

FCC Test Report

Report No.: RF150303E10 R1

FCC ID: K7SF7C039

Test Model: F7C039

Received Date: Mar. 03, 2015

Test Date: Mar. 05 to 06, 2015

Issued Date: May 26, 2015

Applicant: Belkin International, Inc.

Address: 12045 East Waterfront Drive, Playa Vista, California 90094 United States

- Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
- Lab Address: No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.
- **Test Location (1):** No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.
- **Test Location (2):** No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	lease	e Control Record	4
1	C	Pertificate of Conformity	5
2	S	ummary of Test Results	6
_	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	eneral Information	
	3.1	General Description of EUT	
	3.2 3.2.1	Description of Test Modes Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	3.4.1	Configuration of System under Test	
	3.5	General Description of Applied Standards	
4	т	est Types and Results	12
-			
	4.1	Radiated Emission and Bandedge Measurement	
	4.1.1	······································	
		Test Instruments Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
		Test Results	
	1.2	6dB Bandwidth Measurement	
2	1.2.1	Limits of 6dB Bandwidth Measurement	
4	1.2.2	Test Setup	
2	1.2.3	Test Instruments	20
		Test Procedure	
		Deviation fromTest Standard	
		EUT Operating Conditions	
		Test Result	
	1.3	Conducted Output Power Measurement	
	1.3.1	Limits OF Conducted Output Power Measurement	
		Test Setup	
		Test Instruments Test Procedures	
		Deviation from Test Standard	
		EUT Operating Conditions	
	1.3.7		
2	1.4	Power Spectral Density Measurement	
2	1.4.1	Limits OF Power Spectral Density Measurement	
2	1.4.2	Test Setup	24
4	4.4.3	Test Instruments	24
		Test Procedure	
	1.4.5	Deviation from Test Standard	
		EUT Operating Condition	
		Test Results	
	1.5	Conducted Out of Band Emission Measurement	
	1.5.1	Limits of Conducted Out of Band Emission Measurement	
		Test Setup Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Condition	

4.8	5.7 Test Results	27
5	Pictures of Test Arrangements	29
Арр	endix – Information on the Testing Laboratories	30

Release Control RecordIssue No.DescriptionDate IssuedRF150303E10Original release.May 04, 2015RF150303E10 R11. Revised sec. 3.5.
2. Revised sec. 4.1.3 & 4.1.5.May 26, 2015

1 **Certificate of Conformity**

Product:	WeMo Keyfob
Brand:	WeMo
Test Model:	F7C039
Sample Status:	ENGINEERING SAMPLE
Applicant:	Belkin International, Inc.
Test Date:	Mar. 05 to 06, 2015
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2009

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : ______, Date: ______ May 26, 2015 Lori Chung / Specialist

Approved by :

May Chen / Manager

Date: May 26, 2015 ,

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	NA	Power supply is 3Vdc from battery			
15.205 15.209 15.247(d)	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -7.0dB at 4810.00MHz & 4880.00MHz			
15.205 15.209 15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -8.4dB at 2483.500MHz			
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.			
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.			
15.247(b)	Conducted power	PASS	Meet the requirement of limit.			
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.			
15.203	Antenna Requirement	PASS	No antenna connector is used.			

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	30MHz ~ 1000MHz	5.43 dB
	1GHz ~ 6GHz	3.72 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.00 dB
	18GHz ~ 40GHz	4.11 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	WeMo Keyfob
Brand	WeMo
Test Model	F7C039
Status of EUT	ENGINEERING SAMPLE
Driver version	v1.0.0.3
Power Supply Rating	3Vdc from battery
Modulation Type	O-QPSK
Modulation Technology	DSSS
Transfer Rate	250kbps
Operating Frequency	2405 ~ 2475MHz
Number of Channel	15
Output Power	6.053mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. The antenna provided to the EUT, please refer to the following table:

Gain (dBi)	Frequency range (GHz to GHz)	Antenna Type	Connecter Type
2.59	2.4~2.4835	Printed	NA

2. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

15 channels are provided to this EUT:

Channel	Frequency	Channel	Frequency
11	2405	19	2445
12	2410	20	2450
13	2415	21	2455
14	2420	22	2460
15	2425	23	2465
16	2430	24	2470
17	2435	25	2475
18	2440		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT		APPLI	CABLE TO			
ONFIGURE MODE	RE≥1G	RE < 1G	PLC	APCM		DESCRIPTION
-		N	-	\checkmark		-
Where RE≥1	G: Radiated Emi	ssion above 1GHz	RE<1G: R	adiated Emission b	elow 1GHz	
PLC:	Power Line Cond	lucted Emission	APCM: An	tenna Port Conduc	ted Measure	ment
Note: 1. The X-plai		had been pre-tested	d on the positioned of e	each 3 axis. The wo	orst case wa	s found when positione
		of Conducted Emiss	sion due to the EUT is	powered by battery		
	neans no effect.					
Realiated Er	nission Test	(Above 1GHz):				
✓ Pre-Scar	n has been co	nducted to deter	mine the worst-ca	se mode from a	all possible	e combinations
between	available mod		ates and antenna			
architect			to d for the final to			
Following channel(s) was (were) selected for the final test as listed below.					w.	
	F					DATA RATE (kbps)
AVAILABI CHANNE	TES	TED CHANNEL	MODULATION TECHNOLOGY	MODULATI	UNTIFE	DATA NATE (KDPS)
CHANNE 11 to 25 Radiated Er	nission Test	11, 18, 25 (Below 1GHz):	TECHNOLOGY DSSS	O-QF	PSK	250
CHANNE 11 to 25 Radiated Er Pre-Scar between architect	nission Test n has been co available moo ure).	11, 18, 25 (Below 1GHz): Inducted to deter Julations, data ra	TECHNOLOGY DSSS Trmine the worst-ca	O-QF se mode from a ports (if EUT wi	2SK all possible th antenna	250
CHANNE 11 to 25 Radiated Er Pre-Scar between architect	nission Test n has been co available moo ure). g channel(s) v	11, 18, 25 (Below 1GHz): Inducted to deter Julations, data ra vas (were) selec	TECHNOLOGY DSSS	O-QF se mode from a ports (if EUT wi	2SK all possible th antenna w.	250 e combinations a diversity
CHANNE 11 to 25 Radiated Er Pre-Scar between architect Following	nission Test n has been co available moo ure). g channel(s) v E TES	11, 18, 25 (Below 1GHz): Inducted to deter Julations, data ra	TECHNOLOGY DSSS mine the worst-ca ates and antenna p ted for the final tes	O-QF se mode from a ports (if EUT wi	2SK all possible th antenna w.	250
CHANNE 11 to 25 Radiated Er Pre-Scar between architect Following AVAILABI	n has been co available mod ure). g channel(s) v L TES	11, 18, 25 (Below 1GHz): Inducted to deter Julations, data ra vas (were) selec	TECHNOLOGY DSSS Traine the worst-cates and antenna point the final test MODULATION	O-QF se mode from a ports (if EUT wi	2SK all possible th antenna w. ON TYPE	250 e combinations a diversity
CHANNE 11 to 25 Radiated Er Pre-Scar between architectr Following AVAILABI CHANNE 11 to 25	nission Test n has been co available moo ure). g channel(s) v L L	11, 18, 25 (Below 1GHz): Inducted to deter Julations, data ra vas (were) select TED CHANNEL	TECHNOLOGY DSSS Traine the worst-cate ates and antenna p ted for the final tes MODULATION TECHNOLOGY DSSS	O-QF se mode from a ports (if EUT wi st as listed belo MODULAT	2SK all possible th antenna w. ON TYPE	250 e combinations a diversity DATA RATE (kbps)
CHANNE 11 to 25 Radiated Er Pre-Scar between architectr Following AVAILABI CHANNE 11 to 25	nission Test n has been co available moo ure). g channel(s) v L L	11, 18, 25 (Below 1GHz): Inducted to deter dulations, data ra vas (were) select TED CHANNEL	TECHNOLOGY DSSS Traine the worst-cate ates and antenna p ted for the final tes MODULATION TECHNOLOGY DSSS	O-QF se mode from a ports (if EUT wi st as listed belo MODULAT	2SK all possible th antenna w. ON TYPE	250 e combinations a diversity DATA RATE (kbps)
CHANNE 11 to 25 Cadiated Er Cadiated Er Channe CHANNE AVAILABI CHANNE 11 to 25 CHANNE CHANNE 11 to 25 CHANNE CHANNE	nission Test n has been co available mod ure). g channel(s) v E L TES	11, 18, 25 (Below 1GHz): Inducted to deter Julations, data ra- vas (were) select TED CHANNEL 11 Measurement:	TECHNOLOGY DSSS Timine the worst-cate ates and antenna p ted for the final tes MODULATION TECHNOLOGY DSSS	O-QF se mode from a ports (if EUT wi st as listed belo MODULATI O-QF	2SK all possible th antenna w. ON TYPE 2SK	250 e combinations a diversity DATA RATE (kbps)
CHANNE 11 to 25 Radiated Er Pre-Scar between architect Following AVAILABI CHANNE 11 to 25 Antenna Po This item mode.	nission Test nission Test n has been co available mod ure). g channel(s) v .E L TES rt Conducted n includes all to	11, 18, 25 (Below 1GHz): nducted to deter dulations, data ra /as (were) select TED CHANNEL 11 Measurement: est value of each	TECHNOLOGY DSSS Traine the worst-car ates and antenna p ted for the final tes MODULATION TECHNOLOGY DSSS	O-QF se mode from a ports (if EUT wi st as listed belo MODULATI O-QF	2SK all possible th antenna w. ON TYPE 2SK	250 e combinations a diversity DATA RATE (kbps) 250 worst value of each
CHANNE 11 to 25 Radiated Er Pre-Scar between architectr Following AVAILABI CHANNE 11 to 25 Antenna Po Minis item mode. Pre-Scar	nission Test nhas been co available mod ure). g channel(s) v E TES rt Conducted nincludes all to nhas been co	11, 18, 25 (Below 1GHz): nducted to deter dulations, data ra /as (were) selec TED CHANNEL 11 Measurement: est value of each nducted to deter	TECHNOLOGY DSSS Traine the worst-cate ates and antenna p ted for the final tes MODULATION TECHNOLOGY DSSS	O-QF se mode from a ports (if EUT wi st as listed belo MODULATI O-QF	2SK all possible th antenna w. ON TYPE 2SK m plot of v all possible	250 e combinations a diversity DATA RATE (kbps) 250 worst value of each e combinations
CHANNE 11 to 25 Radiated Er Pre-Scar between architectr Following AVAILABI CHANNE 11 to 25 Antenna Po This item mode. Pre-Scar between	nission Test nission Test n has been co available mod ure). g channel(s) v E TES rt Conducted n includes all to n has been co available mod	11, 18, 25 (Below 1GHz): nducted to deter dulations, data ra /as (were) selec TED CHANNEL 11 Measurement: est value of each nducted to deter	TECHNOLOGY DSSS Traine the worst-car ates and antenna p ted for the final tes MODULATION TECHNOLOGY DSSS	O-QF se mode from a ports (if EUT wi st as listed belo MODULATI O-QF	2SK all possible th antenna w. ON TYPE 2SK m plot of v all possible	250 e combinations a diversity DATA RATE (kbps) 250 worst value of each e combinations
CHANNE 11 to 25 Radiated Er Pre-Scar between architecti Following AVAILABI CHANNE 11 to 25 Antenna Po This item mode. Pre-Scar between architecti	nission Test nission Test n has been co available mod ure). g channel(s) v E TES rt Conducted n includes all to n has been co available mod ure).	11, 18, 25 (Below 1GHz): Inducted to deterned dulations, data range vas (were) select TED CHANNEL 11 Measurement: est value of each inducted to deterned dulations, data range dulations, data rang	TECHNOLOGY DSSS Traine the worst-cate ates and antenna p ted for the final tes MODULATION TECHNOLOGY DSSS	O-QF se mode from a ports (if EUT wi at as listed belo MODULATI O-QF ncludes spectru se mode from a ports (if EUT wi	2SK all possible th antenna w. ON TYPE 2SK m plot of v all possible th antenna	250 e combinations a diversity DATA RATE (kbps) 250 worst value of each e combinations
CHANNE 11 to 25 Radiated Er Pre-Scar between architectr Following AVAILABI CHANNE 11 to 25 Antenna Po Antenna Po This item mode. Pre-Scar between architectr Following AVAILABI	nission Test nission Test n has been co available mod ure). g channel(s) v .E TES rt Conducted n includes all te n has been co available mod available mod g channel(s) v .E	11, 18, 25 (Below 1GHz): Inducted to deterned dulations, data range vas (were) select TED CHANNEL 11 Measurement: est value of each inducted to deterned dulations, data range dulations, data rang	TECHNOLOGY DSSS Traine the worst-cate ates and antenna p ted for the final tes MODULATION TECHNOLOGY DSSS n mode, but only in traine the worst-cate ates and antenna p ted for the final tes MODULATION	O-QF se mode from a ports (if EUT wi at as listed belo MODULATI O-QF ncludes spectru se mode from a ports (if EUT wi	2SK all possible th antenna w. ON TYPE 2SK m plot of v all possible th antenna w.	250 e combinations a diversity DATA RATE (kbps) 250 worst value of each e combinations a diversity
CHANNE 11 to 25 Radiated Er Pre-Scar between architectr Following AVAILABI CHANNE 11 to 25 Antenna Po This item mode. Pre-Scar between architectr Enterna Polowing Pre-Scar	nission Test nission Test n has been co available mod ure). g channel(s) v E TES rt Conducted n includes all to n has been co available mod ure). g channel(s) v	11, 18, 25 (Below 1GHz): Inducted to deter dulations, data ra vas (were) select TED CHANNEL 11 Measurement: est value of each inducted to deter dulations, data ra vas (were) select	TECHNOLOGY DSSS Traine the worst-ca ates and antenna p ted for the final tes MODULATION TECHNOLOGY DSSS n mode, but only in traine the worst-ca ates and antenna p ted for the final tes	O-QF se mode from a ports (if EUT wi at as listed belo MODULATI O-QF ncludes spectru se mode from a ports (if EUT wi at as listed belo	2SK all possible th antenna w. ON TYPE 2SK all possible th antenna w. ON TYPE	250 e combinations a diversity DATA RATE (kbps) 250 worst value of each e combinations

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
	24deg. C, 68%RH		Robert Cheng
RE≥1G	25deg. C, 65%RH	DC 3V	Tim Ho
RE<1G	22deg. C, 66%RH	DC 3V	Tim Ho
APCM	25deg. C, 60%RH	DC 3V	Anderson Chen

Duty Cycle of Test Signal

3.3

Duty cycle of test signal is 100 %, duty factor is not required.

ary	0,010	or toot org		100 /	<i>,</i> 0, 0	Jucy	iuotoi	10 11
				RBAV 10 MHz VBAV 10 MHz SVVT 100 ms		T1] MP VIEW	1	
31 <u>- C</u>	ef 31 dBm	Att 30 dB		SWI 100 ms				
	Offset 11 dB							
20							_	
10-							_	
0-								
10-								
20							_	
30							_	
40							_	
50							_	
60							BUR C	4
69-	1 1	1 1	1 I 10 ms/	1	1	1		U/15 1028

3.4 Description of Support Units

The EUT has been tested as an independent unit.

3.4.1 Configuration of System under Test

EUT

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) 558074 D01 DTS Meas Guidance v03r02 ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
MXE EMI Receiver Agilent	N9038A	MY50010156	Aug. 11, 2014	Aug. 10, 2015
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-04	Nov. 12, 2014	Nov. 11, 2015
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Feb. 09, 2015	Feb. 08, 2016
RF Cable	NA	CHHCAB_001	Oct. 05, 2014	Oct. 04, 2015
Horn_Antenna AISI	AIH.8018	0000220091110	Aug. 26, 2014	Aug. 25, 2015
Pre-Amplifier Agilent	8449B	300801923	Oct. 28, 2014	Oct. 27, 2015
RF Cable	NA	131206 131215 SNMY23685/4	Jan. 16, 2015	Jan. 15, 2016
Spectrum Analyzer R&S	FSV40	100964	July 05, 2014	July 04, 2015
Pre-Amplifier EMCI	EMC184045	980143	Jan. 16, 2015	Jan. 15, 2016
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Aug. 26, 2014	Aug. 25, 2015
RF Cable	NA	RF104-121 RF104-204	Dec. 11, 2014	Dec. 10, 2015
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3 The test was performed in 966 Chamber No. H.

4. The FCC Site Registration No. is 797305.

5 The CANADA Site Registration No. is IC 7450H-3.

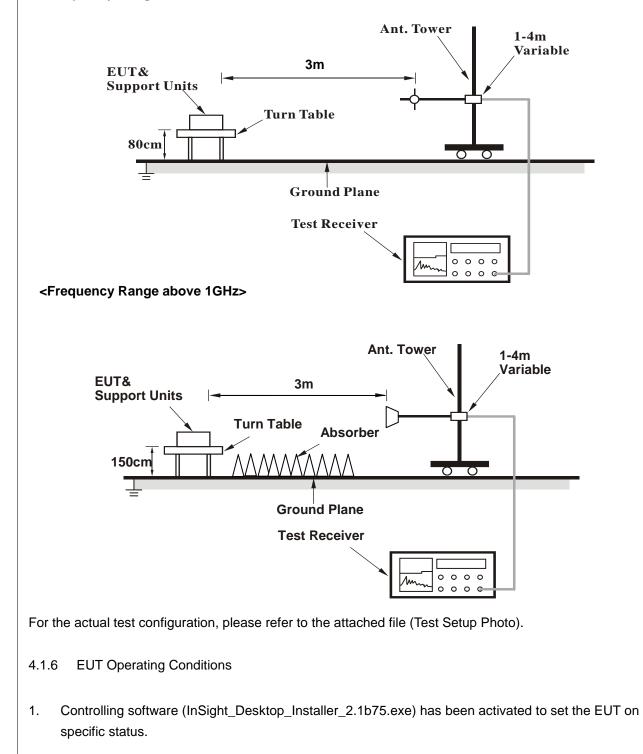
6 Tested Date: Mar. 05 to 06, 2015

4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. For emission measurements above 1 GHz, the EUT shall be placed at a height of 1.5 m above the ground at 3 meter chamber room for test
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 6. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

<Frequency Range below 1GHz>

4.1.7 Test Results

Above 1GHz Data

CHAN	NEL	TX Channel 11	DETECTOR	Peak (PK)
FREQ	UENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	48.3 PK	74.0	-25.7	1.67 H	256	16.40	31.90	
2	2390.00	37.7 AV	54.0	-16.3	1.67 H	256	5.80	31.90	
3	*2405.00	104.1 PK			1.67 H	256	72.17	31.93	
4	*2405.00	100.1 AV			1.67 H	256	68.17	31.93	
5	4810.00	55.5 PK	74.0	-18.5	1.06 H	217	14.66	40.84	
6	4810.00	46.1 AV	54.0	-7.9	1.06 H	217	5.26	40.84	
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	48.3 PK	74.0	-25.7	1.09 V	114	16.40	31.90	
2	2390.00	36.1 AV	54.0	-17.9	1.09 V	114	4.20	31.90	
3	*2405.00	100.3 PK			1.09 V	114	68.37	31.93	
4	*2405.00	96.1 AV			1.09 V	114	64.17	31.93	
5	4810.00	57.0 PK	74.0	-17.0	1.13 V	264	16.16	40.84	
6	4810.00	47.0 AV	54.0	-7.0	1.13 V	264	6.16	40.84	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
 The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 18	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2440.00	104.3 PK			1.65 H	264	72.28	32.02	
2	*2440.00	100.0 AV			1.65 H	264	67.98	32.02	
3	4880.00	55.8 PK	74.0	-18.2	1.02 H	205	15.04	40.76	
4	4880.00	46.3 AV	54.0	-7.7	1.02 H	205	5.54	40.76	
5	7320.00	55.3 PK	74.0	-18.7	1.15 H	86	9.83	45.47	
6	7320.00	45.1 AV	54.0	-8.9	1.15 H	86	-0.37	45.47	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
	*0440.00				4 00 1/	400	00 40	00.00	

	()	(dBuV/m)	(()	(m)	(Degree)	(dBuV)	(dB/m)
1	*2440.00	100.2 PK			1.06 V	126	68.18	32.02
2	*2440.00	96.0 AV			1.06 V	126	63.98	32.02
3	4880.00	57.2 PK	74.0	-16.8	1.10 V	273	16.44	40.76
4	4880.00	47.0 AV	54.0	-7.0	1.10 V	273	6.24	40.76
5	7320.00	55.5 PK	74.0	-18.5	1.13 V	269	10.03	45.47
6	7320.00	43.4 AV	54.0	-10.6	1.13 V	269	-2.07	45.47

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 25	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2475.00	104.8 PK			1.16 H	112	72.70	32.10
2	*2475.00	100.7 AV			1.16 H	112	68.60	32.10
3	2483.50	57.0 PK	74.0	-17.0	1.16 H	112	24.87	32.13
4	2483.50	45.6 AV	54.0	-8.4	1.16 H	112	13.47	32.13
5	4950.00	55.8 PK	74.0	-18.2	1.02 H	205	15.09	40.71
6	4950.00	46.3 AV	54.0	-7.7	1.02 H	205	5.59	40.71
7	7425.00	55.3 PK	74.0	-18.7	1.15 H	86	9.49	45.81
8	7425.00	45.1 AV	54.0	-8.9	1.15 H	86	-0.71	45.81
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2475.00	99.9 PK			1.03 V	125	67.80	32.10
2	*2475.00	95.8 AV			1.03 V	125	63.70	32.10
3	2483.50	55.8 PK	74.0	-18.2	1.03 V	125	23.67	32.13
4	2483.50	44.2 AV	54.0	-9.8	1.03 V	125	12.07	32.13
5	4950.00	56.1 PK	74.0	-17.9	1.11 V	262	15.39	40.71
6	4950.00	46.4 AV	54.0	-7.6	1.11 V	262	5.69	40.71
7	7425.00	55.0 PK	74.0	-19.0	1.18 V	273	9.19	45.81
8	7425.00	43.2 AV	54.0	-10.8	1.18 V	273	-2.61	45.81

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

Below 1GHz Data

CHANNEL	TX Channel 11	DETECTOR	
FREQUENCY RANGE	Below 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	257.71	14.6 QP	46.0	-31.4	2.00 H	87	28.32	-13.68
2	272.06	15.2 QP	46.0	-30.8	2.00 H	28	28.20	-12.96
3	286.37	17.2 QP	46.0	-28.8	1.50 H	295	29.54	-12.38
4	314.99	19.5 QP	46.0	-26.5	1.50 H	113	30.74	-11.26
5	489.97	17.0 QP	46.0	-29.0	1.00 H	40	24.47	-7.46
6	956.98	29.1 QP	46.0	-16.9	2.00 H	232	27.97	1.17
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	250.00	15.0 QP	46.0	-31.0	1.00 V	43	28.89	-13.91
2	257.71	13.7 QP	46.0	-32.3	1.50 V	117	27.42	-13.68
3	286.42	14.6 QP	46.0	-31.4	1.50 V	139	27.00	-12.38
4	314.99	16.2 QP	46.0	-29.8	2.00 V	304	27.45	-11.26
5	693.00	22.6 QP	46.0	-23.5	1.00 V	360	26.06	-3.51
6	956.98	31.5 QP	46.0	-14.6	2.00 V	172	30.28	1.17
	VDKC.							

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

4.2 6dB Bandwidth Measurement

4.2.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.2.2 Test Setup

4.2.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER R&S	FSP 40	100060	May 08, 2014	May 07, 2015

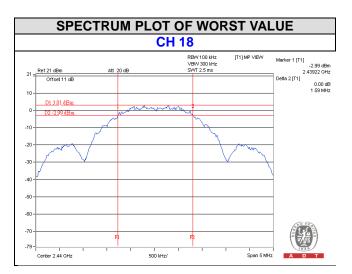
- NOTE: 1. The test was performed in Oven room B.
 - 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 3. Tested Date: Mar. 06, 2015

4.2.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.2.5 Deviation fromTest Standard

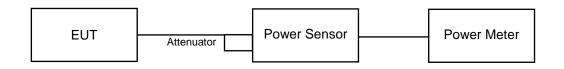
No deviation.


4.2.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.7 Test Result

Channel	Frequency (MHz)	6dB bandwidth (MHz)	Minimum limit (MHz)	Pass / Fail
11	2405	1.59	0.5	PASS
18	2440	1.59	0.5	PASS
25	2475	1.60	0.5	PASS



4.3 Conducted Output Power Measurement

4.3.1 Limits OF Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.3.2 Test Setup

4.3.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Power meter Anritsu	ML2495A	1014008	Apr. 30, 2014	Apr. 29, 2015
Power sensor Anritsu	MA2411B	0917122	Apr. 30, 2014	Apr. 29, 2015

NOTE: 1. The test was performed in Oven room B.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Mar. 06, 2015

4.3.4 Test Procedures

The peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the peak power level.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

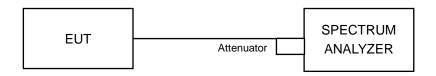
4.3.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
11	2405	6.053	7.82	30	Pass
18	2440	5.902	7.71	30	Pass
25	2475	5.834	7.66	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
11	2405	5.623	7.50
18	2440	5.495	7.40
25	2475	5.470	7.38



4.4 Power Spectral Density Measurement

4.4.1 Limits OF Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm.

4.4.2 Test Setup

4.4.3 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL	CALIBRATED	CALIBRATED
MANUFACTURER		NO.	DATE	UNTIL
SPECTRUM ANALYZER R&S	FSP 40	100060	May 08, 2014	May 07, 2015

NOTE: 1. The test was performed in Oven room B.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Mar. 06, 2015

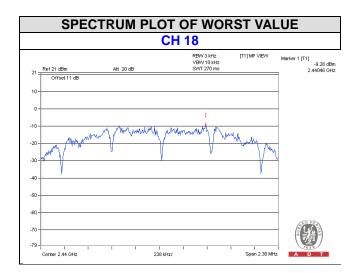
4.4.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.

i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.4.5 Deviation from Test Standard

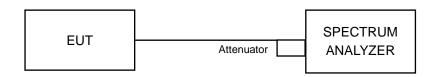
No deviation.


4.4.6 EUT Operating Condition

Same as Item 4.2.6

4.4.7 Test Results

Channel	Freq. (MHz)	PSD (dBm)	Limit (dBm)	Pass /Fail
11	2405	-9.37	8	Pass
18	2440	-9.28	8	Pass
25	2475	-9.28	8	Pass



4.5 Conducted Out of Band Emission Measurement

4.5.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.5.2 Test Setup

4.5.3 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL	CALIBRATED	CALIBRATED
MANUFACTURER		NO.	DATE	UNTIL
SPECTRUM ANALYZER R&S	FSP 40	100060	May 08, 2014	May 07, 2015

NOTE: 1. The test was performed in Oven room B.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Mar. 06, 2015

4.5.4 Test Procedure

MEASUREMENT PROCEDURE REF

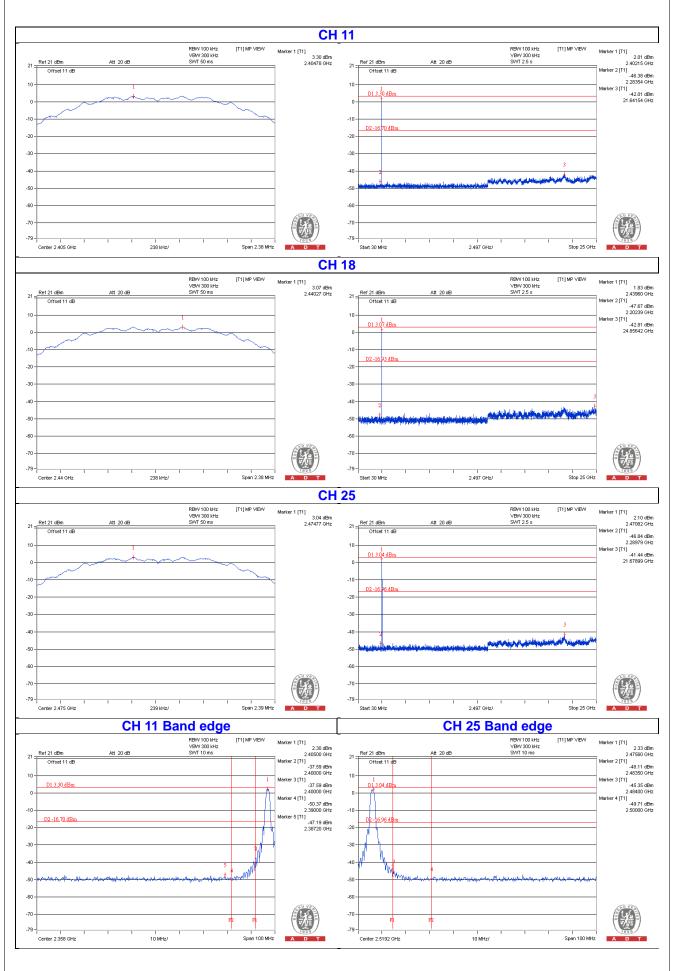
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.2.6

4.5.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----