – $(G_{TX} - 6)$.
	For the 5.725-5.825 GHz band:
	Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) \leq 17 dBm/MHz. If G_{TX} > 6 dBi, then PPSD= 17 – (G_{TX} – 6).
	Point-to-point systems (P2P): the peak power spectral density (PPSD) \leq 17 dBm/MHz. If $G_{TX} > 23$ dBi, then PPSD = 17 – ($G_{TX} - 23$).
LE-	LAN Devices
	For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) \leq 4 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 10 dBm/MHz.
	For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 17 dBm/MHz.
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 17 dBm/MHz.
	For the 5.725-5.825 GHz band, the peak power spectral density (PPSD) \leq 17 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 23 dBm/MHz.
pow	SD = peak power spectral density that he same method as used to determine the conducted output ver shall be used to determine the power spectral density. And power spectral density in dBm/MHz = the maximum transmitting antenna directional gain in dBi.

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC. : 29 of 75
TEL: 886-3-327-3456 : Report Version : Rev. 01

3.4.3 Test Procedures


		Test Method
\boxtimes	outp func	c power spectral density procedures that the same method as used to determine the conducted ut power shall be used to determine the peak power spectral density and use the peak search tion on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density be measured using below options:
	[duty	cycle ≥ 98% or external video / power trigger]
	\boxtimes	Refer as FCC KDB 789033, clause C Method SA-1 (spectral trace averaging).
		Refer as FCC KDB 789033, clause C Method SA-1 Alt. (RMS detection with slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor (refer as clause 1.1.4)
		Refer as FCC KDB 789033, clause C Method SA-2 (spectral trace averaging).
		Refer as FCC KDB 789033, clause C Method SA-2 Alt. (RMS detection with slow sweep speed)
	With	out duty cycle restriction
		Refer as FCC KDB 789033, clause C Method SA-3 (band power max-hold).
		Refer as FCC KDB 789033, clause C Method SA-3 Alt. (reduced VBW and band power max-hold). Method SA-3 Alt. was used and the linear mode was used, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
		Refer as ANSI C63.10, clause 6.11.1.2.1 for Method 1—peak measurement.
		Refer as ANSI C63.10, clause 6.11.1.2.2 for Method 2—power averaging.
\boxtimes	For	conducted measurement.
	\boxtimes	For conducted measurements on devices with multiple transmit chains:
		○ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
	\boxtimes	If multiple transmit chains, EIRP PPSD calculation could be following as methods:
		Method 2: PPSD _{total} = PPSD₁ + PPSD₂ + + PPSD _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = PPSD _{total} + DG
	obta equi max	radiated measurement. The equipment to be measured and the test antenna shall be oriented to in the maximum emitted power level. The measured radiated field strength or power levels to valent isotropic radiated power (EIRP) (see FCC KDB 412172 for guidance). The equivalent imum conducted output power can then be determined by subtracting the EUT transmit antenna from the EIRP.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 30 of 75

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

 FAX: 2008 0.0072 0.0073
 : 1070-1010
 : 1070-1010

3.4.4 **Test Setup**

Test Result of Peak Power Spectral Density 3.4.5

Peak Power Spectral Density Result									
Power Level 1			Pook Power Spectral Density (dPm/MHz)						
Directional Gain	6.27	Peak Power Spectral Density (dBm/MHz)							
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	-	-	-	PSD Limit	EIRP PSD	EIRP PSD Limit
11A5.2G-20M	1	5180	0.94	-	-	-	4.0	7.21	10.0
11A5.2G-20M	1	5200	1.12	-	-	-	4.0	7.39	10.0
11A5.2G-20M 1		5240	1.52	-	-	-	4.0	7.79	10.0
Result			Complied						

Note 1: N_{TX} = Number of Transmit Chains Note 2: EUT support diversity transmit and transmit chains port 1 is the worst than other transmit chains.

Peak Power Spectral Density Result									
Power Leve		Dook Dower Connetted Domaits (dDm/MIII)							
Directional Gain (dBi)		5.5	Peak Power Spectral Density (dBm/MHz)						
Modulation Mode	N _{TX}	Freq. (MHz)	Sum All Chains	-	-	-	PSD Limit	EIRP PSD	EIRP PSD Limit
11N5.2G-20M	2	5180	0.89	-	-	-	4.0	6.39	10.0
11N5.2G-20M	2	5200	1.50	-	-	-	4.0	7.00	10.0
11N5.2G-20M	2	5240	1.87	-	-	-	4.0	7.37	10.0
Result			Complied						

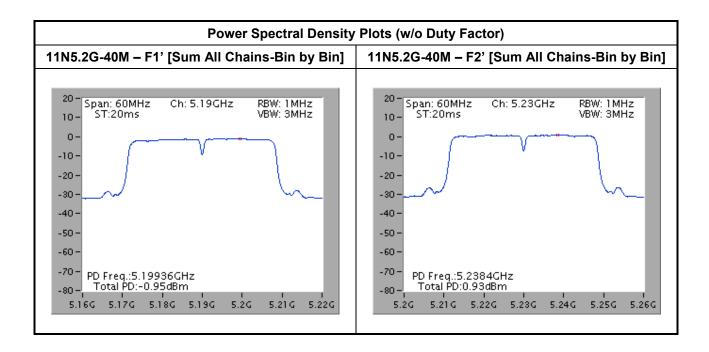
Note 1: N_{TX} = Number of Transmit Chains

Note 2: PPSD [dBm/MHz] = sum each transmit chains by bin-to-bin PPSD [dBm/MHz]

SPORTON INTERNATIONAL INC. Page No. : 31 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

Peak Power Spectral Density Result										
Power Leve	Power Level 1									
Directional Gain (dBi)		5.5	Power Spectral Density (dBm/MHz)							
Modulation Mode	N _{TX}	Freq. (MHz)	Sum All Chains	-	-	-	PSD Limit	EIRP PSD	EIRP PSD Limit	
11N5.2G-40M	2	5190	-0.95	-	-	-	4.0	4.55	10.0	
11N5.2G-40M	2	5230	0.93	-	-	-	4.0	6.43	10.0	
Resi					Complied					

Note 1: N_{TX} = Number of Transmit Chains Note 2: PPSD [dBm/MHz] = sum each transmit chains by bin-to-bin PPSD [dBm/MHz]


SPORTON INTERNATIONAL INC. Page No. : 32 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 33 of 75
Report Version : Rev. 01

FCC ID : K7SF9K1102V2

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-327-0973

Page No. : 34 of 75

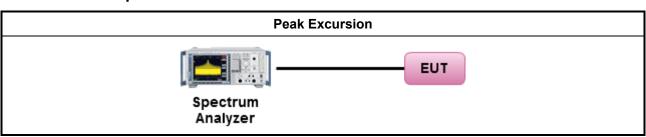
Report Version : Rev. 01

FCC ID : K7SF9K1102V2

3.5 Peak Excursion

3.5.1 Peak Excursion Limit

Peak Excursion Limit UNII Devices □ Peak excursion ≤ 13 dB. The ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed 13 dB. (Earlier procedures that required computing the ratio of the two spectra at each frequency across the emission bandwidth can lead to unintended failures at band edges and will no longer be required.) LE-LAN Devices □ N/A


3.5.2 Measuring Instruments

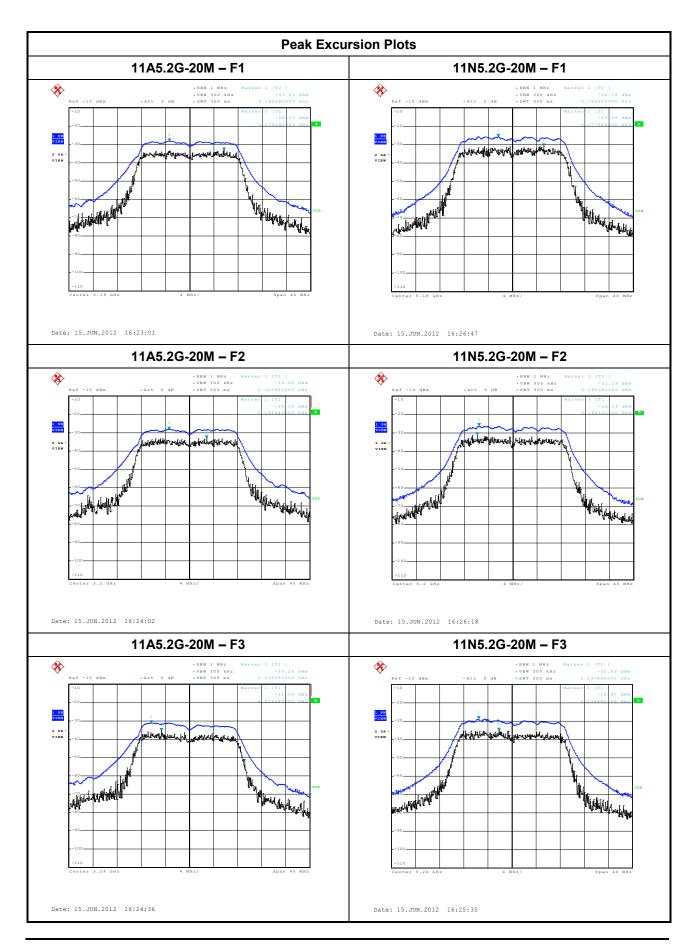
Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method
\boxtimes	Refer as FCC KDB 789033, clause F peak excursion method.
\boxtimes	For conducted measurement.
	For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, when testing in-band (peak to average ratio) against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N).
	For radiated measurement. The equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted power level.

3.5.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 35 of 75 TEL : 886-3-327-3456 Report Version : Rev. 01

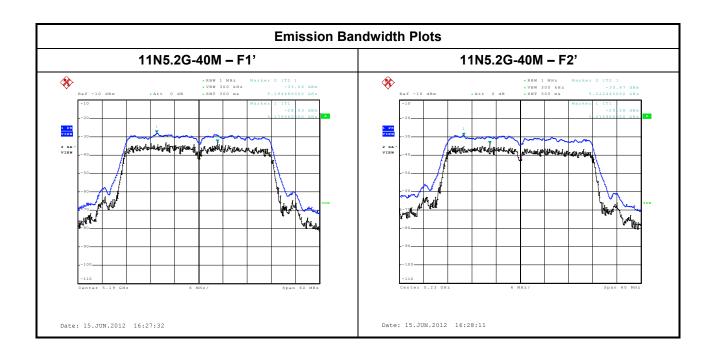

3.5.5 Test Result of Peak Excursion

UNII Peak Excursion Result										
Power Level		1	Peak Excursion (dB)							
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Limit			
11A5.2G-20M	1	5180	5.04	-	-	-	13.0			
11A5.2G-20M	1	5200	4.80	-	-	-	13.0			
11A5.2G-20M	1	5240	4.22	-	-	-	13.0			
11N5.2G-20M	2	5180	5.10	-	-	-	13.0			
11N5.2G-20M	2	5200	5.00	-	-	-	13.0			
11N5.2G-20M	2	5240	6.16	-	-	-	13.0			
11N5.2G-40M	2	5190	5.03	-	-	-	13.0			
11N5.2G-40M	2	5230	4.39	-	-	-	13.0			
Resi	ult				Complied					

Note 1: N_{TX} = Number of Transmit Chains Note 2: Test result plots refer as test report clause 3.3.5 with peak excursion ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum.

SPORTON INTERNATIONAL INC. Page No. : 36 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

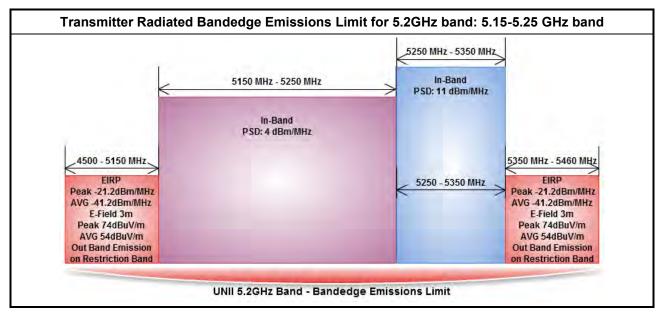


SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 37 of 75
Report Version : Rev. 01

FCC ID : K7SF9K1102V2

Report No.: FR241874AN


SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 38 of 75
Report Version : Rev. 01

FCC ID : K7SF9K1102V2

3.6 Transmitter Radiated Bandedge Emissions

3.6.1 Transmitter Radiated Bandedge Emissions Limit

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC. Page No. : 39 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

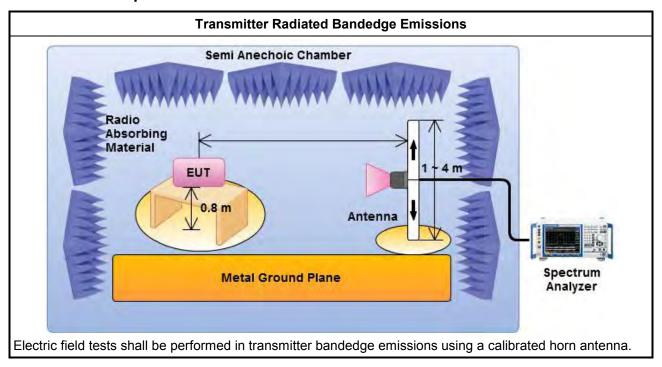
3.6.3 Test Procedures

		Test Method – General Information							
\boxtimes	perfo equip extra dista meas	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Measurements in the bandedge are typically made at a closer distance 1.5m, because the instrumentation noise floor is typically close to the radiated emission limit.							
\boxtimes	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].							
		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency nnel and highest frequency channel within the allowed operating band.							
		If EUT operate in adjacent contiguous bands, bandedge testing performed at the lowest frequency channel at lower-band and highest frequency channel at higher-band. Transmitter in-band emissions will consist of adjacent contiguous bands (e.g., IEEE 802.11ac VHT160 The lowest frequency channel at lower-band and highest frequency channel at higher-band in-band emissions will consist of two adjacent contiguous bands.)							
		Operating in 5.15-5.25 GHz band (lower-band) and 5.25-5.35 GHz band (higher-band).							
		Operating in 5.47-5.725 GHz band (lower-band) and 5.725-5.825 GHz band (higher-band).							
		If EUT operate in individual non-contiguous bands, bandedge testing performed at the lowest frequency channel and highest frequency channel within lower-band and higher-band. (e.g., (e.g., IEEE 802.11ac VHT160)							
	['	Operating in 5.25-5.35 GHz band (lower-band) and 5.47-5.725 GHz band (higher-band).							
		Operating in 5.15-5.25 GHz band (lower-band) and 5.725-5.825 GHz band (higher-band).							
	For t	the transmitter unwanted emissions shall be measured using following options below:							
	\boxtimes	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.							
		Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.							
	[Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).							
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).							
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) - Duty cycle ≥ 98%.							
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.							
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.							
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.							
\boxtimes	For t	the transmitter bandedge emissions shall be measured using following options below:							
		Refer as FCC KDB 789033, clause G)3)d) marker-delta method for band-edge measurements.							
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.							
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.							

SPORTON INTERNATIONAL INC. Page No. : 40 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.

Refer as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.


Report No.: FR241874AN

 SPORTON INTERNATIONAL INC.
 Page No.
 : 41 of 75

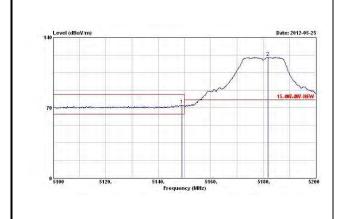
 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

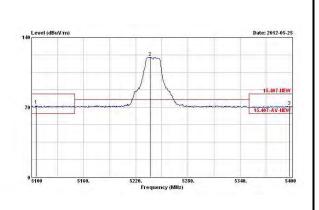
 FAX: 886-3-327-0973
 FCC ID
 : K7SF9K1102V2

3.6.4 Test Setup

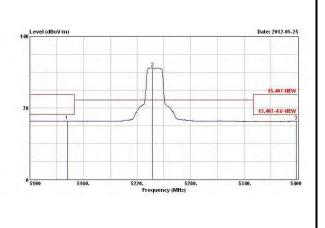
SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 42 of 75
Report Version : Rev. 01

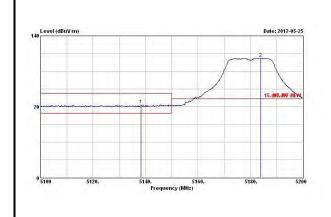

FCC ID : K7SF9K1102V2

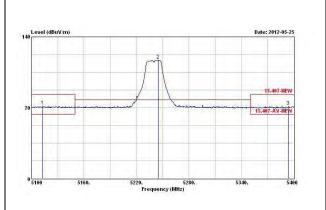

3.6.5 Test Result of Transmitter Radiated Bandedge Emissions

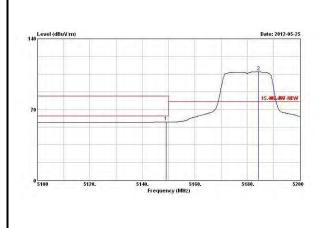

		Transm	nitter Radiat	ed Bandedg	e Emission	s Result				
Power Level	1	Gain (dBi)	6.27	Restricted Band Emissions						
Modulation		11A5.2G	i-20M	Restricted Band Emissions						
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz) Measure Distance (m)		Out-Band Level (dBuV/m) Limit		Level Type	Pol.	
4500-5150	1	5180	120.13	5149.00	1	72.54	83.54	PK	V	
4500-5150	1	5180	109.56	5149.00	1	58.32	63.54	AV	V	
5350-5460	1	5240	120.05	5397.00	1	71.03	83.54	PK	V	
5350-5460	1	5240	109.35	5398.20	1	57.21	63.54	AV	V	

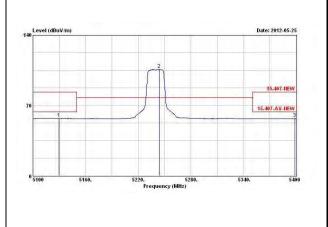

5.2GHz Lower-band (Lowest Ch.)

5.3GHz Higher-band (Highest Ch.)

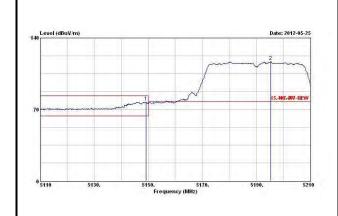

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).

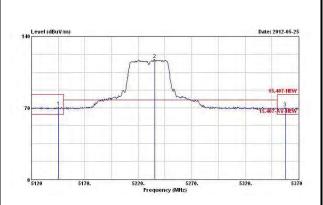

SPORTON INTERNATIONAL INC. Page No. : 43 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

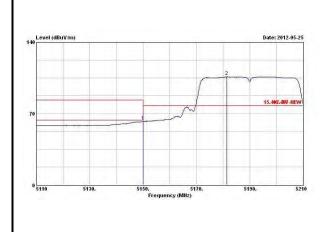

1	0-1-		Transmitter Radiated Bandedge Emissions Result											
	Gain (dBi)	5.5	Postvieted Band Emissions											
dulation 11N5.2G-20M					Restricted Dania Ellissions									
N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.						
2	5180	118.01	5138.30	1	72.05	83.54	PK	V						
2	5180	107.22	5149.00	1	57.75	63.54	AV	V						
2	5240	116.83	5393.70	1	71.60	83.54	PK	V						
2	5240	105.81	5398.20	1	56.93	63.54	AV	V						
	2 2 2	11N5.2G Test Ch. Freq. (MHz) 2 5180 2 5180 2 5240	11N5.2G-20M Test Ch. Freq. (MHz) (dBuV/1MHz) 2 5180 118.01 2 5180 107.22 2 5240 116.83 2 5240 105.81	11N5.2G-20M Test Ch. Freq. (MHz) 2 5180 118.01 5138.30 2 5180 107.22 5149.00 2 5240 116.83 5393.70 2 5240 105.81 5398.20	11N5.2G-20M Test Ch. Freq. (MHz) (In-band PSD [i] (MHz) (MHz) (In-band (MHz) (MHz) (In-band (MHz))	Test Ch. In-band PSD [i] (MHz) (MHz)	Test Ch. In-band PSD [i] (MHz) (MHz)	Test Ch. In-band PSD [i] (MHz) (MHz) Measure Check (MHz) (MH						

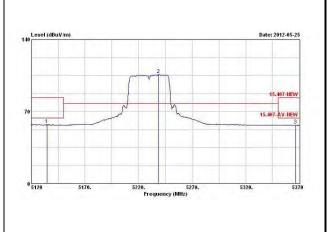

5.2GHz Lower-band (Lowest Ch.)

5.3GHz Higher-band (Highest Ch.)


Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).


SPORTON INTERNATIONAL INC. Page No. : 44 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01


	Transmitter Radiated Bandedge Emissions Result											
Power Level	1	Gain (dBi)	5.5	Restricted Band Emissions								
Modulation		11N5.2G	6-40M		115510115	HOIIS						
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	Distar (MHz)		Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.			
4500-5150	2	5190	116.77	5149.10	1	77.29	83.54	PK	V			
4500-5150	2	5190	106.19	5150.00	1	62.17	63.54	AV	V			
5350-5460	2	5230	117.38	5357.50	1	69.91	83.54	PK	V			
5350-5460	2	5230	105.79	5366.50 1 56.62 63.54 AV					V			
5 0011-1					E 0011-		. /					


5.2GHz Lower-band (Lowest Ch.)

5.3GHz Higher-band (Highest Ch.)

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 45 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

3.7 Transmitter Radiated Unwanted Emissions

3.7.1 Transmitter Radiated Unwanted Emissions Limit

Unwanted emissions below 1 GHz and restricted band emissions above 1GHz limit										
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)							
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300							
0.490~1.705	24000/F(kHz)	33.8 - 23	30							
1.705~30.0	30	29	30							
30~88	100	40	3							
88~216	150	43.5	3							
216~960	200	46	3							
Above 960	500	54	3							

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted band emissions above 1GHz Limit								
Operating Band	Limit							
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]							
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]							
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]							
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]							

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

3.7.2 Measuring Instruments

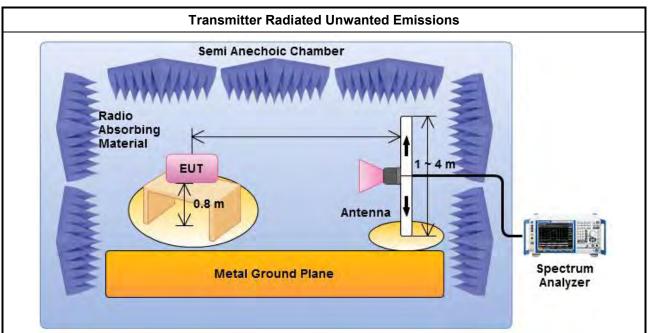
Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC. Page No. : 46 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

3.7.3 Test Procedures

		Test Method – General Information
	performation performation performation above above are in the endistration of the performation above are in the performation above above above above are in the performation above a	surements may be performed at a distance other than the limit distance provided they are not borned in the near field and the emissions to be measured can be detected by the measurement pment. Measurements shall not be performed at a distance greater than 30 m for frequencies we 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less impractical. When performing measurements at a distance other than that specified, the results shall extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance-squared for power-density surements).
	\boxtimes	Measurements in the frequency range 5 GHz - 10GHz are typically made at a closer distance 1.0m, because the instrumentation noise floor is typically close to the radiated emission limit.
		Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1.0m, because the instrumentation noise floor is typically close to the radiated emission limit.
	\boxtimes	Measurements in the frequency range above 18 GHz - 40GHz are typically made at a closer distance 1.0m, because the instrumentation noise floor is typically close to the radiated emission limit.
\boxtimes	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
		Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty ≥ 98%.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.

SPORTON INTERNATIONAL INC. Page No. : 47 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

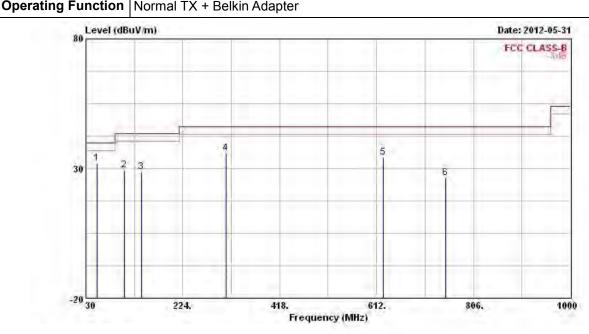

	Refe	r as	FCC KDB 789033, G)3)b) for conducted measurement.						
		For	unwanted emissions into non-restricted bands (relative emission limits).						
			For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.						
		For unwanted emissions into restricted bands. Test conducted spurious emissions and return the cabinet with the antenna connector(s) terminated by a specified load (cabinet radiation).							
	☐ Refer as FCC KDB 789033, clause G)4) unwanted emissions in restricted frequencies ≤ 1000 MHz								
			Refer as FCC KDB 789033, clause G)5) and G)6) unwanted emissions in restricted bands on frequencies > 1000 MHz						
			For conducted measurements on devices with multiple transmit chains using options given below:						
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, out-of-band and spurious emission measurement. The trace data for each transmit chain has to be individually recorded and each transmit chain trace data shall be added and compared with the limit.						
			Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.						
\boxtimes	For	adia	ted measurement.						
	\boxtimes	Refe	er as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.						
	\boxtimes	Refe	er as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.						
	\boxtimes	Refe	er as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.						

Test Method

SPORTON INTERNATIONAL INC. Page No. : 48 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC ID FAX: 886-3-327-0973 : K7SF9K1102V2

3.7.4 Test Setup


Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna and the frequency range of 1 GHz to 40 GHz using a calibrated horn antenna.

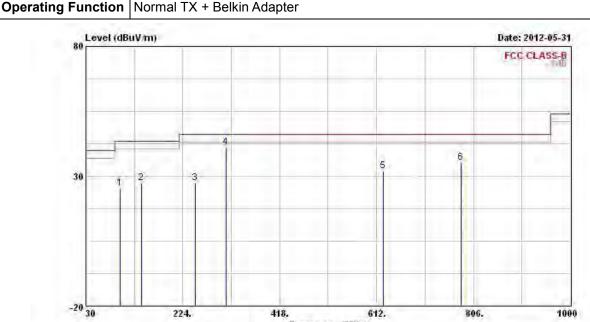
SPORTON INTERNATIONAL INC. Page No. : 49 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

3.7.5 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Transmitter Radiated Unwanted Emissions (Below 1GHz)									
Modulation Mode	11N5.2G-40M	Power Level	1	Test Freq. (FX)	F2'				
Operating Mode	1	Ant. No.	1+2	Polarization	V				
Operating Function Normal TV Dollain Adoptor									

	Freq	Level	Over Limit	A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	The state of the s	Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	52.310	31.88	-8.12	40.00	49.57	8.94	1.22	27.85	Peak		
2	106.630	29.46	-14.04	43.50	43.57	11.99	1.72	27.82	Peak		
3	141.550	28.55	-14.95	43.50	42.44	11.78	2.00	27.67	Peak		-
4	311.300	35.97	-10.03	46.00	46.32	13.88	3.01	27.24	Peak		
5	625.580	34.43	-11.57	46.00	38.68	19.84	4.32	28.41	Peak		1000
6	749.740	26.22	-19.78	46.00	30.07	19.55	4.71	28.11	Peak		


Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 50 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Below 1GHz)									
Modulation Mode11N5.2G-40MPower Level1Test Freq. (FX)F2'									
Operating Mode	1	Ant. No.	1+2	Polarization	Н				
Operating Function Negree IV Delkin Adentes									

Frequency (MHz)

612.

806.

1000

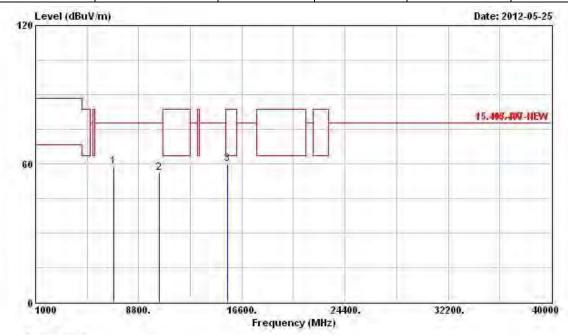
	Freq	Level	Over Limit	Limit Line		Antenna Factor	7.0	Preamp Factor	Remark	Ant Pos	Table Pos
-	Mr	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	97.900	25.40	-18.10	43.50	40.77	10.84	1.64	27.85	Peak		
2	141.550	27.45	-16.05	43.50	41.34	11.78	2.00	27.67	Peak		-
3	249.220	27.38	-18.62	46.00	38.93	12.97	2.77	27.29	Peak		
4	311.300	41.18	-4.82	46.00	51.53	13.88	3.01	27.24	Peak	204	2-4
5	625.580	32.03	-13.97	46.00	36.28	19.84	4.32	28.41	Peak		5
6	781.750	35.42	-10.58	46.00	38.59	20.01	4.82	28.00	Peak		

418.

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)


224.

SPORTON INTERNATIONAL INC. Page No. : 51 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

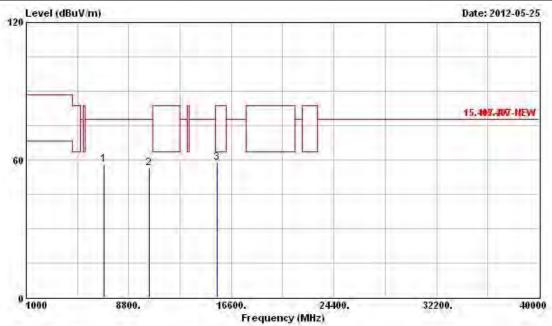
FCC Test Report

3.7.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11A-20M

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11A5.2G-20M Power Level 1 Test Freq. (FX) F1										
Operating Function	Transmit	Ant. No.	1	Polarization	V					

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MKz dBuV/n		dB	dBuV/m	dBuV	dBuV dB/m		dB		cm	deg
1.	6888.000	58.78	-19.06	77.84	52.35	35.85	5.57	34.99	Peak		
2	10360.000	56.19	-21.65	77.84	46.48	38.22	6.71	35.22	Peak		975
3	15540.000	60.19	-3.35	63.54	45.96	40.81	8.45	35.03	PK		

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

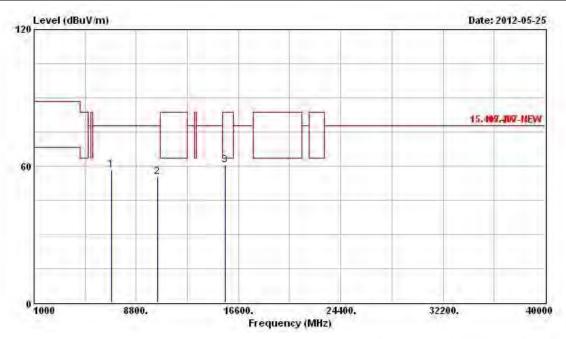
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 52 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11A5.2G-20M Power Level 1 Test Freq. (FX) F1											
Operating Function	Transmit	Ant. No.	1	Polarization	Н						

	Freq	Level	Over Limit	R. 10 - 10 - 11		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	6888.000	58.07	-19.77	77.84	51.64	35.85	5.57	34.99	Peak		1500
2	10360.000	56.64	-21.20	77.84	46.93	38.22	6.71	35.22	Peak		
3	15540.000	58.93	-4.61	63.54	44.70	40.81	8.45	35.03	PK		-


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

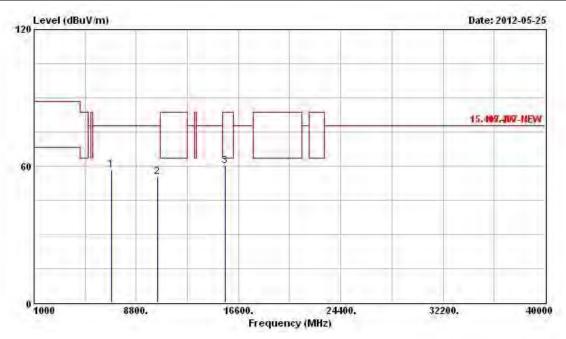
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 53 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode11A5.2G-20MPower Level1Test Freq. (FX)F2										
Operating Function	Transmit	Ant. No.	1	Polarization	V					

	F	req	Level	Over Limit			Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	-	MKz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	can	deg
1	6900.	000	58.37	-19.47	77.84	51.93	35.86	5.57	34.99	Peak	→- ←	
2	10400.	000	55.28	-22.56	77.84	45.47	38.24	6.75	35.18	Peak		
3	15600.	000	60.48	-3.06	63.54	46.29	40.84	8.45	35.10	PK		

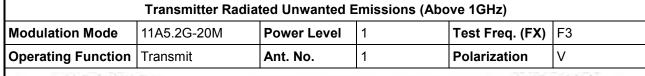

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

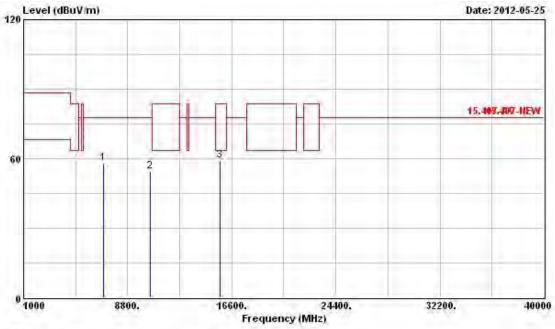
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 54 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode11A5.2G-20MPower Level1Test Freq. (FX)F2										
Operating Function	Transmit	Ant. No.	1	Polarization	Н					


	Freq	Level	Over Limit	200		Antenna Factor	-1000	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	can	deg
1	6900.000	58.59	-19.25	77.84	52.15	35.86	5.57	34.99	Peak	>-+	566
2	10400.000	55.33	-22.51	77.84	45.52	38.24	6.75	35.18	Peak		
3	15600.000	59.99	-3.55	63.54	45.80	40.84	8.45	35.10	PK	$\rightarrow - \leftarrow$	

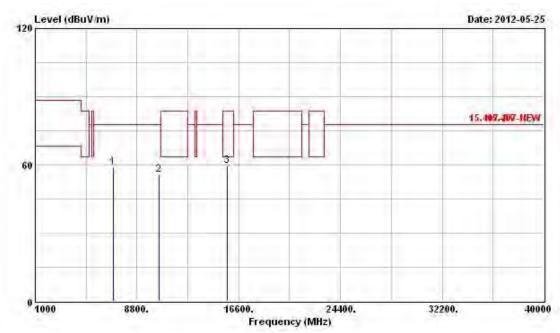

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 55 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

			Over	Limit	Readi	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	cm	deg
1	6984.000	58.00	-19.84	77.84	51.54	35.89	5.59	35.02	Peak	9-6	1248
2	10480.000	54.59	-23.25	77.84	44.60	38.29	6.82	35.12	Peak		
3	15720.000	59.36	-4.18	63.54	45.21	40.89	8.46	35.20	PK		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

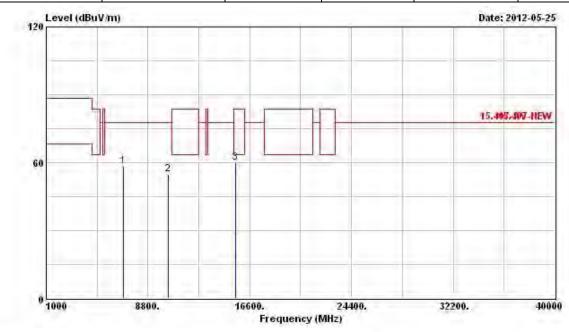
SPORTON INTERNATIONAL INC. Page No. : 56 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode11A5.2G-20MPower Level1Test Freq. (FX)F3										
Operating Function	Transmit	Ant. No.	1	Polarization	Н					

	Freq	Level		Limit Line				Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m dBuV	dB/m	dB	dB	-	can	deg	
1	6984.000	58.86	-18.98	77.84	52.40	35.89	5.59	35.02	Peak		4440
2	10480.000	55.54	-22.30	77.84	45.55	38.29	6.82	35.12	Peak		
3	15720.000	59.52	-4.02	63.54	45.37	40.89	8.46	35.20	PK		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)


Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 57 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

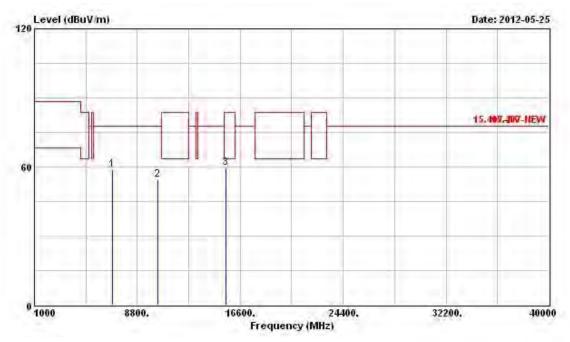
FCC Test Report

3.7.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11N-20M

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N5.2G-20M Power Level 1 Test Freq. (FX) F1									
Operating Function	Transmit	Ant. No.	1+2	Polarization	V				

	Freq	Level	Over Limit			Antenna Factor	-0-3	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	cm	deg
1	6888.000	58.30	-19.54	77.84	51.87	35.85	5.57	34.99	Peak		275
2	10360.000	54.99	-22.85	77.84	45.28	38.22	6.71	35.22	Peak		
3	15540.000	60.15	-3.39	63.54	45.92	40.81	8.45	35.03	PK		

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

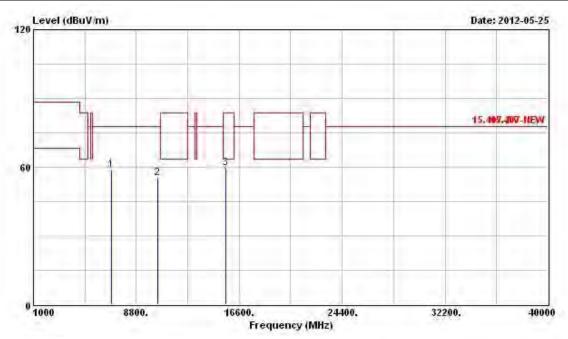
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 58 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11N5.2G-20M	Power Level	1	Test Freq. (FX) F1								
Operating Function	Transmit	Ant. No.	1+2	Polarization	Н							

	Freq	Level	Over Limit			Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-		deg
1	6888.000	58.70	-19.14	77.84	52.27	35.85	5.57	34.99	Peak	×-4	4440
2	10360.000	54.50	-23.34	77.84	44.79	38.22	6.71	35.22	Peak		
3	15540.000	59.60	-3.94	63.54	45.37	40.81	8.45	35.03	PK		

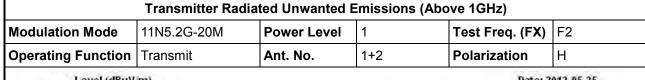

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

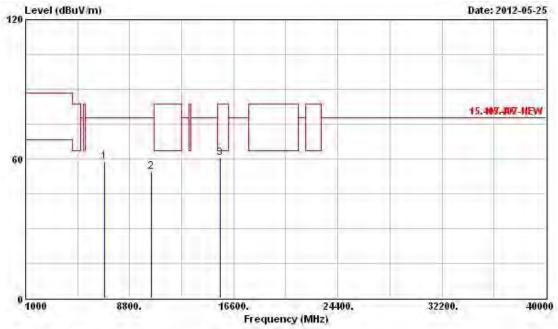
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 59 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11N5.2G-20M	Power Level	1	Test Freq. (FX) F2								
Operating Function	Transmit	Ant. No.	1+2	Polarization	V							

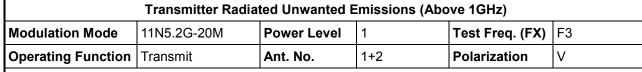

	Freq	Level	Oyer Limit					Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	cm	deg
1	6900.000	58.82	-19.02	77.84	52.38	35.86	5.57	34.99	Peak	H-6	
2	10400.000	55.10	-22.74	77.84	45.29	38.24	6.75	35.18	Peak		
3	15600.000	59.66	-3.88	63.54	45.47	40.84	8.45	35.10	PK		

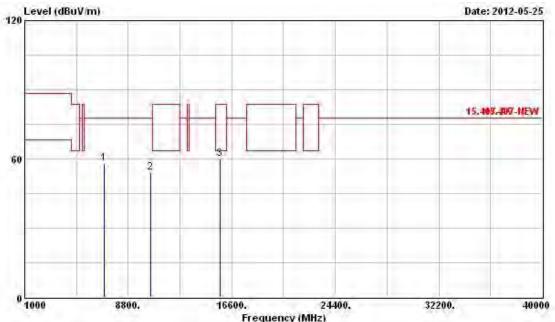

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 60 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01


	Freq	Level		Over Limit			Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	cm	deg	
1	6900.000	58.88	-18.96	77.84	52.44	35.86	5.57	34.99	Peak	×-6	2000	
2	10400.000	54.41	-23.43	77.84	44.60	38.24	6.75	35.18	Peak			
3	15600.000	60.21	-3.33	63.54	46.02	40.84	8.45	35.10	PK			

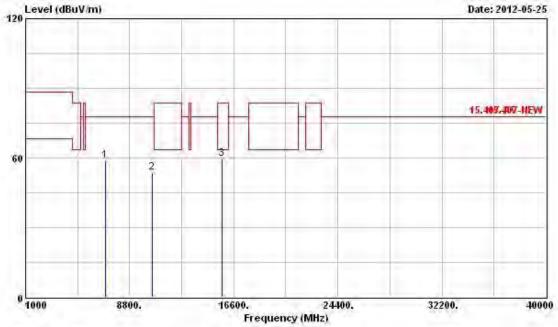

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 61 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

	Freq	Level	Over Limit			Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	6984.000	57.88	-19.96	77.84	51.42	35.89	5.59	35.02	Peak	9-6	12440
2	10480.000	54.04	-23.80	77.84	44.05	38.29	6.82	35.12	Peak		
3	15720.000	60.05	-3.49	63.54	45.90	40.89	8.46	35.20	PK		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

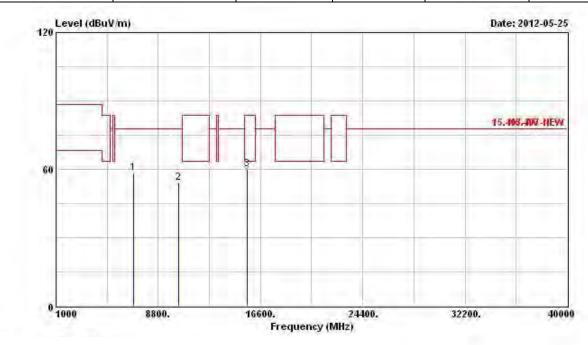
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 62 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11N5.2G-20M	Power Level	1	Test Freq. (FX)	F3							
Operating Function	Transmit	Ant. No.	1+2	Polarization	Н							
Louis Albustinis												

	Freq	Freq Level		Over Limit ReadAnten q Level Limit Line Level Facto		THE PERSON NAMED IN		Preamp Factor	p r Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	can	deg
1	6984.000	58.78	-19.06	77.84	52.32	35.89	5.59	35.02	Peak	H-6	15480
2	10480.000	53.67	-24.17	77.84	43.68	38.29	6.82	35.12	Peak		
3	15720.000	59.69	-3.85	63.54	45.54	40.89	8.46	35.20	PK		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

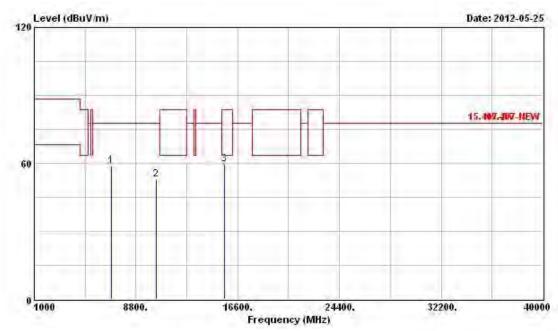
SPORTON INTERNATIONAL INC. Page No. : 63 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

3.7.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11N-40M

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11N5.2G-40M	Power Level	1	Test Freq. (FX) F1'								
Operating Function	Transmit	Ant. No.	1+2	Polarization	V							

	Freq	Level	Over Limit	1000		Antenna Factor	3.4.00	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	m dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1.	6900.000	58.57	-19.27	77.84	52.13	35.86	5.57	34.99	Peak		2
2	10380.000	54.12	-23.72	77.84	44.34	38.23	6.75	35.20	Peak		
3	15570.000	60.01	-3.53	63.54	45.78	40.83	8.45	35.05	PK		100

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

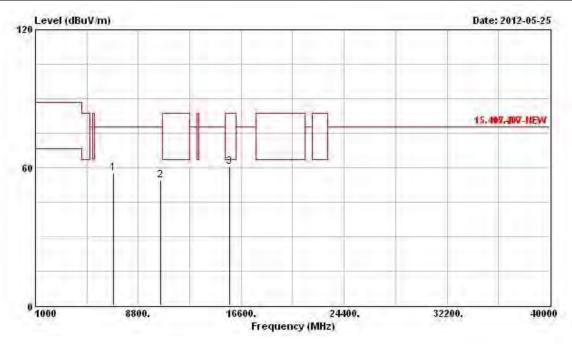
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 64 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode	11N5.2G-40M	Power Level	1 Test Freq. (FX) F1'									
Operating Function	Transmit	Ant. No.	1+2	Polarization	Н							

	Freq	Level	Over Limit			Antenna Factor		CONT. A. S. C. C. C.	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	6900.000	58.89	-18.95	77.84	52.45	35.86	5.57	34.99	Peak	×-6	2500
2	10380.000	52.85	-24.99	77.84	43.07	38.23	6.75	35.20	Peak		
3	15570.000	59.78	-3.76	63.54	45.55	40.83	8.45	35.05	PK		-

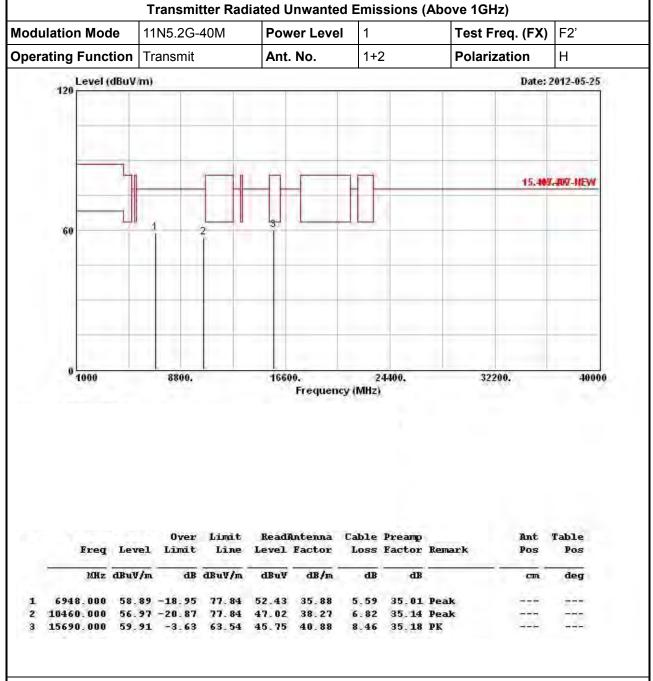

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 65 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode	11N5.2G-40M	Power Level	1	Test Freq. (FX) F2'					
Operating Function	Transmit	Ant. No.	1+2	Polarization	V				


		Freq	Level	Over Limit	A 100 PM		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can can	deg
3	694	8.000	57.58	-20.26	77.84	51.12	35.88	5.59	35.01	Peak		
2	1046	0.000	54.65	-23.19	77.84	44.70	38.27	6.82	35.14	Peak		
3	1569	0.000	60.34	-3.20	63.54	46.18	40.88	8.46	35.18	PK		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 66 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

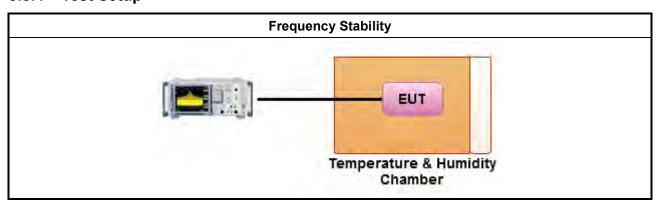
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. [Mark 3 fall in restricted bands and peak measurement meets the AV-Limit]

SPORTON INTERNATIONAL INC. Page No. : 67 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

3.8 Frequency Stability

3.8.1 Frequency Stability Limit

Frequency Stability Limit UNII Devices ☐ In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual. LE-LAN Devices ☐ N/A IEEE Std. 802.11n-2009 ☐ The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 GHz band and ± 25 ppm maximum for the 2.4 GHz band.


3.8.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.8.3 Test Procedures

	Test Method							
\boxtimes	Refer as ANSI C63.10, clause 6.8 for frequency stability tests							
	\boxtimes	Frequency stability with respect to ambient temperature						
	\boxtimes	Frequency stability when varying supply voltage						
\boxtimes	For conducted measurement.							
		For conducted measurements on devices with multiple transmit chains: Measurements need only to be performed on one of the active transmit chains (antenna outputs)						
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to in the maximum emitted power level.						

3.8.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 68 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

3.8.5 Test Result of Frequency Stability

	Frequency Stability Result									
Power Level	1	Frequency Stability (ppm)								
Condition	Freq. (MHz)	Freq. (MHz)	ppm	Limit						
T _{20°C} Vmax	5200	5199.9838	-3.12	20.0						
T _{20°C} Vmin	5200	5199.9832	-3.23	20.0						
T _{50℃} Vnom	5200	5199.9861	-2.67	20.0						
T _{40°C} Vnom	5200	5199.9842	-3.04	20.0						
T _{30°C} Vnom	5200	5199.9836	-3.15	20.0						
T _{20°C} Vnom	5200	5199.9824	-3.38	20.0						
T _{10°C} Vnom	5200	5199.9832	-3.23	20.0						
T _{0°C} Vnom	5200	5199.9842	-3.04	20.0						
T _{-10°C} Vnom	5200	5199.9798	-3.88	20.0						
T _{-20°C} Vnom	5200	5199.9862	-2.65	20.0						
T _{-30°C} Vnom	5200	5199.9826	-3.35	20.0						
Res	ult	Complied								

Note 1: Measure at 85 % [Vmin] and 115 % [Vmax] of the nominal voltage [Vnom]. The nominal voltage refer test report clause 1.1.5 for EUT operational condition.

SPORTON INTERNATIONAL INC. Page No. : 69 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

4 Maximum Permissible Exposure

4.1 Maximum Permissible Exposure

4.1.1 Limit of Maximum Permissible Exposure

	Limits for Occ	cupational / Controlle	d Exposure	
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6
	Limits for General	Population / Uncont	rolled Exposure	
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30

1.0

30

Note 1: f = frequency in MHz; *Plane-wave equivalent power density

Note 2: For the applicable limit, see FCC 1.1310

1500-100,000

SPORTON INTERNATIONAL INC. : 70 of 75 TEL: 886-3-327-3456 : Report Version : Rev. 01

RF Field	RF Field Strength Limits for Controlled Use Devices (Controlled Environment)									
Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m2)	Averaging Time (minutes)						
0.003-1	600	4.9	-	6						
1-10	600/f	4.9/ <i>f</i>	-	6						
10-30	60	4.9/f	-	6						
30-300	60	0.163	10*	6						
300-1500	3.54 f 0.5	0.0094 f 0.5	f/30	6						
1500-15000	137	0.364	50	6						
15000-150000	137	0.364	50	616000/f 1.2						
150000-300000	0.354 f 0.5	9.4 x 10-4 f 0.5	3.33 x 10-4 f	616000/f 1.2						

RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m2)	Averaging Time (minutes)
0.003-1	280	2.19	-	6
1-10	280/f	2.19/ <i>f</i>	-	6
10-30	28	2.19/ <i>f</i>	-	6
30-300	28	0.073	2*	6
300-1500	1.585 f ^{0.5}	0.0042 f ^{0.5}	f/150	6
1500-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/f ^{1.2}
150000-300000	0.158 f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}

Note 1: f is frequency in MHz.

Note 2: For the applicable limit, see IC RSS-102

4.1.2 MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$

E = Electric field (V/m)

G = EUT Antenna numeric gain (numeric) The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

Power Density: Pd (W/m²) = $\frac{E^2}{377}$

P = RF output power (W)

d = Separation distance between radiator and human body (m)

SPORTON INTERNATIONAL INC. Page No. : 71 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

4.1.3 Result of Maximum Permissible Exposure

	Transmitter Chains & Receiver Chains Information								
IEEE Std. 802.11 Protocol	Number of Transmit Chains (N _{TX})	Number of Receive Chains (N _{RX})	Correlation Signals with Multiple N _{TX}	Co-location					
а	1	1	Correlated	13.52	N/A				
n (HT20)	2	2	Uncorrelated	14.64	N/A				
n (HT40)	2	2	Uncorrelated	16.16	N/A				

Note 1: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

Exposure Environment General Population / Uncontrolled Exposure									
Exposure Envi	ronnent	General	Population	/ Unconti	olled Ex	posure			
Separation Dista	ance (cm)	20							
Power Level	1		RF Output Power (dBm)						
Modulation Mode	N _{TX}	Chain- Port 1	Chain- Port 2	-	-	Sum Chain	Gain (dBi)	EIRP Power	PD (S) (W/m²)
11A5.2G-20M	1	13.52	-	-	-	-	6.27	19.79	0.0190
11N5.2G-20M	2	11.03	12.15	-	-	14.64	5.5	20.14	0.0206
11N5.2G-40M	2	12.79	13.48	-	-	16.16	5.5	21.66	0.0292
Maximum Permissible Exposure Limit (mW/cm²) 1									

SPORTON INTERNATIONAL INC. Page No. : 72 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

5 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9 kHz ~ 2.75 GHz	Mar. 23, 2012	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz – 30MHz	Feb. 08, 2012	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9 kHz ~ 30 MHz	Apr. 20, 2012	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	CB049	9 kHz ~ 30 MHz	Apr. 25, 2012	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Sep. 26, 2011	Conducted (TH02-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	May. 20, 2012	Conducted (TH02-CB)
Signal Generator	R&S	SMR40	100302	10MHz-40GHz	Nov. 22, 2011	Conducted (TH02-CB)
RF Power Divider	HP	11636A	00306	2GHz ~ 18GHz	N/A	Conducted (TH02-CB)
RF Power Splitter	Anaren	44100	1839	2GHz ~ 18GHz	N/A	Conducted (TH02-CB)
RF Power Splitter	Anaren	42100	17930	2GHz ~ 18GHz	N/A	Conducted (TH02-CB)
Horn Antenna	COM-POWER	AH-118	071187	1GHz – 18GHz	May. 09, 2012	Conducted (TH02-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 01, 2011	Conducted (TH02-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 01, 2011	Conducted (TH02-CB)

Note: Calibration Interval of instruments listed above is one year.

SPORTON INTERNATIONAL INC. Page No. : 73 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9 kHz ~ 40 GHz	Aug. 08, 2011	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30 MHz ~ 1 GHz 3m	May 10, 2012	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11146	100 kHz ~ 1.3 GHz	Jul. 25, 2011	Radiation (03CH02-HY)
Amplifier	Agilent	8449B	3008A02373	1 GHz ~ 26.5 GHz	Jul. 25, 2011	Radiation (03CH02-HY)
Horn Antenna	ETS-LINDGREN	3117	00091920	1 GHz ~ 18 GHz	Nov. 15, 2011	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz ~ 1 GHz	Nov. 11, 2011	Radiation (03CH02-HY)
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz ~ 40 GHz	Jan. 18, 2012	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30 MHz ~ 2 GHz	Oct. 22, 2011	Radiation (03CH02-HY)
Turn Table	HD	DS 420	420/649/00	0 - 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	HD	MA 240	240/559/00	1 m - 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	Jul. 29, 2010*	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

SPORTON INTERNATIONAL INC. Page No. : 74 of 75
TEL: 886-3-327-3456 Report Version : Rev. 01

Certification of TAF Accreditation

Certificate No. : L1190-111208

Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

: ISO/IEC 17025:2005 Accreditation Criteria

: 1190 Accreditation Number

Originally Accredited : December 15, 2003

: January 10, 2010 to January 09, 2013 Effective Period

Testing Field, see described in the Appendix Accredited Scope

: Accreditation Program for Designated Testing Laboratory Specific Accreditation

for Commodities Inspection Program

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

President, Taiwan Accreditation Foundation

Date: December 08, 2011

P1, total 24 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix

SPORTON INTERNATIONAL INC. Page No. : 75 of 75 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC ID FAX: 886-3-327-0973 : K7SF9K1102V2