

Emissions Test Report

EUT Name: TuneBase FM2

EUT Model: F8Z176

CFR Title 47 Part 15.239 : 2006

Prepared for:

Zaven Mangassarian Belkin International, Inc. 501 West Walnut Street Compton, CA 90220 Tel: (310) 604-2484 Fax: (310) 604-2007

Prepared by:

TUV Rheinland of North America 1279 Quarry Lane Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124 http://www.tuv.com/

Report/Issue Date:26 September 2007Report Number:30761735.001

Statement of Compliance

Manufacturer:	Belkin International, Inc.
	501 West Walnut Street
	Compton, CA 90220
	(310) 604-2484
Requester / Applicant:	Zaven Mangassarian
Name of Equipment:	TuneBase FM2
Model No.	F8Z176
Type of Equipment:	Information Technology Equipment (ITE)
Application of Regulations:	CFR Title 47 Part 15.239 : 2006
Test Dates:	23 July 2007 to 26 September 2007

Guidance Documents:

Emissions: FCC 47 CFR Part 15

Test Methods:

Emissions: ANSI C63.4:2003

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland of North America, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that a sample of one, of the equipment described above, has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. This report contains data that are not covered by NVLAP accreditation. This report shall not be reproduced except in full, without the written authorization of the laboratory.

Ambind AheloPal

26 September 2007

Date

NVLAP Signatory

1 E	XECUTIVE SUMMARY	4
1.1 1.2 1.3 1.4 1.5	SCOPE Purpose Summary of Test Results Special Accessories Equipment Modifications	4 4 4
2 L	ABORATORY INFORMATION	5
2.1 2.2 2.3 2.4	Accreditations & Endorsements Test Facilities Measurement Uncertainty Calibration Traceability	6 6
3 P	RODUCT INFORMATION	7
3.1 3.2	PRODUCT DESCRIPTION UNIQUE ANTENNA CONNECTOR	
4 E	MISSIONS	8
4 E 4.1 4.2 4.3 4.4 4.5 4.6	MISSIONS RADIATED EMISSIONS (FUNDAMENTAL AND SPURIOUS PER CFR TITLE 47 PART 15.239) Conducted Emissions (CFR Title 47 Part 15) Band Edge Compliance Occupied Bandwidth Tunning Frequency Operating Voltage Variation (CFR Title 47 Part 15.31e)	
4.1 4.2 4.3 4.4 4.5 4.6	RADIATED EMISSIONS (FUNDAMENTAL AND SPURIOUS PER CFR TITLE 47 PART 15.239) Conducted Emissions (CFR Title 47 Part 15) Band Edge Compliance Occupied Bandwidth Tunning Frequency	8 19 20 27 34 35
4.1 4.2 4.3 4.4 4.5 4.6 5 T	RADIATED EMISSIONS (FUNDAMENTAL AND SPURIOUS PER CFR TITLE 47 PART 15.239) Conducted Emissions (CFR Title 47 Part 15) Band Edge Compliance Occupied Bandwidth Tunning Frequency Operating Voltage Variation (CFR Title 47 Part 15.31e)	8 19 20 27 34 35 50
4.1 4.2 4.3 4.4 4.5 4.6 5 T 6 SI	RADIATED EMISSIONS (FUNDAMENTAL AND SPURIOUS PER CFR TITLE 47 PART 15.239) CONDUCTED EMISSIONS (CFR TITLE 47 PART 15) BAND EDGE COMPLIANCE OCCUPIED BANDWIDTH TUNNING FREQUENCY OPERATING VOLTAGE VARIATION (CFR TITLE 47 PART 15.31E) EST EQUIPMENT USE LIST	8 19 20 27 34 35 50 51
4.1 4.2 4.3 4.4 4.5 4.6 5 T 6 SI	RADIATED EMISSIONS (FUNDAMENTAL AND SPURIOUS PER CFR TITLE 47 PART 15.239) CONDUCTED EMISSIONS (CFR TITLE 47 PART 15) BAND EDGE COMPLIANCE OCCUPIED BANDWIDTH TUNNING FREQUENCY OPERATING FREQUENCY OPERATING VOLTAGE VARIATION (CFR TITLE 47 PART 15.31E) EST EQUIPMENT USE LIST ETUP PHOTO	

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR Title 47 Part 15.239 : 2006 based on the results of testing performed on 23 July 2007 through 26 September 2007 on the *TuneBase FM2* Model No. *F8Z176* manufactured by Belkin International, Inc.. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Summary of Test Results

Emission	Test Method(s)	Test Parameters	Result
Transmitter	ANSI C63.4:2003, and	88 MHz to 108 MHz	Complied
Emissions	CFR Title 47 Part 15.239		_
Conducted	ANSI C63.4:2003, CFR	150 kHz to 30 MHz	Na
Emissions	Title 47 Part 15.207		
OutBand Spurious	ANSI C63.4:2003,	30 MHz to 1000MHz	Complied
Emission	CFR 47 Part 15.209	(Excepts the operating freq.)	
Band Edge	ANSI C63.4:2003,	30 MHz to 1000MHz	Complied
Compliance	CFR 47 Part 15.239 (c)	(Excepts the operating freq.)	
Occupied	ANSI C63.4:2003, and	200kHz Bandwidth	Complied
Bandwidth	CFR 47 Part 15.239 (a)	26dB Bandwidth	_
Tune Range	KDB #388624	Tuned Freq. Range Manually	Complied
-		between 88MHz and 108MHz	
Voltage Variation	CFR 47 Part 15.31(e)	Transmitted Emission	Complied
		Bandedge	

 Table 1 - Summary of Test Results

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

Add surface-mount ferrite bead on the (+) lead of the CLA power contact PCB.

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America at the 2305 Mission College, Santa Clara, CA 95054 address is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (FRN # 0014391684). The laboratory scope of accreditation includes: Title 47 CFR Part 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 Industry Canada

TUV Rheinland of North America at the 2305 Mission College, Santa Clara, CA 95054 address is accredited by Industry Canada for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by Industry Canada (File Number IC 4453-1). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.3 NIST / NVLAP

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:1999 and ISO 9002 (Lab code 100411-0). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.4 Japan - VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at the 2305 Mission College, Santa Clara, CA 95054 address has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Registration No. R-2366, C-2585, C-2586).

2.1.5 Acceptance By Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland of North America at the 2305 Mission College, Santa Clara, CA 95054 address test results and test reports within the scope of the laboratory NIST / NVLAP accreditation will be accepted by each member country.

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA.

(2305 Mission College, Santa Clara, 95054, USA location is Pleasanton Annex)

2.2.1 Emission Test Facility

The Semi-Anachoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2003, at a test distance of 3 and 10 meters. This site has been described in reports dated May 12, 1997, submitted to the FCC, and accepted by letter dated June 25, 1997 (31040/SIT 1300F2). The site is listed with the FCC and accredited by NVLAP (code 100411-0). The 10m semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2003, at a test distance of 3 meter and 10 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7m x 4.8m x 3.175mm thick aluminum floor connected to PE ground. For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6m x 0.8m x 0.8m high non-conductive table with a 3.175mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50cm x 50cm x 3.175mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. For each of the other tests, the HCP is removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st addition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or co-variances of these other quantities weighted according to how the measurement result varies with changes in these quantities. The term standard uncertainty is the result of a measurement expressed as a standard deviation.

The Expanded Uncertainty defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand. The fraction may be viewed as the coverage probability or level of confidence of the interval.

The test system for conducted emissions is defined as the LISN, spectrum analyzer, coaxial cables, and pads. The test system for radiated emissions is defined as the antenna, spectrum analyzer, pre-amplifier,

coaxial cables, and pads. The test system for radiated immunity is defined as the antenna, amplifier, cables, signal generator field probe and spectrum analyzer. The test system for conducted immunity is defined as the coupling/decoupling device, amplifier, cables, signal generator and spectrum analyzer. The test system for voltage variations and interruptions immunity is defined as the AC power source and the interruptions generator. The test system for electrical fast transient immunity is defined as the AC power output source and the fast transient generator. The test system for lightning surge immunity is defined as the AC power output source and the lightning surge generator. The test system for electrostatic discharge immunity is defined as the air and contact discharge generators. The test system for power frequency magnetic field immunity is defined as the AC voltage source. The test system for the damped oscillatory wave immunity is defined as the AC power output source and the oscillatory wave generator. The test system for harmonic current and voltage flicker test is defined as the AC power source and the detection devices. The conducted emissions test system has a combined standard uncertainty of \pm 1.2 dB. The radiated emissions test system has a combined standard uncertainty of \pm 1.6 dB. The radiated immunity test system has a combined standard uncertainty of ± 2.7 dB. The conducted immunity test system has a combined standard uncertainty of \pm 1.5 dB. The voltage variations and interruptions immunity test system has a combined standard uncertainty of \pm 4.3 dB. The electrical fast transients immunity test system has a combined standard uncertainty of \pm 5.8 dB. The lightning surge immunity test system has a combined standard uncertainty of \pm 8.0 dB. The electrostatic discharge immunity test system has a combined standard uncertainty of ± 4.1 dB. The power frequency magnetic field immunity test system has a combined standard uncertainty of ± 0.58 dB. The damped oscillatory wave immunity test system has a combined standard uncertainty of \pm 8.7 dB. The harmonic current and voltage flicker test system has a combined standard uncertainty of \pm 11.6 dB. The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Guide 17025:1999.

3 Product Information

3.1 Product Description

The TuneBase FM2 Transmitter is designed to transmit the IPod audio to one of the selected FM channels.

3.2 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221.

3.2.1 Results

The antenna is permanently attached.

4 Emissions

4.1 Radiated Emissions (Fundamental and Spurious per CFR Title 47 Part 15.239)

Testing was performed in accordance with ANSI C63.4:2003, and CFR Title 47 Part 15.239. These test methods are listed under the laboratory's NVLAP Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

4.1.1 Test Methodology

4.1.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 300 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

4.1.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m nonconductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

4.1.1.3 Deviations

There were no deviations from this test methodology.

4.1.2 Test Results

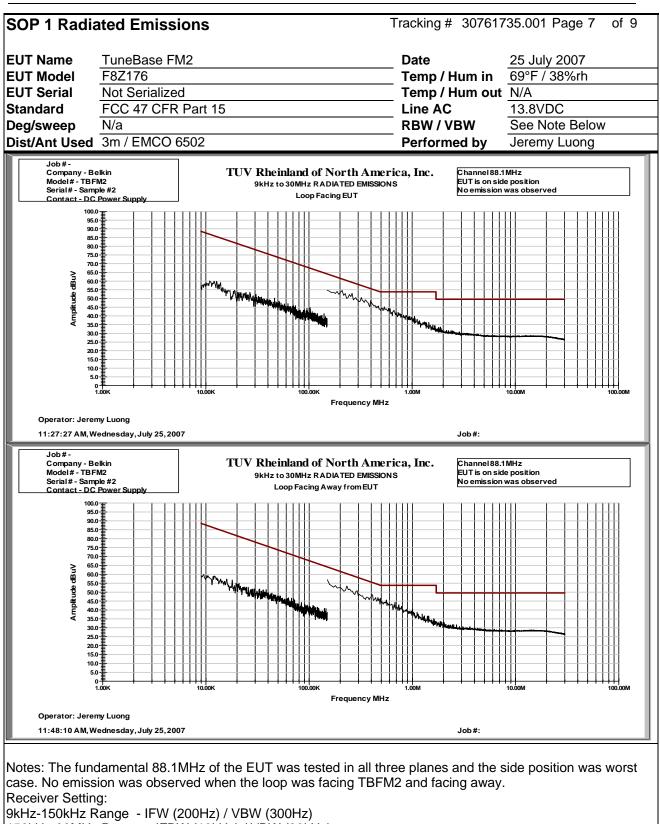
Section 4.1.2.1 lists the final measurement data under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

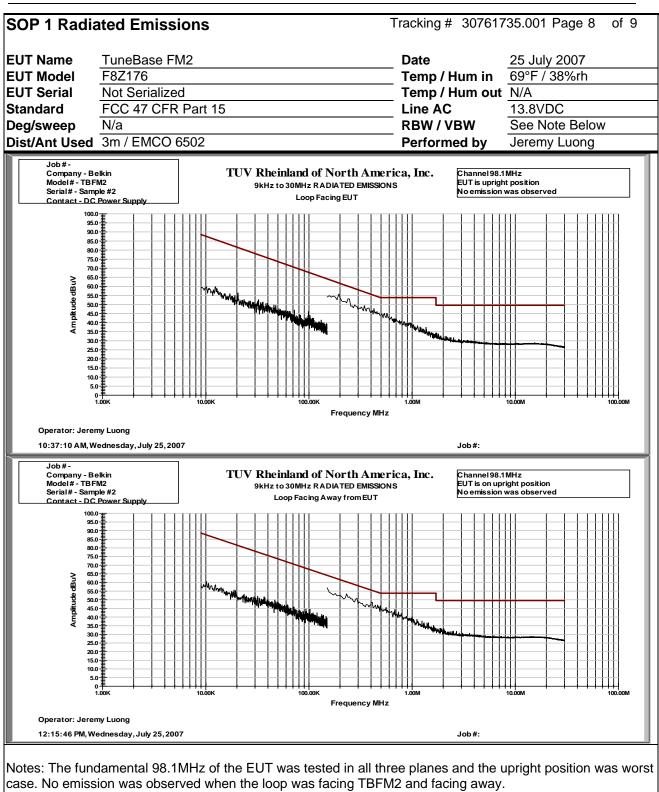
4.1.2.1 Final Data

The data recorded in this section contains the final results under the worst-case conditions and with any modifications or special accessories implemented as the manufacturer intends.

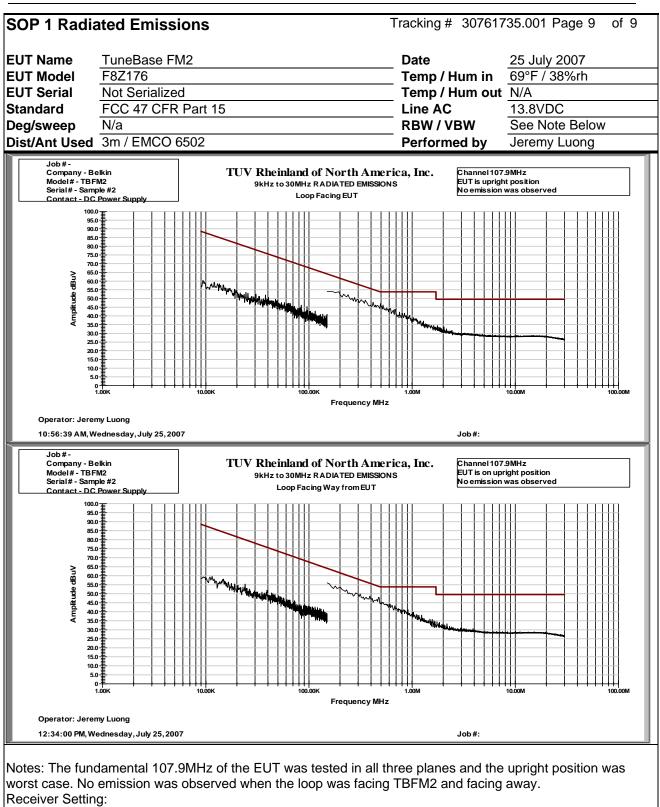
SOP 1 Ra	diated	Emissio	ns		Tra	acking # 30	0761	735.001	Page	1 of 9	
EUT Name	Tun	eBase FN	12			Date		24 July 2	007		
EUT Model	F8Z					Temp / Hun					
EUT Serial		-	d (Sample #	2)		Temp / Hun	_	N/A	/0111		
	Not	Ochalizet		<i>∠)</i>		out		N//~			
Standard	FCC	C 47 CFR	Part 15			Line AC / Freq 13.8VDC					
Deg/sweep	N/a					RBW / VBW	I 7	120kHz /	300kH	Z	
Dist/Ant Us	ed 3m	/ CBL611	2B			Performed	by 、	Jeremy L	uong		
Emission	ANT	ANT	Table	FIM	Corr'c	E-Fiel	d	Fundan	nental	Spec	
Freq	Polar	Pos	Pos	Value	Factor	r Value	Э	Lim	nit	Margin	
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dBuV/	m)	(dBu∖	//m)	(dB)	
Fundamenta		.1: Peak I		ts		X	,		,		
88.1	Н	3.0	245	55.21	-22.46	32.75	5	67.9	96	-35.21	
88.1	V	1.0	316	68.51	-22.46	6 46.05	5	67.9	96	-21.91	
Fundamenta			Vesuremen								
98.1	Н	1.9	219	44.57	-20.55			67.		-43.94	
98.1	V	1.0	27	59.66	-20.55	5 39.11		67.	96	-28.85	
Fundamenta					1	1				1	
107.9	Н	2.9	89	59.00	-19.40			67.		-28.36	
107.9	V	1.6	172	55.24	-19.40) 35.84		67.	96	-32.12	
Fundamenta		1. Avora	ao Mosuror	nonte							
88.1		3.0	245	55.14	-22.46	32.6	8	47.9	96	-15.28	
88.1	V	1.0	316	68.41	-22.46			47.9		-2.01	
00.1	v	1.0	510	00.41	-22.40	45.5	5	47.3	90	-2.01	
Fundamenta	al CH 98	1. Avera	ae Mesurer	ments							
98.1	H	1.9	219	44.47	-20.55	5 23.92)	47.9	96	-24.04	
98.1	V	1.0	27	59.57	-20.55			47.9		-8.94	
							-			0.01	
Fundamenta	al CH 10	7.9: Aver	age Mesure	ements							
107.9	H	2.9	89	58.44	-19.40	39.04		47.9	96	-8.92	
107.9	V	1.6	172	55.15	-19.40			47.9		-12.21	
	= E-Field			Value = FIM Va				nty			
Combined Star	dord	artoint 11 /	()_+1 cdD	Expanded Uncer	tointy 11 - 1		for 05	0/ 00061			
Notes:		enanny u _c ()	//= ± 1.00D		taility $U = r$	$n_{c}(y) n = 2$	101 95	% confider	ice		
	was pos	sitioned in	the X-Axis;	EUT is in the	upright po	osition.					


SOP 1 Rad	diated	Emissio	ns		Trac	cking # 3076	1735.001 Page 2	2 of 9	
EUT Name	Tun	eBase FM	2		D	Date	24 July 2007		
EUT Model	F8Z		-			Temp / Hum in 70°F / 39%rh			
EUT Serial			(Sample #2	2)	T	emp / Hum out	N/A		
Standard	FCC	C 47 CFR	Part 15		L	ine AC / Freq	13.8VDC		
Deg/sweep	N/a				R	RBW/VBW	120kHz / 300kH	z	
Dist/Ant Use	ed 3m	/ CBL6112	2B		P	Performed by	Jeremy Luong		
Emission	ANT	ANT	Table	FIM	Corr'd	E-Field	Fundamental	Spec	
Freq	Polar	Pos	Pos	Value	Factor	Value	Limit	Margin	
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Fundamenta	I CH 88	.1: Peak N	lesurement/	S					
88.1	Н	3.4	325	67.48	-22.46	45.02	67.96	-22.94	
88.1	V	3.0	62	61.41	-22.46	38.95	67.96	-29.01	
Fundamenta	I CH 98	.1: Peak N	/lesurement	S					
98.1	Н	3.2	125	65.61	-20.55	45.06	67.96	-22.90	
98.1	V	2.9	57	58.01	-20.55	37.46	67.96	-30.50	
Fundamenta	I CH 10	7.9: Peak	Mesuremer	nts					
107.9	Н	2.9	254	64.32	-19.40	44.92	67.96	-23.04	
107.9	V	2.9	358	62.10	-19.40	42.70	67.96	-25.26	
Fundamenta	I CH 88	.1: Avera	ge Mesuren	nents					
88.1	Н	3.4	325	67.46	-22.46	45.00	47.96	-2.96	
88.1	V	3.0	62	61.11	-22.46	38.65	47.96	-9.31	
Fundamenta	I CH 98	.1: Avera	ge Mesuren	nents					
98.1	Н	3.2	125	65.56	-20.55	45.01	47.96	-2.95	
98.1	V	2.9	57	57.81	-20.55	37.26	47.96	-10.40	
Fundamenta	I CH 10	7.9: Aver	age Mesure	ments					
107.9	Н	2.9	254	64.18	-19.40	44.78	47.96	-3.18	
107.9	V	2.9	358	62.05	-19.40	42.65	47.96	-5.31	
Spec Margin =	= E-Field	Value - Lin	nit, E-Field	Value = FIM Va	lue + Corr'd I	Factor ± Uncerta	ainty		
Combined Stan	dard Unce	ertainty U _c (y	∕) = ± 1.6dB	Expanded Uncert	tainty $U=ku$	k = 2 for 9	5% confidence		
Notes:									
The TBFM2	was pos	sitioned in	the Y-Axis;	EUT on its sid	de.				

SOP 1 Ra	diated	Emissio	ns		Tracl	king # 3076 ⁻	1735.001 Page	3 of 9			
EUT Name	Tun	eBase FM	12		Da	ate	24 July 2007				
EUT Model	F8Z	176			Te	Temp / Hum in 70°F / 39%rh					
EUT Serial	Not	Serialized	I (Sample #2	2)	Te	Temp / Hum N/A out					
Standard	FCC	C 47 CFR	Part 15		Li	ne AC / Freq	13.8VDC				
Deg/sweep	N/a				R	BW/VBW	120kHz / 300kH	Z			
Dist/Ant Us	ed 3m	/ CBL6112	2B		Pe	erformed by	Jeremy Luong				
Emission	ANT	ANT	Table	FIM	Corr'd	E-Field	Fundamental	Spec			
Freq	Polar	Pos	Pos	Value	Factor	Value	Limit	Margin			
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)			
Fundamenta			Mesurement				-	•			
88.1	Н	2.5	71	64.74	-22.46	42.28	67.96	-25.68			
88.1	V	2.7	338	61.64	-22.46	39.18	67.96	-28.78			
Fundamenta					00		07.00	00.00			
98.1	Н	3.3	241	58.59	-20.55	38.04	67.96	-29.92			
98.1	V	3.2	335	52.88	-20.55	32.33	67.96	-35.63			
Fundamenta		7 0. Dook	Mocuromor								
107.9		3.0	261	53.53	-19.40	34.13	67.96	-33.83			
107.9	V	2.9	1	51.98	-19.40	32.58	67.96	-35.38			
107.5	v	2.5	1	51.50	-13.40	32.30	07.30	-00.00			
Fundamenta	L ALCH 88	3 1 [.] Avera	ae Mesuren	nents							
88.1	H	2.5	71	64.66	-22.46	42.20	47.96	-5.76			
88.1	V	2.7	338	61.62	-22.46	39.16	47.96	-8.8			
0011				01102		00110		0.0			
Fundamenta	al CH 98	8.1: Avera	ge Mesuren	nents							
98.1	Н	3.3	241	58.55	-20.55	38.00	47.96	-9.96			
98.1	V	3.2	335	52.76	-20.55	32.21	47.96	-15.75			
Fundamenta	al CH 10	7.9: Aver	age Mesure	ments							
107.9	Н	3.0	261	53.51	-19.40	34.11	47.96	-13.85			
107.9	V	2.9	1	51.92	-19.40	32.52	47.96	-15.44			
Spec Margin :	= E-Field	l Value - Lir	nit, E-Field	√alue = FIM Va	lue + Corr'd F	actor ± Uncert	ainty				
Combined Of a		artaint . 11 /		Evenende de la recerci	tointy 11 - 100	(u) k of (u)	El confideres				
	idard Unc	entainty U _c ()	$y = \pm 1.60B$	Expanded Uncer	tainty $U = KU_c$	(y) $K = 2$ for S	95% confidence				
Notes:	was no	sitioned in	the 7-Avie	EUT is facing	toward coili	na					
	was pu				towaru celli	ng.					
1											


SOP 1 Rad	diated E	Emissi	ons			Track	king # 307617	'35.001 Pag	e 4 of 9
EUT Name	Tune	Base F	M2			Dat	te	24 July 200	7
EUT Model	F8Z1					Ter	70°F / 39%		
EUT Serial		Serialize	ed				mp / Hum out		
Standard			R Part 15				e AC	13.8VDC	
Deg/sweep	N/a					RB	W/VBW	120kHz / 30)0kHz
Dist/Ant Use	ed 3m /	CBL61	12B			Per	rformed by	Jeremy Luc	ong
Emission	ANT	ANT	Table	Pk Input	QP Input	Corr'd	QP E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Value	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
Fundamental	CH 88	1 - Spu	rious Em	issions					
33.89	V	3.4	201	50.91	40.24	-14.95	25.29	40.0	-14.71
49.18	V	1.0	154	54.84	52.97	-22.7	30.27	40.0	-9.73
176.19	V	1.0	348	50.31	48.77	-21.22	27.55	43.5	-15.95
250.40	H	1.0	219	47.36	41.83	-17.57	24.26	46.0	-21.74
264.29	Н	1.0	112	48.43	44.91	-16.94	27.97	46.0	-18.03
811.64	V	1.2	347	48.04	46.15	-8.97	37.18	46.0	-8.82
860.80	V	1.0	346	41.93	38.96	-8.28	30.68	46.0	-15.32
910.00	V	1.0	189	41.17	39.11	-7.87	31.24	46.0	-14.76
959.22	V	1.0	158	46.48	44.58	-6.87	37.71	46.0	-8.29
60.0 [dBuV/m]	List Ribbon 1	= QPtest						7/24/2	007 16:06:17
50.0									
40.0								*	*
30.0			Aa						
200					Mark				ANA MA
10.0			h h	MAUM		"V by har	we have been and the the		
0.0									
-10.0									
-20.0									
30.0	128.1	226.2	324.3	422.4	520.5	618.5	716.7	814.8 91	2.9 1010.0
<u> </u>			· ·, – -		Frequency [MHz				
							tor \pm Uncertaint		
Combined Stand						$\frac{1}{2} U = k u_c(y)$			word at the
Notes: The fu upright positi TBFM2 was	on.						the Channel 8	ö.1MHZ Was	worst at the

SOP 1 Rad	diated E	Emissi	ons			Trac	cking # 307617	735.001 Page	e5 of9
EUT Name EUT Model EUT Serial	F8Z1	Base F 176 Serialize				Те	ate emp / Hum in emp / Hum out	24 July 200 70°F / 39%i	
Standard Deg/sweep	andard FCC 47 CFR Part 15 Lin g/sweep N/a RB							13.8VDC 120kHz / 300kHz	
							erformed by	Jeremy Luo	Ţ
Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	Pk Input Value (dBuV)	QP Input Value (dBuV)	Corr'd Factor (dB)	QP E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)
Fundamental	· · /		· • • /	. /					(42)
49.19	V	1.1	216	54.89	53.26	-22.7	30.56	40.0	-9.44
98.37	Н	3.2	99	48.66	48.14	-20.5	27.64	43.5	-15.86
98.39	V	1.0	137	44.3	43.41	-20.49	22.92	43.5	-20.58
147.57	V	1.0	101	46.64	45.71	-20.24	25.47	43.5	-18.03
762.44	Н	1.0	342	43.72	40.65	-9.77	30.88	46.0	-15.12
811.60	H H	1.0	<u>173</u> 196	47.6 42.79	44.39	-8.97	35.42	46.0	-10.58 -13.43
860.91 910.03	H	1.0 1.0	196	42.79	40.85 42.99	-8.28 -7.87	32.57 35.12	46.0 46.0	-13.43
600 [dBuVm]	List Ribbon 1= QR			10.12	12.00			7/24/2007	
50.0									
40.0								×1 ×	R N
30.0	 ★		س						
200		what	r y	MARIE	In wind	which	Auburn		Hold half
0.0									
-100									
-200									
300		2262	3243	4224	520.5 Fraquency [MHz]	6185	7167	848 912	9 10100
							$\frac{\text{ctor} \pm \text{Uncertainty}}{2}$		
Combined Stand					ed Uncertaint		y) k = 2 for 95% t the Channel 9		worst at the
side position.		nai Ui li	IC EUT W	งลง เฮงเฮน ไ	n an unee	pianes and		o. HVII 12 Was	
TBFM2 was		ting dur	ing the s	ourious em	ission scar).			


SOP 1 Rad	SOP 1 Radiated Emissions Tracking # 30761735.001 Page 6 of 9									
EUT Name EUT Model	F8Z1					Т	Date Temp / Hu		24 July 200 70°F / 39%	
EUT Serial Standard Deg/sweep		Serialize 47 CFI	ed R Part 15	;		L	emp / Hu .ine AC .BW / VBV		t <u>N/A</u> 13.8VDC 120kHz / 30	00k∐-7
Deg/sweep Dist/Ant Use	-	CBL61	12B				Performed		Jeremy Luc	
Emission	ANT	ANT	Table	Pk Input	QP Input				Spec	Spec
Freq (MHz)	Polar (H/V)	Pos (m)	Pos (deg)	Value (dBuV)	Value (dBuV)	Factor (dB)	Valu (dBuV		Limit (dBuV/m)	Margin (dB)
Fundamental	1			1	ł	r				-
33.60	V	3.7	97	48.99	35.40	-14.81	20.5		40.0	-19.41
49.19 713.32	V H	1.0 1.0	144 357	55.21 42.40	54.60 40.60	-22.7 -10.35	31.9 30.2		40.0 46.0	-8.1 -15.75
762.46	H	1.0	348	42.40	40.00	-10.35	30.2		46.0	-13.52
811.65	Н	1.0	357	47.67	44.93	-8.97	35.9		46.0	-10.04
860.90	Н	1.1	189	42.79	40.34	-8.28	32.0		46.0	-13.94
910.03	Н	1.0	191	44.88	42.76	-7.87	34.8	9	46.0	-11.11 071509:33
60.0 [dBuV/m]	ListRibbon 1 = Q	Plest								
40.0	Ť									
30.0								*		
20.0		m		Modera	while where the	- Will	All	M		ANNAL
10.0			v v	10.00 -000						
• V										
-10.0										
-20.0										
30.0	128.1	226.2	324.3	422.4	520.5 Frequency [MHz]	618.5	716.7		814.8 91	2.9 1010.0
Spec Margin =	E-Field	Value - I	imit. F-F	- ield Value =	1 22 2	+ Corr'd F	actor + Unc	ertaint	v	
Combined Stand					ed Uncertain				6 confidence	
Notes: The fu the side positi TBFM2 was	undamer tion.	ntal of t	he EUT v	vas tested i	n all three	planes ar				as worst at

150kHz-30MHz Range – IFBW (10kHz) / VBW (30kHz)

Receiver Setting: 9kHz-150kHz Range - IFW (200Hz) / VBW (300Hz) 150kHz-30MHz Range – IFBW (10kHz) / VBW (30kHz)

9kHz-150kHz Range - IFW (200Hz) / VBW (300Hz) 150kHz-30MHz Range – IFBW (10kHz) / VBW (30kHz)

4.1.3 Sample Calculation

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength (dB μ V/m) = FIM - AMP + CBL + ACF Where: FIM = Field Intensity Meter (dB μ V) AMP = Amplifier Gain (dB) CBL = Cable Loss (dB) ACF = Antenna Correction Factor (dB/m) μ V/m = 10 $\frac{dB\mu V/m}{20}$

4.2 Conducted Emissions (CFR Title 47 Part 15)

Testing was performed in accordance with ANSI C63.4:2003, CFR Title 47 Part 15.207. These test methods are listed under the laboratory's NVLAP Scope of Accreditation.

This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

4.2.1 Test Methodology

A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into sub-ranges such as to yield a frequency resolution of 9 kHz. For each frequency sub-range, each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of 50μ H / 50Ω LISNs.

Testing is either performed in the semi anechoic chamber or on Lab 3. The setup photographs clearly identify which site was used. The vertical ground plane used in the anechoic chamber is a $2m \times 2m$ Aluminum frame and is bonded to the horizontal ground plane.

In the case of tabletop equipment, the EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. Support equipment was powered from a separate LISN.

4.2.1.1 Deviations

There were no deviations from this test methodology.

4.2.2 Test Results

Since the TuneBase FM2 Transmitter is DC powered, AC conducted emission is not required.

4.2.2.1 Final Data

No data.

4.3 Band Edge Compliance

The setup was identical to radiated emissions. Intentional radiators operating under the alternative provisions to the general emission limits, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

4.3.1 Results

Section 4.1.2.1 lists the final measurement data under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

4.3.1.1 Final Data

The data recorded in this section contains the final results under the worst-case conditions and with any modifications or special accessories implemented as the manufacturer intends.

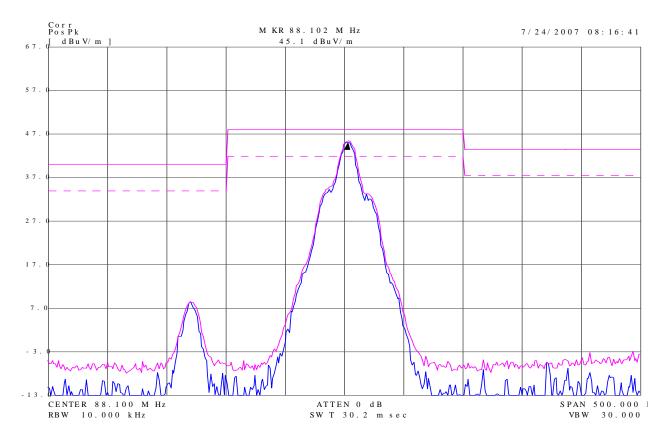


Figure 1 – Channel 88.1 Band edge Results for Horizontal

Note: The plot showed the corrected fundamental signal at the both sidebands of the 88.1MHz operating channel with TBFM2 positioned on its side (worst case).

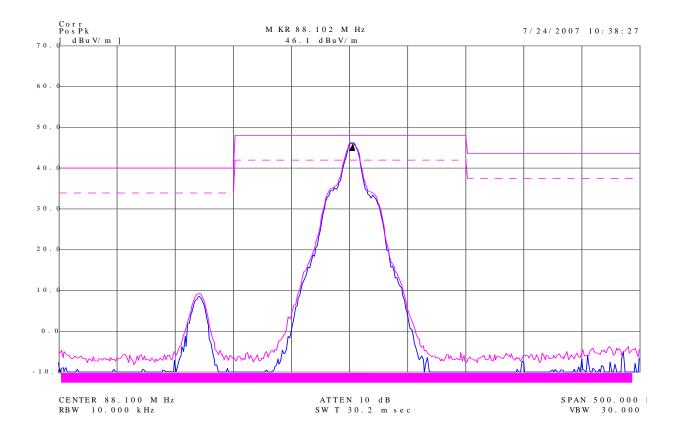


Figure 2 - Channel 88.1MHz Band edge Results for Vertical

Note: The plot showed the corrected fundamental signal at the both sidebands of the 88.1MHz operating channel with TBFM2 positioned on its upright (worst case).

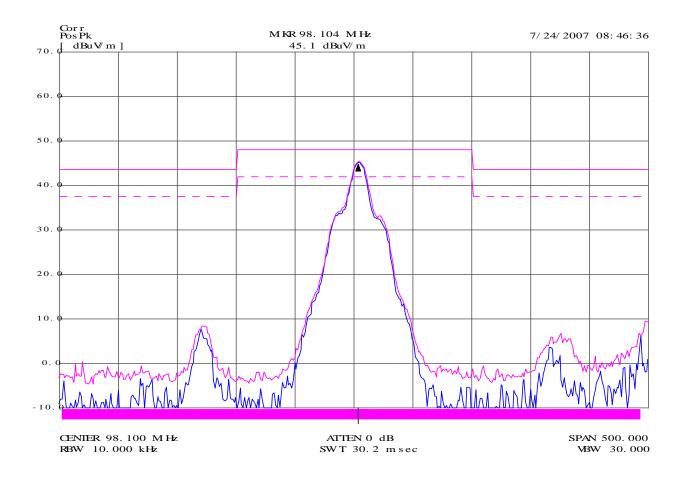


Figure 3 – Channel 98.1MHz Band edge Results for Horizontal

Note: The plot showed the corrected fundamental signal at the both sidebands of the 98.1MHz operating channel with TBFM2 positioned on its side (worst case).

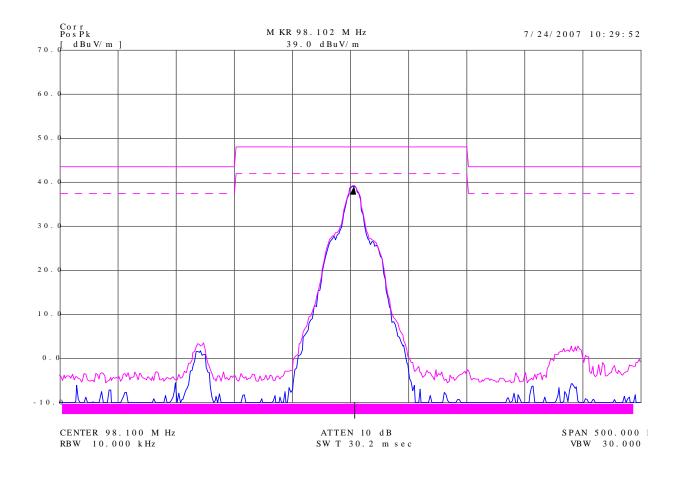


Figure 4 – Channel 98.1MHz Band edge Results for Vertical

Note: The plot showed the corrected fundamental signal at the both sidebands of the 98.1MHz operating channel with TBFM2 positioned on its upright (worst case).

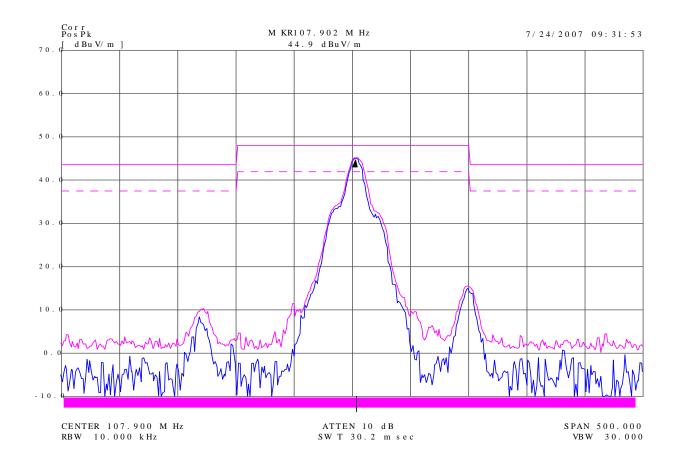


Figure 5 – Channel 107.9MHz Band edge Results for Horizontal

Note: The plot showed the corrected fundamental signal at the both sidebands of the 107.9MHz operating channel with TBFM2 positioned on its side (worst case).

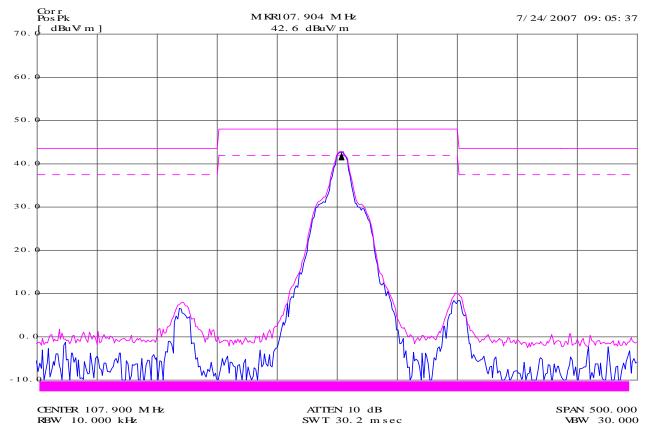


Figure 6 - Channel 107.9MHz Band edge Results for Vertical

Note: The plot showed the corrected fundamental signal at the both sidebands of the 107.9MHz operating channel with TBFM2 positioned on its side (worst case).

4.4 Occupied Bandwidth

The setup was identical to radiated emissions. Intentional radiators operating under the CFR Title 47 Part 15.239, must be designed to ensure that the 200kHz bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Frequency (MHz)	26dB BW	Limit	Polarization	Results	Figure #
88.1	187.5 kHz	200kHz	Horizontal	Pass	7
88.1	187.5 kHz	200kHz	Vertical	Pass	8
98.1	180.0 kHz	200kHz	Horizontal	Pass	9
98.1	107.5 kHz	200kHz	Vertical	Pass	10
107.9	192.5 kHz	200kHz	Horizontal	Pass	11
107.9	145.0 kHz	200kHz	Vertical	Pass	12

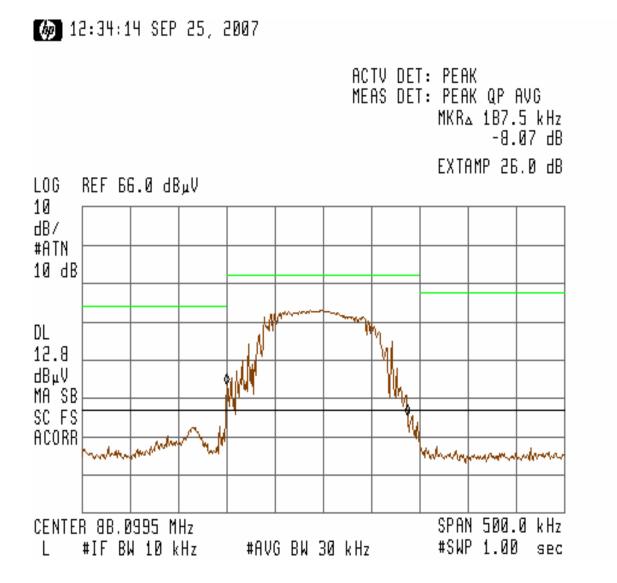


Figure 7 – Channel 88.1MHz (Horizontal), 26dB Bandwidth with 200 kHz Bandwidth Envelope

Note: (1) The TBFM2 was positioned on its side.

(2) The left marker on the Fig. 7 is at 88MHz

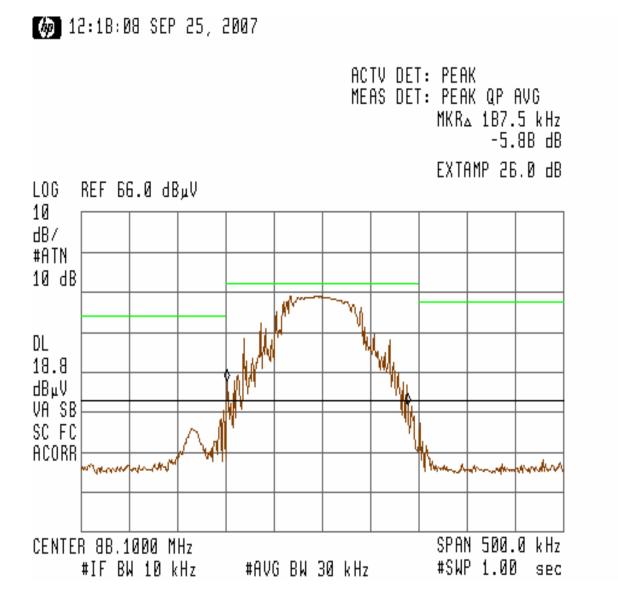


Figure 8 - Channel 88.1MHz (Vertical) - 26dB Bandwidth with 200 kHz Bandwidth Envelope

Note: (1) The TBFM2 was positioned on its upright.

(2) The left marker on the Fig. 8 is at 88.009MHz

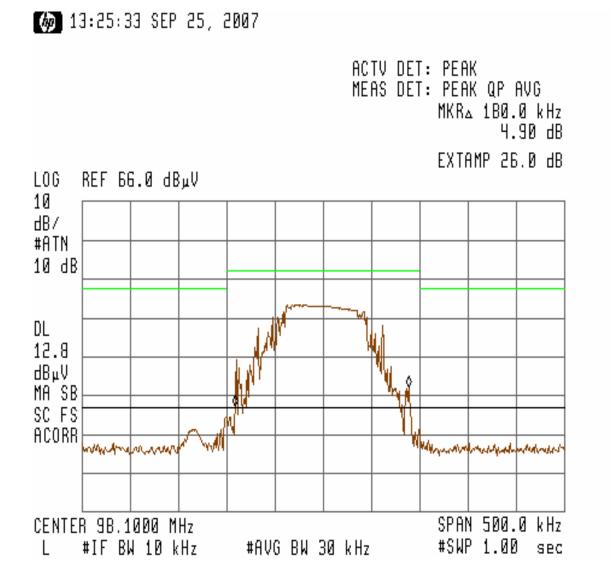


Figure 9 – Channel 98.1MHz (Horizontal) – 26dB Bandwidth with 200 kHz Bandwidth Envelope Note: The TBFM2 was positioned on its side.

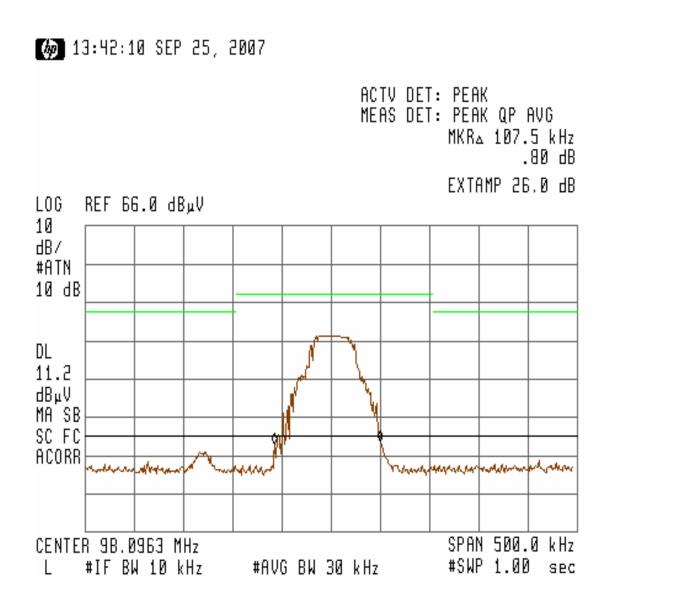


Figure 10 – Channel 98.1MHz (Vertical) – 26dB Bandwidth with 200 kHz Bandwidth Envelope Note: The TBFM2 was positioned on its upright.

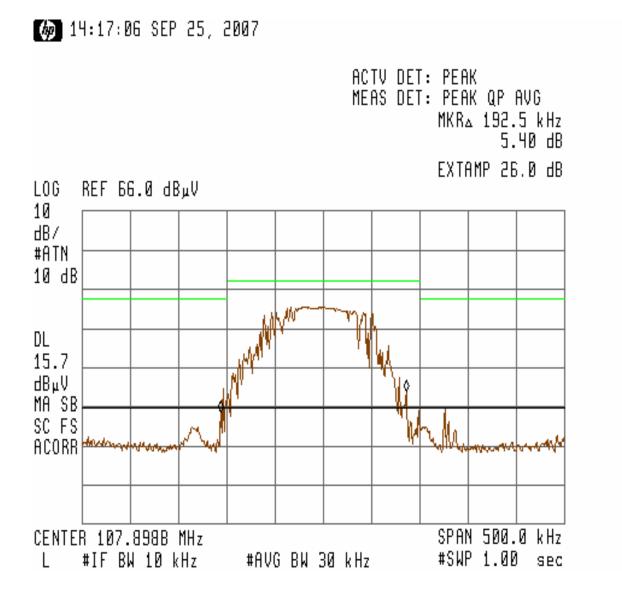


Figure 11 – Channel 107.9MHz (Horizontal) – 26dB Bandwidth with 200 kHz Bandwidth Envelope Note: The TBFM2 was positioned on its side.

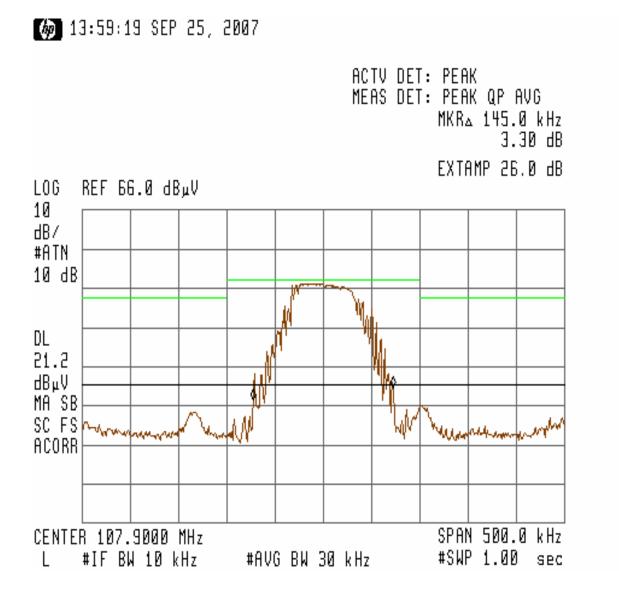


Figure 12 – Channel 107.9MHz (Vertical) – 26dB Bandwidth with 200 kHz Bandwidth Envelope Note: The TBFM2 was positioned on its side.

4.5 Tunning Frequency

The setup was identical to radiated emissions. Intentional radiators operating under the CFR Title 47 Part 15.239 and KDB #388624 must be designed to ensure the operation to be within 88MHz to 108MHz.

The TBFM2 was manually tuned via the side buttons of transmitter, and the LCD display on the transmitter indicated that operational range is between 88.1MHz to 107.9MHz. The operating frequency was confirmed on the EMI receiver.

4.6 Operating Voltage Variation (CFR Title 47 Part 15.31e)

The setup was identical to radiated emissions. Intentional radiators operating under the CFR Title 47 Part 15.239, must be designed to ensure that the operating channel are within 88MHz to 108MHz; any sideband emission must be complied with spurious emission limit. Also, the transmitted power level of the emission must meet per requirement CFR Title 47 Part 15.239.

4.6.1

Section 4.1.2.1 lists the final measurement data under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

4.6.1.1 Final Data - BandEdge

The data recorded in this section contains the final results under the worst-case conditions and with any modifications or special accessories implemented as the manufacturer intends.

Ch. (MHz)	Input Voltage (DC)	Lower Freq. (MHz)	Lower Edge (dBuV)	Limit (dBuV)	Upper Freq. (MHz)	Upper Edge (dBuV)	Limit (dBuV)	Polarity	Results	Fig. #
88.1	11.73	88	26.00	40.0	88.2	27.81	43.5	Horz.	Pass	13
88.1	11.73	88	37.68	40.0	88.2	37.31	43.5	Vert.	Pass	14
88.1	15.87	88	25.31	40.0	88.2	26.56	43.5	Horz.	Pass	15
88.1	15.87	88	37.77	40.0	88.2	38.06	43.5	Vert.	Pass	16
98.1	11.73	98	28.74	43.5	98.2	29.88	43.5	Horz.	Pass	17
98.1	11.73	98	31.46	43.5	98.2	33.33	43.5	Vert.	Pass	18
98.1	15.87	98	28.23	43.5	98.2	28.86	43.5	Horz.	Pass	19
98.1	15.87	98	34.45	43.5	34.99	34.99	43.5	Vert.	Pass	20
107.9	11.73	107.8	31.11	43.5	108	31.95	43.5	Horz.	Pass	21
107.9	11.73	107.8	43.01	43.5	108	40.27	43.5	Vert.	Pass	22
107.9	15.87	107.8	37.12	43.5	108	34.67	43.5	Horz.	Pass	23
107.9	15.87	107.8	41.61	43.5	108	40.16	43.5	Vert.	Pass	24

^A TUV Rheinland of North America 1279 Quarry Lane, Pleasanton, CA 94566 Tel: (925) 249-9123, Fax: (925) 249-9124

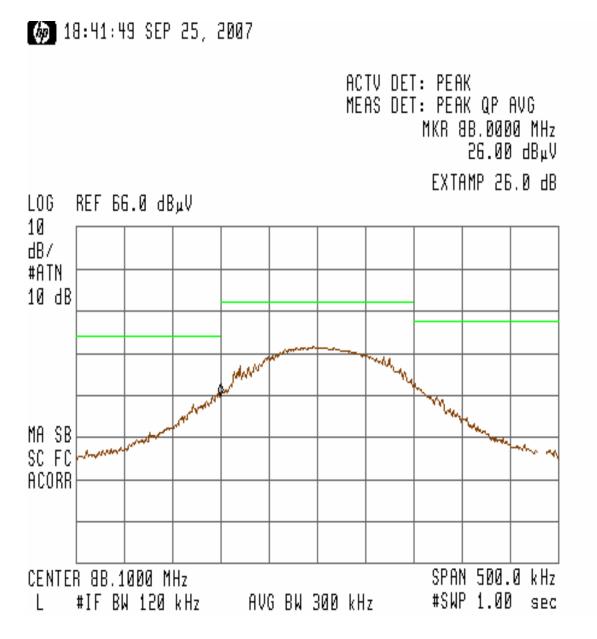


Figure 13 - Bandedge Measurement for Channel 88.1MHz (Horizontal) at 11.73VDC

Note: The TBFM2 was positioned on its side.

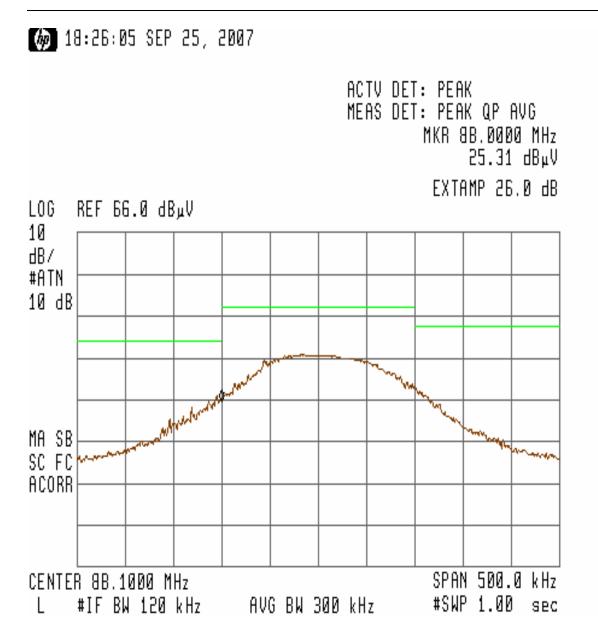


Figure 14 – Bandedge Measurement for Channel 88.1MHz (Horizontal) at 15.87VDC Note: The TBFM2 was positioned on the Side position.

🍈 17:51:20 SEP 25, 2007

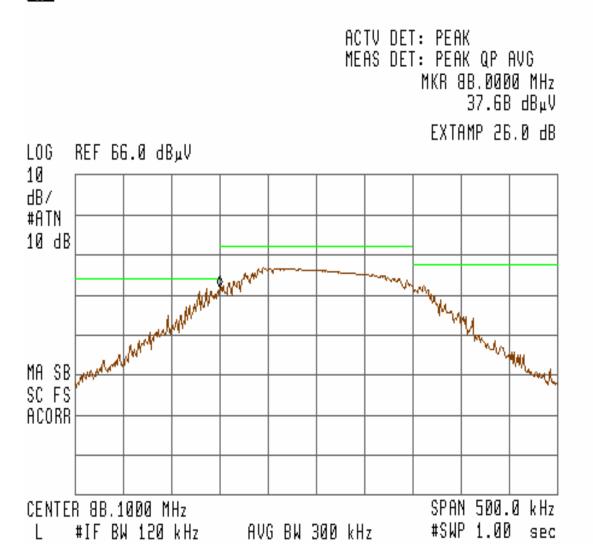


Figure 15 – Bandedge Measurement for Channel 88.1MHz (Vertical) at 11.73VDC

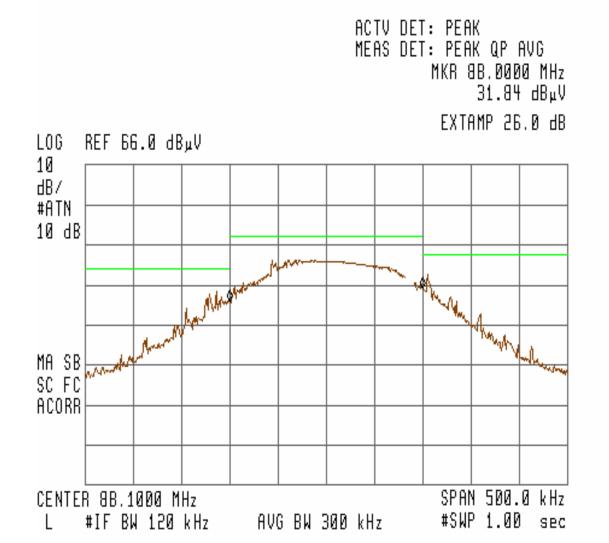


Figure 16 – Bandedge Measurement for Channel 88.1MHz (Vertical) at 15.87VDC

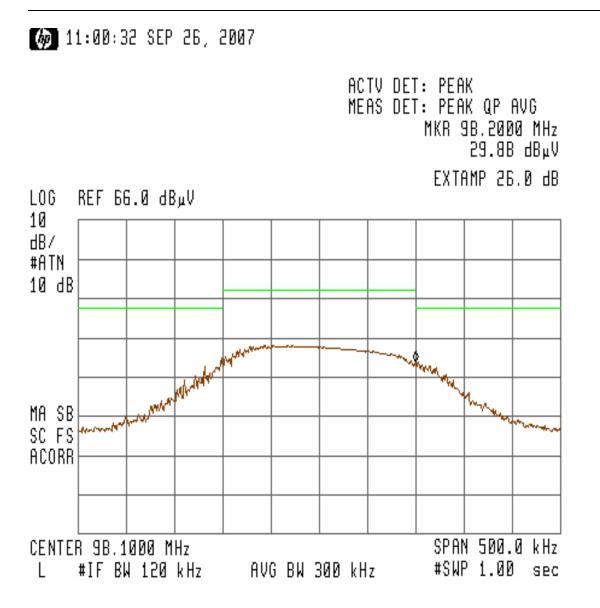


Figure 17 – Bandedge Measurement for Channel 98.1MHz (Horizontal) at 11.73VDC Note: The TBFM2 was positioned on the Side position.

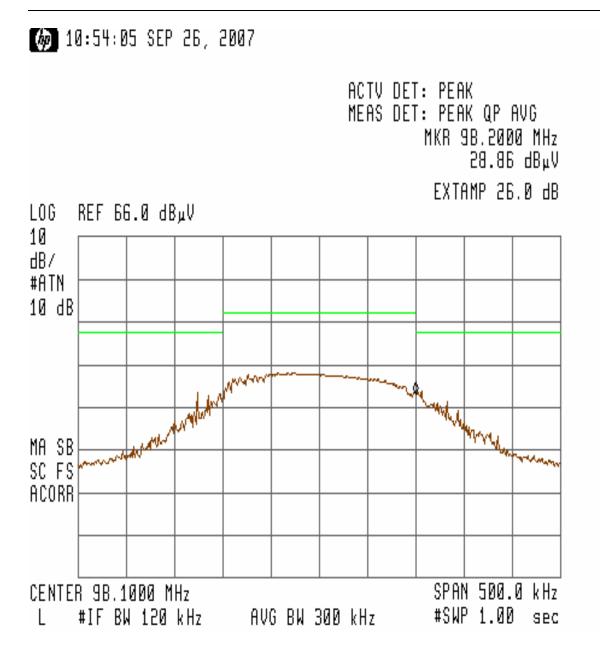


Figure 18 – Bandedge Measurement for Channel 98.1MHz (Horizontal) at 15.87VDC

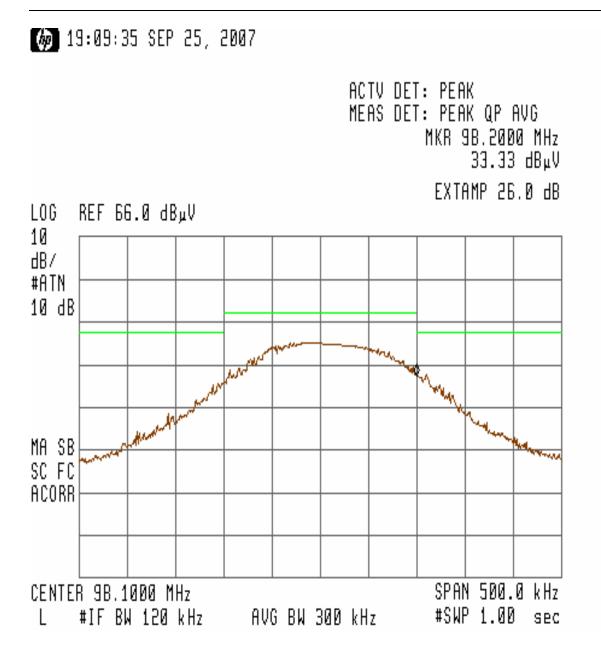


Figure 19 – Bandedge Measurement for Channel 98.1MHz (Vertical) at 11.73VDC

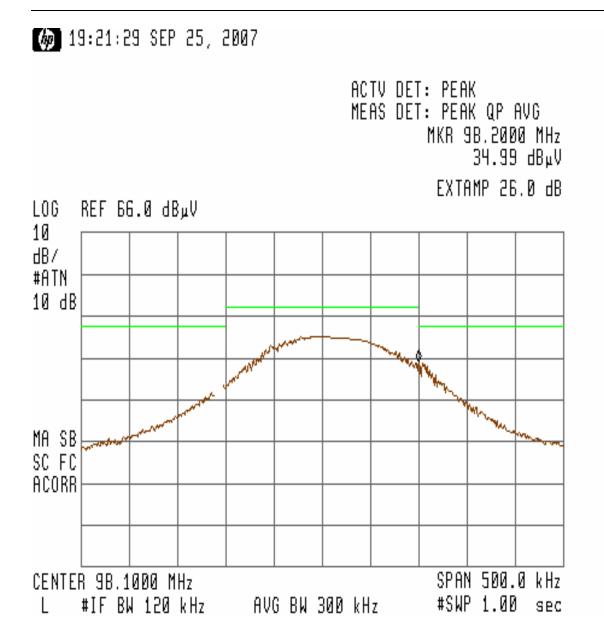
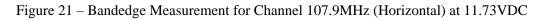



Figure 20 – Bandedge Measurement for Channel 98.1MHz (Vertical) at 15.87VDC

🍈 16:43:10 SEP 25, 2007 ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 108.0000 MHz 31.95 dBµV EXTAMP 26.0 dB REF 66.0 dBµV LOG 10 dB/ #ATN 10 dB MA SB 6 М. Mary ACORR SPAN 500.0 kHz CENTER 107.9075 MHz #IF BW 120 kHz AVG BW 300 kHz #SWP 1.00 SEC

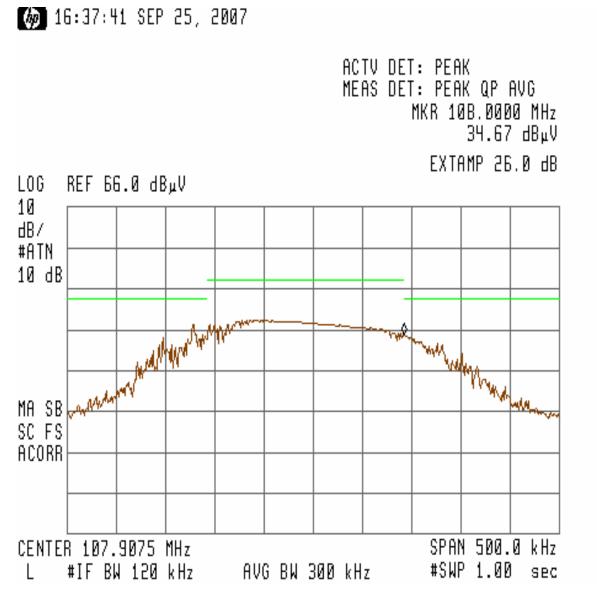


Figure 22 - Bandedge Measurement for Channel 107.9MHz (Horizontal) at 15.87VDC

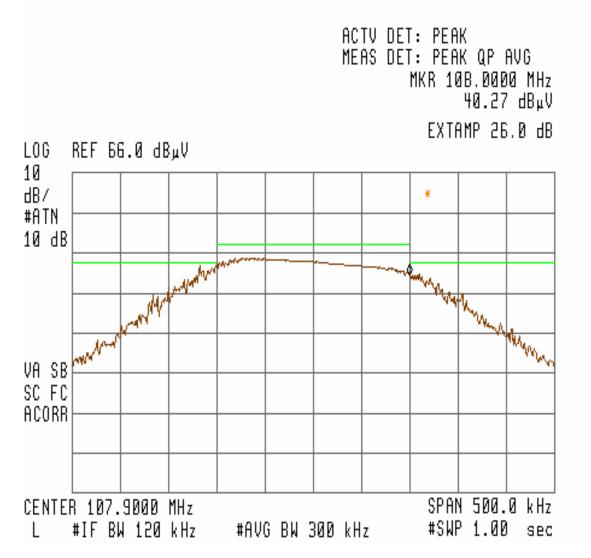


Figure 23 – Bandedge Measurement for Channel 107.9MHz (Vertical) at 11.73VDC

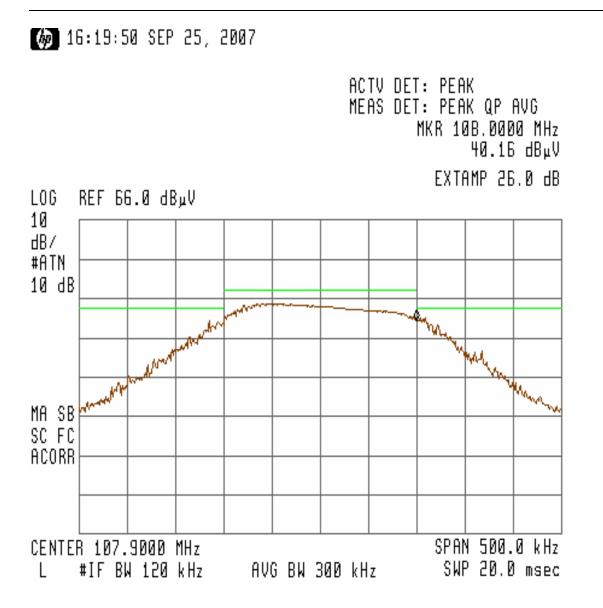


Figure 24 – Bandedge Measurement for Channel 107.9MHz (Vertical) at 15.87VDC

4.6.1.2 Final Data – Transmitted Emission

The data recorded in this section contains the final results under the worst-case conditions and with any modifications or special accessories implemented as the manufacturer intends.

SOP 1 Rad	diated	Emissio	ns		Tr	acking #	3076	1735.001 Page	1 of 2
EUT Name	Tun	eBase FM	2			Date		25 September 2	007
EUT Model	F8Z	F8Z176					lum in	72°F / 42%rh	
EUT Serial	Not	Not Serialized (Sample #2)					Temp / Hum N/A out		
Standard	FCC	C 47 CFR	Part 15			Line AC	/ Freq	11.73VDC	
Deg/sweep	N/a					RBW / V	BW	120kHz / 300kH	Z
Dist/Ant Use	ed 3m	/ JB3				Perform	ed by	Jeremy Luong	
Emission	ANT	ANT	Table	FIM	Corrio	d E-l	Field	Fundamental	Spec
Freq	Polar	Pos	Pos	Value	Facto	r Va	alue	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dBi	uV/m)	(dBuV/m)	(dB)
Fundamenta	I CH 88	.1: Peak N	/lesurement	S			,		
88.1	Н	2.49	299	51.97	-14.99	9 36	6.98	67.96	-30.98
88.1	V	1.13	79	58.53	-14.08	3 44	1.45	67.96	-23.51
Fundamenta	I CH 98	.1: Peak N	/lesurement	S					
98.1	Н	3.2	154	46.91	-12.9	9 33	.92	67.96	-34.04
98.1	V	1.0	42	53.15	-12.0	7 41	.08	67.96	-26.88
Fundamenta	d CH 10	7.9: Peak	Mesuremer	nts					
107.9	H	1.0	146	49.57	-11.6	4 37	.93	67.96	-30.03
107.9	V	1.0	53	55.32	-10.8		.45	67.96	-23.51
Fundamente		1. Avera	ao Moouron						
Fundamenta 88.1		2.49	299	51.00	-14.9	0 0	5.01	47.96	-11.95
88.1	Π V	1.13		57.95	-14.9		3.87	47.96	-11.95
00.1	v	1.15	13	57.55	-14.0		5.07	47.50	-4.03
Fundamenta	I CH 98		ge Mesuren						
98.1	Н	3.2	154	46.04	-12.9		.05	47.96	-14.91
98.1	V	1.0	42	52.69	-12.0	7 40	.62	47.96	-7.34
Fundamenta	L CH 10	7.9: Aver	age Mesure	ments					
107.9	H	1.0	146	48.77	-11.64	4 37	.13	47.96	-10.83
107.9	V	1.0	53	54.37	-10.8			47.96	-4.46
Spec Margin =	= E-Field	Value - Lin	nit, E-Field	Value = FIM Val	ue + Corr'	d Factor ±	Uncert	ainty,	
				Expanded Uncerta	ainty $U = I$	ku _c (y) k	= 2 for §	95% confidence	
Notes: EUT	is powe	ered by 85	% of Rated	13.8VDC.					
l									

SOP 1 Ra	diated	Emissio	าร		Tı	racking #	3076	1735.001 Page	3 of 9	
EUT Name	Tun	TuneBase FM2					Date 25 September 2007			
EUT Model	F8Z	F8Z176					Temp / Hum in 72°F / 42%rh			
EUT Serial	Not	Not Serialized (Sample #2)					um	N/A		
			、 I	,		out				
Standard	FCC	247 CFR	Part 15			Line AC	/ Freq	15.87VDC		
Deg/sweep	N/a					RBW/VBW		120kHz / 300kH	Z	
Dist/Ant Us	ed 3m	/ JB3				Performe	ed by	Jeremy Luong		
Emission	ANT	ANT	Table	FIM	Corr	d E-F	ield	Fundamental	Spec	
Freq	Polar	Pos	Pos	Value	Facto	or Va	lue	Limit	Margin	
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dBu	ıV/m)	(dBuV/m)	(dB)	
Fundamenta	al CH 88	.1: Peak N	lesurement	S	, <i>r</i>			, <u>,</u>	. ,	
88.1	Н	2.49	299	51.51	-14.9	9 36	.52	67.96	-31.44	
88.1	V	1.13	79	55.84	-14.0	8 41	.76	67.96	-26.2	
Fundamenta	al CH 98	.1: Peak N	lesurement	S						
98.1	Н	3.2	154	46.44	-12.9		.45	67.96	-34.51	
98.1	V	1.0	42	53.08	-12.0	7 41	.01	67.96	-26.95	
Fundamenta	al CH 10	7.9: Peak	Mesuremer	nts						
107.9	Н	1.0	146	49.83	-11.6		.19	67.96	-29.77	
107.9	V	1.0	53	54.72	-10.8	7 43	.85	67.96	-24.11	
Fundamenta	al CH 88	.1: Avera	ge Mesuren							
88.1	Н	2.49	299	50.86	-14.9		5.87	47.96	-12.09	
88.1	V	1.13	79	55.09	-14.0	8 41	.01	47.96	-6.95	
Fundamenta	1									
98.1	Н	3.2	154	46.00	-12.9			47.96	-14.95	
98.1	V	1.0	42	52.49	-12.0	7 40	.42	47.96	-7.54	
Fundamenta										
107.9	Н	1.0	146	48.89	-11.6		.25	47.96	-10.71	
107.9	V	1.0	53	53.82	-10.8		.95	47.96	-5.01	
Spec Margin =	= E-Field	Value - Lin	nit, E-Field	Value = FIM Val	ue + Corr	d Factor \pm	Uncert	ainty,		
Combined Stan	dard Unce	ertainty 11./v) = + 1 6dB	Expanded Uncerta	ainty II –	ku (v) k	– 2 for (95% confidence		
Notes: EUT							- 2 101 8			
	13 2000									

5 Test Equipment Use List

DESCRIPTION	DESCRIPTION MODEL		LAST CAL	CAL DUE DATE
RECEIVERS				
HP 8546A EMI Receiver (Receiver Section) 9Khz – 6.5Ghz	85462A	3325A00166	04/18/2006	04/18/2008
HP8546A EMI Receiver (RF Filter Section)	85460A	3330A00162	04/18/2006	04/18/2008
HP 8546A EMI Receiver (Receiver Section) 9Khz – 6.5Ghz	85462A	3942A00514	09/22/2006	09/22/2008
HP8546A EMI Receiver (RF Filter Section)	85460A 3704A00485		09/22/2006	09/22/2008
PREAMPS				
Amplifier Ant. Preamp, 0.3-1GHz	310N	185516	05/07/2006	05/07/2008
ANTENNAS				
EMCO Active Loop	6502	00062531	03/30/2006	03/30/2008
Schaffner Bilog (Emissions)	CBL6112B	2505	02/09/2006	02/09/2008
Sunol Science Bilog (Emission)	JB3	A102606	02/20/2007	02/20/2009
CHAMBER				
ETS 10-Meter Chamber	ETS-10M	120105	03/01/2007	03/01/2008
TDK 5-Meter Chamber	TDK-5M	110106	11/01/2006	11/01/2007
OTHER EQUIPMENT				
Davis Instr. Environment Meter	Perception II	PE61127A26	07/25/2007	07/25/2009
Fluke Digital Multimeter	Fluke 87	65170132	07/25/2006	07/25/2008

6 Setup Photo

Test Setup Photo : See Test Setup Document EUT External Photo: See EUT External Photo Report EUT Internal Photo: See EUT Internal Photo Report

7 Test Plan

7.1 Introduction

This manufacturer-supplied document provides a description of the Equipment Under Test (EUT), configuration(s), operating condition(s), and performance acceptance criteria. It is intended to provide the test laboratory with the essential information needed to perform the requested testing.

7.2 Customer

The information in the following tables is required, as it should appear in the final test report.

Company Name	Belkin International, Inc.
Company Logo	BELKIN
Address 1	501 West Walnut Street
City	Compton, CA 90220
State	CA
Zip	84020
Phone	(310) 604-2484
Fax	(310) 604-2007

Table 2 – Customer Information

Table 3 – Technical	Contact Information
---------------------	---------------------

Name	Zaven Mangassarian
E-mail	ZavenM@belkin.com
Phone	(310) 604-2484
Fax	(310) 604-2007

7.3 Equipment Under Test (EUT)

The information provided in the following table should be listed as it should appear in the final report. For those products that have only a model name, list the model number as *non-applicable* and vice-versa.

Product Name	TuneBase FM2
Model Number	F8Z176
System Name	TuneBase FM Transmitter
Product Description	FM Radio transmitter for IPod

Table 4 – EUT Designation

7.3.1 Product Specifications

The information provided in the following table should be listed as it should appear in the final report.

Size (in inches)	3.70"H x	3.70"H x 4.51" W x 1.25"D					
Weight (in pounds)	0.2Lbs.	0.2Lbs.					
Power Supply (check all that apply)	Voltage Type: 🖾 DC 🗌 AC						
	Operating DC Voltage is 13.8V						
	Multiple I	Multiple Feeds 🗌 Yes and how many					
	Current (M	Current (<i>Min:</i>): 0.6 (A)					
	Disumption (Min loaded) 8.28 (W)						
Clock	Туре	Frequency					
Oscillator Switching Power Supply	crystal	32.7 68kHz					
Operating Frequencies:							
Is the EUT a frame or a shelf product? (Note: shelf = 36" or less)	☐ Table Top ☐ Rack mount ☐ Floor standing cabinet						

Table 5 – EUT Specifications

7.3.2 Interface Specifications

Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C) or Fiber (F)?
NA	NA	NA	NA

Table 6 – Interface Specification	ns
-----------------------------------	----

Note: TuneBase FM2 plugs directly into the DC jack of any vehicle.

7.3.3 Configuration(s)

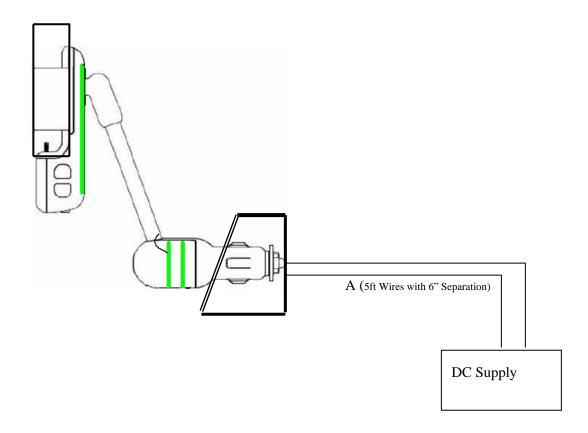


Figure 25 - Block Diagram of EUT Set-Up

Table 7 – Equipment Shown	in Block	Setup Diagram
---------------------------	----------	---------------

Des.	Manufacturer	Model No.	Serial No.	Description
1	Belkin International, Inc.	F8Z176	Sample #2	FM Transmitter
2	Radio Shack	22-504	614111	DC Power Supply
3	Apple Computer	30GB	NA	Play MP3 Files
4	Hewlette Packard	6205C	2411A-10488	Use to provide 11.73VDC and 15.87VDC

Des.	Cable Name	Port Reference
Α	22 AWG Wire	+/- DC Terminal

7.4 Test Specifications

The information provided in the following table should be provided as you would like the product to be evaluated if different from the requirements of the standard.

Table 9 -	EUT	Designation
-----------	-----	-------------

Emissions and Immunity	
Standard	Requirement
CFR Title 47 Part 15.239 : 2006	All