FCC Test Report

Equipment : N600 DB Wireless N+ Router

Brand Name : Belkin

Model No. : F9K1102V2

FCC ID : K7SF9K1102V2

Standard : 47 CFR FCC Part 15.247

Applicant : Belkin International Inc.

Manufacturer 12045 E. Waterfront Drive Playa Viste,

CA 90094, USA

The product sample received on Apr. 18, 2012 and completely tested on Jun. 21, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Wayne Hsu / Assistant Manager

Report No.: FR241874AC

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-327-0973

Page No. : 1 of 80

Report Version : Rev. 01

FCC ID : K7SF9K1102V2

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	8
1.3	Testing Applied Standards	8
1.4	Testing Location Information	8
1.5	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	The Worst Case Modulation Configuration	10
2.2	Test Channel Frequencies Configuration	10
2.3	The Worst Case Power Setting Parameter	11
2.4	The Worst Case Measurement Configuration	12
2.5	Test Setup Diagram	14
3	TRANSMITTER TEST RESULT	16
3.1	AC Power-line Conducted Emissions	16
3.2	6dB Bandwidth	19
3.3	RF Output Power	23
3.4	Power Spectral Density	27
3.5	Transmitter Radiated Bandedge Emissions	33
3.6	Transmitter Radiated Unwanted Emissions	41
4	MAXIMUM PERMISSIBLE EXPOSURE	75
4.1	Maximum Permissible Exposure	75
5	TEST EQUIPMENT AND CALIBRATION DATA	78
6	CERTIFICATION OF TAF ACCREDITATION	80
APPE	ENDIX A. TEST PHOTOS	A1 ~ A6
ΔΡΡΙ	ENDIX B. PHOTOGRAPHS OF FUT	R1 ~ R19

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 2 of 80
Report Version : Rev. 01

FCC ID : K7SF9K1102V2

Summary of Test Result

		Conforr	nance Test Specifications		
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied
3.1	15.207	AC Power-line Conducted Emissions	0.3872MHz: 40.16dBuV (7.96dB) - AV 43.43dBuV (14.69dB) - QP [Ref. page 17]	FCC 15.207	Complied
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 2412-2462MHz: 10.02-DSSS 2412-2462MHz: 17.76-OFDM 2422-2452MHz: 36.32-OFDM	≥500kHz	Complied
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	m Peak 2412-2462MHz: 15.85-DSSS		Complied
3.4	15.247(d)	Power Spectral Density	PSD [dBm/3kHz] 2412-2462MHz: -5.36-DSSS 2412-2462MHz: -12.68-OFDM 2422-2452MHz: -16.28-OFDM	PSD [dBm/3kHz] 2412-2462MHz: 8 2422-2452MHz: 8	Complied
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2398.57MHz: 27.95dB [Ref. page 40] Restricted Bands [dBuV/m at 3m]: 2483.50MHz: 67.66 (Margin 6.34dB) - PK 52.90 (Margin 1.1dB) - AV [Ref. page 39]	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 4824MHz: 52.52 (Margin 21.48dB) - PK 52.80 (Margin 1.2dB) - AV [Ref. page 52]	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied
4.1	2.1091	Maximum Permissible Exposure	0.1671 mW/cm ²	1 mW/cm ²	Complied

SPORTON INTERNATIONAL INC. Page No. : 3 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Revision History

Report No.	Version	Description	Issued Date
FR241874AC	Rev. 01	Initial issue of report	Jun. 27, 2012

SPORTON INTERNATIONAL INC. Page No. : 4 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information								
Frequency Range (MHz)	· • ×11711		Channel Number	RF Output Power (dBm)	Designation of Emission			
2400-2483.5	b	2412-2462	1-11 [11]	15.85	15M0G1D			
2400-2483.5	g	2412-2462	1-11 [11]	24.66	16M9D1D			
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	25.44	17M9D1D			
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	23.74	36M5D1D			

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11g-2003 and IEEE Std. 802.11b-1999. Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 3: RF output power specifies that Maximum Peak Conducted Output Power.

	Transmitter Chains & Receiver Chains Information									
IEEE Std. 802.11 Protocol	Number of Transmit Chains (N _{TX})	Number of Receive Chains (N _{RX})	Correlation Signals with Multiple N _{TX}	99% Emission Bandwidth (MHz)	Co-location					
b	1	1	N/A	14.96	N/A					
g	2	2	Correlated	16.88	N/A					
n (HT20)	2	2	Uncorrelated	17.88	N/A					
n (HT40)	2	2	Uncorrelated	36.48	N/A					

Note 1: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

SPORTON INTERNATIONAL INC. : 5 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

1.1.2 Antenna Information

					Antenna Cat	tegory			
	Equipment placed on the market without antennas								
\boxtimes	Integ	Integral antenna (antenna permanently attached)							
	\boxtimes	Temporary F	RF connec	tor provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.								
	Exte	rnal antenna	(dedicate	ed antennas)					
		Single power	er level wit	h correspond	ling antenna(s). Power Level (PL):	1		
		Multiple pow	ver level a	nd correspor	nding antenna	a(s). Power Level (PL): 1~		
		No RF conn	ector prov	rided					
		connec	ted meas	surement. In	case of co	soldered temporary nducted measureme a a suitable attenuato	ents the	transmitte	r shall be
		RF connecto	or provide	d					
		☐ Unique	antenna d	connector. (e	.g., MMCX, U	J.FL, IPX, and RP-SN	1A, RP-I	N type)	
		Standa	rd antenna	a connector.	(e.g., SMA, N	I, BNC, and TNC type	€)		
A 4 -		D (T - 4 - 1 -	0 D()	Anter	nna General				
		Port (Total		and (DL)	1(TX/RX), 2	(TX/RX)			
		n RF Output			1	م مناه المناه الماناه الماناه		trical diatrib	
ıran	SMI	Chains Por	wer Distri	Dution	Symmetr	rical distribution 🔲 a	isymme	tricai distrib	ution
Ant. No.	PL	[Ant. Port [Ant No. X] connect to Ant. Port Y]	Ant. Cat.	Ant. Type	Brand	Model	G _{ANT} (dBi)	DG (dBi) [correlated] N _{TX} = 1	DG (dBi) [uncorrelated] N _{TX} = 2
1	1	1	Integral	PIFA	-	-	3.95	N/A	3.8
2	1	2	Integral	PIFA	-	-	3.65	IN/A	3.0
\boxtimes	Th	e equipment	is normal	ly installed ar	nd point-to-po	oint or point-to-multipe	oint syst	ems: Ant. N	lo. <u>1,2</u>
	Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = G _{ANT} + 10 log(N) dBi All transmit signals are completely uncorrelated, Directional Gain (DG)= G _{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = 10 log[(10 ^{G1/20} + 10 ^{G2/20} + + 10 ^{GN/20}) ² /N] dBi All transmit signals are completely uncorrelated, Directional Gain (DG) = 10 log[(10 ^{G1/10} + 10 ^{G2/10} + + 10 ^{GN/10})/N] dBi								

SPORTON INTERNATIONAL INC. : 6 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

1.1.3 Type of EUT

	Identify EUT				
EU	Γ Serial Number	N/A			
Pre	sentation of Equipment	☐ Production ; ☐ Pre-Production ; ☐ Prototype			
	Type of EUT				
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle						
	Operated normally mode for worst dut	y cycle					
\boxtimes	Operated test mode for worst duty cycle						
	Test Signal Duty Cycle (x) Power Duty Factor [dB] – Voltage Duty Factor [dB] (20 log 1/x)						
\boxtimes	100% - IEEE 802.11b	0	0				
\boxtimes	100% - IEEE 802.11g	0	0				
\boxtimes	100% - IEEE 802.11n (HT20)	0	0				
\boxtimes	100% - IEEE 802.11n (HT40)	0	0				

1.1.5 EUT Operational Condition

Supply Voltage		☐ DC	
Type of DC Source		☐ External DC adapter	☐ Battery
Operational Voltage		∨max (126.5 V)	
Operational Climatic	☐ Tnom (20°C)		☐ Tmin (-30°C)

SPORTON INTERNATIONAL INC. Page No. : 7 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

1.2 Accessories and Support Equipment

Accessories							
No.	Equipment	Model Name	Serial No.				
1	AC Adapter 1	belkin	DSA-12PFE-12 BUS 120100	-			
2	AC Adapter 2	Sunny	SYS1381-1212-W2	-			

	Support Equipment						
No.	Equipment	Brand Name	Model Name	Serial No.			
1	Notebook	DELL	E5520	DoC			

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074 Guidance for Performing Compliance Measurements on DTS
- FCC KDB 662911 Emissions Testing of Transmitters with Multiple Outputs
- FCC KDB 412172 Guidelines for Determining the ERP and EIRP

1.4 Testing Location Information

	Testing Location							
\boxtimes	HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.				
		TEL	:	886-3-327-3450	6 FAX : 886	6-3-327-0973		
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.				
		TEL	:	886-3-656-906	5 FAX : 886	6-3-656-9085		
Test Condition				Test Site No.	Test Engineer	Test Environment	Test Date	
Conducted Emission				CO04-HY	Sam	23°C / 47%	22-May-12	
RF Conducted			TH02-CB	Denis	23℃ / 63%	15-Jun-12 ~ 21- Jun-12		
Radiated Emission			03CH02-HY	Streak	26.3℃ / 68%	20-May-12 ~ 31-May-12		

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Report No.: FR241874AC

Measureme	ent Uncertainty - HW	A YA	
Test Item		Uncertainty	Limit
AC power-line conducted emissions		± 2.26 dB	N/A
All emissions, radiated	30 – 1000 MHz	± 2.54 dB	N/A
	1 – 18 GHz	±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A

Measurement Uncerta	ainty - JHUBEI	
Test Item	Uncertainty	Limit
Emission bandwidth, 6dB bandwidth	±1.32 %	N/A
RF output power, conducted	±0.72 dB	N/A
Power density, conducted	±0.61 dB	N/A
Temperature	±0.7 ℃	N/A
Humidity	±2.6 %	N/A
DC and low frequency voltages	±3.4 %	N/A
Time	±1.82 %	N/A
Duty Cycle	±1.69 %	N/A

SPORTON INTERNATIONAL INC. Page No. : 9 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

	Wo	orst Modulation	n Used for Con	formance Test	ing	
Power	r Level	1				
IEEE 802.11 Protocol	Number of Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Worst Modulation Mode	RF Output Power (dBm)	Power Spectral Density (dBm/3kHz)
b	1	1-11 Mbps	1 Mbps	11B-20M	15.85	-5.36
g	1	6-54 Mbps	6Mbps	11G-20M	24.66	-14.52
n (HT20)	2	MCS 0-15	MCS 8	11N2.4G-20M	25.44	-12.68
n (HT40)	2	MCS 0-15	MCS 8	11N2.4G-40M	23.74	-16.28

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11g-2003 and IEEE Std. 802.11b-1999.

Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40. Worst modulation mode of Guard Interval (GI) is 400ns.

Note 3: Modulation modes consist of 11B-20M, 11G-20M, 11N2.4G-20M, 11N2.4G-40M: 11B: IEEE 802.11b, 11G: IEEE 802.11g, 11N2.4G: IEEE 802.11n (2.4GHz Band) 20M/40M: Channel Bandwidth 20MHz/40MHz

Note 4: RF output power specifies that Maximum Peak Conducted Output Power.

2.2 Test Channel Frequencies Configuration

Tes	st Channel Frequencies Configur	ration
IEEE 802.11 Protocol	Worst Modulation Mode	Test Channel Frequencies (MHz) – FX (Frequencies Abbreviations)
b	11B-20M	2412-(F1), 2437-(F2), 2462-(F3)
g	11G-20M	2412-(F1), 2437-(F2), 2462-(F3)
n (HT20)	11N2.4G-20M	2412-(F1), 2437-(F2), 2462-(F3)
n (HT40)	11N2.4G-40M	2422-(F4), 2437-(F5), 2452-(F6)

Note 1: Modulation modes consist of 11B-20M, 11G-20M, 11N2.4G-20M, 11N2.4G-40M: 11B: IEEE 802.11b, 11G: IEEE 802.11g, 11N2.4G: IEEE 802.11n (2.4GHz Band) 20M/40M: Channel Bandwidth 20M/40M

SPORTON INTERNATIONAL INC. : 10 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

2.3 The Worst Case Power Setting Parameter

	The	Worst Case Pov	ver Setting Parame	eter	
Power	Level	1			
Test Softwa	are Version	RTL819x2.2.4_1	1/11/01		
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Frequency (MHz)	Power Setting	Worst Data Rate / MCS	RF Output Power (dBm)
11B-20M	1	2412	36	1 Mbps	14.66
11B-20M	1	2442	36	1 Mbps	14.83
11B-20M	1	2472	38	1 Mbps	15.85
11G-20M	1	2412	47	6 Mbps	23.52
11G-20M	1	2442	50	6 Mbps	24.66
11G-20M	1	2472	45	6 Mbps	22.81
11N2.4G-20M	2	2412	46/46	MCS 8	24.04
11N2.4G-20M	2	2442	49/49	MCS 8	25.44
11N2.4G-20M	2	2472	44/44	MCS 8	23.27
11N2.4G-40M	2	2422	44/44	MCS 8	22.28
11N2.4G-40M	2	2437	47/47	MCS 8	23.74
11N2.4G-40M	2	2452	40/40	MCS 8	20.44

Note 1: Modulation modes consist of 11B-20M, 11G-20M, 11N2.4G-20M, 11N2.4G-40M: 11B: IEEE 802.11b, 11G: IEEE 802.11g, 11N2.4G: IEEE 802.11n (2.4GHz Band) 20M/40M: Channel Bandwidth 20MHz/40MHz

Note 2: RF output power specifies that Maximum Peak Conducted Output Power.

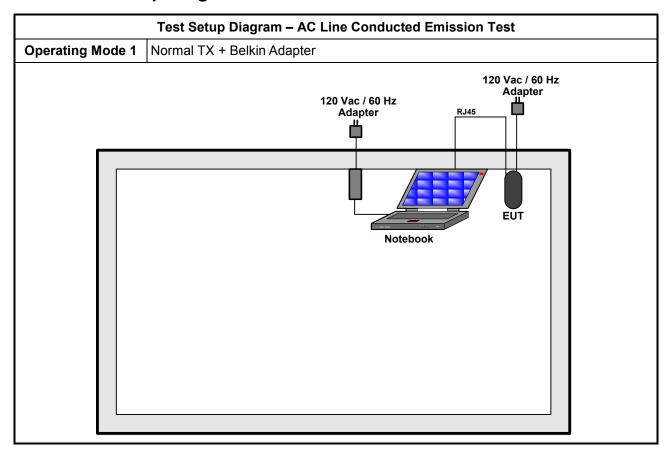
SPORTON INTERNATIONAL INC. Page No. : 11 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

2.4 The Worst Case Measurement Configuration

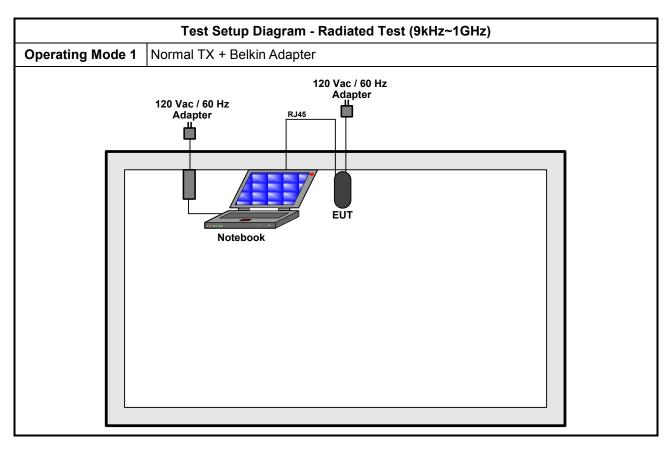
	The Worst Case Mode for Following C	onformance Tests		
Tests Item	AC power-line conducted emissions			
Condition	AC power-line conducted measurement for line and	neutral		
Operating Mode	Operating Mode Description	Worst Modulation Mode	Test Freq.	Power Level
1	Normal TX + Belkin Adapter	11N2.4G-20M	F2	1
2	Normal TX + Sunny Adapter	11N2.4G-40M	F5	1
For operating	g mode 1 is the worst case and it was record in this	test report.		

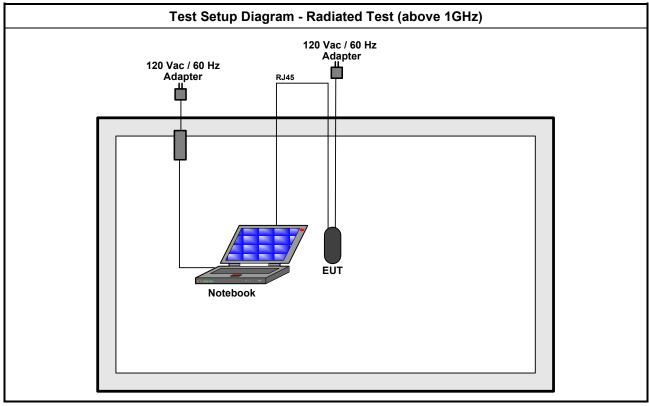
Report No. : FR241874AC

	The Worst Case M	lode for Following C	onformance Tests	
Tests Item	RF Output Power Power Spectral Dens 6 dB Bandwidth	ity		
Test Condition	Conducted measurer	ment at transmit chains	S	
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level
11B-20M	1	1 Mbps	F1, F2, F3	1
11G-20M	1	6Mbps	F1, F2, F3	1
11N2.4G-20M	2	MCS 8	F1, F2, F3	1
11N2.4G-40M	2	MCS 8	F4, F5, F6	1


	The Worst Case M	lode for Following C	onformance Tests	
Tests Item	Transmitter Radiated	Bandedge Emissions		
Test Condition	Radiated measureme	ent		
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level
11B-20M	1	1 Mbps	F1, F3	1
11G-20M	1	6Mbps	F1, F3	1
11N2.4G-20M	2	MCS 8	F1, F3	1
11N2.4G-40M	2	MCS 8	F4, F6	1

SPORTON INTERNATIONAL INC. Page No. : 12 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01


	The Wo	rst Case Mode	for Following	Conformance	Tests		
Tests Item	Transmitter Ra	diated Unwant	ed Emissions				
Test Condition	Radiated meas	surement					
	⊠ EUT will b	e placed in fixe	d position.				
User Position		EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two or three orthogonal planes.					
				attery-powered of ed two or three			
Operating	□ 1. Norm	☑ 1. Normal TX + Belkin Adapter					
Mode < 1GHz	🛛 2. Norm	2. Normal TX + Sunny Adapter					
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level	Ant No.	Worst Orthogonal Planes of EUT	
11B-20M	1	1 Mbps	F1, F2, F3	1	1	Y Plane	
11G-20M	1	6Mbps	F1, F2, F3	1	1	Y Plane	
11N2.4G-20M	2	MCS 8	F1, F2, F3	1	1,2	Y Plane	
11N2.4G-40M	2	MCS 8	F4, F5	1	1,2	Y Plane	
	X P	lane	ΥP	lane	ZF	Plane	
Orthogonal Planes of EUT							
For operating mo	ode 1 is the wor	st case and it w	as record in thi	s test report.			


SPORTON INTERNATIONAL INC. Page No. : 13 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

2.5 Test Setup Diagram

SPORTON INTERNATIONAL INC. Page No. : 14 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 15 of 80

Report Version : Rev. 01

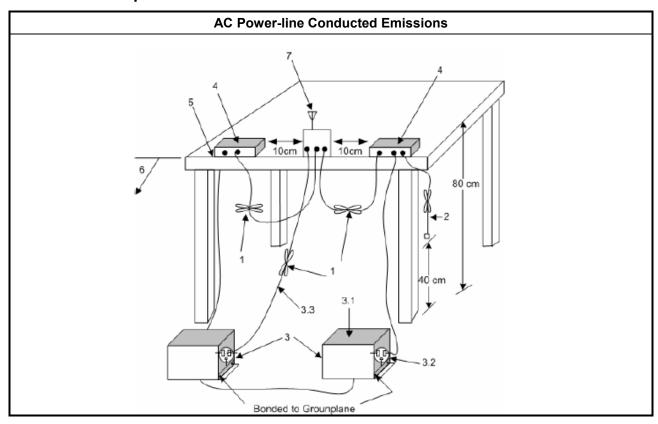
FCC ID : K7SF9K1102V2

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Powe	er-line Conducted Emissions L	imit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50


3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

	Test Method
\boxtimes	Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 16 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

3.1.5 Test Result of AC Power-line Conducted Emissions

lodulation Mode	11N2.4G-2	0M	Power	r Level	1		Test	Freq. (FX)	F2
perating Mode	1		Ant. N	lo.	1+2		Powe	er Phase	Neutral
perating Function	Normal TX	+ Belkin	Adapte	r	•		1		•
Level	(dBuV)							Date: 20	012-05-22
80			-11						
4.5									
	-							CISPR/CNS	VCCI-B
								Clar IV Cha	NV CCI-D
-		7	H					CLEBB CHE LO	OL E 411
. No.			-					CISPR/CNS/VC	CI-B AV
	9		-			_			
40	Ma. Ma								
13 V.	al March 2011 h								
711	ATTACK TO SE	Marie I	inter judy	MAN	n.A				
		12 1	M	IVVV	AAAA	h/himminnen	W		
	11.41	Li,	M A	111		200	Tannan	Will I	· · · · · · · · · · · · · · · · · · ·
1	11		100					Walter	Landy and Land
								. All sand As	A A PORT
004503		0.5	1						
0.15 0.2	2	0.5		2		5		10	20 30
0.15 0.1	2	0,5	4	Frequen	cy (MHz)			10 2	20 30
0.15 0	2	0,5			cy (MHz			10 2	20 30
0,150	2	0,5			cy (MHz)			10 2	20 30
0.150	i	0,5	1		cy (MHz			10 2	20 30
0.150	ı	0,5			cy (MHz			10 2	20 30
0.150		0.5	,		cy (MHz			10 2	20 30
0.150				Frequen				10 2	20 30
	Ove	er Limit	Read	Frequen	Cable			10 3	20 30
		er Limit	Read	Frequen	Cable			10 3	20 30
	Ove Level Lim	er Limit	Read	Frequen	Cable			10 .	20 30
Freq	Level Limi	er Limit t Line IB dBuV	Read Level	LISN Factor	Cable Loss	Remark		10 .	20 30
Freq MHz 1 0.1624080	Down Level Limited BuV 47.16 -18.5	er Limit t Line IB dBuV	Read Level dBuV 46.80	LISN Factor	Cable Loss dB	Remark OP		10 .	20 30
Freq MHz 1 0.1624080 2 0.1624080	dBuV d7.16 -18.1	er Limit Line dBuV 18 65.34	Read Level dBuV 46.80 32.98	LISN Factor dB 0.26 0.26	Cable Loss dB 0.10	Remark OP Average		10 .	20 30
Freq MHz 1 0.1624080 2 0.1624080 3 0.1929470	dBuV d7.16 -18.1 33.34 -22.0 44.90 -19.0	er Limit Line dBuV .8 65.34 00 55.34 01 63.91	Read Level dBuV 46.80 32.98 44.55	LISN Factor dB 0.26 0.26 0.25	Cable Loss dB 0.10 0.10 0.10	Remark OP Average OP		10 :	20 30
Freq 10.1624080 20.1624080 30.1929470 40.1929470	dBuV d 47.16 -18.1 33.34 -22.0 44.90 -19.0 33.55 -20.3	Er Limit Line dBuV .8 65.34 .00 55.34 .01 63.91 .86 53.91	Read Level dBuV 46.80 32.98 44.55 33.20	LISN Factor dB 0.26 0.26 0.25 0.25	Cable Loss dB 0.10 0.10 0.10 0.10	Remark OP Average OP Average		10 .	20 30
Freq MHz 1 0.1624080 2 0.1624080 3 0.1929470 4 0.1929470 5 0.2185070	Dve Level Lim: dBuV 6 47.16 -18.1 33.34 -22.0 44.90 -19.0 33.55 -20.3 41.51 -21.3	Er Limit Line dBuV 8 65.34 00 55.34 11 63.91 86 53.91 87 62.88	Read Level dBuV 46.80 32.98 44.55 33.20 41.16	LISN Factor dB 0.26 0.26 0.25 0.25 0.25	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP		10 .	20 30
Freq MHz 1 0.1624080 2 0.1624080 3 0.1929470 4 0.1929470 5 0.2185070 6 0.2185070	Dve Level Lim: dBuV 47.16 -18.1 33.34 -22.0 44.90 -19.0 33.55 -20.3 41.51 -21.3 31.37 -21.5	er Limit Line dBuV 8 65.34 00 55.34 01 63.91 86 53.91 87 62.88 61 52.88	Read Level dBuV 46.80 32.98 44.55 33.20 41.16 31.02	LISN Factor dB 0.26 0.26 0.25 0.25 0.25 0.25	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average		10 .	20 30
Freq MHz 1 0.1624080 2 0.1624080 3 0.1929470 4 0.1929470 5 0.2185070 6 0.2185070 7 0.2482410	dBuV 47.16 -18.3 33.34 -22.0 44.90 -19.0 33.55 -20.3 41.51 -21.3 31.37 -21.5 38.77 -23.0	er Limit Line UB dBuV 18 65.34 10 65.34 10 63.91 10 62.88 10 52.88 10 52.88 10 61.82	Read Level 46.80 32.98 44.55 33.20 41.16 31.02 38.42	LISN Factor dB 0.26 0.25 0.25 0.25 0.25	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Remark OP Average OP Average OP Average OP		10 .	20 30
Freq MHz 1 0.1624080 2 0.1624080 3 0.1929470 4 0.1929470 5 0.2185070 6 0.2185070 7 0.2482410 8 0.2482410	dBuV 47.16 -18.1 33.34 -22.0 44.90 -19.0 33.55 -20.3 41.51 -21.3 31.37 -21.3 38.77 -23.0 27.91 -23.9	er Limit t Line 1B dBuV .8 65.34 .00 55.34 .01 63.91 .03 62.88 .05 61.82 .01 51.82	Read Level 46.80 32.98 44.55 33.20 41.16 31.02 38.42 27.56	LISN Factor dB 0.26 0.26 0.25 0.25 0.25 0.25 0.25	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Remark OP Average OP Average OP Average OP Average		10 .	20 30
Freq MHz 1 0.1624080 2 0.1624080 3 0.1929470 4 0.1929470 5 0.2185070 6 0.2185070 7 0.2482410	Down Level Lim: dBuV 47.16 -18.1 33.34 -22.0 44.90 -19.0 33.55 -20.3 41.51 -21.3 31.37 -21.3 38.77 -23.0 27.91 -23.9 43.43 -14.0	er Limit Line dBuV 88 65.34 00 55.34 01 63.91 87 62.88 81 62.88 81 61.82 01 51.82 01 51.82 03 958.12	Read Level 46.80 32.98 44.55 33.20 41.16 31.02 38.42 27.56 43.09	LISN Factor dB 0.26 0.26 0.25 0.25 0.25 0.25 0.25	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Remark OP Average OP Average OP Average OP Average		10 .	20 30
Freq MHz 1 0.1624080 2 0.1624080 3 0.1929470 4 0.1929470 5 0.2185070 6 0.2185070 7 0.2482410 8 0.2482410 9 0.3872360	Down Level Lim: dBuV 47.16 -18.1 33.34 -22.0 44.90 -19.0 33.55 -20.3 41.51 -21.3 31.37 -21.5 38.77 -23.0 27.91 -23.3 43.43 -14.0 40.16 -7.5	er Limit Line UB dBuV 18 65.34 10 55.34 11 63.91 18 62.88 15 61.82 15 61.82 15 61.82 16 48.12	Read Level 46.80 32.98 44.55 33.20 41.16 31.02 27.56 43.09 39.82	LISN Factor dB 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Remark OP Average OP Average OP Average OP Average OP Average		10 .	20 30

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 17 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

TEL: 886-3-327-3456

Modulation Mo	ode	11N2.4G-	20M	Power	Level	1		Test Fr	eq. (FX)	F2
Operating Mod	de	1		Ant. No	0.	1+2		Power	Phase	Line
Operating Fun	ction	Normal T	X + Belkin	Adapter	•			1		1
	Level (d	IBuV)							Date: 20	12-05-22
8	80									
	-	_							CISPR/CNS	NICCI B
									CISPRICNS	VULLE
	1							CI	SPR/CNS/VC	CI-B AV
	1 3		_							117
	i b	9					1 10 10 10			
4	10	7								
	77	L. A AM								
			A M	id n				1.		
		I YOU DE THE STATE OF THE STATE	Man William	to the	A MARIA	A thush	الاعظارية والعياري	de la constantina	4	
		MY LANGE OF THE	THE PROPERTY OF A		MI IT W	AMAMA		The state of the s	i vi	1 1
	I I III		1 1 1 1 1 1 1 1 1 1		1		The state of	THE PROPERTY OF		A. M.
					1 1 1	1 1			A SULLAND	Marin M
		4 1 4 1 4 4	1 1 1	11			1.	10.1		
		Jillani	,114	M M		· 11	4	1, 1, 1	Man Harman Lan	Litakia a
			'11 p	M M		2 × 11	4 1	1, 1	lith Hibran, I.	I defined a
	II II	14/14	'4 Pa - Fq	M M		* 11	4 1	.,	Mah Mihman, Il.,	I de Aller a
		111,141	'\ [¹]	N III			4 1	3, 1	Markhaman II.	I dalla i
			1114 11	1		** 110	1 1	3.1	MANUAL TO	I dakla i
	0 0.15 0.2		0.5	1	2	- III	5	10	2 THY HAP	20 3
	0 0.15 0.2	111111	0.5	1	2 Frequence	y (MHz)		10	2	20 3
	0 0.15 0.2	MAN.	0.5	1	T	y (MHz)		10	2	50 3
	0 0.15 0.2		0.5	1	T	y (MHz)		10	2	50 3
	0 0.15 0.2		0.5	1	T	y (MHz)		10	2	50 3
	0 0.150.2		0.5	1	T	y (MHz)		10	2	50 3
	0 0.15 0.2		0.5	1	T	y (MHz)		10	2	20 3
	0.150.2		0.5	1	T	y (MHz)		10	2	50 3
	0.150.2		0.5	1	T	y (MHz)		10	2	20 3
	0 0.15 0.2				Frequenc			10	2	20 3
	0 0.15 0.2		wer Limit	Read	Frequenc	Cable		10	2	20 3
	0 0.15 0.2	O Level Li		Read	Frequenc	Cable		10	2	20 3
		D Level Li	wer Limit	Read	Frequenc	Cable		10	2	20 3
		Level Li	wer Limit	Read	Frequenc	Cable		10	2	20 3
	Freq	Level Li	over Limit mit Line	Read Level	LISN Factor	Cable Loss		10	2	20 3
1 0.1	Freq	Level Li	over Limit mit Line dB dBuV	Read Level	LISN Factor	Cable Loss	Remark	10	2	20 3
	Freq	dBuV	over Limit mit Line dB dBuV	Read Level	LISN Factor dB	Cable Loss dB	Remark	10	2	20 3
2 0.1	Freq MHz 641380 641380	dBuV 48.29 -16 35.23 -20	dB dBuV .96 65.25	Read Level dBuV 47.89 34.83	LISN Factor dB 0.30 0.30	Cable Loss dB 0.10 0.10	Remark OP Average	10	2	20 3
2 0.1 3 0.1	Freq MHz 641380 641380 903870	dBuV 48.29 -16 35.23 -20 44.81 -19	dB dBuV (1.96 65.25 (1.02 55.25 (1.21 64.02	Read Level dBuV 47.89 34.83 44.41	LISN Factor dB 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10 0.10	Remark OP Average OP	10	2	20 3
2 0.1 3 0.1 4 0.1	Freq MHz 641380 641380 903870 903870	dBuV 48.29 -16 35.23 -20 44.81 -19 32.53 -21	dB dBuV .96 65.25 .02 55.25 .21 64.02 .49 54.02	Read Level dBuV 47.89 34.83 44.41 32.13	LISN Factor dB 0.30 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10 0.10	Remark OP Average OP Average	10	2	20 3
2 0.1 3 0.1 4 0.1 5 0.2	Freq MHz 641380 641380 903870 903870 191320	dBuV 48.29 -16 35.23 -20 44.81 -19 32.53 -21 41.92 -20	dB dBuV 3.96 65.25 3.02 55.25 3.21 64.02 3.49 54.02 3.93 62.85	Read Level dBuV 47.89 34.83 44.41 32.13 41.52	LISN Factor dB 0.30 0.30 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP	10	2	20 3
2 0.1 3 0.1 4 0.1 5 0.2 6 0.2	Freq MHz 641380 641380 903870 903870 191320 191320	dBuV 48.29 -16 35.23 -20 44.81 -19 32.53 -21 41.92 -20 31.09 -21	Nver Limit Line dB dBuV 3.96 65.25 3.02 55.25 3.21 64.02 3.49 54.02 3.93 62.85 3.76 52.85	Read Level dBuV 47.89 34.83 44.41 32.13 41.52 30.69	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average	10	2	20 3
2 0.1 3 0.1 4 0.1 5 0.2 6 0.2 7 0.2	Freq MHz 641380 641380 903870 903870 191320 191320 468240	A8.29 -16 35.23 -20 44.81 -19 32.53 -21 41.92 -20 31.09 -21 38.56 -23	Ner Limit Line dB dBuV 3.96 65.25 3.02 55.25 3.21 64.02 3.49 54.02 3.93 62.85 3.76 52.85 3.30 61.86	Read Level dBuV 47.89 34.83 44.41 32.13 41.52 30.69 38.16	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average OP	10	2	20 3
2 0.1 3 0.1 4 0.1 5 0.2 6 0.2 7 0.2 8 0.2	Freq MHz 641380 641380 903870 903870 191320 468240 468240	ABuV 48.29 -16 35.23 -20 44.81 -19 32.53 -21 41.92 -20 31.09 -21 38.56 -23 26.48 -25	dB dBuV 3.96 65.25 .02 55.25 .21 64.02 .49 54.02 .49 54.02 .76 52.85 .30 61.86 .38 51.86	Read Level dBuV 47.89 34.83 44.41 32.13 41.52 30.69 38.16 26.08	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark OP Average OP Average OP Average OP Average Average	10	2	20 3
2 0.1 3 0.1 4 0.1 5 0.2 6 0.2 7 0.2 8 0.2 9 0.3	Freq 641380 641380 641380 903870 191320 191320 468240 468240 839500	ABuV 48.29 -16 35.23 -20 44.81 -19 32.53 -21 41.92 -20 31.09 -21 38.56 -23 26.48 -25 41.63 -16	dB dBuV .96 65.25 .02 55.25 .21 64.02 .49 54.02 .93 62.85 .30 61.86 .38 51.86 .56 58.19	Read Level dBuV 47.89 34.83 44.41 32.13 41.52 30.69 38.16 26.08 41.23	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Remark OP Average OP Average OP Average OP Average OP	10	2	20 3
2 0.1 3 0.1 4 0.1 5 0.2 6 0.2 7 0.2 8 0.2 9 0.3 10 @0.3	Freq MHz 641380 641380 903870 903870 191320 191320 191320 468240 468240 468240 839500 839500	ABuV 48.29 -16 35.23 -20 44.81 -19 32.53 -21 41.92 -20 31.09 -21 38.56 -23 26.48 -25 41.63 -16 36.47 -11	dB dBuV .96 65.25 .02 55.25 .21 64.02 .49 54.02 .93 62.85 .76 52.85 .30 61.86 .38 51.86 .38 51.86 .56 58.19 .72 48.19	Read Level 47.89 34.83 44.41 32.13 41.52 30.69 38.16 26.08 41.23 36.07	LISN Factor 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.	Remark OP Average OP Average OP Average OP Average OP Average	10	2	20 3
2 0.1 3 0.1 4 0.1 5 0.2 6 0.2 7 0.2 8 0.2 9 0.3 10 80.3	Freq MHz 641380 641380 903870 903870 191320 191320 468240 468240 839500 839500 405800	ABuV 48.29 -16 35.23 -20 44.81 -19 32.53 -21 41.92 -20 38.56 -23 26.48 -25 41.63 -16 36.47 -11 30.29 -25	dB dBuV .96 65.25 .02 55.25 .21 64.02 .49 54.02 .93 62.85 .30 61.86 .38 51.86 .56 58.19	Read Level dBuV 47.89 34.83 44.41 32.13 41.52 30.69 38.16 26.08 41.23 36.07 29.90	LISN Factor dB 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.	Remark OP Average OP Average OP Average OP Average OP Average	10	2	20 3

SPORTON INTERNATIONAL INC. Page No. : 18 of 80

FAX: 886-3-327-0973 FCC ID : K7SF9K1102V2

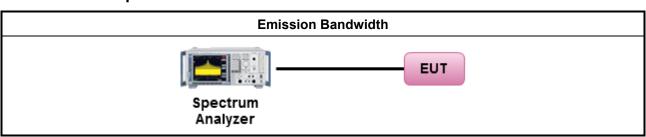
Report Version

: Rev. 01

3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit						
Systems using digital modulation techniques:						
☑ 6 dB bandwidth ≥ 500 kHz.						

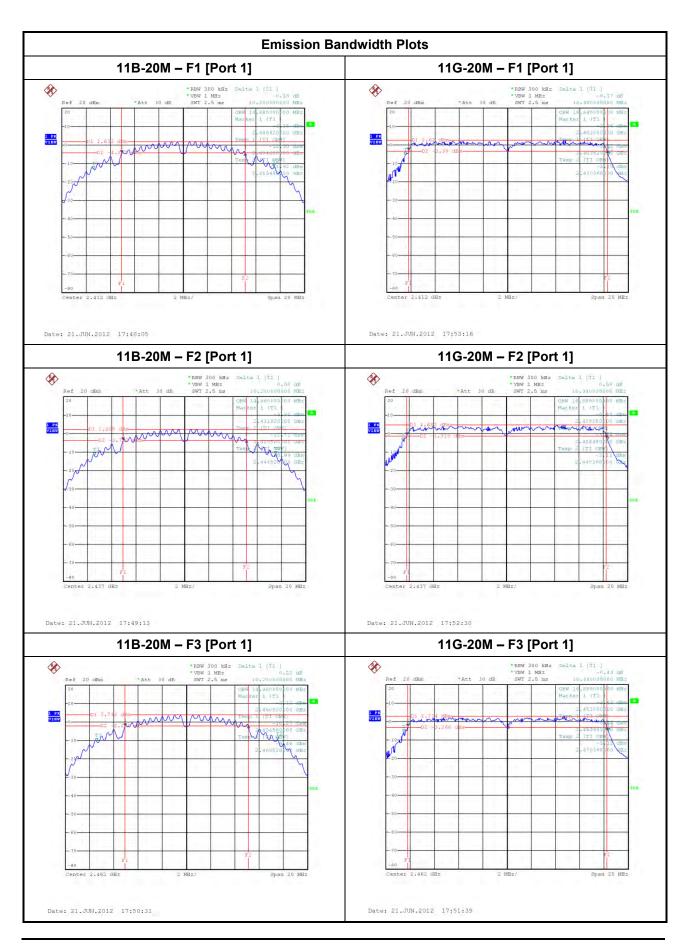

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

			Test Method
\boxtimes	For	the e	mission bandwidth shall be measured using one of the options below:
	\boxtimes	Ref	er as FCC KDB 558074, clause 5.1.1 Option 1 for 6 dB bandwidth measurement.
		Ref	er as FCC KDB 558074, clause 5.1.2 Option 2 for 6 dB bandwidth measurement.
		Ref	er as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
\boxtimes	For	cond	ucted measurement.
	\boxtimes	For	conducted measurements on devices with multiple transmit chains using options given below:
			Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.
			Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.
			Option 3: A power splitter/combiner shall be used to combine all the transmit chains (antenna outputs) into a single test point and record a single test point EBW.
			ated measurement. The equipment to be measured and the test antenna shall be oriented to e maximum emitted power level.

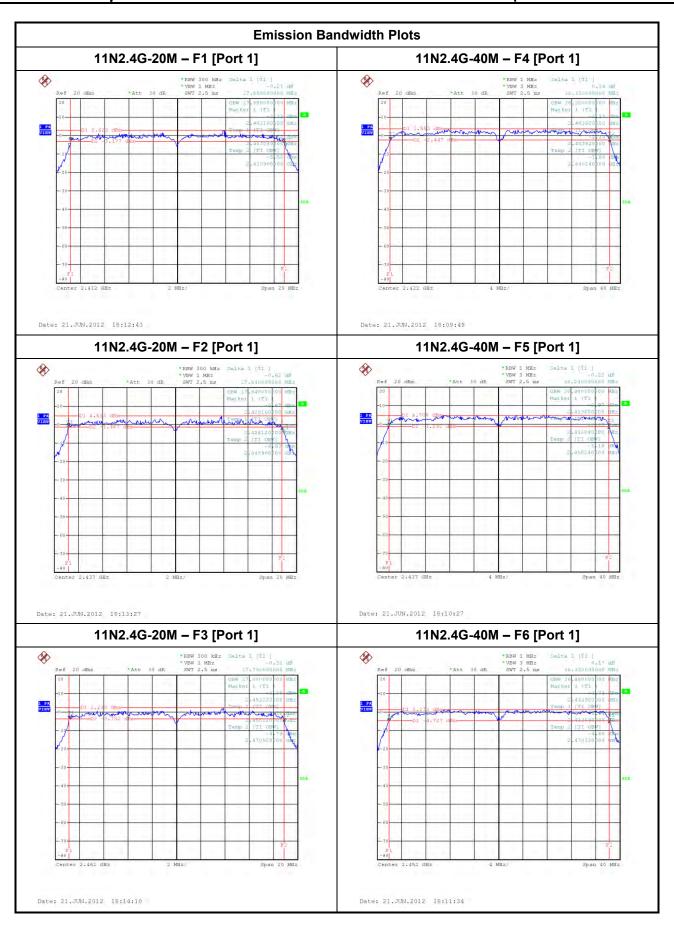
3.2.4 Test Setup



SPORTON INTERNATIONAL INC. Page No. : 19 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

3.2.5 Test Result of Emission Bandwidth

			Emission Bandwidth Result						
Power Level		1	Emission Bandwidth (MHz)						
Modulation Mode	N _{TX}	Freq. (MHz)	99% Bandwidth	6dB Bandwidth					
11B-20M	1	2412	14.88	10.02					
11B-20M	1	2437	14.96	10.02					
11B-20M	1	2462	14.96	10.02					
11G-20M	1	2412	16.84	16.48					
11G-20M	1	2437	16.88	16.44					
11G-20M	1	2462	16.88	16.44					
11N2.4G-20M	2	2412	17.88	17.68					
11N2.4G-20M	2	2437	17.84	17.64					
11N2.4G-20M	2	2462	17.80	17.76					
11N2.4G-40M	2	2412	36.32	36.32					
11N2.4G-40M	2	2437	36.40	36.24					
11N2.4G-40M	2	2462	36.48	36.32					
Lim	it		N/A	≥500 kHz					
Resu	ılt		Complied						
Note 1: N _{TX} = Nur	nber c	of Transm	it Chains						


SPORTON INTERNATIONAL INC. Page No. : 20 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 21 of 80
Report Version : Rev. 01

FCC ID : K7SF9K1102V2

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 22 of 80
Report Version : Rev. 01

FCC ID : K7SF9K1102V2

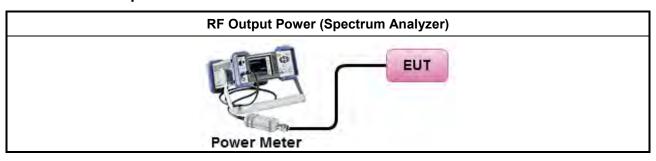
3.3 RF Output Power

3.3.1 RF Output Power Limit

	RF Output Power Limit
Max	kimum Peak Conducted Output Power or Maximum Conducted Output Power Limit
	902-928 MHz Band:
	☐ If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)
\boxtimes	2400-2483.5 MHz Band:
	☐ If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)
	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
	Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
	☐ Smart antenna system (SAS):
	☐ Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
	Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
	\square Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm
	5725-5850 MHz Band:
	☐ If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)
	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
	\square Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30$ dBm
e.i.r	.p. Power Limit:
	902-928 MHz Band: P _{eirp} ≤ 36 dBm (4 W)
\boxtimes	2400-2483.5 MHz Band
	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)
	Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$
	Smart antenna system (SAS)
	☐ Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
	☐ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
	☐ Aggregate power on all beams: $P_{eirp} \le MAX(36, [P_{Out} + G_{TX} + 8]) dBm$
	5725-5850 MHz Band
	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)
	Point-to-point systems (P2P): N/A
G_{TX}	 maximum peak conducted output power or maximum conducted output power in dBm, the maximum transmitting antenna directional gain in dBi. e.i.r.p. Power in dBm.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


SPORTON INTERNATIONAL INC. Page No. : 23 of 80
TEL: 886-3-327-3456 Report Version : Rev. 01

3.3.3 Test Procedures

		Test Method
\boxtimes	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 7.2.1.1 Option 1 (zero-span method).
		Refer as FCC KDB 558074, clause 7.2.1.2 Option 2 (integrated band power method).
	\boxtimes	Refer as FCC KDB 558074, clause 7.2.1.3 Option 3 (peak power meter method).
		Refer as FCC KDB 558074, clause 7.2.1.4 Alternative 1 (bandwidth correction method).
		Refer as ANSI C63.10, clause 6.10.2.1 a) for peak power meter.
		Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW ≥ EBW).
		Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor.
	Max	imum Conducted Output Power
		Refer as FCC KDB 558074, clause 7.2.2.1 Option 1 (RMS detection with slow sweep speed).
		Refer as FCC KDB 558074, clause 7.2.2.2 Option 2 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 7.2.2.3 Option 3 (average power meter method).
		Refer as FCC KDB 558074, clause 7.2.2.4 Alternative 1 (reduced VBW with max hold)
		Refer as FCC KDB 558074, clause 7.2.2.5 Alternative 2 (zero-span with trace averaging)
		Refer as FCC KDB 558074, clause 7.2.2.6 Alternative 3 (average on/off duty) - refer clause 1.1.4
		Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold).
\boxtimes	Refe	er as FCC KDB 558074, clause 3 for conducted measurement.
		For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods:
		Method 2: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG
	Refe	er as FCC KDB 558074, clause 3 for radiated measurement.

SPORTON INTERNATIONAL INC. Page No. : 24 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

3.3.4 **Test Setup**

Test Result of Maximum Peak Conducted Output Power 3.3.5

		Maxin	num Peak	c Conduc	ted Outp	ut Powe	r Result			
Power Leve	I	1			DE	Output I	Dowor (di	2m\		
Directional Gain (dBi) 3.95					KF	Output	Power (di	3111 <i>)</i>		
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1							
11B-20M	1	2412	14.66	-	-	-	14.66	30	18.61	36
11B-20M	1	2437	14.83	-	-	-	14.83	30	18.78	36
11B-20M	15.85	-	-	-	15.85	30	19.80	36		
Resu				Com	plied					

Note 1: N_{TX} = Number of Transmit Chains Note 2: EUT support diversity transmit and transmit chains port 1 is the worst than other transmit chains.

Maximum Peak Conducted Output Power Result										
Power Leve	I	1			DE	Output [Dower (dl	2m\		
Directional Gain	3.95			KF	Output F	Power (dl	5111 <i>)</i>			
Modulation Mode	N _{TX}	Freq. (MHz)						EIRP Limit		
11G-20M	1	2412	23.52	-	-	-	23.52	30	27.47	36
11G-20M 1 2437			24.66	-	-	-	24.66	30	28.61	36
11G-20M	22.81	-	-	-	22.81	30	26.76	36		
Resi				Com	plied					

Note 1: N_{TX} = Number of Transmit Chains

Note 2: EUT support diversity transmit and transmit chains port 1 is the worst than other transmit chains.

SPORTON INTERNATIONAL INC. Page No. : 25 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

		Maxin	num Peak	Conduc	ted Outp	ut Powe	r Result				
Power Leve	ı	1		RF Output Power (dBm)							
Directional Gain	(dBi)	3.8			KF	Output F	ower (ar	3111 <i>)</i>			
Modulation N _{TX}		Freq. (MHz)	Chain- Port 1						EIRP Limit		
11N2.4G-20M	2	2412	20.2	21.73	-	_	24.04	30	27.84	36	
11N2.4G-20M	2	2437	21.96	22.86	-	_	25.44	30	29.24	36	
11N2.4G-20M	2462	19.89	20.6	-	-	23.27	30	27.07	36		
Result Complied											
Note 1: N _{TX} = Number of Transmit Chains											

Maximum Peak Conducted Output Power Result										
Power Level 1 RF Output Power (dBm)										
Directional Gain	3.8			KF	Output F	ower (ai	3111 <i>)</i>			
Modulation N _{TX}		Freq. (MHz)	Chain- Port 1							EIRP Limit
11N2.4G-40M	2	2422	18.44	19.96	-	-	22.28	30	26.08	36
11N2.4G-40M 2 2437			19.92	21.42	-	-	23.74	30	27.54	36
11N2.4G-40M	2452	17.01	17.81	-	-	20.44	30	24.24	36	
Result Complied										
Note 1: N _{TX} = Number of Transmit Chains										

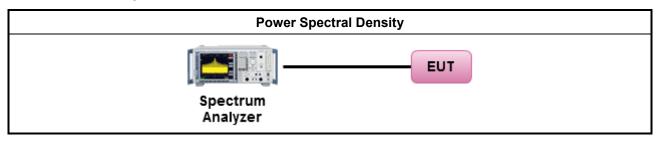
SPORTON INTERNATIONAL INC. Page No. : 26 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

	Power Spectral Density Limit
\boxtimes	Power Spectral Density (PSD) ≤ 8 dBm/3kHz

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method
	power proc whe dem	er spectral density procedures that the same method as used to determine the conducted output er shall be used to determine the power spectral density. In addition, the use of a peak PSD edure will always result in a "worst-case" measured level for comparison to the limit. Therefore, never the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to onstrate compliance to the PSD limit, regardless of how the fundamental output power was sured. For the power spectral density shall be measured using below options:
	\boxtimes	Refer as FCC KDB 558074, clause 7.3.1 Option 1 (peak PSD; BWCF=-15.2dB).
		Refer as FCC KDB 558074, clause 7.3.2 Option 2 (average PSD; BWCF=-15.2dB).
		Refer as FCC KDB 558074, clause 7.3.3 Alternative 1 (peak PSD; RBW=3kHz; sweep=100s).
		Refer as FCC KDB 558074, clause 7.3.4 Alternative 2 (average PSD; RBW=3kHz; average=100).
		Refer as ANSI C63.10, clause 6.11.2.3 for PSD for DTS - (RBW=3kHz; sweep=100s).
		Refer as ANSI C63.10, clause 6.11.2.4 for Alternative PSD for DTS - (RBW=3kHz; average=100)
\boxtimes	Refe	er as FCC KDB 558074, clause 3 for conducted measurement.
		For conducted measurements on devices with multiple transmit chains using options given below:
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace. The new data trace samples added 100 kHz segment and found the highest value of each 100 kHz segments. Add the bandwidth correction factor (BWCF) [-15.2 dB] adjusting in power spectral density per 3kHz.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
	Refe	er as FCC KDB 558074, clause 3 for radiated measurement.

SPORTON INTERNATIONAL INC. Page No. : 27 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Power Spectral Density Result								
Power Level		1	Downey Conceptual Domaitive (dDm/2kHz)					
Directional Gain	Directional Gain (dBi)		Power Spectral Density (dBm/3kHz)					
Modulation Mode	N _{TX}	Freq. (MHz)	Chain-Port 1	Chain-Port 2	-	-	PSD Limit	
11B-20M	1	2412	-5.73	-	-	-	8	
11B-20M	1	2437	-5.36	-	-	-	8	
11B-20M	1	2462	-5.75	-	-	-	8	
Resi	ult				Complied		•	

Note 1: N_{TX} = Number of Transmit Chains

Note 2: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + $10logN_{TX}$

Power Spectral Density Result								
Power Level 1		1	Dower Spectral Density (dPm/2kHz)					
Directional Gain	Directional Gain (dBi)		Power Spectral Density (dBm/3kHz)					
Modulation Mode	N _{TX}	Freq. (MHz)	Chain-Port 1	Chain-Port 2	-	-	PSD Limit	
11G-20M	1	2412	-16.51	-	-	-	8	
11G-20M	1	2437	-14.52	-	-	-	8	
11G-20M	1	2462	-17.57	-	-	-	8	
Result					Complied			

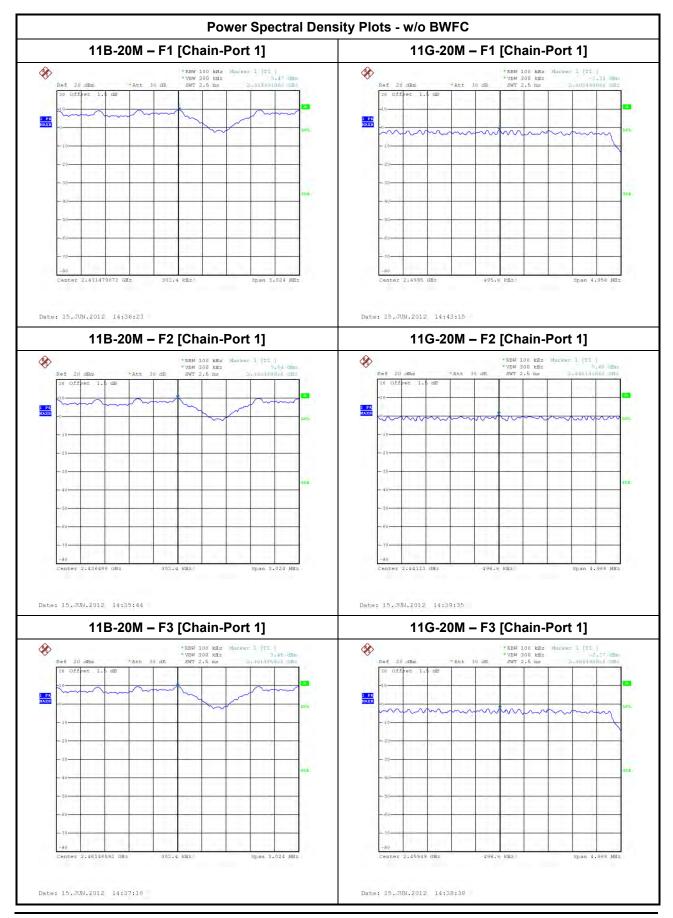
Note 1: N_{TX} = Number of Transmit Chains

Note 2: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + 10logN_{TX}

SPORTON INTERNATIONAL INC. Page No. : 28 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Power Spectral Density Result								
Power Level 1		1	Dower Spectral Denoity (dBm/2kHz)					
Directional Gain (dBi)		3.8	Power Spectral Density (dBm/3kHz)					
Modulation Mode	N _{TX}	Freq. (MHz)	Chain-Port 1	Chain-Port 2	Chain-Port 3	Chain-Port 4	PSD Limit	
11N2.4G-20M	2	2412	-16.12	-13.26	-	-	8	
11N2.4G-20M	2	2437	-14.19	-12.68	-	-	8	
11N2.4G-20M	2	2462	-16.97 -14.37		-	8		
Result			Complied					

Note 1: N_{TX} = Number of Transmit Chains

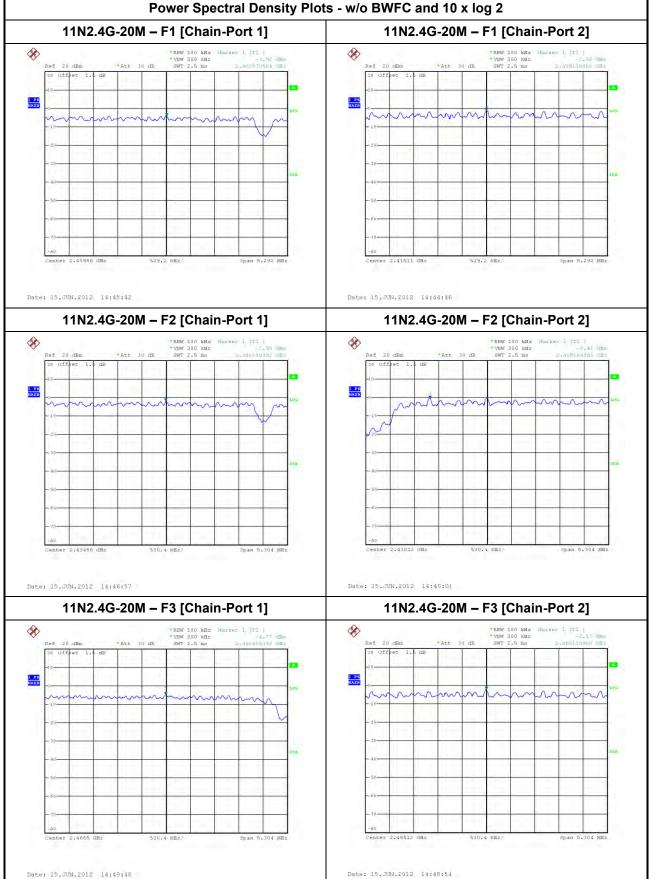

Note 2: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + 10logN_{TX}

Power Spectral Density Result								
Power Level 1		1	Power Spectral Density (dPm/2kHz)					
Directional Gain (dBi)		3.8	Power Spectral Density (dBm/3kHz)					
Modulation Mode	N _{TX}	Freq. (MHz)	Chain-Port 1	Chain-Port 2	Chain-Port 3	Chain-Port 4	PSD Limit	
11N2.4G-40M	2	2422	-20.07	-17.87	-	-	8	
11N2.4G-40M	2	2437	-18.6	-16.28	-	-	8	
11N2.4G-40M	2	2452	-21.76 -19.95 8			8		
Result			Complied					

Note 1: N_{TX} = Number of Transmit Chains

Note 2: PSD [dBm/3kHz] = each transmit chains PSD [dBm/100kHz] + BWFC [-15.2 dB] + 10logN_{TX}

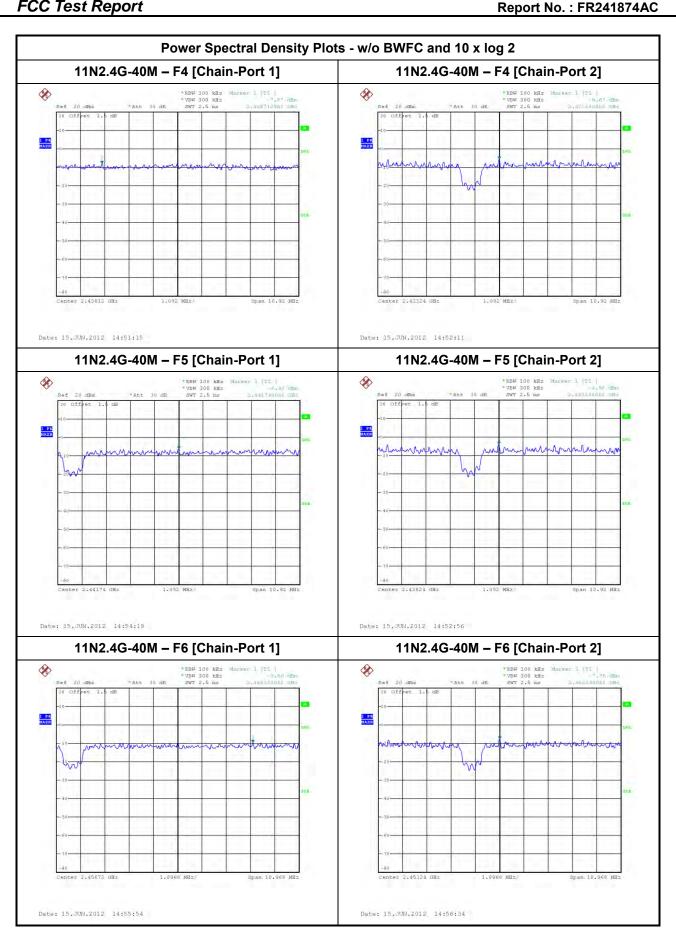
SPORTON INTERNATIONAL INC. Page No. : 29 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01



SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 30 of 80 Report Version : Rev. 01

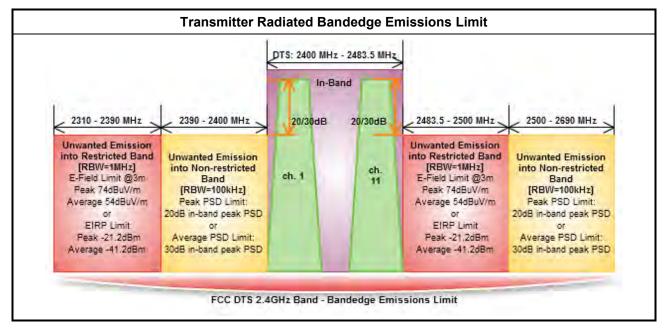
FCC ID : K7SF9K1102V2


Report No.: FR241874AC

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 31 of 80 Report Version : Rev. 01

FCC ID : K7SF9K1102V2


SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 32 of 80 Report Version : Rev. 01

FCC ID : K7SF9K1102V2

3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

SPORTON INTERNATIONAL INC. Page No. : 33 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

3.5.2 Measuring Instruments

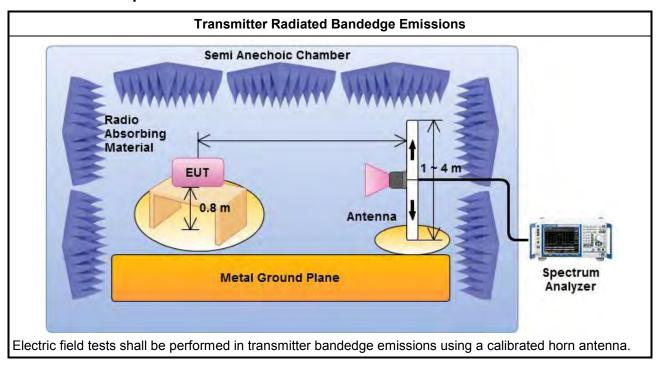
Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

		Test Method – General Information							
\boxtimes	The	e average emission levels shall be measured in [duty cycle ≥ 98 or external video / power trigger].							
\boxtimes		Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.							
\boxtimes	For	or the transmitter unwanted emissions shall be measured using following options below:							
	\boxtimes	Refer as FCC KDB 558074, clause 7.4.1 for unwanted emissions into non-restricted bands.							
	\boxtimes	Refer as FCC KDB 558074, clause 7.4.2 for unwanted emissions into restricted bands.							
		Refer as FCC KDB 558074, clause 7.4.2.2.2.1 Option 1 (Power Averaging).							
		Refer as FCC KDB 558074, clause 7.4.2.2.2.2 Option 2 (Trace Averaging).							
		Refer as FCC KDB 558074, clause 7.4.2.2.2.2 Option 3 (Reduced VBW).							
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW).							
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.							
		Refer as FCC KDB 558074, clause 7.4.2.2.3 measurement procedure peak limit.							
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.							
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:							
		Refer as FCC KDB 558074, clause 7.4.2.2.4 for narrower resolution bandwidth using the band power and summing the spectral levels (i.e., 100 kHz or 1 MHz).							
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.							
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.							

SPORTON INTERNATIONAL INC. Page No. : 34 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Report No.: FR241874AC

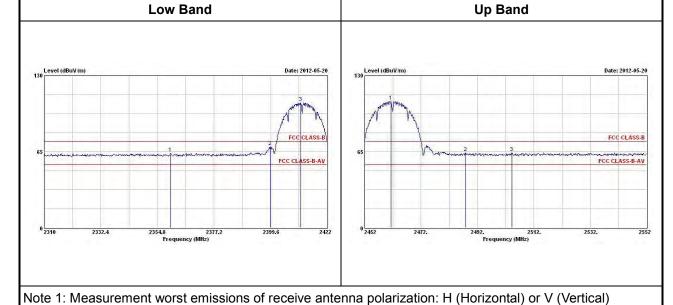

SPORTON INTERNATIONAL INC. Page No. : 35 of 80
TEL: 886-3-327-3456 Report Version : Rev. 01

Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.

Refer as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.

Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.

3.5.4 Test Setup

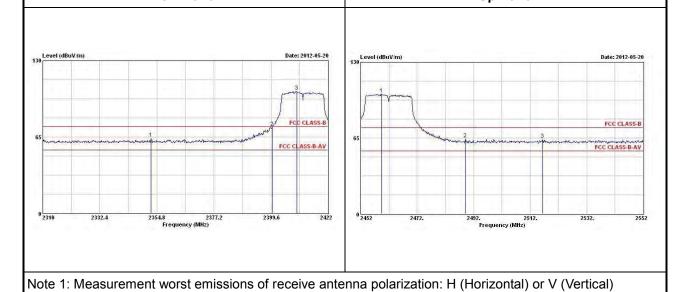

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 36 of 80 Report Version : Rev. 01

FCC ID : K7SF9K1102V2

3.5.5 Test Result of Transmitter Radiated Bandedge Emissions

	Transmitter Radiated Bandedge Emissions Result										
Power Level	1	Gain (dBi)	3.95	Non-vestilated David Emissions							
Modulation		11B-2	0M		Non-restricted Band Emissions						
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	/MU=\ PSD [0] (dP) (dP) Type					Pol.		
2390-2400	1	2412	106.73	2399.49	20	PK	V				
2500-2690	1	2462	107.99	2504.20 64.25 43.74 20 PK V							

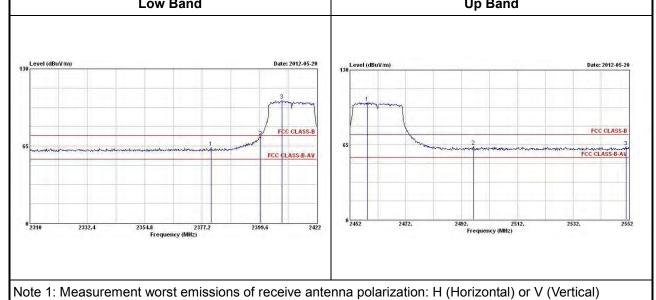


	Transmitter Radiated Bandedge Emissions Result											
Power Level	1	Gain (dBi)	3.95		Restricted Band Emissions							
Modulation	11B-20M				Restrict	eu banu En	iissions					
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz) Measure Distance (m) Measure Level (dBuV/m) Control of the con								
2310-2390	1	2412	110.43	2385.62	3	61.36	74	PK	V			
2310-2390	1	2412	106.51	2390.00	3	49.26	54	AV	V			
2483.5-2500	1	2462	110.17	2483.66 3 60.63 74 PK \					V			
2483.5-2500	1	2462	106.09	2483.50 3 49.84 54 AV V								

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 37 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

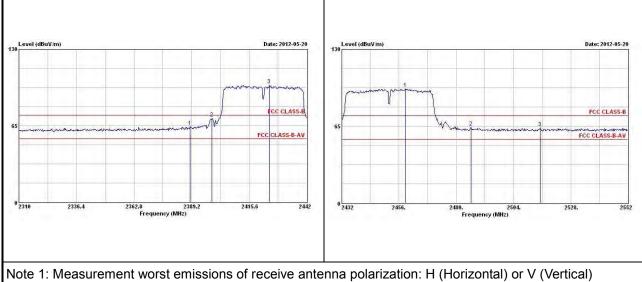
	Transmitter Radiated Bandedge Emissions Result											
Power Level	1	Gain (dBi)	3.95	Non rectricted Band Emissions								
Modulation		11G-2	0M		Non-restricted Band Emissions							
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	(MU=) PSD [0] (dD) Type						Pol.		
2390-2400	1	2412	103.78	2400	0.00	73.19	30.59	20	PK	V		
2500-2690	00-2690 1 2462 102.68 2516.30 63.65 39.03 20 PK V							٧				
	Low Band Up Band											



Transmitter Radiated Bandedge Emissions Result											
Power Level	1	Gain (dBi)	3.95	Restricted Band Emissions							
Modulation	11G-20M				Restrict	eu ballu Ell	115510115				
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz) Measure Distance (m) Cut-Band Limit Level (dBuV/m) Cut-Band Limit Level Type Pol (dBuV/m)							
2310-2390	1	2412	112.19	2390.00	3	67.66	74	PK	V		
2310-2390	1	2412	102.71	2390.00	3	48.71	54	AV	V		
2483.5-2500	1	2462	110.53	2483.85 3 66.64 74 PK V							
2483.5-2500	1	2462	100.96	2483.50 3 52.78 54 AV V							

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 38 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01


	Transmitter Radiated Bandedge Emissions Result										
Power Level	1	Gain (dBi)	3.8		Non-restricted Band Emissions						
Modulation		11N2.4G	G-20M			Non-lesur	cteu Banu i	EIIIISSIOII	3		
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	/MUT) PSD [0] LIGHT (dB) Type					Pol.		
2390-2400	2	2412	103.29	2400.00 72.87 30.42 20 PK					٧		
2500-2690	2	2462	101.89	1.89 2551.00 63.24 38.65 20 PK						V	
	Low Band Up Band										

Transmitter Radiated Bandedge Emissions Result											
Power Level	1	Gain (dBi)	3.8	Restricted Band Emissions							
Modulation	11N2.4G-20M				Restrict	eu ballu Ell	115510115				
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz) Measure Distance (m) Measure Level (dBuV/m) Limit Level Type note of							
2310-2390	2	2412	111.81	2388.85	3	67.48	74	PK	V		
2310-2390	2	2412	101.46	2390.00	3	52.51	54	AV	V		
2483.5-2500	2	2462	110.51	2483.50 3 67.10 74 PK V							
2483.5-2500	2	2462	99.81	2483.50 3 52.90 54 AV V							

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).

	Transmitter Radiated Bandedge Emissions Result										
Power Level	1	Gain (dBi)	3.8		Non rectricted Dand Emissions						
Modulation	Modulation 11N2.4G-40M				Non-restricted Band Emissions						
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	(MU=) PSD [0] (dD) (dD) Type					Pol.		
2390-2400	2	2422	99.51	2398	3.57	71.56	27.95	20	PK	V	
2500-2690	2500-2690 2 2452 96.59					63.86	32.73	20	PK	٧	
	Low Band						Up Bar	nd			

Transmitter Radiated Bandedge Emissions Result											
Power Level	1	Gain (dBi)	3.8	Restricted Band Emissions							
Modulation					Restrict	eu ballu Ell	115510115				
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz) Measure Distance (m) Measure Level (dBuV/m) Cout-Band Limit Level Type Pol (dBuV/m)							
2310-2390	2	2422	108.06	2386.38	3	65.67	74	PK	V		
2310-2390	2	2422	97.14	2390.00	3	52.71	54	AV	V		
2483.5-2500	2	2452	105.40	2483.50 3 66.42 74 PK V							
2483.5-2500	2	2452	94.08	2483.50 3 52.46 54 AV V							

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 40 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

	Restricted Band Emissions Limit										
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)								
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300								
0.490~1.705	24000/F(kHz)	33.8 - 23	30								
1.705~30.0	30	29	30								
30~88	100	40	3								
88~216	150	43.5	3								
216~960	200	46	3								
Above 960	500	54	3								

Report No.: FR241874AC

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted Band Emissions Limit						
RF output power procedure Limit (dB)						
Peak output power procedure	20					
Average output power procedure	30					

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC. Page No. : 41 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR241874AC

3.6.3 Test Procedures

		Test Method – General Information								
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).									
	\boxtimes	Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.								
	\boxtimes	Measurements in the frequency range above 18 GHz - 25GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.								
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:								
	\boxtimes	Refer as FCC KDB 558074, clause 7.4.1 for unwanted emissions into non-restricted bands.								
	\boxtimes	Refer as FCC KDB 558074, clause 7.4.2 for unwanted emissions into restricted bands.								
		Refer as FCC KDB 558074, clause 7.4.2.2.2.1 Option 1 (Power Averaging).								
		Refer as FCC KDB 558074, clause 7.4.2.2.2.2 Option 2 (Trace Averaging).								
		Refer as FCC KDB 558074, clause 7.4.2.2.2.2 Option 3 (Reduced VBW).								
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW).								
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.								
		Refer as FCC KDB 558074, clause 7.4.2.2.3 measurement procedure peak limit.								
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.								

SPORTON INTERNATIONAL INC. Page No. : 42 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

 \boxtimes

Report No.: FR241874AC

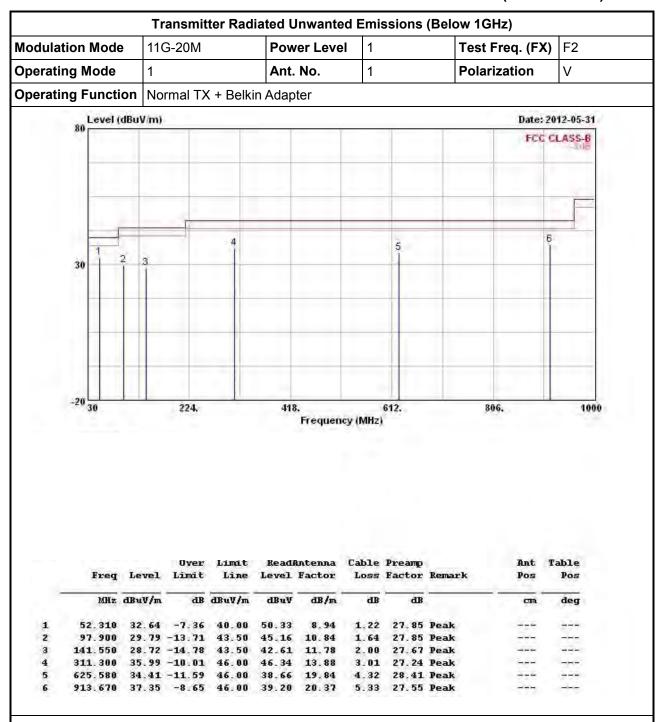

SPORTON INTERNATIONAL INC. Page No. : 43 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.

Refer as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.

FCC Test Report No.: FR241874AC

3.6.4 Test Setup

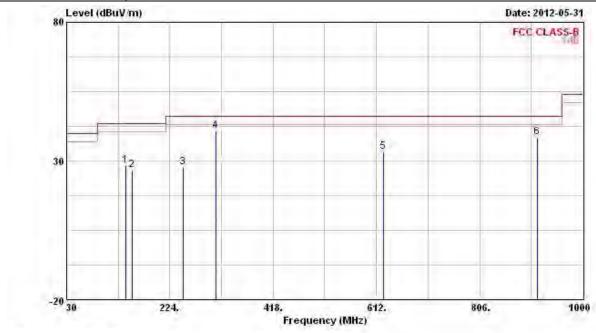


Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna and the frequency range of 1 GHz to 40 GHz using a calibrated horn antenna.

SPORTON INTERNATIONAL INC. Page No. : 44 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

3.6.5 Test Result of Transmitter Radiated Unwanted Emissions (Below 1GHz)


Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 45 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Below 1GHz)									
Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F2										
Operating Mode 1 Ant. No. 1 Polarization H										
Operating Function Normal TX + Belkin Adapter										
Level (dBuV m) Date: 2012-05-31										

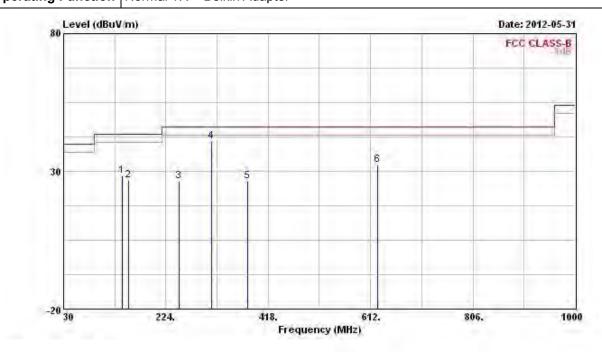
	200		Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	141.550	28.38	-15.12	43.50	42.27	11.78	2.00	27.67	Peak		
2	153.190	26.68	-16.82	43.50	41.56	10.70	2.04	27.62	Peak		
3	249.220	27.83	-18.17	46.00	39.38	12.97	2.77	27.29	Peak		
4	311.300	40.87	-5.13	46.00	51.22	13.88	3.01	27.24	Peak		
5	625.580	33.13	-12.87	46.00	37.38	19.84	4.32	28.41	Peak		
6	913.670	38.58	-7.42	46.00	40.43	20.37	5.33	27.55	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 46 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

ation	Mod	e 1	1N2.4G-	20M	Pov	ver Leve	ı 1		Tes	st Freq. (FX)	F2
ting N						. No.	1+	2		arization	V
ting F			ormal T	(+ Relk			' '	_	. 0.	an Eathorn	
		dBuV/m		· Boilt	,					Data:	2012-05-31
80	-caei i	dod van	,					1	-1-	701.151.1	
H										r.c.	CLASS-B
		=		4							
35	1	2 2		Ť				6			
30		1 1				5-					
								-11			
-20	30	1 1	224.	- 1	41	R		612.		806.	100
			95.0		-	Frequen				234	
							S. C.				
			Over	Limit	Read	Antenna				Ant	Table
	Freq	Level	Over Limit	A. C. B. L.	Level	Factor	Cable		Remark	Ant Pos	Table Pos
		Level dBuV/n	Limit	A. C. B. L.	Level	Factor	Cable	Preamp Factor			
52	MHz	dBuV/n	Limit dB	Line dBuV/m 40.00	dBuV	dB/m	Cable Loss dB	Preamp Factor dB	Peak	Pos	Pos
52 97	MHz	dBuV/m 31.40 29.60	Limit dB -8.60	Line dBuV/m 40.00 43.50	dBuV 49.09 44.97	### Rector ### ### ### ### ### ### ### ### ### #	Cable Loss dB 1.22 1.64	Preamp Factor dB 27.85 27.85	Peak Peak	Pos cm	deg
52 97 141	MHz 2.310 7.900 1.550	dBuV/m 31.40 29.60 28.24	dB -8.60 -13.90 -15.26	Line dBuV/m 40.00 43.50 43.50	dBuV 49.09 44.97 42.13	B/m 8.94 10.84 11.78	Cable Loss dB 1,22 1.64 2.00	Preamp Factor dB 27.85 27.85 27.67	Peak Peak Peak	Pos cm	deg
52 97 141 311	MHz	dBuV/n 31.40 29.60 28.24 35.67	Limit dB -8.60	Line dBuV/m 40.00 43.50 43.50 46.00	dBuV 49.09 44.97	8.94 10.84 11.78 13.88	Cable Loss dB 1,22 1.64 2.00	Preamp Factor dB 27.85 27.85 27.67 27.24	Peak Peak Peak Peak	Pos cm	deg


Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 47 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

FAX: 886-3-327-0973 FCC ID : K7SF9K1102V2

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Transmitter Radiated Unwanted Emissions (Below 1GHz)											
Modulation Mode	11N2.4G-20M	Power Level	1	Test Freq. (FX)	F2						
Operating Mode	1	Ant. No.	1+2	Polarization	Н						
Operating Function Normal TX + Belkin Adapter											

			Over	-		Antenna		Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	141.550	28.21	-15.29	43.50	42.10	11.78	2.00	27.67	Peak		
2	153.190	26.73	-16.77	43.50	41.61	10.70	2.04	27.62	Peak		
3	249.220	26.42	-19.58	46.00	37.97	12.97	2.77	27.29	Peak		
4	311.300	40.91	-5.09	46.00	51.26	13.88	3.01	27.24	Peak		
5	378.230	26.39	-19.61	46.00	35.87	14.92	3.31	27.71	Peak		
6	625.580	32.36	-13.64	46.00	36.61	19.84	4.32	28.41	Peak		

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

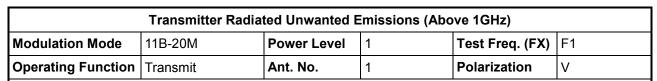
SPORTON INTERNATIONAL INC. Page No. : 48 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

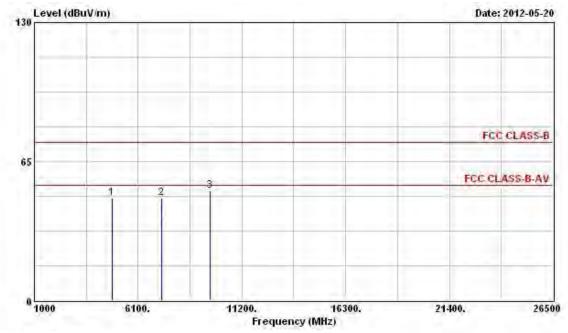
	e 11	N2.4G-	40M	Pow	er Leve	I 1		Tes	st Freq. (FX)	F5
erating Mode	1			Ant.	No.	1+2	2	Pol	arization	V
erating Funct	ion No	ormal T	X + Belk	in Adap	ter	<u> </u>		<u> </u>		1
Level (e	(BuV/m)								Date: 2	2012-05-2
80								1	FCC	CLASS-B
										F
-	+		4				-			
30 2	2				5		6			
	Ĭ									
	-				-		-	-		
-20 30	1	224,		418	,		612.		806.	10
-007 10 1110 021	V. son. s	Over	Limit	Readi	intenna	Cable	Preamp		Ant	Table
Freq	Level	Over Limit	Limit Line		intenna Factor		Committee of the Commit	Remark	Ant Pos	Table Pos
-	Level dBuV/m	Limit	Charles of				Committee of the Commit	-		
MHz	dBuV/m 35.51	Limit dB	Line dBuV/m 40:00	dBuV	dB/m	dB	Factor dB 27.85	Peak	Pos	Pos deg
MHz 1 55.220 2 63.950	dBuV/m 35.51 30.27	dB -4.49 -9.73	Line dBuV/m 40:00 40:00	Level dBuV 53.84 49.79	dB/m 8.27 6.98	Loss dB 1.25 1.35	### Factor ### dB ### 27.85 27.85	Peak Peak	Pos cm	Pos deg
MHz 1 55.220 2 63.950 3 125.060	dBuV/m 35.51 30.27 26.63	Limit dB	Line dBuV/m 40.00 40.00 43.50	dBuV 53.84 49.79 39.33	8.27 6.98 13.18	Loss dB 1.25 1.35 1.86	Factor dB 27.85	Peak Peak Peak	Pos	deg
MHz 1 55.220 2 63.950 3 125.060	dBuV/m 35.51 30.27 26.63 40.39	Limit dB -4.49 -9.73 -16.87	Hine dBuV/m 40.00 40.00 43.50 46.00	Level dBuV 53.84 49.79	dB/m 8.27 6.98	Loss dB 1.25 1.35	27.85 27.74	Peak Peak Peak Peak	Pos	deg

SPORTON INTERNATIONAL INC. Page No. : 49 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

	e 111	N2.4G-4	40M	Pow	er Leve	I 1		Tes	st Freq. (FX)	F5
rating Mode	1			Ant.	No.	1+:	2	Pol	arization	Н
rating Functi	ion No	rmal T	< + Belk	n Adap	ter	•		•		-
Level (dBuV/m)								Date: 2	2012-05-20
80									FCC	CLASS-B
		-								
								-		
100			4						_	
			i				5			
30 2	3						Ĭ	4	6	
-20 30		224.		418	1		612.		806.	100
		40.0			Frequenc				10078	0.50
		Over	Limit		intenna		Preamp			Table
Freq	Level		Limit Line		intenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	Level	Limit	250		- Annual Company		Court To St.	Remark -		
	dBuV/m	Limit dB	Line	Level dBuV	Factor	Loss	Factor		Pos	Pos
MKz 1. 30.000 2. 40.670	dBuV/m 27.47 26.13	Limit dB -12.53 -13.87	Line dBuV/m 40.00 40.00	dBuV 38.31 39.97	dB/m 16.22 13.01	dB 0.89 1.05	dB 27.95 27.90	Peak Peak	Pos cm	deg
MHz 30.000 40.670 125.060	dBuV/m 27.47 26.13 31.81	dB -12.53 -13.87 -11.69	Line dBuV/m 40.00 40.00 43.50	dBuV 38.31 39.97 44.51	dB/m 16.22 13.01 13.18	dB 0.89 1.05 1.86	27.95 27.90 27.74	Peak Peak Peak	Pos cm	deg
MKz 1. 30.000 2. 40.670	dBuV/m 27.47 26.13 31.81 40.84	Limit dB -12.53 -13.87 -11.69 -5.16	Line dBuV/m 40.00 40.00	dBuV 38.31 39.97 44.51	16.22 13.01 13.18 13.88	dB 0.89 1.05	27.95 27.90 27.74 27.24	Peak Peak Peak Peak	Pos cm	deg


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

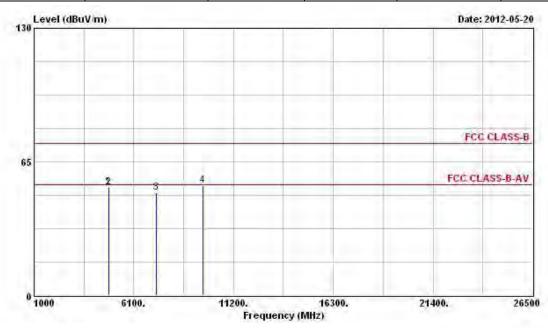

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 50 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report

3.6.6 Test Result of Transmitter Radiated Unwanted Emissions (Above 1GHz)

	Freq	Level		Limit Line		Antenna Factor			Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		- Cm	deg
1	4824.000	48.05	-5.95	54.00	43.14	35.13	4.58	34.80	PK		
2	7236.000	48.04	-25.96	74.00	40.59	36.90	5.63	35.08	Peak		
3	9648.000	51.27	-22.73	74.00	41.81	38.59	6.34	35.47	Peak		

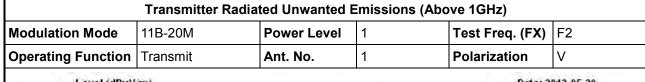

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

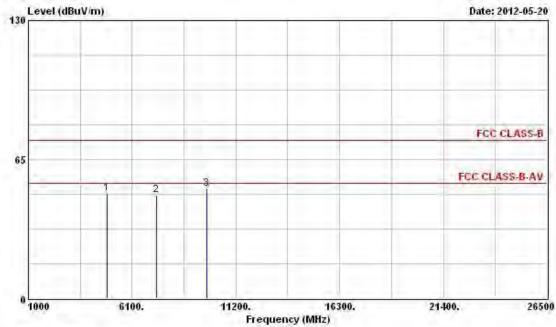
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 51 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)												
Modulation Mode	11B-20M	Power Level	1	Test Freq. (FX)	F1							
Operating Function	Operating Function Transmit Ant. No. 1 Polarization H											

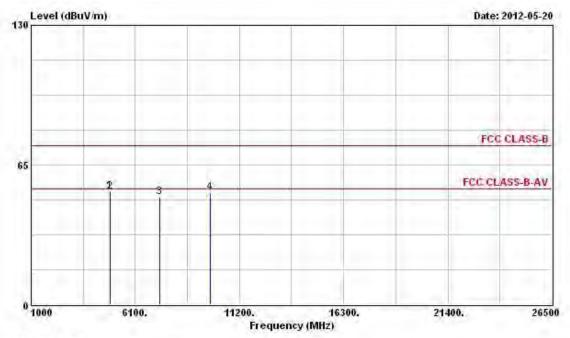



			Over	Limit	Readi	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
3	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		- cm	deg
1	4824.000	52.52	-21.48	74.00	46.98	35.76	4.58	34.80	Peak		
2	4824.000	52.80	-1.20	54.00	47.26	35.76	4.58	34.80	Average		
3	7236.000	50.16	-23.84	74.00	41.76	37.85	5.63	35.08	Peak		
4	9648.000	53.27	-20.73	74.00	43.01	39.39	6.34	35.47	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 52 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

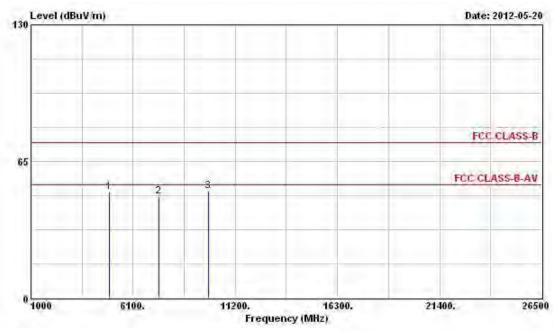

	Freq	Level		Limit Line					Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	- Cm	deg
1	4874.000	49.01	-4.99	54.00	44.00	35.18	4.61	34.78	PK		
2	7311.000	48.33	-5.67	54.00	40.87	36.92	5.64	35.10	PK		
3	9748.000	51.32	-22.68	74.00	41.73	38.71	6.36	35.48	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 53 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	11B-20M	Power Level	1	Test Freq. (FX)	F2					
Operating Function	Transmit	Ant. No.	1	Polarization	Н					

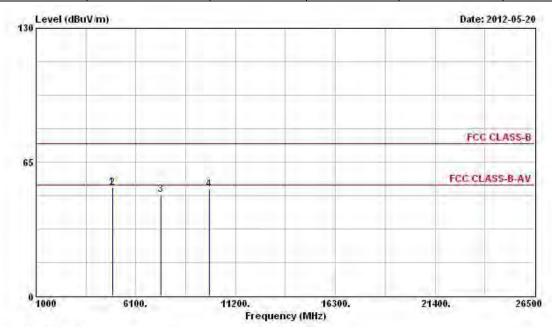

	F	req	Level	Over Limit	- CO	The said	Antenna Factor	Comment of the Commen	Preamp Factor	Remark	Ant Pos	Table Pos
	-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	cm.	deg
1	4874	000	52.60	-21.40	74.00	46.94	35.83	4.61	34.78	Peak		
2	4874.	000	52.45	-1.55	54.00	46.79	35.83	4.61	34.78	Average		
3	7311.	000	49.95	-4.05	54.00	41.55	37.86	5.64	35.10	PK		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 54 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11B-20M Power Level 1 Test Freq. (FX) F3									
Operating Function	Transmit	Ant. No.	1	Polarization	V				

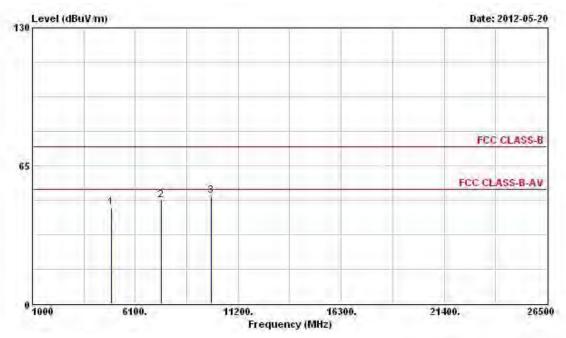

	Freq	Level	Over Limit	Limit Line		Intenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	4924.000	50.34	-3.66	54.00	45.20	35.23	4.68	34.77	PK		-
2	7386.000	48.34	-5.66	54.00	40.85	36.96	5.65	35.12	PK		
3	9848.000	51.07	-22.93	74.00	41.37	38.81	6.38	35.49	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 55 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode	Modulation Mode 11B-20M Power Level 1 Test Freq. (FX) F3							
Operating Function	Transmit	Ant. No.	1	Polarization	Н			

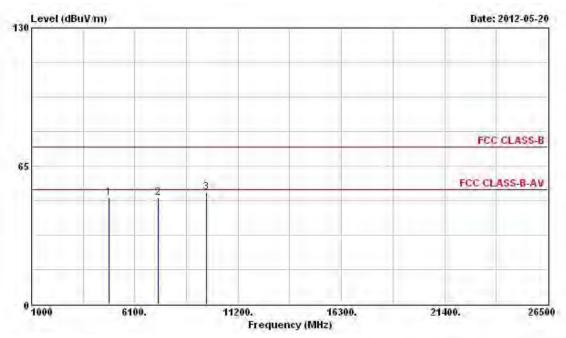

			Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		con.	deg
1	4924.000	52.70	-21.30	74.00	46.89	35.90	4.68	34.77	Peak		
2	4924.000	52.63	-1.37	54.00	46.82	35.90	4.68	34.77	Average		
3	7386.000	49.31	-4.69	54.00	40.90	37.88	5.65	35.12	PK		
4	9848.000	51.84	-22.16	74.00	41.34	39.61	6.38	35.49	Peak		1996

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 56 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F1									
Operating Function	Transmit	Ant. No.	1	Polarization	V				

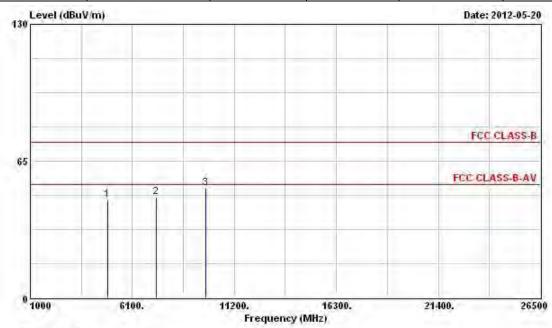

	Freq	Level	Over Limit			Antenna Factor	1000	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	com	deg
1	4924.000	45.37	-8.63	54.00	40.23	35.23	4.68	34.77	PK		
2	7386.000	48.75	-5.25	54.00	41.26	36.96	5.65	35.12	PK		-
3	9848.000	50.71	-23.29	74.00	41.01	38.81	6.38	35.49	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 57 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F1										
Operating Function	Transmit	Ant. No.	1	Polarization	Н					

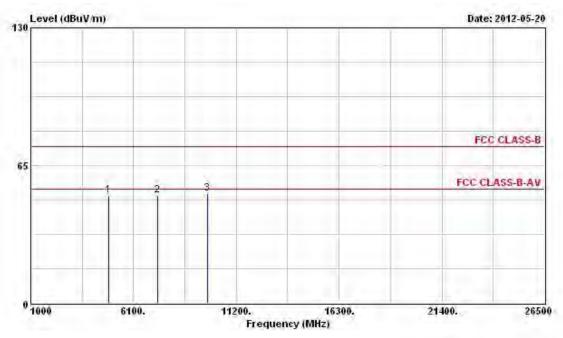

	Freq	Over Limit ReadAntenna Cable Preamp q Level Limit Line Level Factor Loss Factor Remark z dBuV/m dB dBuV/m dBuV dB/m dB dB	Remark	Ant Pos	Table Pos						
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	4824.000	49.98	-4.02	54.00	44.44	35.76	4.58	34.80	PK		
2	7236.000	50.07	-3.93	54.00	41.67	37.85	5.63	35.08	PK		-
3	9648.000	52.79	-21.21	74.00	42.53	39.39	6.34	35.47	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 58 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode	Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F2							
Operating Function	Transmit	Ant. No.	2	Polarization	V			

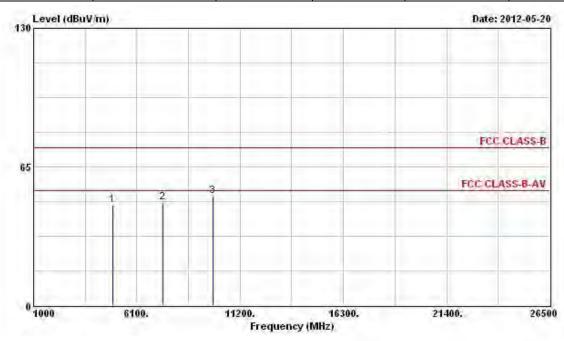

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		con	deg
1.	4874.000	46.46	-7.54	54.00	41.45	35.18	4.61	34.78	PK		
2	7311.000	47.99	-6.01	54.00	40.53	36.92	5.64	35.10	PK		
3	9748.000	52.02	-21.98	74.00	42.43	38.71	6.36	35.48	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 59 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode	Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F2								
Operating Function	Transmit	Ant. No.	1	Polarization	Н				

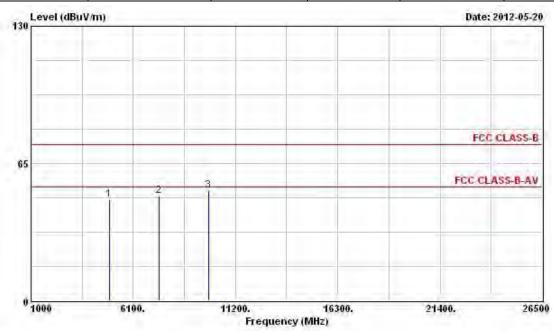

	Freq	Level	Over Limit	770	, etc.	Antenna Factor	200	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	4874.000	50.90	-3.10	54.00	45.24	35.83	4.61	34.78	PK		
2	7311.000	50.95	-3.05	54.00	42.55	37.86	5.64	35.10	PK	-	-
3	9748.000	51.82	-22.18	74.00	41.43	39.51	6.36	35.48	Peak		-

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 60 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F3								
Operating Function	Transmit	Ant. No.	1	Polarization	V			

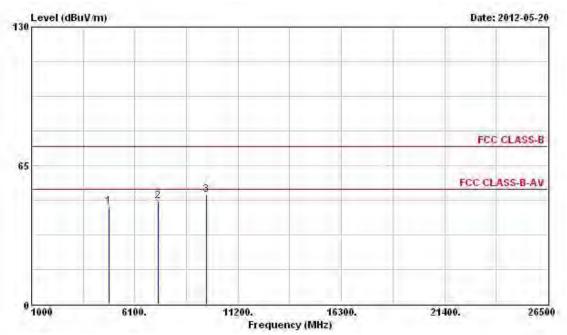

	Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1	4924.000	47.24	-6.76	54.00	42.10	35.23	4.68	34.77	PK		122
2	7386.000	48.11	-5.89	54.00	40.62	36.96	5.65	35.12	PK		
3	9848.000	51.22	-22.78	74.00	41.52	38.81	6.38	35.49	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 61 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F3								
Operating Function	Transmit	Ant. No.	1	Polarization	Н			


			0ver	Limit	Readi	Antenna	Cable	Preamp	S	Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	MHz dBuV/m	Mz dBuV/m dB dBuV/m dBu		dBuV	dB/m	dB dB			cm	deg
1	4924.000	48.08	-5.92	54.00	42.27	35.90	4.68	34.77	PK		27.5
2	7386.000	49.46	-4.54	54.00	41.05	37.88	5.65	35.12	PK		
3	9848.000	51.97	-22.03	74.00	41.47	39.61	6.38	35.49	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 62 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode 11N2.4G-20M Power Level 1 Test Freq. (FX) F1								
Operating Function	Transmit	Ant. No.	1+2	Polarization	V			

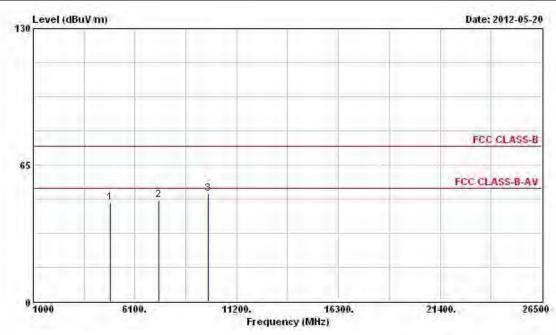

			Over	Limit	Readi	Intenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cam	deg
1	4824.000	45.79	-8.21	54.00	40.88	35.13	4.58	34.80	PK		5
2	7236.000	48.29	-25.71	74.00	40.84	36.90	5.63	35.08	Peak		-
3	9648.000	51.40	-22.60	74.00	41.94	38.59	6.34	35.47	Peak		77-

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 63 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N2.4G-20M Power Level 1 Test Freq. (FX) F1									
Operating Function	Transmit	Ant. No.	1+2	Polarization	Н				

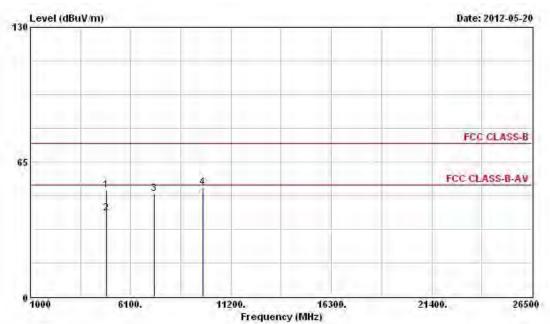

	7000	Level	Over Limit	100		Antenna Factor	1000	Preamp Factor		Ant	Table Pos
	Freq	reser	Limit	Line	rever	ractor	ross	ractor	Kemark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	4824.000	50.49	-3.51	54.00	44.95	35.76	4.58	34.80	PK		5-4
2	7236.000	49.07	-24.93	74.00	40.67	37.85	5.63	35.08	Peak		-
3	9648.000	51.68	-22.32	74.00	41.42	39.39	6.34	35.47	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 64 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N2.4G-20M Power Level 1 Test Freq. (FX) F2									
Operating Function	Transmit	Ant. No.	1+2	Polarization	V				

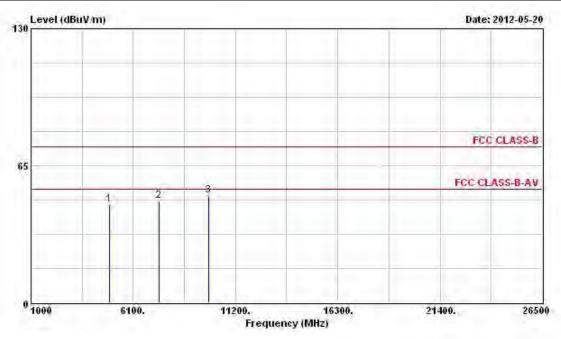

	Freq		Over		100000000000000000000000000000000000000	Antenna	4.00			Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		csm	deg
1	4874.000	47.17	-6.83	54.00	42.16	35.18	4.61	34.78	PK		5-4
2	7311.000	48.16	-5.84	54.00	40.70	36.92	5.64	35.10	PK		
3	9748.000	51.17	-22.83	74.00	41.58	38.71	6.36	35.48	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 65 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N2.4G-20M Power Level 1 Test Freq. (FX) F2									
Operating Function	Transmit	Ant. No.	1+2	Polarization	Н				

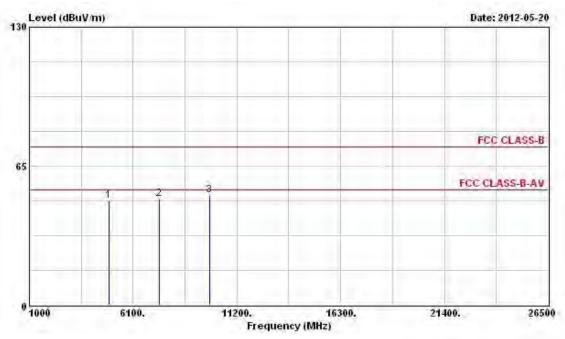

			Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Level Limit	Line	Level	Factor	Loss	Factor	r Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	4874.000	51.31	-22.69	74.00	45.65	35.83	4.61	34.78	Peak		
2	4874.000	40.04	-13.96	54.00	34.38	35.83	4.61	34.78	Average		
3	7311.000	49.44	-4.56	54.00	41.04	37.86	5.64	35.10	PK		77-
4	9748.000	52.43	-21.57	74.00	42.04	39.51	6.36	35.48	Peak	200	224

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 66 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode	Modulation Mode 11N2.4G-20M Power Level 1 Test Freq. (FX) F3								
Operating Function	Transmit	Ant. No.	1+2	Polarization	V				

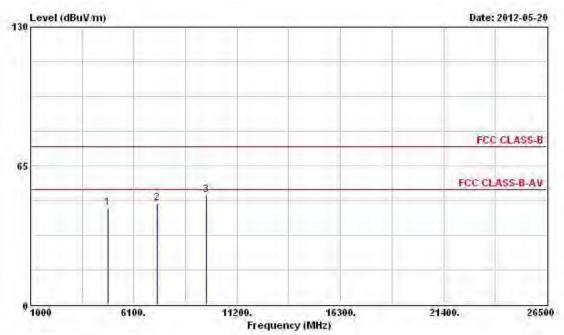

	Freq	Level	Over Limit			Antenna Factor	1000	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		can	deg
1	4924.000	46.45	-7.55	54.00	41.31	35.23	4.68	34.77	PK		
2	7386.000	48.40	-5.60	54.00	40.91	36.96	5.65	35.12	PK		
3	9848.000	50.84	-23.16	74.00	41.14	38.81	6.38	35.49	Peak		77-

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 67 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N2.4G-20M Power Level 1 Test Freq. (FX) F3									
Operating Function	Transmit	Ant. No.	1+2	Polarization	Н				

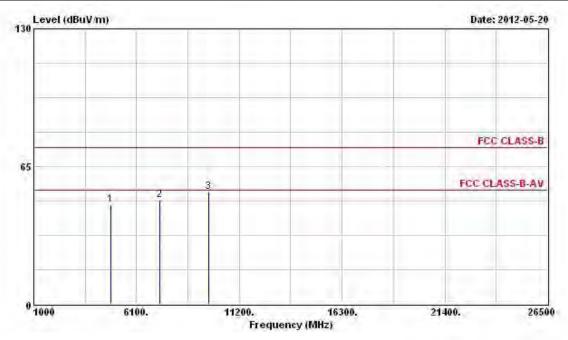

	Freq	Level	Over Limit	Limit Line		Antenna Factor	1	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cam	deg
1	4924.000	48.64	-5.36	54.00	42.83	35.90	4.68	34.77	PK		
2	7386.000	49.41	-4.59	54.00	41.00	37.88	5.65	35.12	PK		200
3	9848.000	51.26	-22.74	74.00	40.76	39.61	6.38	35.49	Peak		77-

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 68 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode	11N2.4G-40M	Power Level	1	Test Freq. (FX) F4				
Operating Function	Transmit	Ant. No.	1+2	Polarization	V			

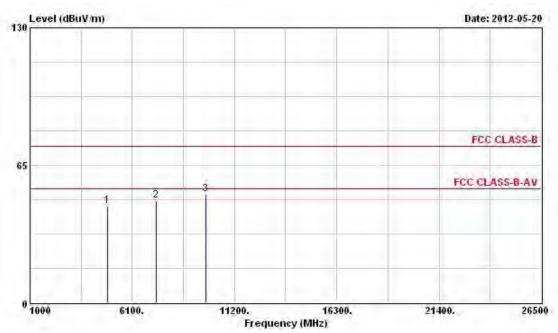

	Freq	Level	Over Limit	100		Antenna Factor	1000	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	4844.000	45.28	-8.72	54.00	40.32	35.14	4.61	34.79	PK		
2	7266.000	47.59	-6.41	54.00	40.14	36.91	5.63	35.09	PK		Andrew .
3	9688.000	51.18	-22.82	74.00	41.68	38.63	6.35	35.48	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 69 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode	Modulation Mode 11N2.4G-40M Power Level 1 Test Freq. (FX) F4									
Operating Function	Transmit	Ant. No.	1+2	Polarization	Н					

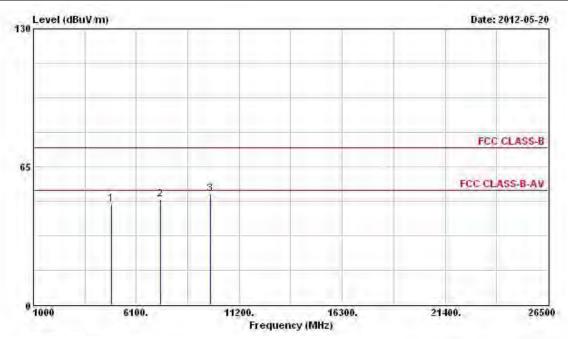

	Freq	Level	Over Limit	1000		Antenna Factor	A COLOR	Preamp Factor	Remark	Ant Pos	Table Pos
	Mtz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	4844.000	47.00	-7.00	54.00	41.40	35.78	4.61	34.79	PK		
2	7266.000	49.11	-4.89	54.00	40.71	37.86	5.63	35.09	PK	-	200
3	9688.000	52.85	-21.15	74.00	42.55	39.43	6.35	35.48	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 70 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode	Modulation Mode 11N2.4G-40M Power Level 1 Test Freq. (FX) F5								
Operating Function	Transmit	Ant. No.	1+2	Polarization	V				

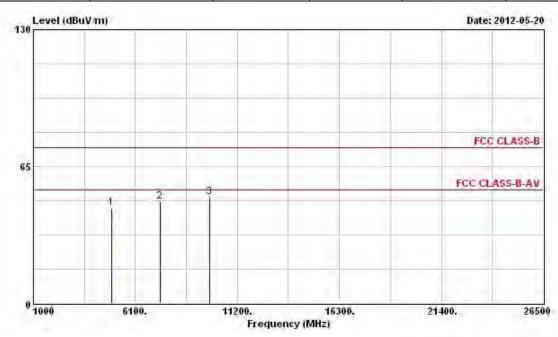

	Freq	Freq Lev	Level	Over Limit	100		Antenna Factor	100	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cam	deg	
1	4874.000	45.63	-8.37	54.00	40.62	35.18	4.61	34.78	PK			
2	7311.000	48.15	-5.85	54.00	40.69	36.92	5.64	35.10	PK	-		
3	9748.000	51.50	-22.50	74.00	41.91	38.71	6.36	35.48	Peak		77-	

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 71 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode	Modulation Mode 11N2.4G-40M Power Level 1 Test Freq. (FX) F5								
Operating Function	Transmit	Ant. No.	1+2	Polarization	Н				

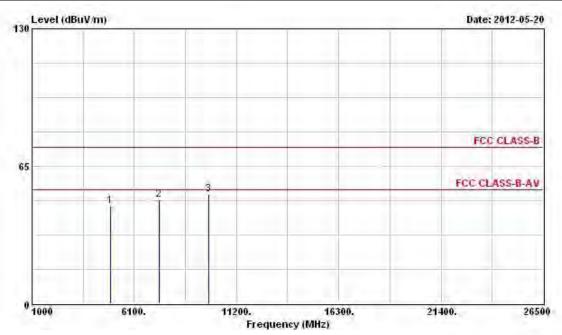

	Freq	Level	Over Limit	Limit Line		Antenna Factor	1000	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	_	com	deg
1	4874.000	47.41	-6.59	54.00	41.75	35.83	4.61	34.78	PK		
2	7311.000	49.40	-4.60	54.00	41.00	37.86	5.64	35.10	PK		-
3	9748.000	52.13	-21.87	74.00	41.74	39.51	6.36	35.48	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 72 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode	Modulation Mode11N2.4G-40MPower Level1Test Freq. (FX)F6							
Operating Function	Transmit	Ant. No.	1+2	Polarization	V			


	Freq	Level	Over Limit	1000	FILE	Antenna Factor			Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		com	deg
1	4904.000	45.32	-8.68	54.00	40.25	35.21	4.64	34.78	PK		
2	7356.000	48.33	-5.67	54.00	40.86	36.94	5.64	35.11	PK		-
3	9808.000	50.51	-23.49	74.00	40.85	38.77	6.37	35.48	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 73 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)								
Modulation Mode	Modulation Mode 11N2.4G-40M Power Level 1 Test Freq. (FX) F6							
Operating Function	Transmit	Ant. No.	1+2	Polarization	Н			

	Freq	Level	Over Limit	100		Antenna Factor	1000	Preamp Factor	Remark	Ant Pos	Table Pos
	Mz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cam	deg
1	4904.000	46.30	-7.70	54.00	40.56	35.88	4.64	34.78	PK		
2	7356.000	49.35	-4.65	54.00	40.95	37.87	5.64	35.11	PK	-	
3	9808.000	51.85	-22.15	74.00	41.39	39.57	6.37	35.48	Peak		

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 74 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR241874AC

4 Maximum Permissible Exposure

4.1 Maximum Permissible Exposure

4.1.1 Limit of Maximum Permissible Exposure

Limits for Occupational / Controlled Exposure									
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)					
0.3-3.0	614	1.63	(100)*	6					
3.0-30	1842 / f	4.89 / f	(900 / f)*	6					
30-300	61.4	0.163	1.0	6					
300-1500			F/300	6					
1500-100,000			5	6					
	Limits for Genera	Population / Uncont	rolled Exposure						
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)					

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note 1: f = frequency in MHz; *Plane-wave equivalent power density

Note 2: For the applicable limit, see FCC 1.1310

SPORTON INTERNATIONAL INC. : 75 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

RF Field Strength Limits for Controlled Use Devices (Controlled Environment)									
Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m2)	Averaging Time (minutes)					
0.003-1	600	4.9	-	6					
1-10	600/f	4.9/f	-	6					
10-30	60	4.9/ <i>f</i>	-	6					
30-300	60	0.163	10*	6					
300-1500	3.54 f 0.5	0.0094 f 0.5	f/30	6					
1500-15000	137	0.364	50	6					
15000-150000	137	0.364	50	616000/f 1.2					
150000-300000	0.354 f 0.5	9.4 x 10-4 f 0.5	3.33 x 10-4 f	616000/f 1.2					

RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m2)	Averaging Time (minutes)
0.003-1	280	2.19	-	6
1-10	280/f	2.19/ <i>f</i>	-	6
10-30	28	2.19/ <i>f</i>	-	6
30-300	28	0.073	2*	6
300-1500	1.585 f ^{0.5}	0.0042 f ^{0.5}	f/150	6
1500-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/f ^{1.2}
150000-300000	0.158 f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}

Note 1: f is frequency in MHz.

Note 2: For the applicable limit, see IC RSS-102

4.1.2 MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
E = Electric field (V/m)

G = EUT Antenna numeric gain (numeric) The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

Power Density: Pd (W/m²) = $\frac{E^2}{377}$

P = RF output power (W)

d = Separation distance between radiator and human body (m)

SPORTON INTERNATIONAL INC. Page No. : 76 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR241874AC

4.1.3 Result of Maximum Permissible Exposure

	Transmitter Chains & Receiver Chains Information									
IEEE Std. 802.11 Protocol	802.11 Transmit Receive Chains		Correlation Signals with Multiple N _{TX}	RF Output Power (dBm)	Co-location					
b	1	1	N/A	15.85	N/A					
g	2	2	Correlated	24.66	N/A					
n (HT20)	2	2	Uncorrelated	25.44	N/A					
n (HT40)	2	2	Uncorrelated	23.74	N/A					

Note 1: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

	Worst Maximum RF Output Power Result								
Exposure Envi	ronment	General	Population	/ Uncont	rolled Ex	posure			
Separation Distance (cm) 20									
Power Level	1			RF	Output F	Power (dE	Bm)		
Modulation Mode	N _{TX}	Chain- Port 1	Chain- Port 2	-	-	Sum Chain	Gain (dBi)	EIRP Power	PD (S) (mW/cm²)
11B-20M	1	15.85	-	-	-	15.85	3.95	19.80	0.0190
11G-20M	1	24.66	-	-	-	24.66	3.95	28.61	0.1445
11N2.4G-20M	2	21.96	22.86	-	-	25.44	3.80	29.24	0.1671
11N2.4G-40M	2	19.92	21.42	-	-	23.74	3.80	27.54	0.1130
Maximum Permissible Exposure Limit (mW/cm²)							1		
Note 1: N _{TX} = Num	Note 1: N _{TX} = Number of Transmit Chains								

SPORTON INTERNATIONAL INC. Page No. : 77 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR241874AC

5 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9 kHz ~ 2.75 GHz	Mar. 23, 2012	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz – 30MHz	Feb. 08, 2012	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9 kHz ~ 30 MHz	Apr. 20, 2012	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	CB049	9 kHz ~ 30 MHz	Apr. 25, 2012	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Sep. 26, 2011	Conducted (TH02-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	May. 20, 2012	Conducted (TH02-CB)
Signal Generator	R&S	SMR40	100302	10MHz-40GHz	Nov. 22, 2011	Conducted (TH02-CB)
RF Power Divider	HP	11636A	00306	2GHz ~ 18GHz	N/A	Conducted (TH02-CB)
RF Power Splitter	Anaren	44100	1839	2GHz ~ 18GHz	N/A	Conducted (TH02-CB)
RF Power Splitter	Anaren	42100	17930	2GHz ~ 18GHz	N/A	Conducted (TH02-CB)
Horn Antenna	COM-POWER	AH-118	071187	1GHz – 18GHz	May. 09, 2012	Conducted (TH02-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 01, 2011	Conducted (TH02-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 01, 2011	Conducted (TH02-CB)

Note: Calibration Interval of instruments listed above is one year.

SPORTON INTERNATIONAL INC. Page No. : 78 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9 kHz ~ 40 GHz	Aug. 08, 2011	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30 MHz ~ 1 GHz 3m	May 10, 2012	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11146	100 kHz ~ 1.3 GHz	Jul. 25, 2011	Radiation (03CH02-HY)
Amplifier	Agilent	8449B	3008A02373	1 GHz ~ 26.5 GHz	Jul. 25, 2011	Radiation (03CH02-HY)
Horn Antenna	ETS-LINDGREN	3117	00091920	1 GHz ~ 18 GHz	Nov. 15, 2011	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz ~ 1 GHz	Nov. 11, 2011	Radiation (03CH02-HY)
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz ~ 40 GHz	Jan. 18, 2012	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30 MHz ~ 2 GHz	Oct. 22, 2011	Radiation (03CH02-HY)
Turn Table	HD	DS 420	420/649/00	0 - 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	HD	MA 240	240/559/00	1 m - 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	Jul. 29, 2010*	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

SPORTON INTERNATIONAL INC. Page No. : 79 of 80 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report Report No.: FR241874AC

Certification of TAF Accreditation 6

Certificate No. 1 L1190-111208

財團法人全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO/IEC 17025:2005

: 1190 Accreditation Number

: December 15, 2003 Originally Accredited

: January 10, 2010 to January 09, 2013 Effective Period

Accredited Scope : Testing Field, see described in the Appendix

Specific Accreditation : Accreditation Program for Designated Testing Laboratory

Program for Commodities Inspection

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

Jay-San Chen

President, Taiwan Accreditation Foundation

Date: December 08, 2011

P1, total 24 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix

SPORTON INTERNATIONAL INC. : 80 of 80 Page No. TEL: 886-3-327-3456 Report Version : Rev. 01

FCC ID FAX: 886-3-327-0973 : K7SF9K1102V2