FCC Test Report

Equipment : N600 DB Wireless N+ Router

Brand Name : Belkin

Model No. : F9K1102V2

FCC ID : K7SF9K1102V2

Standard : 47 CFR FCC Part 15.247

Applicant : Belkin International Inc.

Manufacturer 12045 E. Waterfront Drive Playa Viste,

CA 90094, USA

The product sample received on Apr. 18, 2012 and completely tested on Jun. 21, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Wayne Hsu / Assistant Manager

SPORTON INTERNATIONAL INC. Page No. : 1 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	8
1.3	Testing Applied Standards	8
1.4	Testing Location Information	8
1.5	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	The Worst Case Modulation Configuration	10
2.2	Test Channel Frequencies Configuration	10
2.3	The Worst Case Power Setting Parameter	11
2.4	The Worst Case Measurement Configuration	12
2.5	Test Setup Diagram	14
3	TRANSMITTER TEST RESULT	16
3.1	AC Power-line Conducted Emissions	16
3.2	6dB Bandwidth	19
3.3	RF Output Power	
3.4	Power Spectral Density	
3.5	Transmitter Radiated Bandedge Emissions	
3.6	Transmitter Radiated Unwanted Emissions	39
4	MAXIMUM PERMISSIBLE EXPOSURE	65
4.1	Maximum Permissible Exposure	65
5	TEST EQUIPMENT AND CALIBRATION DATA	68
6	CERTIFICATION OF TAF ACCREDITATION	70
APPE	ENDIX A. TEST PHOTOS	A1 ~ A6
A D D I	ENDIY B. DUOTOGDADUS OF EUT	D4 a. D40

: 2 of 70

Summary of Test Result

	Conformance Test Specifications									
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result					
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied					
3.1	1 15.207 AC Power-line 0.3715MHz: 40.04 (8.35 dB) - AV 42.74 (15.65dB) - QP [Ref. page 17]		FCC 15.207	Complied						
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth [MHz] 5745-5825MHz(20M): 16.48 5755-5795MHz(40M): 36.48	≥500kHz	Complied					
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm] 5745-5825MHz: 23.47 5755-5795MHz: 24.16	Power [dBm] 5745-5825MHz: 30 5755-5795MHz: 30	Complied					
3.4	15.247(d)	Power Spectral Density	PSD [dBm/3kHz] 5745-5825MHz: -12.83 5755-5795MHz: -15.65	PSD [dBm/3kHz] 5745-5825MHz: 8 5755-5795MHz: 8	Complied					
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 5722.30MHz: 34.58dB [Ref. page 38] Bandedge emissions not fall in restricted bands.	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied					
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 1m]: 7656MHz 62.82 (Margin 20.72dB) - PK 61.96 (Margin 1.58dB) - AV [Ref. page 50]	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied					
4.1	2.1091	Maximum Permissible Exposure	0.1841 mW/cm ²	1 mW/cm ²	Complied					

SPORTON INTERNATIONAL INC. : 3 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Revision History

Report No.	Version	Description	Issued Date
FR241874AI	Rev. 01	Initial issue of report	Jun. 27, 2012

SPORTON INTERNATIONAL INC. Page No. : 4 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information								
Frequency Range (MHz)			Channel Number	RF Output Power (dBm)	Designation of Emission			
5725-5850	а	5745-5825	149-165 [5]	20.72	16M9D1D			
5725-5850	n (HT20)	5745-5825	149-165 [5]	23.47	16M0D1D			
5725-5850	n (HT40)	5755-5795	151-159 [2]	24.16	36M6D1D			

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11a-1999.

Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 3: RF output power specifies that Maximum Peak Conducted Output Power.

	Transmitter Chains & Receiver Chains Information									
IEEE Std. 802.11 Protocol	Number of Transmit Chains (N _{TX})	Number of Receive Chains (N _{RX})	Correlation Signals with Multiple N _{TX}	99% Emission Bandwidth (MHz)	Co-location					
а	1	1	Correlated	16.88	N/A					
n (HT20)	2	2	Uncorrelated	17.92	N/A					
n (HT40)	2	2	Uncorrelated	36.56	N/A					

Note 1: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

SPORTON INTERNATIONAL INC. : 5 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

1.1.2 Antenna Information

	Antenna Category								
	Equipment placed on the market without antennas								
\boxtimes	Integral antenna (antenna permanently attached)								
	\boxtimes	Temporary F	RF connec	tor provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.								
	Exte	rnal antenna	(dedicate	ed antennas)					
		Single powe	r level wit	h correspond	ling antenna(s). Power Level (PL):	1		
		Multiple pow	er level a	nd correspor	nding antenna	a(s). Power Level (PL): 1~		
		No RF conn	ector prov	rided					
		connec	ted meas ted to the	surement. In	case of co	soldered temporary nducted measureme a a suitable attenuato	ents the	transmitte	r shall be
		RF connecto	or provide	d					
		☐ Unique	antenna d	connector. (e	.g., MMCX, L	J.FL, IPX, and RP-SN	IA, RP-I	N type)	
		Standa	rd antenna	a connector.	(e.g., SMA, N	N, BNC, and TNC type	e)		
				A 4	0	I.a.f			
Anto		Dort /Total	2 Dorth	Anter	na General				
		Port (Total :		ovol (DL)	1(TX/RX), 2	(17/87)			
		Chains Pov			-	rical distribution 🔲 a	evmma	trical distrib	ution
man		Ant. Port	Wei Distri	Dution	⊠ 3yıııııcı		Зупппс		
Ant. No.	PL		Ant. Cat.	Ant. Type	Brand	Model	G _{ANT} (dBi)	DG (dBi) [correlated] N _{TX} = 1	DG (dBi) [uncorrelated] N _{TX} = 2
1	1	1	Integral	PIFA	-	-	6.27	N/A	5.5
2	1	2	Integral	PIFA	-	-	4.51	IN/A	0.0
\boxtimes	The	e equipment	is normal	ly installed a	nd point-to-po	oint or point-to-multip	oint syst	ems: Ant. N	lo. <u>1,2</u>
	The equipment is normally installed and point-to-point or point-to-multipoint systems: Ant. No. 1,2 Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = G _{ANT} + 10 log(N) dBi All transmit signals are completely uncorrelated, Directional Gain (DG)= G _{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = 10 log[(10 ^{G1/20} + 10 ^{G2/20} + + 10 ^{GN/20}) ² /N] dBi All transmit signals are completely uncorrelated, Directional Gain (DG) = 10 log[(10 ^{G1/10} + 10 ^{G2/10} + + 10 ^{GN/10})/N] dBi								

SPORTON INTERNATIONAL INC. : 6 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

1.1.3 Type of EUT

	Identify EUT				
EU	Γ Serial Number	N/A			
Pre	sentation of Equipment	☐ Production ; ☐ Prototype			
	Type of EUT				
\boxtimes	Stand-alone				
	Combined (EUT where the	e radio part is fully integrated within another device)			
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

Report No.: FR241874AI

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle						
	Operated normally mode for worst dut	y cycle					
\boxtimes	□ Operated test mode for worst duty cycle						
	Test Signal Duty Cycle (x)	Power Duty Factor [dB] – (10 log 1/x)	Voltage Duty Factor [dB] – (20 log 1/x)				
\boxtimes	100% - IEEE 802.11a	0	0				
\boxtimes	100% - IEEE 802.11n (HT20)	0	0				
\boxtimes	100% - IEEE 802.11n (HT40)	0	0				

1.1.5 EUT Operational Condition

Supply Voltage		□ DC	
Type of DC Source		☐ External DC adapter	☐ Battery
Operational Voltage		∨max (126.5 V)	∨min (93.5 V)
Operational Climatic	☐ Tnom (20°C)		☑ Tmin (-30°C)

SPORTON INTERNATIONAL INC. Page No. : 7 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

1.2 Accessories and Support Equipment

Accessories							
No.	Equipment	Model Name	Serial No.				
1	AC Adapter 1	Belkin	DSA-12PFE-12 BUS 120100	-			
2	AC Adapter 2	Sunny	SYS1381-1212-W2	-			

	Support Equipment						
No. Equipment Brand Name Model Name Serial N							
1	Notebook	DELL	E5520	-			

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074 Guidance for Performing Compliance Measurements on DTS
- FCC KDB 662911 Emissions Testing of Transmitters with Multiple Outputs
- FCC KDB 412172 Guidelines for Determining the ERP and EIRP

1.4 Testing Location Information

	Testing Location							
\boxtimes	HWA YA	ADD	:	No. 52, Hwa Ya	ı 1st Rd., Kwei-Shan I	Hsiang, Tao Yuan Hsie	en, Taiwan, R.O.C.	
		TEL	:	886-3-327-3450	6 FAX : 886	6-3-327-0973		
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.				
		TEL	:	886-3-656-906	5 FAX : 886	6-3-656-9085		
-	Test Conditi	on		Test Site No.	Test Engineer	Test Environment	Test Date	
Conducted Emission				CO04-HY	Sam	23℃ / 47%	22-May-12	
RF Conducted			TH02-CB	Denis	23°C / 63%	15-Jun-12 ~ 21- Jun-12		
Ra	adiated Emis	sion		03CH02-HY	Streak	26.3°C / 68%	20-May-12 ~ 31-May-12	

SPORTON INTERNATIONAL INC. : 8 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measure	ment Uncertainty - HW	/A YA	
Test Item		Uncertainty	Limit
AC power-line conducted emissions		± 2.26 dB	N/A
All emissions, radiated	30 – 1000 MHz	± 2.54 dB	N/A
	1 – 18 GHz	±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A

Measurement Uncertainty	- JHUBEI	
Test Item	Uncertainty	Limit
Emission bandwidth, 6dB bandwidth	±1.32 %	N/A
RF output power, conducted	±0.72 dB	N/A
Power density, conducted	±0.61 dB	N/A
Temperature	±0.7 ℃	N/A
Humidity	±2.6 %	N/A
DC and low frequency voltages	±3.4 %	N/A
Time	±1.82 %	N/A
Duty Cycle	±1.69 %	N/A

SPORTON INTERNATIONAL INC. Page No. : 9 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

	Wo	orst Modulation	used for Con	formance Test	ing	
Power	r Level	1				
IEEE 802.11 Protocol	Number of Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Worst Modulation Mode	RF Output Power (dBm)	Power Spectral Density (dBm/3kHz)
а	1	6-54 Mbps	6Mbps	11A5.8G-20M	20.72	-17.74
n (HT20)	2	MCS 0-15	MCS 8	11N5.8G-20M	23.47	-12.83
n (HT40)	2	MCS 0-15	MCS 8	11N5.8G-40M	24.16	-15.65

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11a-1999.

Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40. Worst modulation mode of Guard Interval (GI) is 400ns.

Note 3: Modulation modes consist of 11A5.8-G-20M, 11N5.8G-20M, 11N5.8G-40M: 11A5.8G: IEEE 802.11a (5.8GHz Band), 11N5.8G: IEEE 802.11n (5.8GHz Band) 20M/40M: Channel Bandwidth 20MHz/40MHz

Note 4: RF output power specifies that Maximum Peak Conducted Output Power.

2.2 Test Channel Frequencies Configuration

Те	st Channel Frequencies Configura	ition
IEEE 802.11 Protocol	Worst Modulation Mode	Test Channel Frequencies (MHz) – FX (Frequencies Abbreviations)
а	11A5.8G-20M	5745-(F1), 5785-(F2), 5825-(F3)
n (HT20)	11N5.8G-20M	5745-(F1), 5785-(F2), 5825-(F3)
n (HT40)	11N5.8G-40M	5755-(F4), 5795-(F5)

Note 1: Modulation modes consist of 11A5.8-G-20M, 11N5.8G-20M, 11N5.8G-40M: 11A5.8G: IEEE 802.11a (5.8GHz Band), 11N5.8G: IEEE 802.11n (5.8GHz Band) 20M/40M: Channel Bandwidth 20MHz/40MHz

SPORTON INTERNATIONAL INC. Page No. : 10 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

2.3 The Worst Case Power Setting Parameter

	The	Worst Case Pow	er Setting Param	eter	
Power	Level	1			
Test Softwa	are Version	RTL819x2.2.4_11	I/11/01		
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Frequency (MHz)	Power Setting	Worst Data Rate / MCS	RF Output Power (dBm)
11A5.8G-20M	1	5745	49	6 Mbps	19.41
11A5.8G-20M	1	5785	52	6 Mbps	20.28
11A5.8G-20M	1	5825	55	6 Mbps	20.72
11N5.8G-20M	2	5745	51/54	MCS 8	22.79
11N5.8G-20M	2	5785	54/56	MCS 8	23.20
11N5.8G-20M	2	5825	57/59	MCS 8	23.47
11N5.8G-40M	2	5755	52/56	MCS 8	24.16
11N5.8G-40M	2	5795	56/58	MCS 8	23.76

Note 1: Modulation modes consist of 11A5.8-G-20M, 11N5.8G-20M, 11N5.8G-40M: 11A5.8G: IEEE 802.11a (5.8GHz Band), 11N5.8G: IEEE 802.11n (5.8GHz Band) 20M/40M: Channel Bandwidth 20MHz/40MHz

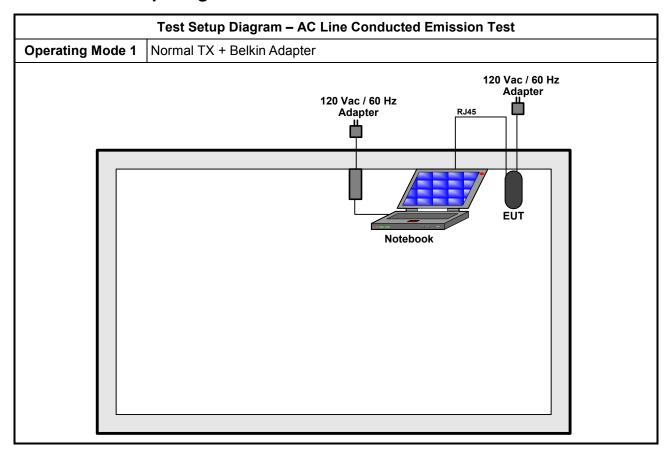
Note 2: RF output power specifies that Maximum Peak Conducted Output Power.

SPORTON INTERNATIONAL INC. Page No. : 11 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

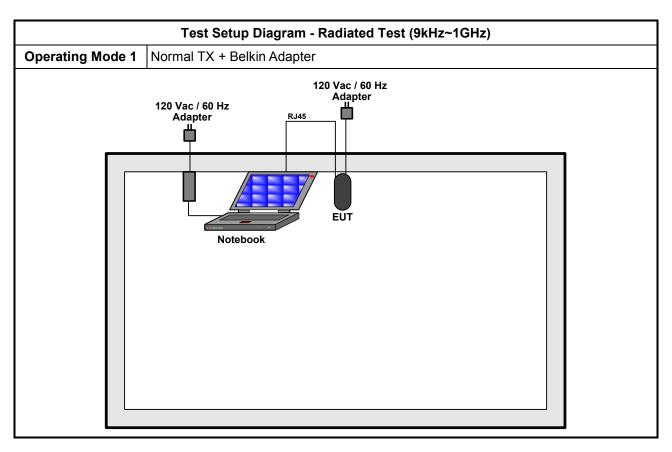
2.4 The Worst Case Measurement Configuration

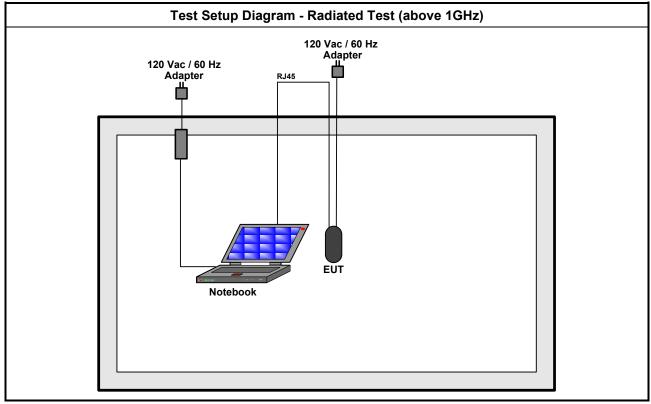
	The Worst Case Mode for Following Co	onformance Tests		
Tests Item	AC power-line conducted emissions			
Condition	AC power-line conducted measurement for line and	neutral		
Operating Mode	Operating Mode Description	Worst Modulation Mode	Test Freq.	Power Level
1	Normal TX + Belkin Adapter	11N5.8G-20M	F2	1
2	Normal TX + Sunny Adapter	11N5.8G-40M	F5	1
For operatin	g mode 1 is the worst case and it was record in this t	est report.		•

	The Worst Case N	lode for Following C	onformance Tests	
Tests Item	RF Output Power Power Spectral Dens 6dB Bandwidth	ity		
Test Condition	Conducted measurer	ment at transmit chains	S	
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level
11A5.8G-20M	1	6Mbps	F1, F2, F3	1
11N5.8G-20M	2	MCS 8	F1, F2, F3	1
11N5.8G-40M	2	MCS 8	F4, F5	1


	The Worst Case M	lode for Following C	onformance Tests	
Tests Item	Transmitter Radiated	Bandedge Emissions		
Test Condition	Radiated measureme	ent		
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level
11A5.8G-20M	1	6Mbps	F1, F3	1
11N5.8G-20M	2	MCS 8	F1, F3	1
11N5.8G-40M	2	MCS 8	F4, F5	1

SPORTON INTERNATIONAL INC. Page No. : 12 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01


	The Wo	rst Case Mode	for Following	Conformance	Tests	
Tests Item	Transmitter Ra	idiated Unwant	ed Emissions			
Test Condition	Radiated meas	surement				
	EUT will b	e placed in fixe	ed position.			
User Position		e placed in mo d two or three o		d operating mul	tiple positions.	EUT shall be
				attery-powered o		
Operating	□ 1. Norma	al TX + Belkin A	Adapter			
Mode < 1GHz	2. Norma	al TX + Sunny /	Adapter			
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level	Ant No.	Worst Orthogonal Planes of EUT
11A5.8G-20M	1	6Mbps	F1, F2, F3	1	1	Y Plane
11N5.8G-20M	2	MCS 8	F1, F2,F3	1	1	Y Plane
11N5.8G-40M	2	MCS 8	F4, F5	1	1,2	Y Plane
	X PI	ane	ΥP	lane	Z P	lane
Orthogonal Planes of EUT						
For operating mo	de 1 is the wors	st case and it w	as record in thi	s test report.		


SPORTON INTERNATIONAL INC. Page No. : 13 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

2.5 Test Setup Diagram

SPORTON INTERNATIONAL INC. Page No. : 14 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 15 of 70 Report Version : Rev. 01

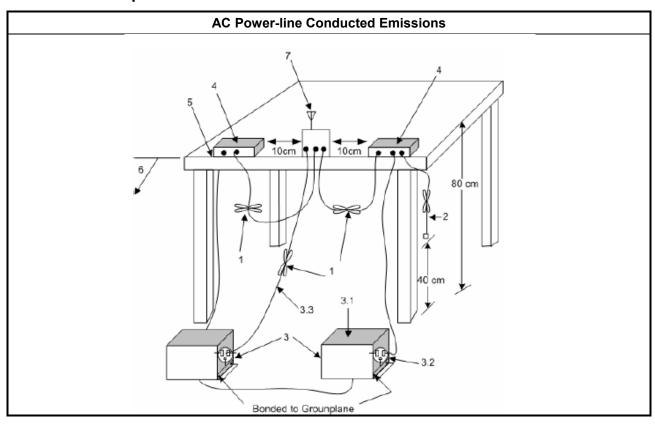
FCC ID : K7SF9K1102V2

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Powe	er-line Conducted Emissions L	imit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50


3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

	Test Method
\boxtimes	Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 16 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

3.1.5 Test Result of AC Power-line Conducted Emissions

dulation Mode	11N5.8G-20	OM Pow	ver Level	1		Tes	t Freq. (FX)	F2
erating Mode	1	Ant.	No.	1+2	2	Pow	er Phase	Neutral
erating Function	Normal TX	+ Belkin Adap	oter			•		
Level (dB	uV)						Date: 201	2-05-22
80								
-								
							CISPR/CNS/\	VCCI-B
-								
	-						CISPR/CNS/VCC	CI-B AV
1 1 3					12			
	7 10h							
40 2	T. Allinh.							
		Aller at .	40 4 4		State Inc.			
11 11 14	UNITED TO A STATE OF THE STATE	A THE STATE OF THE	THURSDAY	or hand the	MACHINA MANA			
		A THE CONTRACT OF THE PARTY OF	the state of	4	I him thurst	appropriately a	na I	1.5
1.1.1						1	Mark a lade	A 10
	111			- 4			A LANGE OF THE PARTY OF	T WAR AND
							by the late to	T. L.
	11						wards.	Thiles
						+++	Parally .	Tible
							P. W. [4]	Title
0 0.15 0.2	0.5	1	2		5		10 20) 30
0.150.2	0.5	1	2 Frequency	/ (MHz)	5		10 20) 30
0.150.2	0.5	1		/ (MHz)	5	,	10 20) 30
0 0.15 0.2	0.5	1		y (MHz)	5	- 1	10 20) 30
0.150.2	0.5	1		/ (MHz)	5	,	10 20) 30
0.150.2	0.5	1		/ (MHz)	5	,	10 20	30
0.15 0.2	0.5	1		/ (MHz)	5	- ,	10 20	30
0 0.15 0.2			Frequency	1,7	5		10 20	30
	Over	Limit Read	Frequency	Cable	5		10 20	0 30
	Over	Limit Read	Frequency	Cable		- ,	10 20	0 30
	Over	Limit Read	Frequency LISN (Cable		- 1	10 20	0 30
Freq MHz	Over Level Limit	Limit Read Line Level	Frequency LISN (Factor	Cable Loss da	Remark		10 20	0 30
Freq MHz 1 0.1721540	Over Level Limit dBuV dB	Limit Read Line Level dBuV dBuV	LISN (Factor dB	Cable Loss dB	Remark Op	-,	10 20	0 30
Freq MHz 1 0.1721540 2 0.1721540 3	Over Limit dBuV dB 47.31 -17.55 35.01 -19.85	Limit Read Line Level dBuV dBuV 64.86 46.95 54.86 34.65	LISN (Factor dB 0.26 0.26	Cable Loss 1 dB 0.10 (0.	Remark Op Average	-,	10 20	0 30
Freq MHz	Over Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.91 -19.63	Limit Read Line Level dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56	LISN (Factor dB 0.26 0.26 0.25	dB 0.10 (0.1	Remark Op Average Op	-,	10 20	30
Freq MHz 1 0.1721540 2 0.1721540 3	Over Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.91 -19.63 33.55 -19.99	Limit Read Line Level dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20	LISN (Factor dB 0.26 0.25 0.25 0.25	dB 0.10 (0.1	Remark OP Average OP Average	-,	10 20	30
Freq MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130 3	Over Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.91 -19.63 33.55 -19.99 40.23 -22.25	Limit Read Line Level dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20 62.48 39.88	LISN (Factor dB 0.26 0.25 0.25 0.25 0.25	dB 0.10 (0.1	Remark OP Average OP Average	-,	10 20	30
Freq MHz 1 0.1721540 2 0.1721540 3 0.2018130 3 4 0.2018130 3 5 0.2292570 6 0.2292570 7 7 0.2603570 3	Over Limit dBuV dB 47.31 -17.55 55.01 -19.85 43.91 -19.63 33.55 -19.99 10.23 -22.25 80.83 -21.65 38.19 -23.23	Limit Read Line Level dBuV dBuV 64.86 46.95 54.86 34.65 63.54 33.20 53.54 33.20 62.48 39.88 52.48 30.48 61.42 37.84	LISN (Factor dB 0.26 0.25 0.25 0.25 0.25 0.25	Cable Loss : dB	Remark OP Average OP Average OP Average OP Average	-,	10 20	30
Freq MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130 5 0.2292570 6 0.2292570 7 0.2603570 8	Over Level Limit dBuV dB 47.31 -17.55 55.01 -19.85 43.91 -19.63 33.55 -19.99 40.23 -22.25 50.83 -21.65 38.19 -23.23 26.30 -25.12	Limit Read Line Level dBuV dBuV 64.86 46.95 54.86 34.65 63.54 33.20 62.48 39.88 52.48 30.48 61.42 37.84 51.42 25.95	LISN (Factor dB 0.26 0.25 0.25 0.25 0.25 0.25 0.25	Cable Loss : dB	Remark OP Average OP Average OP Average OP Average	-,	10 20	30
Freq MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130 5 0.2292570 6 0.2292570 7 0.2603570 8 0.2603570 9 0.3751190	Over Level Limit dBuV dB 47.31 -17.55 45.01 -19.85 43.91 -19.63 33.55 -19.99 40.23 -22.25 40.23 -21.65 38.19 -23.23 26.30 -25.12 42.74 -15.65	Limit Read Line Level dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20 62.48 39.88 52.48 39.88 61.42 37.84 51.42 25.95 58.39 42.40	LISN (Factor dB 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	Cable Loss : dB	Remark OP Average OP Average OP Average OP Average OP Average		10 20	0 30
Freq MHz 1 0.1721540 2 0.1721540 3 0.2018130 4 0.2018130 5 0.2292570 6 0.2292570 7 0.2603570 8	Over Limit dBuV dB 47.31 -17.55 35.01 -19.85 43.55 -19.99 40.23 -22.25 30.83 -21.65 38.19 -23.23 46.30 -25.12 42.74 -15.65 40.04 -8.35	Limit Read Line Level dBuV dBuV 64.86 46.95 54.86 34.65 63.54 43.56 53.54 33.20 62.48 39.48 52.48 39.48 61.42 37.84 51.42 25.95 58.39 42.40 48.39 39.70	LISN (Factor dB 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	Cable Loss : dB	Remark OP Average OP Average OP Average OP Average OP Average		10 20) 30

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 17 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

dulation Mode	11N5	5.8G-20	M	Pow	er Level	1 1		Te	st Freq. (FX)	F2	
erating Mode	1			Ant.	No.	1+	2	Ро	wer Phase	Line	
erating Function	ļ -	nal TV	+ Ralkir			-	_				
rating Function	NOITI	Iai I A	+ beikii	TAdap	ter						
Level (dE	Level (dBuV) Date: 2012-05-22										
80											
				-							
									DIAPPIONA		
	-								CISPR/CNS/	VCCI-B	
-		-	-	+		_					
	-								CISPR/CNS/VC	CI-B AV	
118		-						7 7 1			
111 1 .		9									
40	7	M.									
MAY AUTO	111	STEP A									
	LLAS		Will b	di d	Male to the	del					
		MILL ALL	AMILLAN	M. Mi.		A CALL	YAN MANAGEMENT	MANUAL I	1 1	- Y	
		111 111		HAN LAND	11		111 1.14 . 41	MA A MA	Mark I I I I	int . In	
7 111114	1 11	111		17		11	1	41	The Local Division of	Mar Mar	
	I II I		113.	l L			1		, Wednesday	Links	
	11 11 11	1 1	2								
									7.1		
				-					710		
									712		
001503		0.5			2		5		10 2	0 3	
0 0.15 0.2		0.5		,	2 Frequenc	ev (MHz)	5		10 20	0 3	
0 0.15 0.2		0.5		1	2 Frequence	cy (MHz)	_		10 20	0 3	
0 0.15 0.2		0.5		1	-	cy (MHz)	_		10 20	0 3	
0 0.15 0.2		0.5		1	-	cy (MHz)	_		10 20	0 3	
0 0.15 0.2		0.5		1	-	cy (MHz)	_		10 20	0 3	
0 0.15 0.2		0.5		1	-	cy (MHz)	_		10 20	0 3	
0 0.15 0.2		0.5		1	-	cy (MHz)	_		10 20	0 3	
0 0.15 0.2		0.5		1	-	cy (MHz)	_		10 20	0 3	
		Over	Limit	1 Read	Frequenc	Cable			10 20	0 3	
	Level	0.5			Frequenc	Cable	_		10 20	0 3	
Freq		Over Limit	Limit Line	Leve1	Frequence LISN Factor	Cable Loss			10 20	0 3	
	Level dBuV	Over	Limit Line dBuV		Frequence LISN Factor	Cable			10 24	0 3	
Freq	dBuV	Over Limit	Limit Line dBuV	Leve1	LISN Factor	Cable Loss	Remark		10 20	0 3	
Freq MHz 1 0.1732800 2 0.1732800 3	dBuV -	Over Limit dB -18.11	Limit Line dBuV 64.80 54.80	dBuV 46.29 33.99	LISN Factor dB	Cable Loss dB 0.10	Remark OP Average		10 20	0 3	
Freq MHz 1 0.1732800 2 0.1732800 3 0.2009660	dBuV -46.69 -34.39 -43.50 -	Over Limit dB -18.11 -20.41 -20.07	Limit Line dBuV 64.80 54.80 63.57	dBuV 46.29 33.99 43.10	LISN Factor dB 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10	Remark QP Average QP		10 20	0 3	
Freq MHz 1 0.1732800 2 0.1732800 3 0.2009660 4 0.2009660	dBuV 46.69 - 34.39 - 43.50 - 32.97 -	Over Limit dB -18.11 -20.41 -20.07 -20.60	Limit Line dBuV 64.80 54.80 63.57 53.57	dBuV 46.29 33.99 43.10 32.57	LISN Factor dB 0.30 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10 0.10	Remark QP Average QP Average		10 20	0 3	
Freq MHz 1 0.1732800 2 0.1732800 3 0.2009660 4 0.2009660 5 0.2294330	dBuV 46.69 - 34.39 - 43.50 - 32.97 - 39.98 -	Over Limit dB -18.11 -20.41 -20.07 -20.60 -22.49	Limit Line dBuV 64.80 54.80 63.57 53.57 62.47	dBuV 46.29 33.99 43.10 32.57 39.58	LISN Factor dB 0.30 0.30 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP		10 20	0 3	
Freq MHz 1 0.1732800 2 0.1732800 3 0.2009660 4 0.2009660 5 0.2294330 6 0.2294330 6	dBuV 46.69 - 34.39 - 43.50 - 32.97 - 39.98 - 29.62 -	Over Limit -18.11 -20.41 -20.07 -20.60 -22.49 -22.85	Limit Line dBuV 64.80 54.80 63.57 53.57 62.47 52.47	dBuV 46.29 33.99 43.10 32.57 39.58 29.22	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average		10 20	0 3	
Freq MHz 1 0.1732800 : 2 0.1732800 : 3 0.2009660 : 4 0.2009660 : 5 0.2294330 : 6 0.2294330 : 7 0.2616370 :	dBuV 46.69 - 34.39 - 43.50 - 32.97 - 39.98 - 29.62 - 35.80 -	Over Limit -18.11 -20.41 -20.07 -20.60 -22.49 -22.85 -25.58	Limit Line dBuV 64.80 54.80 63.57 62.47 52.47 61.38	dBuV 46.29 33.99 43.10 32.57 39.58 29.22 35.40	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Remark OP Average QP Average QP Average QP		10 20	0 3	
Freq MHz 1 0.1732800 2 0.1732800 3 0.2009660 4 0.2009660 5 0.2294330 6 0.2294330 7 0.2616370 8 0.2616370	dBuV 46.69 - 34.39 - 43.50 - 32.97 - 39.98 - 29.62 - 35.80 - 21.66 -	Over Limit dB -18.11 -20.41 -20.07 -20.60 -22.49 -22.85 -25.58 -29.72	Limit Line dBuV 64.80 54.80 63.57 62.47 52.47 61.38 51.38	dBuV 46.29 33.99 43.10 32.57 39.58 29.22 35.40 21.26	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Remark OP Average OP Average OP Average OP Average		10 20	0 3	
Freq MHz 1 0.1732800 2 0.1732800 3 0.2009660 4 0.2009660 5 0.2294330 6 0.2294330 7 0.2616370 8 0.2616370 9 0.3751190	dBuV 46.69 - 34.39 - 43.50 - 32.97 - 39.98 - 29.62 - 35.80 - 21.66 - 41.28 -	Over Limit dB -18.11 -20.41 -20.07 -20.60 -22.49 -22.85 -25.58 -29.72 -17.11	Limit Line dBuV 64.80 54.80 63.57 53.57 62.47 61.38 51.38 58.39	dBuV 46.29 33.99 43.10 32.57 39.58 29.22 35.40 21.26 40.88	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average QP Average QP Average QP		10 20	0 3	
Freq MHz 1 0.1732800 2 0.1732800 3 0.2009660 4 0.2009660 5 0.2294330 6 0.2294330 7 0.2616370 8 0.2616370	dBuV 46.69 - 34.39 - 43.50 - 32.97 - 39.98 - 29.62 - 21.66 - 41.28 - 36.48 -	Over Limit dB -18.11 -20.41 -20.07 -20.60 -22.49 -22.85 -29.72 -17.11 -11.91	Limit Line dBuV 64.80 54.80 63.57 53.57 62.47 61.38 51.38 58.39 48.39	dBuV 46.29 33.99 43.10 32.57 39.58 29.22 35.40 40.88 36.08	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark QP Average QP Average QP Average QP Average QP Average		10 20	0 3	

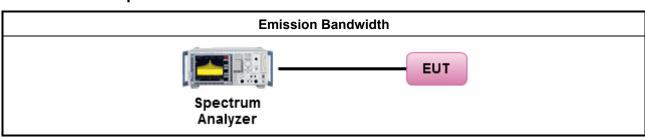
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 18 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit									
Systems using digital modulation techniques:									
☐ 6 dB bandwidth ≥ 500 kHz.									

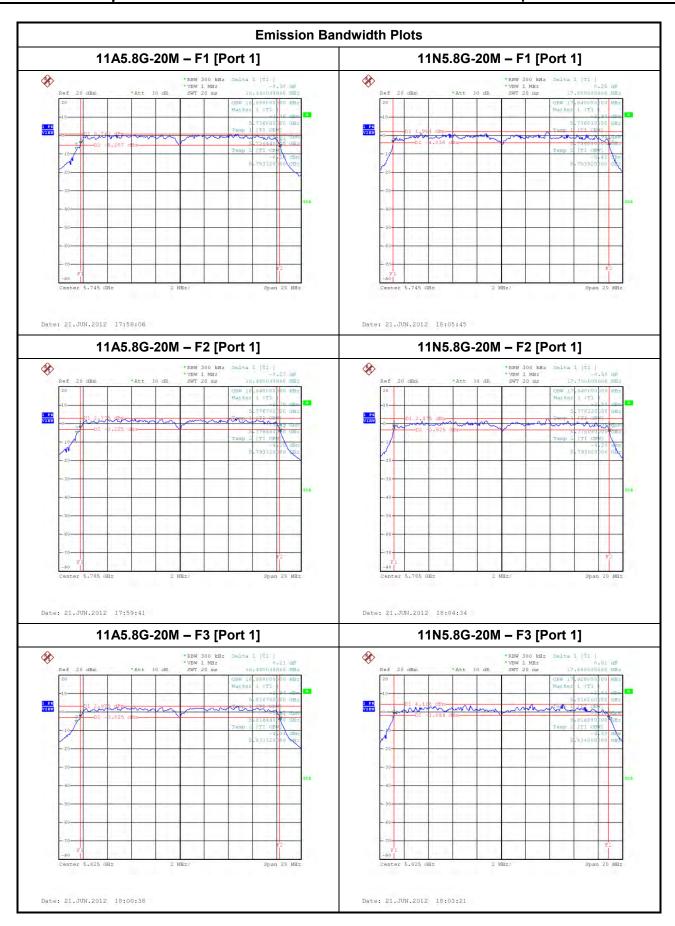

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

			Test Method									
\boxtimes	For	or the emission bandwidth shall be measured using one of the options below:										
	\boxtimes	Refe	r as FCC KDB 558074, clause 5.1.1 Option 1 for 6 dB bandwidth measurement.									
		Refe	r as FCC KDB 558074, clause 5.1.2 Option 2 for 6 dB bandwidth measurement.									
		Refe	r as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.									
\boxtimes	For	condu	cted measurement.									
	\boxtimes	For c	onducted measurements on devices with multiple transmit chains using options given below:									
			Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.									
		_ (Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.									
			Option 3: A power splitter/combiner shall be used to combine all the transmit chains (antenna outputs) into a single test point and record a single test point EBW.									
	For radiated measurement. The equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted power level.											

3.2.4 Test Setup



SPORTON INTERNATIONAL INC. Page No. : 19 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

3.2.5 Test Result of Emission Bandwidth

Emission Bandwidth Result											
Power Level		1	Emission Bandwidth (MHz)								
Modulation Mode	N _{TX} Freq. (MHz)		99% Bandwidth	6dB Bandwidth							
11A5.8G-20M	1	5745	16.88	16.44							
11A5.8G-20M	1	5785	16.84	16.48							
11A5.8G-20M	1	5825	16.88	16.48							
11N5.8G-20M	2	5745	17.84	17.80							
11N5.8G-20M	2	5785	17.84	17.76							
11N5.8G-20M	2	5825	17.92	17.68							
11N5.8G-40M	2	5755	36.40	36.32							
11N5.8G-40M	2	5795	36.56	36.48							
Lim	it		N/A	≥500 kHz							
Resu	ılt		Complied								

SPORTON INTERNATIONAL INC. Page No. : 20 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 21 of 70 Report Version : Rev. 01

FCC ID : K7SF9K1102V2

: 22 of 70

SPORTON INTERNATIONAL INC. Page No.
TEL: 886-3-327-3456 Report Version

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

 FAX: 886-3-327-0973
 FCC ID
 : K7SF9K1102V2

3.3 RF Output Power

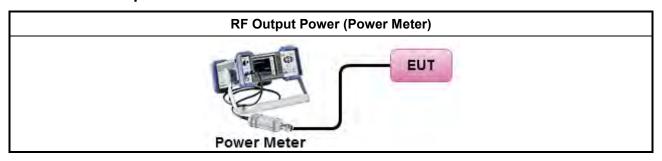
3.3.1 RF Output Power Limit

	RF Output Power Limit										
Max	kimum Peak Conducted Output Power or Maximum Conducted Output Power Limit										
	902-928 MHz Band:										
	☐ If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)										
	2400-2483.5 MHz Band:										
	☐ If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)										
	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm										
	Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm										
	☐ Smart antenna system (SAS):										
	Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm										
	Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm										
	Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm										
\boxtimes	5725-5850 MHz Band:										
	\square If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)										
	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm										
	Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30$ dBm										
e.i.r	p. Power Limit:										
	902-928 MHz Band: P _{eirp} ≤ 36 dBm (4 W)										
	2400-2483.5 MHz Band										
	☐ Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)										
	Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$										
	Smart antenna system (SAS)										
	☐ Single beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm										
	☐ Overlap beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm										
	☐ Aggregate power on all beams: P _{eirp} ≤ MAX(36, [P _{Out} + G _{TX} + 8]) dBm										
\boxtimes	5725-5850 MHz Band										
	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)										
	☐ Point-to-point systems (P2P): N/A										
\textbf{G}_{TX}	t = maximum peak conducted output power or maximum conducted output power in dBm, = the maximum transmitting antenna directional gain in dBi. p = e.i.r.p. Power in dBm.										

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC. Page No. : 23 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01


FCC Test Report Report No. : FR241874AI

3.3.3 Test Procedures

		Test Method
\boxtimes	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 7.2.1.1 Option 1 (zero-span method).
		Refer as FCC KDB 558074, clause 7.2.1.2 Option 2 (integrated band power method).
	\boxtimes	Refer as FCC KDB 558074, clause 7.2.1.3 Option 3 (peak power meter method).
		Refer as FCC KDB 558074, clause 7.2.1.4 Alternative 1 (bandwidth correction method).
		Refer as ANSI C63.10, clause 6.10.2.1 a) for peak power meter.
		Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW ≥ EBW).
		Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor.
	Max	imum Conducted Output Power
		Refer as FCC KDB 558074, clause 7.2.2.1 Option 1 (RMS detection with slow sweep speed).
		Refer as FCC KDB 558074, clause 7.2.2.2 Option 2 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 7.2.2.3 Option 3 (average power meter method).
		Refer as FCC KDB 558074, clause 7.2.2.4 Alternative 1 (reduced VBW with max hold)
		Refer as FCC KDB 558074, clause 7.2.2.5 Alternative 2 (zero-span with trace averaging)
		Refer as FCC KDB 558074, clause 7.2.2.6 Alternative 3 (average on/off duty) - refer clause 1.1.4
		Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold).
\boxtimes	Refe	er as FCC KDB 558074, clause 3 for conducted measurement.
	\boxtimes	For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods:
		Method 2: P _{total} = P₁ + P₂ + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG
	Refe	er as FCC KDB 558074, clause 3 for radiated measurement.

SPORTON INTERNATIONAL INC. Page No. : 24 of 70 : Rev. 01 TEL: 886-3-327-3456 Report Version

3.3.4 Test Setup

3.3.5 Test Result of Maximum Peak Conducted Output Power

Maximum Peak Conducted Output Power Result												
Power Leve		DE O dout Douge (dDgg)										
Directional Gain	(dBi)	6.27	RF Output Power (dBm)									
Modulation N _{TX}		Freq. (MHz)	Chain- Port 1	Chain- Port 2	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit		
11A5.8G-20M	1	5745	19.41	-	-	-	19.41	30	25.68	36		
11A5.8G-20M	1	5785	20.28	-	-	-	20.28	30	26.55	36		
11A5.8G-20M 1		5825	20.72	-	1	-	20.72	30	26.99	36		
Resi				Com	plied							

Note 1: N_{TX} = Number of Transmit Chains

Note 2: EUT support diversity transmit and transmit chains port 1 is the worst than other transmit chains.

Maximum Peak Conducted Output Power Result													
Power Leve	I	1		RF Output Power (dBm)									
Directional Gain	(dBi)	5.5			KF	Output F	ower (ar	5111)					
Modulation N _{TX}		Freq. (MHz)	Chain- Port 1							EIRP Limit			
11N5.8G-20M	2	5745	19.51	20.03	-	-	22.79	30	28.29	36			
11N5.8G-20M	2	5785	20.77	19.53	-	-	23.20	30	28.70	36			
11N5.8G-20M 2		5825	20.61	20.3	-	-	23.47	30	28.97	36			
Result Complied													
Note 1: N _{TX} = Nun	nber of	Transmit	Chains										

SPORTON INTERNATIONAL INC. Page No. : 25 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Maximum Peak Conducted Output Power Result												
Power Leve	ı	1		RF Output Power (dBm)								
Directional Gain	(dBi)	5.5			KF	Output	-ower (ar	5111 <i>)</i>				
Modulation N _{TX}		Freq. (MHz)	Chain- Port 1									
11N5.8G-40M	2	5755	20.32	21.85	-	-	24.16	30	29.66	36		
11N5.8G-40M	11N5.8G-40M 2		20.95	20.53	-	-	23.76	30	29.26	36		
Res	Complied											
Note 1: N _{TX} = Nun	nber of	Transmit	Chains									

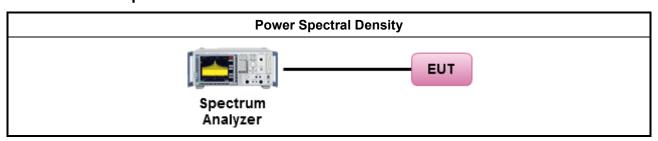
SPORTON INTERNATIONAL INC. Page No. : 26 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

	Power Spectral Density Limit
\boxtimes	Power Spectral Density (PSD) ≤ 8 dBm/3kHz

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method										
\boxtimes	power proc whe dem	Power spectral density procedures that the same method as used to determine the conducted output power shall be used to determine the power spectral density. In addition, the use of a peak PSD procedure will always result in a "worst-case" measured level for comparison to the limit. Therefore, whenever the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to demonstrate compliance to the PSD limit, regardless of how the fundamental output power was measured. For the power spectral density shall be measured using below options:										
	\boxtimes	Refer as FCC KDB 558074, clause 7.3.1 Option 1 (peak PSD; BWCF=-15.2dB).										
		Refer as FCC KDB 558074, clause 7.3.2 Option 2 (average PSD; BWCF=-15.2dB).										
		Refer as FCC KDB 558074, clause 7.3.3 Alternative 1 (peak PSD; RBW=3kHz; sweep=100s).										
		Refer as FCC KDB 558074, clause 7.3.4 Alternative 2 (average PSD; RBW=3kHz; average=100).										
		Refer as ANSI C63.10, clause 6.11.2.3 for PSD for DTS - (RBW=3kHz; sweep=100s).										
		Refer as ANSI C63.10, clause 6.11.2.4 for Alternative PSD for DTS - (RBW=3kHz; average=100)										
\boxtimes	Refe	er as FCC KDB 558074, clause 3 for conducted measurement.										
	\boxtimes	For conducted measurements on devices with multiple transmit chains using options given below:										
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace. The new data trace samples added 100 kHz segment and found the highest value of each 100 kHz segments. Add the bandwidth correction factor (BWCF) adjusting in power spectral density per 3kHz.										
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.										
	Refe	er as FCC KDB 558074, clause 3 for radiated measurement.										

SPORTON INTERNATIONAL INC. Page No. : 27 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Power Spectral Density Result										
Power Leve		1		Dower Spe	ctral Density (dBm/3kU=)				
Directional Gain	(dBi)	6.27		Power Spe	ctial Delisity ((ubili/3kHz)				
Modulation Mode N _{TX}		Freq. (MHz)	Chain-Port 1	Chain-Port 1 Chain-Port 2 - PSI						
11A5.8G-20M	1	5745	-20.48	-	-	-	8			
11A5.8G-20M	1	5785	-18.61	-	-	-	8			
11A5.8G-20M 1		5825	-17.74	-17.74						
Resu	ılt			Complied						

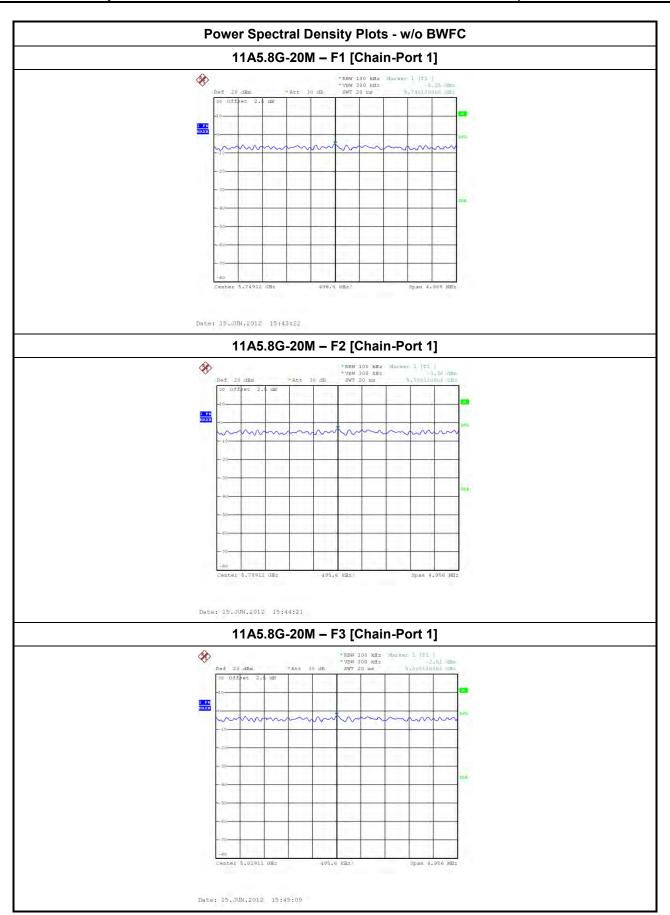
Note 1: N_{TX} = Number of Transmit Chains

Note 2: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + $10logN_{TX}$

Power Spectral Density Result								
Power Level 1			Dawer Spectral Dancity (dBm/2kHz)					
Directional Gain	(dBi)	5.5	Power Spectral Density (dBm/3kHz)					
Modulation Mode N _{TX}		Freq. (MHz)	Chain-Port 1 Chain-Port 2 F				PSD Limit	
11N5.8G-20M	2	5745	-15.86	-14.74	-	-	8	
11N5.8G-20M	2	5785	-15.15	-14.02	-	-	8	
11N5.8G-20M 2		5825	-12.97	-12.83	-	-	8	
Resi	ult				Complied			

Note 1: N_{TX} = Number of Transmit Chains

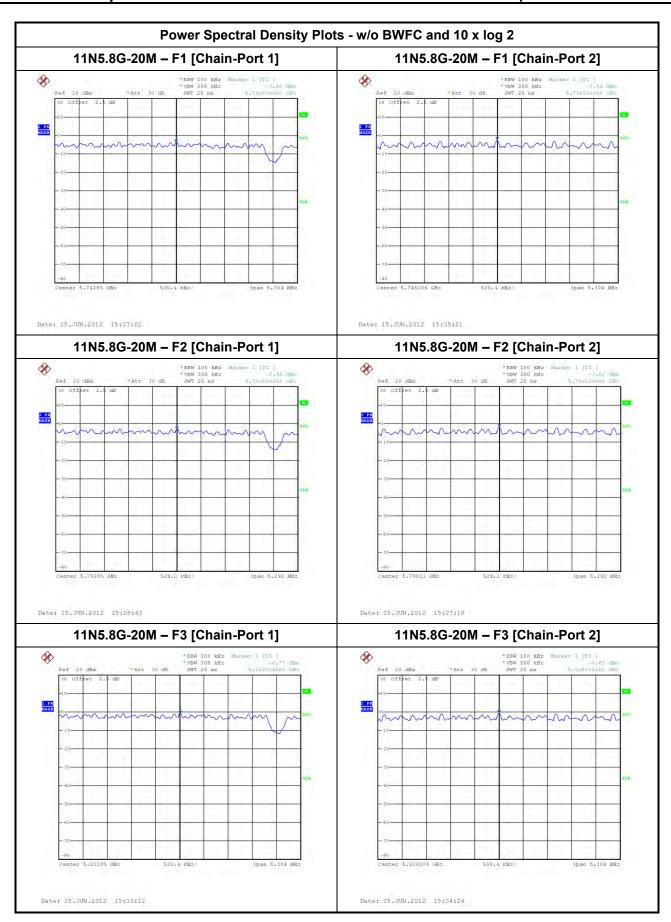
Note 2: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + 10logN_{TX}


SPORTON INTERNATIONAL INC. Page No. : 28 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Power Spectral Density Result									
Power Level 1			Dower Spectral Density (dPm/2kH=)						
Directional Gain	(dBi)	5.5	Power Spectral Density (dBm/3kHz)						
Modulation Mode	N _{TX}	Freq. (MHz)	Chain-Port 1	Chain-Port 2	-	-	PSD Limit		
11N5.8G-40M	2	5755	-17.98	-16.97	-	-	8		
11N5.8G-40M	2	5795	-15.97	-15.65	-	-	8		
Result			Complied						

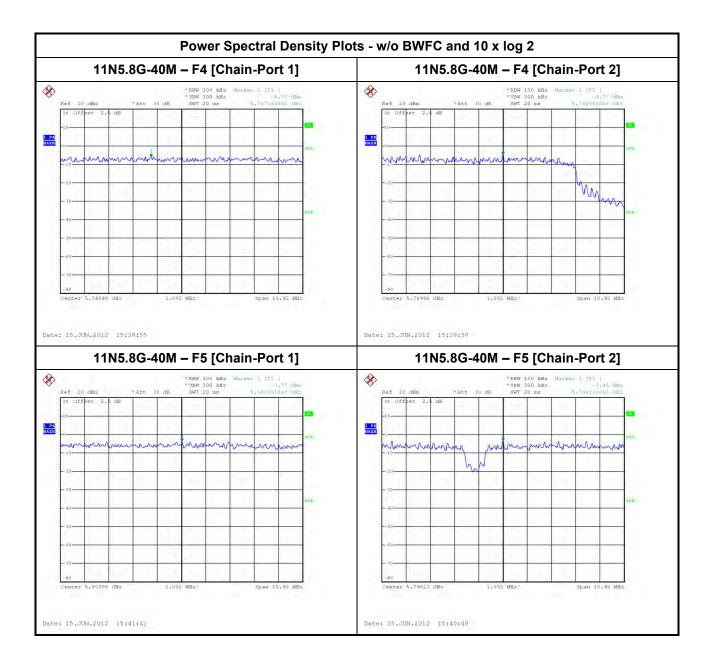
Note 1: N_{TX} = Number of Transmit Chains Note 2: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + 10logN_{TX}

SPORTON INTERNATIONAL INC. Page No. : 29 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01


: 30 of 70

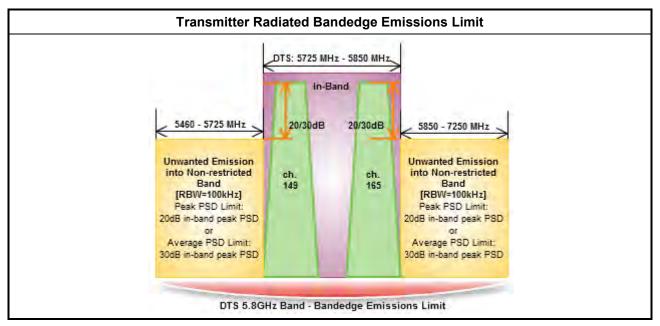
SPORTON INTERNATIONAL INC. Page No.
TEL: 886-3-327-3456 Report Version

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01


 FAX: 886-3-327-0973
 FCC ID
 : K7SF9K1102V2

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 31 of 70 Report Version : Rev. 01


FCC ID : K7SF9K1102V2

SPORTON INTERNATIONAL INC. Page No. : 32 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

Report No.: FR241874AI

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

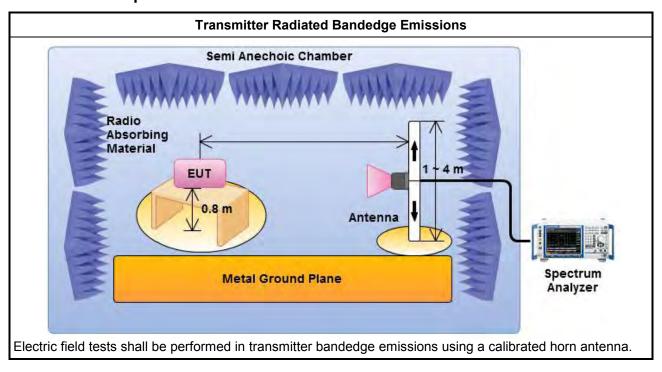
3.5.3 Test Procedures

		Total Mother L. Organis Hafamaration								
	Test Method – General Information									
	The	The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].								
\boxtimes		Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.								
\boxtimes	For	or the transmitter unwanted emissions shall be measured using following options below:								
	Refer as FCC KDB 558074, clause 7.4.1 for unwanted emissions into non-restricted band									
	Refer as FCC KDB 558074, clause 7.4.2 for unwanted emissions into restricted bands.									
		Refer as FCC KDB 558074, clause 7.4.2.2.2.1 Option 1 (Power Averaging).								
		Refer as FCC KDB 558074, clause 7.4.2.2.2.2 Option 2 (Trace Averaging).								
		Refer as FCC KDB 558074, clause 7.4.2.2.2.2 Option 3 (Reduced VBW).								
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW).								
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.								
		Refer as FCC KDB 558074, clause 7.4.2.2.3 measurement procedure peak limit.								
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.								
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:								
		Refer as FCC KDB 558074, clause 7.4.2.2.4 for narrower resolution bandwidth using the band power and summing the spectral levels (i.e., 100 kHz or 1 MHz).								
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.								
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.								

SPORTON INTERNATIONAL INC. Page No. : 33 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

 \boxtimes

FC(C Te	st R	eport Report No. : FR241874A								
	Test Method										
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Measurements in the bandedge are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.										
	Refe	r as	FCC KDB 558074, clause 3 for conducted measurement.								
		For	unwanted emissions into non-restricted bands (relative emission limits).								
			For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.								
	For unwanted emissions into restricted bands. Test conducted spurious emissions and radiat the cabinet with the antenna connector(s) terminated by a specified load (cabinet radiation).										
	Refer as FCC KDB 558074, clause 7.4.2.2.1 unwanted emissions in restricted frequencies ≤ 1000 MHz										
			Refer as FCC KDB 558074, clause 7.4.2.2.2 unwanted emissions in restricted bands or frequencies > 1000 MHz								
			For conducted measurements on devices with multiple transmit chains using options given below:								
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911 out-of-band and spurious emission measurement. The trace data for each transmit chair has to be individually recorded and each transmit chain trace data shall be added and compared with the limit.								
			Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have beer reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.								
\boxtimes	Refe	r as	FCC KDB 558074, clause 3 for radiated measurement.								


SPORTON INTERNATIONAL INC. Page No. : 34 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.

Refer as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.

Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.

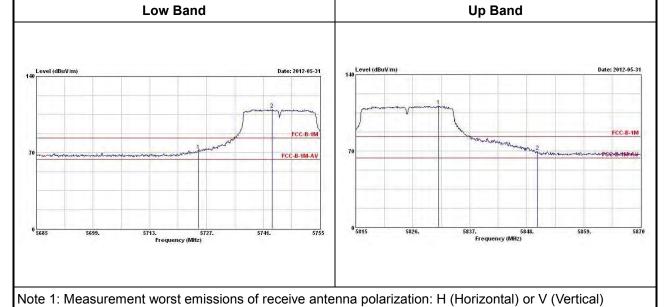
3.5.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 35 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

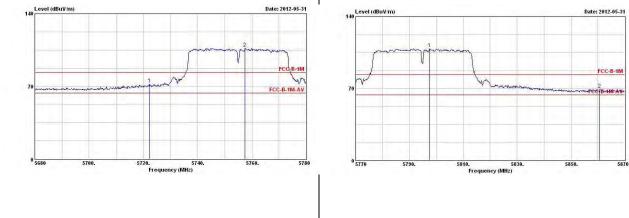
Up Band

3.5.5 Test Result of Transmitter Radiated Bandedge Emissions

Low Band


Transmitter Radiated Bandedge Emissions Result										
Power Level	1	Gain (dBi)	6.27	Non-restricted Band Emissions						
Modulation		11A5.8G	i-20M							
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.	
5460-5725	1	5745	106.97	5721.61	69.68	37.29	20	PK	V	
5850-7250	1	5825	109.39	5868.35	69.88	39.51	20	PK	V	

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)


SPORTON INTERNATIONAL INC. Page No. : 36 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Bandedge Emissions Result											
Power Level	Power Level 1 Gain (dBi) 5.5			Non roetri	cted Band I	Emission						
Modulation		11N5.8G	G-20M	Non-restricted Band Emissions								
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV /100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV /100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.			
5460-5725	2	5745	109.51	5725.00	71.76	37.75	20	PK	V			
5850-7250	2	5825	111.24	5850.09	PK	V						

SPORTON INTERNATIONAL INC. Page No. : 37 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

		Transm	nitter Radiat	ed Banded	ge Emission	s Result				
Power Level	1	Gain (dBi)	5.5		Non rootri	oted Band	Emississ	_		
Modulation		11N5.8G	G-40M	Non-restricted Band Emissions						
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV /100kHz)	NBE Freq (MHz)	Out-band PSD [o] (dBuV /100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.	
5460-5725	2	5755	106.85	5722.30	72.27	34.58	20	PK	V	
5850-7250	2	5795	108.85	5860.70	68.85	40.00	20	PK	V	
	Lo	ow Band			Up Band					
Level (dBuV m)			Date:	2012-05-31	Level (dBuV/m)			Date: 2	012-05-31	

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 38 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

Restricted Band Emissions Limit										
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)							
0.009~0.490	0.009~0.490 2400/F(kHz)		300							
0.490~1.705	24000/F(kHz)	33.8 - 23	30							
1.705~30.0	1.705~30.0 30		30							
30~88	100	40	3							
88~216	150	43.5	3							
216~960	216~960 200		3							
Above 960	500	54	3							

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted Band Emissions Limit								
RF output power procedure	Limit (dB)							
Peak output power procedure	20							
Average output power procedure	30							

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC. Page No. : 39 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Report No.: FR241874AI

3.6.3 Test Procedures

		Test Method – General Information										
	perfo equi extra dista	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).										
	\boxtimes	Measurements in the frequency range 5 GHz - 10GHz are typically made at a closer distance 1.0m, because the instrumentation noise floor is typically close to the radiated emission limit.										
	\boxtimes	Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1.0m, because the instrumentation noise floor is typically close to the radiated emission limit.										
	\boxtimes	Measurements in the frequency range above 18 GHz - 40GHz are typically made at a closer distance 1.0m, because the instrumentation noise floor is typically close to the radiated emission limit.										
\boxtimes	For t	the transmitter unwanted emissions shall be measured using following options below:										
	\boxtimes	Refer as FCC KDB 558074, clause 7.4.1 for unwanted emissions into non-restricted bands.										
	\boxtimes	Refer as FCC KDB 558074, clause 7.4.2 for unwanted emissions into restricted bands.										
		Refer as FCC KDB 558074, clause 7.4.2.2.2.1 Option 1 (Power Averaging).										
		Refer as FCC KDB 558074, clause 7.4.2.2.2.2 Option 2 (Trace Averaging).										
		Refer as FCC KDB 558074, clause 7.4.2.2.2.2 Option 3 (Reduced VBW).										
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW).										
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.										
		Refer as FCC KDB 558074, clause 7.4.2.2.3 measurement procedure peak limit.										
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.										

SPORTON INTERNATIONAL INC. Page No. : 40 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

individual outputs.

frequencies ≤ 1000 MHz

frequencies > 1000 MHz

the limit.

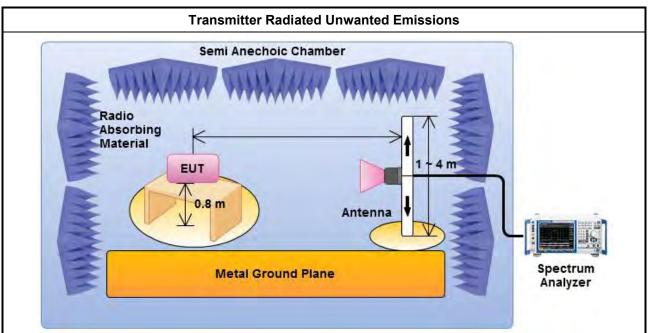
below:

For radiated measurement.

\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.

compared with the limit.

 \boxtimes Refer as ANSI C63.10. clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.

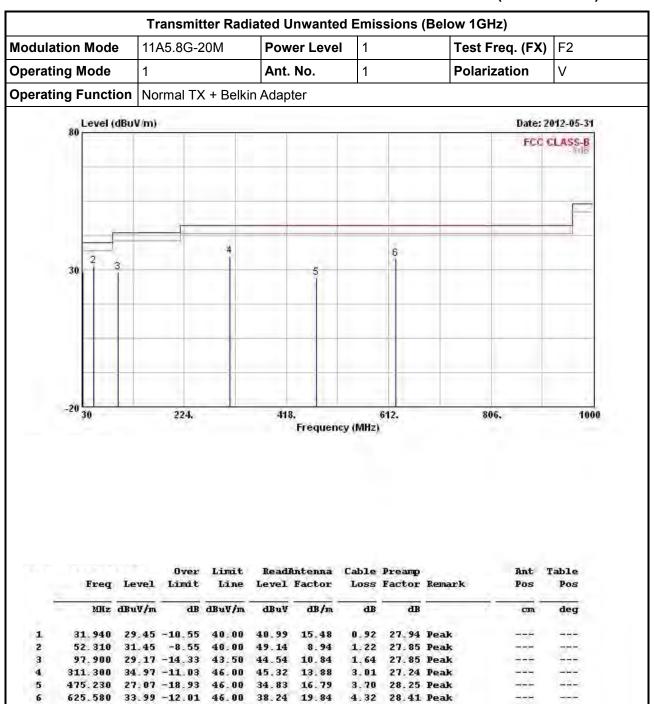

transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with

 \boxtimes Refer as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.

SPORTON INTERNATIONAL INC. Page No. : 41 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC ID FAX: 886-3-327-0973 : K7SF9K1102V2 FCC Test Report No.: FR241874AI

3.6.4 Test Setup

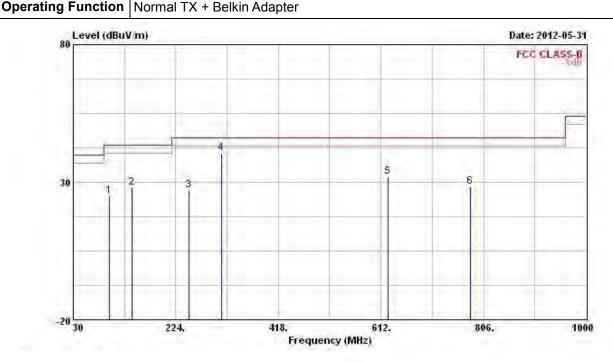


Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna and the frequency range of 1 GHz to 40 GHz using a calibrated horn antenna.

SPORTON INTERNATIONAL INC. Page No. : 42 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

3.6.5 Test Result of Transmitter Radiated Unwanted Emissions (Below 1GHz)

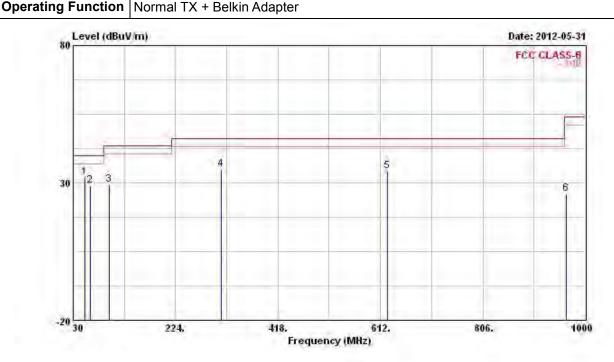

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 43 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Below 1GHz)									
Modulation Mode11A5.8G-20MPower Level1Test Freq. (FX)F2									
Operating Mode	1	Ant. No.	1	Polarization	Н				
Operating Function Normal TV Policin Adenter									

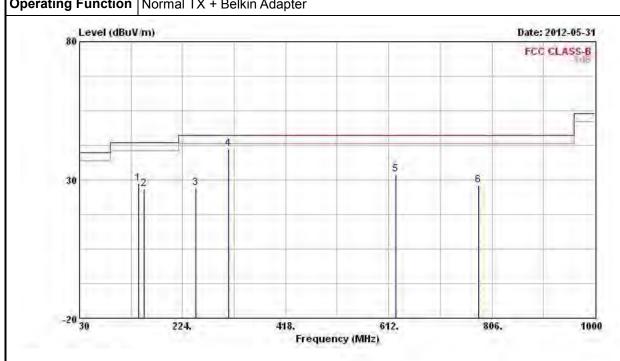

	Freq	Level	Over Limit	2000000		Antenna Factor		Constitution of the	Remark	Ant	Table Pos
		fee to the	-	TERRITOR	1047.37	- Lord		-			
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1.	97.900	25.13	-18.37	43.50	40.50	10.84	1.64	27.85	Peak		-
2	141.550	27.88	-15.62	43.50	41.77	11.78	2.00	27.67	Peak		
3	249.220	26.94	-19.06	46.00	38.49	12.97	2.77	27.29	Peak		
4	311.300	40.69	-5.31	46.00	51.04	13.88	3.01	27.24	Peak		
5	625.580	32.10	-13.90	46.00	36.35	19.84	4.32	28.41	Peak		
6	781.750	28.44	-17.56	46.00	31.61	20.01	4.82	28.00	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 44 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Below 1GHz)									
Modulation Mode11N5.8G-20MPower Level1Test Freq. (FX)F2									
Operating Mode	1	Ant. No.	1+2	Polarization	V				
Operating Function Normal TV Bolkin Adoptor									

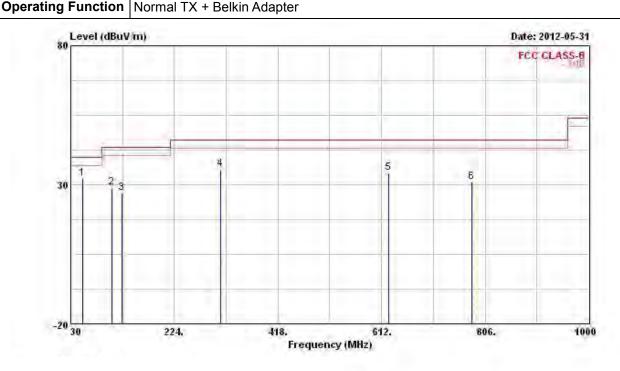

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1	52.310	31.98	-8.02	40.00	49.67	8.94	1.22	27.85	Peak		-
2	62.980	28.97	-11.03	40.00	48.45	7.03	1.34	27.85	Peak		777
3	97.900	29.23	-14.27	43.50	44.60	10.84	1.64	27.85	Peak		
4	311.300	34.97	-11.03	46.00	45.32	13.88	3.01	27.24	Peak		
5	625.580	34.34	-11.66	46.00	38.59	19.84	4.32	28.41	Peak		-
6	964.110	26.02	-27.98	54.00	26.20	21.61	5.57	27.36	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 45 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Below 1GHz)									
Modulation Mode11N5.8G-20MPower Level1Test Freq. (FX)F1									
Operating Mode	1	Ant. No.	1+2	Polarization	Н				
Operating Function Normal TX + Belkin Adapter									

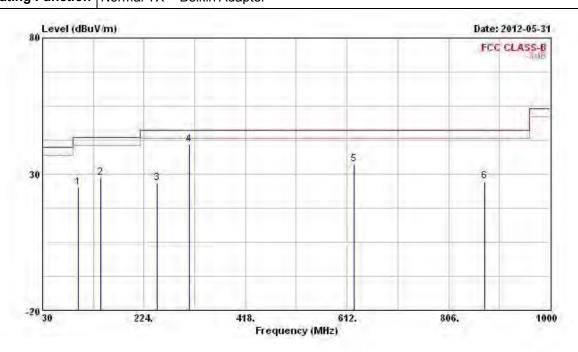

	Freq	Level	Over Limit			Antenna Factor	200	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1.	141.550	28.59	-14.91	43.50	42.48	11.78	2.00	27.67	Peak		
2	152.220	26.59	-16.91	43.50	41.45	10.73	2.03	27.62	Peak		
3	249.220	26.98	-19.02	46.00	38.53	12.97	2.77	27.29	Peak		
4	311.300	41.21	-4.79	46.00	51.56	13.88	3.01	27.24	Peak		
5	625.580	32.09	-13.91	46.00	36.34	19.84	4.32	28.41	Peak		
6	781.750	27.93	-18.07	46.00	31.10	20.01	4.82	28.00	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 46 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Below 1GHz)								
Modulation Mode 11N5.8G-40M Power Level 1 Test Freq. (FX) F1								
Operating Mode 1 Ant. No. 1+2 Polarization V								
Operating Function Normal TV Dollain Adoptor								


	Freq	Level	Over Limit		-	Antenna Factor		Preamp Factor		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	52.310	32.17	-7.83	40.00	49.86	8.94	1.22	27.85	Peak		-
2	106.630	29.14	-14.36	43.50	43.25	11.99	1.72	27.82	Peak		
3	125.060	26.96	-16.54	43.50	39.66	13.18	1.86	27.74	Peak		
4	311.300	35.61	-10.39	46.00	45.96	13.88	3.01	27.24	Peak		
5	625.580	34.35	-11.65	46.00	38.60	19.84	4.32	28.41	Peak		-
6	781.750	31.07	-14.93	46.00	34.24	20.01	4.82	28.00	Peak		

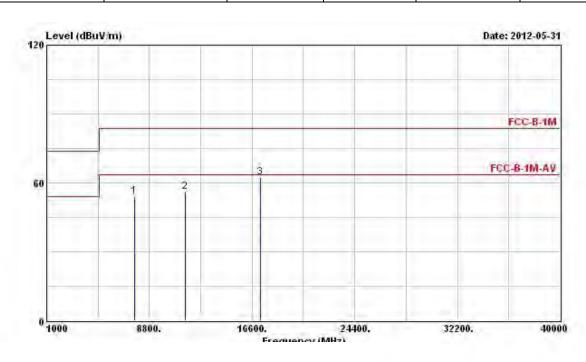
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 47 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Below 1GHz)								
Modulation Mode 11N5.8G-20M Power Level 1 Test Freq. (FX) F1								
Operating Mode	1	Ant. No.	1+2	Polarization	Н			
Operating Function Normal TX + Belkin Adapter								

	Freq	10.00	Over	1200		Antenna		Preamp		Ant	Table
	Freq	Level	Limit	Line	rever	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1.	97.900	24.94	-18.56	43.50	40.31	10.84	1.64	27.85	Peak	→-e	
2	141.550	28.62	-14.88	43.50	42.51	11.78	2.00	27.67	Peak		
3	249.220	26.76	-19.24	46.00	38.31	12.97	2.77	27.29	Peak		
4	311.300	40.76	-5.24	46.00	51.11	13.88	3.01	27.24	Peak		
5	625.580	33.47	-12.53	46.00	37.72	19.84	4.32	28.41	Peak	940	39483
6	874.870	27.32	-18.68	46.00	29.77	20.09	5.15	27.69	Peak		

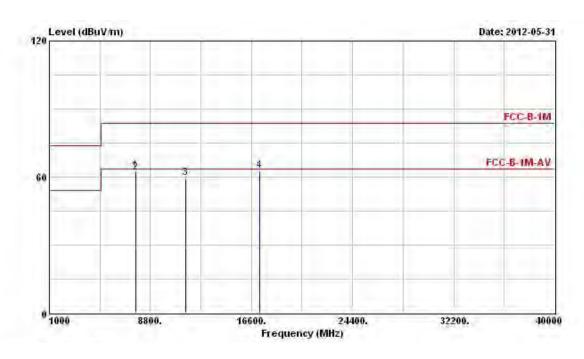

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 48 of 70 : Rev. 01 TEL: 886-3-327-3456 Report Version

FCC Test Report

Test Result of Transmitter Radiated Unwanted Emissions (Above 1GHz) 3.6.6

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11A5.8G-20M Power Level 1 Test Freq. (FX) F1									
Operating Function	Transmit	Ant. No.	1	Polarization	V				

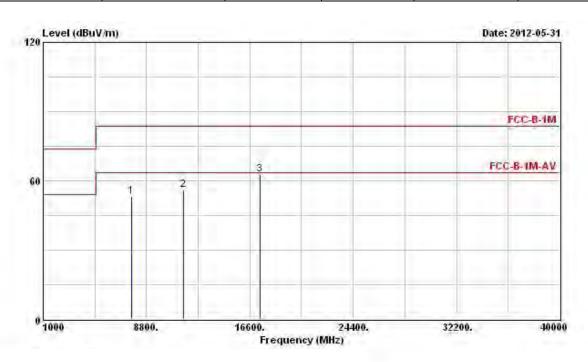

	Freq	Level	Over Limit	,		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	7656.000	53.89	-9.65	63.54	47.54	35.83	5.71	35.19	PK		-
2	11490.000	56.06	-7.48	63.54	45.26	38.89	6.63	34.72	PK		
3	17235.000	62.53	-21.01	83.54	46.35	41.61	8.55	33.98	Peak		
-				10000				1,500 5.4	3,442,3		

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 49 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11A5.8G-20M Power Level 1 Test Freq. (FX) F1									
Operating Function	Transmit	Ant. No.	1	Polarization	Н				

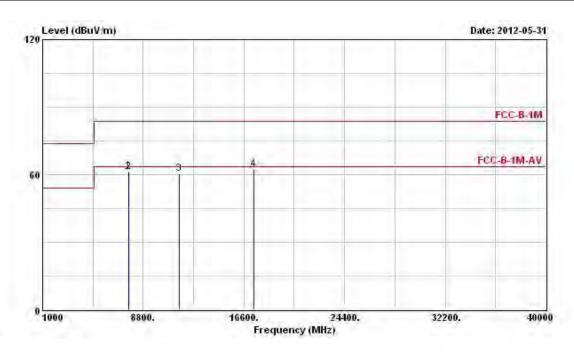

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	7656.000	62.82	-20.72	83.54	56.47	35.83	5.71	35.19	Peak		344
2	7656.000	61.96	-1.58	63.54	55.61	35.83	5.71	35.19	Average		224
3	11490.000	59.51	-4.03	63.54	48.71	38.89	6.63	34.72	PK	555	
4	17235.000	62.61	-20.93	83.54	46.43	41.61	8.55	33.98	Peak		1-1-1-

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 50 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11A5.8G-20M Power Level 1 Test Freq. (FX) F2									
Operating Function	Transmit	Ant. No.	1	Polarization	V				

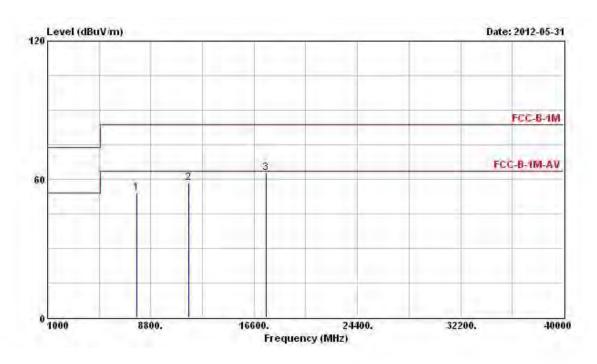

		Level	Over Limit	-		Antenna Factor	0000	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	7704.000	53.37	-10.17	63.54	47.01	35.84	5.72	35.20	PK		-
2	11570.000	56.08	-7.46	63.54	45.27	38.94	6.63	34.76	PK		
3	17355.000	62.65	-20.89	83.54	46.57	41.56	8.50	33.98	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 51 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode 11A5.8G-20M Power Level 1 Test Freq. (FX) F2								
Operating Function	Transmit	Ant. No.	1	Polarization	Н			

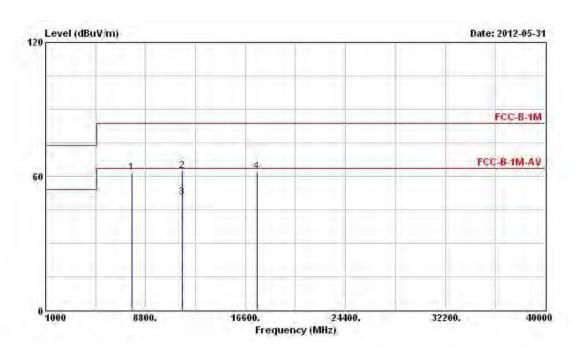

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	7704.000	61.67	-21.87	83.54	55.31	35.84	5.72	35.20	Peak		
2	7704.000	61.23	-2.31	63.54	54.87	35.84	5.72	35.20	Average		
3	11570.000	60.34	-3.20	63.54	49.53	38.94	6.63	34.76	PK		
4	17355.000	62.46	-21.08	83,54	46.38	41.56	8.50	33,98	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 52 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11A5.8G-20M Power Level 1 Test Freq. (FX) F3										
Operating Function	Transmit	Ant. No.	1	Polarization	V					

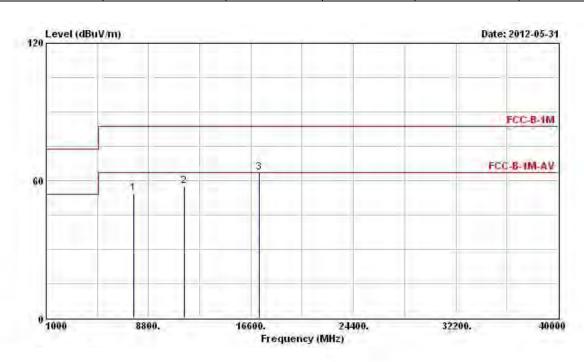

	Freq	Freq	Level	Over Limit	CO. CO. CO. CO.		Antenna Factor	The second second	The second second second	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm.	deg	
1	7752.000	53.95	-29.59	83.54	47.58	35.85	5.73	35.21	Peak			
2	11650.000	58.38	-5.16	63.54	47.57	38.98	6.64	34.81	PK			
3	17475.000	62.77	-20.77	83.54	46.80	41.51	8.44	33.98	Peak			

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 53 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode11A5.8G-20MPower Level1Test Freq. (FX)F3											
Operating Function	Transmit	Ant. No.	1	Polarization	Н						

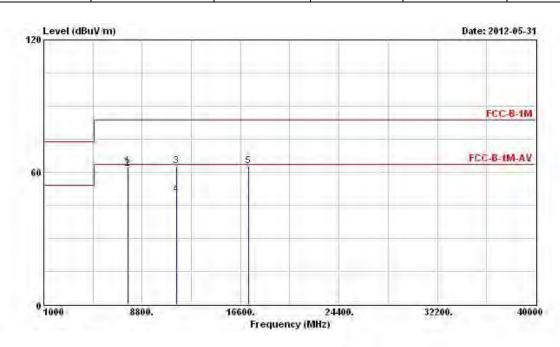

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	7752.000	61.77	-21.77	83.54	55.40	35.85	5.73	35.21	Peak		-
2	11650.000	62.20	-21.34	83.54	51.39	38.98	6.64	34.81	Peak		
3	11650.000	50.67	-12.87	63.54	39.86	38.98	6.64	34.81	Average		
4	17475.000	61.89	-21.65	83.54	45.92	41.51	8.44	33.98	Peak		

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 54 of 70 : Rev. 01 TEL: 886-3-327-3456 Report Version

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11N5.8G-20M Power Level 1 Test Freq. (FX) F1										
Operating Function	Transmit	Ant. No.	1	Polarization	V					

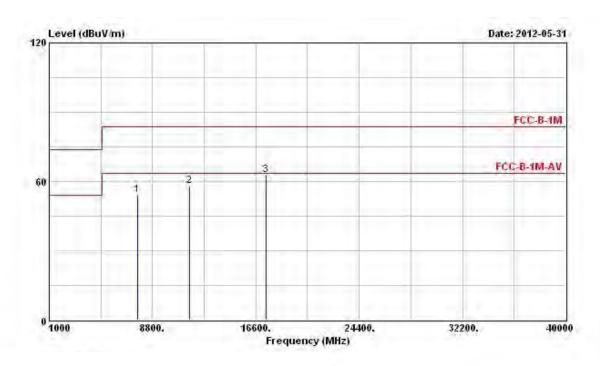

			Over	Limit	Readi	Intenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1	7656.000	54.61	-28.93	83.54	48.26	35.83	5.71	35.19	PK		275
2	11490.000	57.52	-26.02	83.54	46.72	38.89	6.63	34.72	PK		
3	17235.000	63.42	-20.12	83.54	47.24	41.61	8.55	33.98	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 55 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11N5.8G-20M Power Level 1 Test Freq. (FX) F1										
Operating Function	Transmit	Ant. No.	1	Polarization	Н					

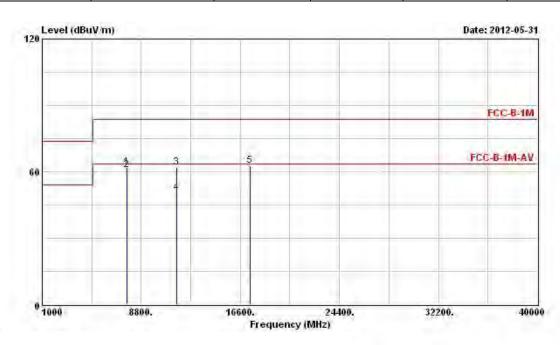

	Freq	Level	Over Limit	Boc phot 4	7.1	Antenna Factor	- 11949 1000	Preamp Factor	Remark	Ant	Table Pos
	MHz	dBuV/m	- dB	dBuV/m	dBuV	dB/m	dB	- dB			dea
1	7656.000	62 72	-20.82	83.54	56.37	35.83	5.71	35.19	Deak		-
2	7656.000	24000		63.54	- 100 0 70	20,000	5.71	23,60	Average		-
3	11490.000	62.78	-20.76	83.54	51.98	38.89	6.63	34.72	Peak		
4	11490.000	49.83	-13.71	63.54	39.03	38.89	6.63	34.72	Average		
5	17235.000	62.86	-20.68	83.54	46.68	41.61	8.55	33.98	Peak		546

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 56 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Modulation Mode 11N5.8G-20M Power Level 1 Test Freq. (FX) F2									
Operating Function	Transmit	Ant. No.	1	Polarization	V					

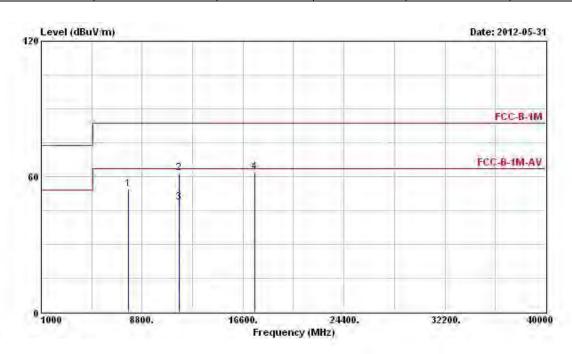

	Freq	Level	Over Limit	A		Antenna Factor		Preamp Factor		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	cm	deg
1	7704.000	54.07	-29.47	83.54	47.71	35.84	5.72	35.20	PK		
2	11570.000	58.16	-25.38	83.54	47.35	38.94	6.63	34.76	PK		
3	17355.000	62.91	-20.63	83.54	46.83	41.56	8.50	33.98	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 57 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode	Modulation Mode 11N5.8G-20M Power Level 1 Test Freq. (FX) F2								
Operating Function	Transmit	Ant. No.	1	Polarization	Н				

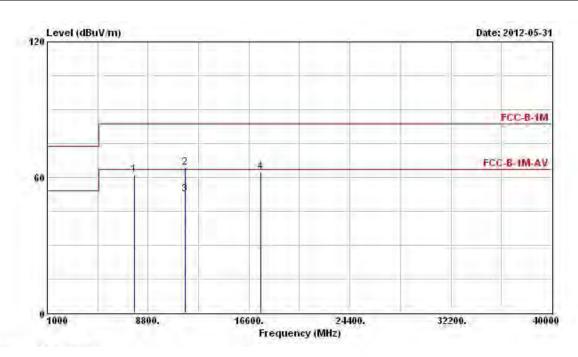

	Freq	Level	Over Limit	Limit Line		Antenna Factor	- 1999 030	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	7704.000	61.80	-21.74	83.54	55.44	35.84	5.72	35.20	Peak		
2	7704.000	60.85	-2.69	63.54	54.49	35.84	5.72	35.20	Average		-
3	11570.000	61.84	-21.70	83.54	51.03	38.94	6.63	34.76	Peak		
4	11570.000	50.43	-13.11	63.54	39.62	38.94	6.63	34.76	Average		
5	17355.000	62.95	-20.59	83.54	46.87	41.56	8.50	33.98	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 58 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N5.8G-20M Power Level 1 Test Freq. (FX) F3									
Operating Function	Transmit	Ant. No.	1	Polarization	V				

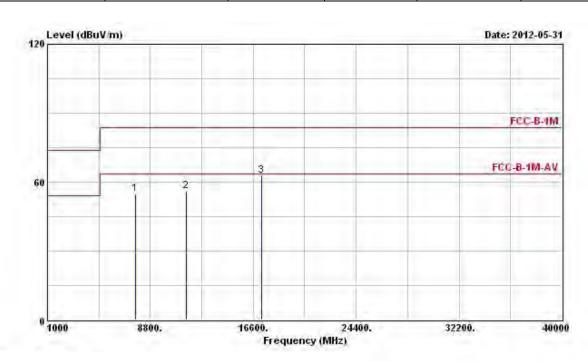

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	7752.000	54.54	-29.00	83.54	48.17	35.85	5.73	35.21	Peak		
2	11650.000	61.66	-21.88	83.54	50.85	38.98	6.64	34.81	Peak		
3	11650.000	48.40	-15.14	63.54	37.59	38.98	6.64	34.81	Average	-0	
4	17475.000	61.92	-21.62	83.54	45.95	41.51	8.44	33.98	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 59 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N5.8G-20M Power Level 1 Test Freq. (FX) F3									
Operating Function	Transmit	Ant. No.	1	Polarization	Н				

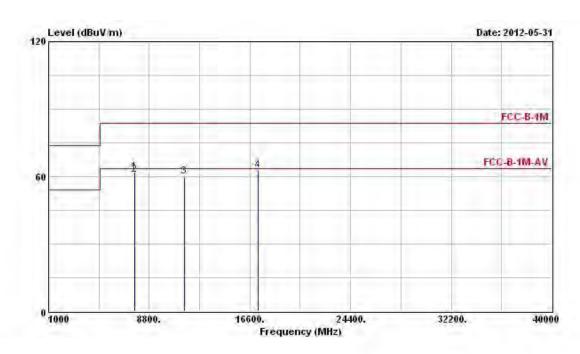

		Over	Limit	Readi	Antenna	Cable	Preamp		Ant	Table
Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
7752.000	61.20	-22.34	83.54	54.83	35.85	5.73	35.21	Peak	-	
11650.000	64.29	-19.25	83.54	53.48	38.98	6.64	34.81	Peak		
11650.000	52.57	-10.97	63.54	41.76	38.98	6.64	34.81	Average		
17475.000	62.42	-21.12	83.54	46.45	41.51	8.44	33.98	Peak		
	MHz 7752.000 11650.000 11650.000	20Hz dBuV/m 7752.000 61.20 11650.000 64.29 11650.000 52.57	Freq Level Limit MHz dBuV/m dB 7752.000 61.20 -22.34 11650.000 64.29 -19.25 11650.000 52.57 -10.97	Freq Level Limit Line MHz dBuV/m dB dBuV/m 7752.000 61.20 -22.34 83.54 11650.000 64.29 -19.25 83.54 11650.000 52.57 -10.97 63.54	Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV/m dBuV 7752.000 61.20 -22.34 83.54 54.83 11650.000 64.29 -19.25 83.54 53.48 11650.000 52.57 -10.97 63.54 41.76	Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV dB/m 7752.000 61.20 -22.34 83.54 54.83 35.85 11650.000 64.29 -19.25 83.54 53.48 38.98 11650.000 52.57 -10.97 63.54 41.76 38.98	Freq Level Limit Line Level Factor Loss MHz dBuV/m dB dBuV/m dBuV dB/m dB 7752.000 61.20 -22.34 83.54 54.83 35.85 5.73 11650.000 64.29 -19.25 83.54 53.48 38.98 6.64 11650.000 52.57 -10.97 63.54 41.76 38.98 6.64	Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV dB/m dB dB 7752.000 61.20 -22.34 83.54 54.83 35.85 5.73 35.21 11650.000 64.29 -19.25 83.54 53.48 38.98 6.64 34.81 11650.000 52.57 -10.97 63.54 41.76 38.98 6.64 34.81	Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB 7752.000 61.20 -22.34 83.54 54.83 35.85 5.73 35.21 Peak 11650.000 64.29 -19.25 83.54 53.48 38.98 6.64 34.81 Peak 11650.000 52.57 -10.97 63.54 41.76 38.98 6.64 34.81 Rverage	Freq Level Limit Line Level Factor Loss Factor Remark Pos MHz dBuV/m dB dBuV/m dBuV dB/m dB dB cm 7752.000 61.20 -22.34 83.54 54.83 35.85 5.73 35.21 Peak 11650.000 64.29 -19.25 83.54 53.48 38.98 6.64 34.81 Peak 11650.000 52.57 -10.97 63.54 41.76 38.98 6.64 34.81 Rverage

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 60 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode11N5.8G-40MPower Level1Test Freq. (FX)F4										
Operating Function	Transmit	Ant. No.	1	Polarization	V					

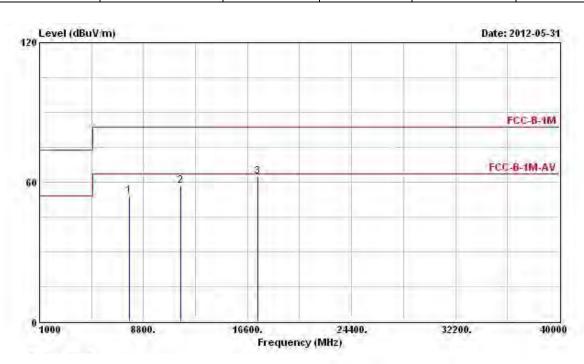

	Freq	Freq Level	Over Limit	100		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz		iBuV/m dB	dBuV/m dBuV		dB/m	dB	dB		cm	deg
1	7656.000	54.72	-8.82	63.54	48.37	35.83	5.71	35.19	PK		
2	11510.000	55.93	-7.61	63.54	45.12	38.90	6.63	34.72	PK		
3	17265.000	62.84	-20.70	83.54	46.69	41.59	8.54	33.98	Peak		2000

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 61 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N5.8G-40M Power Level 1 Test Freq. (FX) F4										
Operating Function	Transmit	Ant. No.	1	Polarization	Н					

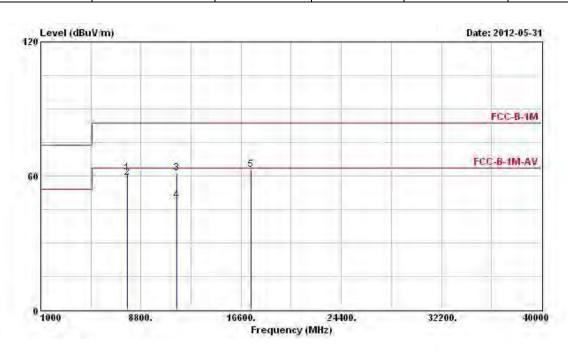

	Freq	Level	Over Limit	-		Antenna Factor		Constitution of the last	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	7656.000	61.99	-21.55	83.54	55.64	35.83	5.71	35.19	Peak		
2	7656.000	60.94	-2.60	63.54	54.59	35.83	5.71	35.19	Average		
3	11510.000	59.84	-3.70	63.54	49.03	38.90	6.63	34.72	PK		
4	17265.000	62.68	-20.86	83.54	46.53	41.59	8.54	33.98	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 62 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N5.8G-40M Power Level 1 Test Freq. (FX) F5									
Operating Function	Transmit	Ant. No.	1	Polarization	V				


	Freq	Freq	Level	Over Limit			Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	con	deg	
1.	7716.000	54.04	-9.50	63.54	47.68	35.84	5.72	35.20	PK			
2	11590.000	58.44	-5.10	63.54	47.62	38.95	6.63	34.76	PK			
3	17385.000	62.53	-21.01	83.54	46.48	41.55	8.48	33.98	Peak	-		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 63 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N5.8G-40M Power Level 1 Test Freq. (FX) F5									
Operating Function	Transmit	Ant. No.	1	Polarization	Н				

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1.	7716.000	61.26	-22.28	83.54	54.90	35.84	5.72	35.20	Peak		
2	7716.000	59.26	-4.28	63.54	52.90	35.84	5.72	35.20	Average	200	
3	11590.000	61.13	-22.41	83.54	50.31	38.95	6.63	34.76	Peak	-1-1-	-
4	11590.000	48.79	-14.75	63.54	37.97	38.95	6.63	34.76	Average		
5	17385.000	62.62	-20.92	83.54	46.57	41.55	8.48	33.98	Peak		2-6

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 64 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

4 Maximum Permissible Exposure

4.1 Maximum Permissible Exposure

4.1.1 Limit of Maximum Permissible Exposure

Limits for Occupational / Controlled Exposure										
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)						
0.3-3.0	0.3-3.0 614		(100)*	6						
3.0-30	1842 / f	4.89 / f 0.163	(900 / f)*	6						
30-300	61.4		1.0	6						
300-1500			F/300	6						
1500-100,000			5	6						
Limits for General Population / Uncontrolled Exposure										
Frequency Range	Electric Field	Magnetic Field								

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Power Density (S) Strength (H) (A/m) (mW/ cm²)		Averaging Time E ², H ² or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f 27.5	2.19/f	(180/f)*	30	
30-300		0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note 1: f = frequency in MHz; *Plane-wave equivalent power density

Note 2: For the applicable limit, see FCC 1.1310

SPORTON INTERNATIONAL INC. : 65 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

RF Field Strength Limits for Controlled Use Devices (Controlled Environment)							
Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m2)	Averaging Time (minutes)			
0.003-1	600	4.9	-	6			
1-10	600/f	4.9/f	-	6			
10-30	60	4.9/f	-				
30-300	60	0.163	10*	6			
300-1500	3.54 f 0.5	0.0094 f 0.5	f/30	6			
1500-15000	137	0.364	50	6			
15000-150000	15000-150000 137		50	616000/f 1.2			
150000-300000	0.354 f 0.5	9.4 x 10-4 f 0.5	3.33 x 10-4 f	616000/f 1.2			

RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m2)	Averaging Time (minutes)	
0.003-1	280	2.19	-	6	
1-10	280/f	2.19/ <i>f</i>	-	6	
10-30	28	2.19/ <i>f</i>	-		
30-300	28	0.073	2*	6	
300-1500	1.585 f ^{0.5}	0.0042 f ^{0.5}	f/150	6	
1500-15000	61.4	0.163	10	6	
15000-150000	61.4	0.163	10	616000/f ^{1.2}	
150000-300000	0.158 f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}	

Note 1: f is frequency in MHz.

Note 2: For the applicable limit, see IC RSS-102

4.1.2 MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
E = Electric field (V/m)

G = EUT Antenna numeric gain (numeric) The formula can be changed to

 $Pd = \frac{30 \times P \times G}{377 \times d^2}$

Power Density: Pd (W/m²) = $\frac{E^2}{377}$

P = RF output power (W)

d = Separation distance between radiator and human body (m)

SPORTON INTERNATIONAL INC. Page No. : 66 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR241874AI

4.1.3 Result of Maximum Permissible Exposure

Transmitter Chains & Receiver Chains Information							
IEEE Std. 802.11 Protocol	Number of Transmit Chains (N _{TX})	Number of Receive Chains (N _{RX})	eive Chains Signals with		Co-location		
а	1	1	Correlated	20.72	N/A		
n (HT20)	2	2	Uncorrelated	23.47	N/A		
n (HT40)	2	2	Uncorrelated	24.16	N/A		

Note 1: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

Worst Maximum RF Output Power Result									
Exposure Envi	ronment	General	Population	/ Uncon	trolled Ex	posure			
Separation Dist	ance (cm)	20							
Power Level	1	RF Output Power (dBm)							
Modulation Mode	N _{TX}	Chain- Port 1	Chain- Port 2	-	-	Sum Chain	Gain (dBi)	EIRP Power	PD (S) (mW/cm²)
11A5.8G-20M	1	20.72	-	-	-	20.72	6.27	26.99	0.0995
11N5.8G-20M	2	20.77	20.30	-	-	23.47	5.5	28.97	0.1570
11N5.8G-40M	2	20.95	21.85	-	-	24.16	5.5	29.66	0.1841
Maximum Permissible Exposure Limit (mW/cm²) 1							1		
Note 1: N _{TX} = Num	ber of Trans	mit Chains	3						•

SPORTON INTERNATIONAL INC. Page No. : 67 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174 9 kHz ~ 2.75 GHz	9 kHz ~ 2.75 GHz	Mar. 23, 2012	Conduction
	110.0	2000 00		0 111 12 21 10 01 12		(CO04-HY)
LISN	SCHWARZBECK	NSLK 8127	8127-477	9kHz – 30MHz	Feb. 08, 2012	Conduction
LION	MESS-ELEKTRONIK					(CO04-HY)
LISN	EMCO	3810/2NM	9703-1839	9 kHz ~ 30 MHz	Apr. 20, 2012	Conduction
(Support Unit)	EIVICO					(CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	CB049	9 kHz ~ 30 MHz	Apr. 25, 2012	Conduction
RE Cable-CON	HUDER+SURINER	KG213/U	СБ049	9 KHZ ~ 30 IVIHZ	Apr. 20, 2012	(CO04-HY)

Report No.: FR241874AI

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Sep. 26, 2011	Conducted (TH02-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	May. 20, 2012	Conducted (TH02-CB)
Signal Generator	R&S	SMR40	100302	10MHz-40GHz	Nov. 22, 2011	Conducted (TH02-CB)
RF Power Divider	HP	11636A	00306	2GHz ~ 18GHz	N/A	Conducted (TH02-CB)
RF Power Splitter	Anaren	44100	1839	2GHz ~ 18GHz	N/A	Conducted (TH02-CB)
RF Power Splitter	Anaren	42100	17930	2GHz ~ 18GHz	N/A	Conducted (TH02-CB)
Horn Antenna	COM-POWER	AH-118	071187	1GHz – 18GHz	May. 09, 2012	Conducted (TH02-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 01, 2011	Conducted (TH02-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 01, 2011	Conducted (TH02-CB)

Note: Calibration Interval of instruments listed above is one year.

SPORTON INTERNATIONAL INC. : 68 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9 kHz ~ 40 GHz	Aug. 08, 2011	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30 MHz ~ 1 GHz 3m	May 10, 2012	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11146	100 kHz ~ 1.3 GHz	Jul. 25, 2011	Radiation (03CH02-HY)
Amplifier	Agilent	8449B	3008A02373	1 GHz ~ 26.5 GHz	Jul. 25, 2011	Radiation (03CH02-HY)
Horn Antenna	ETS-LINDGREN	3117	00091920	1 GHz ~ 18 GHz	Nov. 15, 2011	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz ~ 1 GHz	Nov. 11, 2011	Radiation (03CH02-HY)
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz ~ 40 GHz	Jan. 18, 2012	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30 MHz ~ 2 GHz	Oct. 22, 2011	Radiation (03CH02-HY)
Turn Table	HD	DS 420	420/649/00	0 - 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	HD	MA 240	240/559/00	1 m - 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	Jul. 29, 2010*	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

SPORTON INTERNATIONAL INC. : 69 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01

6 Certification of TAF Accreditation

Certificate No. : L1190-111208

財團法人全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO/IEC 17025:2005

Accreditation Number : 1190

Originally Accredited : December 15, 2003

Effective Period : January 10, 2010 to January 09, 2013

Accredited Scope : Testing Field, see described in the Appendix

Specific Accreditation : Accreditation Program for Designated Testing Laboratory

Program for Commodities Inspection

Accreditation Program for Telecommunication Equipment

Testing Laboratory
Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

Jay-San Chen

President, Taiwan Accreditation Foundation

Date: December 08, 2011

P1, total 24 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix

SPORTON INTERNATIONAL INC. Page No. : 70 of 70 TEL: 886-3-327-3456 Report Version : Rev. 01