## SAR Evaluation Report for FCC OET Bulletin 65 Supplement C and Industry Standard RSS-102 Issue 2

Report No.: 08-12-MAS-239-01

| Client:                     | Beikin International, Inc.                                                                           |                             |
|-----------------------------|------------------------------------------------------------------------------------------------------|-----------------------------|
| Product:                    | Enhanced Wireless USB Adapter                                                                        |                             |
| Model:                      | F6D4050 v1                                                                                           |                             |
| FCC ID:                     | K7SF6D4050V1                                                                                         |                             |
| IC ID:                      | 3623A-F6D4050V1                                                                                      |                             |
| Manufacturer/supplier:      | Belkin International, Inc.                                                                           |                             |
| Date test item received:    | 2008/12/31                                                                                           |                             |
| Date test campaign complete | d: 2009/01/09                                                                                        |                             |
| Date of issue:              | 2009/01/09                                                                                           |                             |
| Test Result:                | Compliance                                                                                           | ☐ Not Compliance            |
| of 1.6 W/kg averaged over a | or the test sample are below the many 1g tissue according to FCC OET Canada RSS-102 (Issue 2, 2005). |                             |
| v i                         | o the tested sample. It is not perm<br>nission of the test laboratory.                               | nitted to copy this report, |

| Test Engineer | Checked by | Approved by |
|---------------|------------|-------------|
| Johnshi       | Joe Hieh   | Arson Chou  |
| John Li       | Joe Hsieh  | Anson Chou  |
|               |            |             |

The testing described in this report has been carried out to the best of our knowledge and ability, and our responsibility is limited to the exercise of reasonable care. This certification is not intended to believe the sellers from their legal and/or contractual obligations.

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 1 of 66

Page No.

Total number of pages of this test report: 66 pages

#### **Applicant Information**

**Client** : Belkin International, Inc.

Address : 501 West Walnut Street, Compton CA 90220, USA

**Manufacturer** : Belkin International, Inc.

Address : 501 West Walnut Street, Compton CA 90220, USA

**EUT** : Enhanced Wireless USB Adapter

Trade name Belkin

**Model No.** : F6D4050 v1

**Standard Applied** : FCC OET 65 Supplement C (Edition 01-01, June 2001)

Industry Standard RSS-102 Issue 2 (November 2005)

IEEE Standard 1528-2003 KDB: 447498 (12/02/2008)

**Laboratory** : CERPASS TECHNOLOGY CORP.

4F-2, No. 28, Lane 78, Xing-Ai Rd. Nei-hu, Taipei City 114

Taiwan, R.O.C.

**Test Location**: No.8, Lane 29, Wenming RD., LeShan Tsuen, GuiShan

Shiang, Taoyuan County 33383, Taiwan, R.O.C.

Test Result : Maximum SAR Measurement

802.11b: 0.129 W/kg(1g)

802.11g: 0.037 W/kg(1g)

802.11n HT20: 0.027 W/kg(1g)

802.11n HT40: 0.027 W/kg(1g)

The Enhanced Wireless USB Adapter is in compliance with the FCC Report and Order 93-326 and Health Canada Safety Code 6, and the tests were performed according to the FCC OET65c and RSS-102 Issue 2 for uncontrolled exposure.

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 2 of 66



# Table of Contents

| EXE  | ECUTIVE SUMMARY                                         | 5  |
|------|---------------------------------------------------------|----|
| 1    | GENERAL INFORMATION                                     | 6  |
| 1.1  | Description of Equipment Under Test                     | 6  |
| 1.2  | Photograph of EUT                                       | 6  |
| 1.3  | Characteristics of Device                               | 7  |
| 1.4  | Description of support units                            | 7  |
| 1.5  | Environment Conditions                                  | 8  |
| 1.6  | FCC Requirements for SAR Compliance Testing             | 8  |
| 1.   | 1.6.1 RF Exposure Limits                                | 8  |
| 1.7  | The SAR Measurement Procudure                           | 9  |
| 1    | 1.7.1 General Requirements                              | 9  |
| 1    | 1.7.2 Phantom Requirements                              | 9  |
| 1.   | 1.7.3 Test Positions                                    | 9  |
| 1    | 1.7.4 Test Procedures                                   | 9  |
| 2    | DESCRIPTION OF THE TEST EQUIPMENT                       | 10 |
| 2.1  | Test Equipment List                                     | 10 |
| 2.2  | DASY4 Measurement System Diagram                        | 11 |
| 2.3  | DASY4 Measurement Server                                | 12 |
| 2.4  | DAE (Data Acquisition Electronics)                      | 13 |
| 2.5  | Phantom                                                 | 15 |
| 2.6  | Device Holder                                           | 15 |
| 2.7  | Specifications of Probes                                | 16 |
| 2.8  | SAR Measurement Procedures in DASY4                     | 17 |
| 2.9  | Simulating Liquids                                      | 17 |
| 2.10 | 0 System Performance Check                              | 18 |
| 2    | 2.10.1 Purpose                                          | 18 |
| 2    | 2.10.2 System Performance Check Procedure               |    |
| 2    | 2.10.3 System Performance Check Setup                   |    |
| 2    | 2.10.4 Result of System Performance Check: Valid Result | 19 |
| 3    | RESULTS                                                 | 20 |
| 3.1  | Summary of Test Results                                 | 20 |
| 3.2  | Description for EUT testing position                    | 20 |
| 3.3  | Check the conducted output power of worst mode          | 20 |

Issued Date : Jan. 09, 2009

Page No.

: 3 of 66



# CERPASS TECHNOLOGY CORP.

| 3.4 |       | Check the position for worst result                 | 20 |
|-----|-------|-----------------------------------------------------|----|
| 3.5 |       | Double check the other mode result                  | 20 |
| 3.6 |       | Increments distance check                           | 21 |
| 3.7 |       | Measurement Position                                | 22 |
| 3   | 3.7.1 | USB Orientation 1 of EUT Position                   | 22 |
| 3   | 3.7.2 | 2 USB Orientation 2 of EUT Position                 | 22 |
| 3   | 3.7.3 | USB Orientation 3 of EUT Position                   | 23 |
| 3   | 3.7.4 | USB Orientation 4 of EUT Position                   | 23 |
| 4   | T     | HE DESCRIPTION OF TEST PROCEDURE FOR FCC            | 24 |
| 4.1 |       | Scan Procedure                                      | 24 |
| 4.2 |       | SAR Averaging Methods                               | 24 |
| 4.3 |       | Data Storage                                        | 24 |
| 4.4 |       | Data Evaluation                                     | 25 |
| 5   | M     | IEASUREMENT UNCERTAINTY                             | 27 |
| 5.1 |       | Measurement Uncertainty I (According to IEEE 1528)  | 27 |
| 5.2 |       | Measurement Uncertainty II (According to IEC 62209) | 28 |
| 6   | R     | EFERENCES                                           | 29 |
| 7   | A     | NNEX: TEST RESULTS OF DASY4 (REFER TO ANNEX)        | 29 |

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Issued Date : Jan. 09, 2009

Page No. : 4 of 66

## **Executive Summary**

The Enhanced Wireless USB Adapter is a usb dongle from Belkin International , Inc. products operating in the 2.4GHz frequency ranges. This device contains wireless functions that are operational in IEEE 802.11b, IEEE 802.11g, IEEE 802.11n HT20 and IEEE 802.11n HT40 modes. The measurements were conducted by CERPASS and carried out with the dosimetric assessment system – DASY4.

The measurements were conducted according to FCC OET 65 Supplement C [Reference 5] for evaluating compliance with requirements of FCC Report and Order 96-326 [Reference 3] and also according to Industry Standard RSS-102 Issue 2 [Reference 8] for evaluating compliance with requirements of Health Canada Safety Code 6[Reference 9].

The frequency range of the device:

| The frequency tange of the devices |      |                   |      |  |  |  |
|------------------------------------|------|-------------------|------|--|--|--|
| IEEE 802.11b/g/n HT20 CH MHz       |      | IEEE 802.11n HT40 |      |  |  |  |
|                                    |      | СН                | MHz  |  |  |  |
| 01                                 | 2412 | 03                | 2422 |  |  |  |
| 06                                 | 2437 | 06                | 2437 |  |  |  |
| 11                                 | 2462 | 09                | 2452 |  |  |  |

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Page No.

: 5 of 66

## 1 General Information

## 1.1 Description of Equipment Under Test

| EUT Type                | Enhanced Wireless USB Adapter     |
|-------------------------|-----------------------------------|
| Trade Name              | Belkin                            |
| Model Name              | F6D4050 v1                        |
| Hardware version        | N/A                               |
| Software version        | N/A                               |
| Tx Frequency            | 2412 ~ 2462 MHz                   |
| Rx Frequency            | 2412 ~ 2462 MHz                   |
| Antenna Type            | Internal Type                     |
| Device Category         | Portable Part                     |
| RF Exposure Environment | General Population / Uncontrolled |
| Crest Factor            | 1                                 |

## 1.2 Photograph of EUT





Issued Date : Jan. 09, 2009

Cerpass Technology Corp.

Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 6 of 66

## 1.3 Characteristics of Device

The EUT is a 2.4 GHz Enhanced Wireless USB Adapter. It conforms to the IEEE 802.11b/g/n protocal and operates in the unlicensed ISM Band at 2.4 GHz.

| RF chain        | 1T1R                                          |
|-----------------|-----------------------------------------------|
| Frequency Range | IEEE 802.11b/g, 802.11n HT20: 2412MHz~2462MHz |
|                 | IEEE 802.11n HT40: 2422MHz~2452MHz            |
| Channel Spacing | IEEE 802.11b/g/n: 5MHz                        |
| Channel Number  | IEEE 802.11b/g, 802.11n HT20: 11 Channels     |
|                 | IEEE 802.11n HT40: 7 Channels                 |

## 1.4 Description of support units

The SAR evaluation was performed on the following hosts:

| Host # | Description     | Manufacturer | Model          | Overall Dimension       |
|--------|-----------------|--------------|----------------|-------------------------|
| 1      | Laptop Computer | HP           | NX6320         | 32.8cm x 26.7cm x 3.1cm |
| 2      | Laptop Computer | ACER         | TravelMate 550 | 31.5cm x 27.5cm x 4.3cm |

Laptop computers are not available for testing the Horizontal-UP of the EUT and the remaining Vertical-Front orientation, a short and high quality USB connector cable is used for testing these other orientations.

| Cable # | Description | Manufacturer | Type           | Length |
|---------|-------------|--------------|----------------|--------|
| 1       | USB cable   | N/A          | Female to male | 25cm   |

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 7 of 66

#### 1.5 Environment Conditions

| Item                         | Target  | Measured |
|------------------------------|---------|----------|
| Ambient Temperature (°C)     | 18 ~ 25 | 22 ± 1   |
| Temperature of Simulant (°C) | 20 ~ 24 | 22 ± 1   |
| Relative Humidity (% RH)     | 30 ~ 70 | 60 ~ 70  |

## 1.6 FCC Requirements for SAR Compliance Testing

According to the FCC order "Guidelines for Evaluating the Environmental Effects of RF Radiation", for consumer products, the SAR limit is **1.6 W/kg** for an uncontrolled environment and **8.0 W/kg** for an occupational/controlled environment. Pursuant to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on June 29, 2001 by FCC, the equipment under test should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for intended or normal operation, incorporating normal antenna operating positions, equipment undet test peak performance frequencies and positions for maximum RF power coupling.

#### 1.6.1 RF Exposure Limits

|                                                | Whole-Body | Partial-Body | Arms and Legs |
|------------------------------------------------|------------|--------------|---------------|
| Population/Uncontrolled<br>Environments (W/kg) | 0.08       | 1.6          | 4.0           |
| Occupational/Controlled<br>Environments (W/kg) | 0.4        | 8.0          | 20.0          |

#### **Notes:**

- 1. Population/Uncontrolled Environments: Locations where there is the exposure of individuals who have no sense or control of their exposure.
- 2. Occupational/Controlled Environments: Locations where there is exposure that may be incurred by people who have knowledge of the potential for exposure.
- 3. Whole-Body: SAR is averaged over the entire body.
- 4. Partial-Body: SAR is averaged over any 1g of tissue volume as defined in specification.
- 5. Arms and Legs: SAR is averaged over 10g of tissue volume as defined in specification.

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Page No.

: 8 of 66

## 1.7 The SAR Measurement Procudure

## 1.7.1 General Requirements

The test should be performance in a laboratory without influence on SAR measurements by ambient RF sources and any reflection from the environment inside. The ambient temperature should be kept in the range of  $18^{\circ}$ C to  $25^{\circ}$ C with a maximum variation within  $\pm 2^{\circ}$ C during the test.

## 1.7.2 Phantom Requirements

The phantoms used in test are simplified representations of the human head and body as a specific shaped container for the head or body simulating liquids. The physical characteristics of the phantom models should resemble the head and the body of a mobile user sice the shape is a dominant parameter for exposure. The shell of the phantom should be made of low loss and low permittivity material and the thickness tolerance should be less than 0.2 mm. In addition, the phantoms should provide simulations of both right and left hand operations.

#### 1.7.3 Test Positions

- 1. The horizontal-down and horizontal-up of EUT contact to the flat phantom. (Test with Notebook Model: HP NX6320) The transmitted antenna of the EUT located under the reference point of the flat phantom. The separation distance is 5mm between the top of the EUT and the bottom of the flat phantom. The area scan size is 41 x 61 points.
- 2. The vertical-back and vertical-front of EUT contact to the flat phantom. (Test with Notebook Model: ACER TravelMate550) The transmitted antenna of the EUT located under the reference point of the flat phantom. The separation distance is 5mm between the top of the EUT and the bottom of the flat phantom. The area scan size is 31 x 61 points.

#### 1.7.4 Test Procedures

The EUT (WIRELESS USB DONGLE) plugged into the notebook. Use the software to control the EUT channel and transmission power. Then record the conducted power before the testing. Place the EUT to the specific test location. After the testing, must writing down the conducted power of the EUT into the report. The SAR value was calculated via the 3D spline interpolation algorithm that has been implemented in the software of DASY4 SAR measurement system manufactured and calibrated by SPEAG.

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 9 of 66

## **2** Description of the Test Equipment

The measurements were performed using an automated near-field scanning system, DASY4 software, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements on the test device was the 'worstcase extrapolation' algorithm.

## 2.1 Test Equipment List

| Equipment                       | Manufacturer                       | Туре          | S/N             | Calibration<br>Expiry                                              |
|---------------------------------|------------------------------------|---------------|-----------------|--------------------------------------------------------------------|
| Robot                           | Staubli                            | RX90B L       | F03/5W16A1/A/01 | (not necessary)                                                    |
| Robot Controller                | Staubli                            | CS7MB         | F03/5W16A1/C/01 | (not necessary)                                                    |
| Teach Pendant                   | Staubli                            |               | D221340061      | (not necessary)                                                    |
| DAE4                            | Schmid & Partner<br>Engineering AG |               | 629             | 2009-09-22                                                         |
| E-field Probe                   | Schmid & Partner<br>Engineering AG | EX3DV4        | 3555            | 2009-09-18                                                         |
| Dipole Validation Kit           | Schmid & Partner<br>Engineering AG | D2450V2       | 764             | 2009-09-23                                                         |
| Digital Thermometer             | DER EE                             | K-TYPE        | DE-3003         | 2009-01-14                                                         |
| Directional Coupler             | Amplifier Research                 | DC7420        | 310569          | 2009-08-13                                                         |
| DASY4 Software                  | Schmid & Partner<br>Engineering AG |               | Version 4.6B23  | To automatically control the robot and perform the SAR measurement |
| SEMCAD Software                 | Schmid & Partner<br>Engineering AG |               | Version 1.8B160 | Post-processing<br>and report<br>management                        |
| Signal Generator                | Agilent                            | 83640B        | 3844A01143      | 2009-09-18                                                         |
| Amplifier                       | Mini-Circuits                      | ZHL-42W       | D111704-01-02   | 2009-01-29                                                         |
| Power Meter                     | BOONTON                            | 4532-0102     | 136601          | 2009-05-04                                                         |
| Power Sensor                    | BOONTON                            | 51011-<br>EMC | 32861           | 2009-05-04                                                         |
| Power Sensor                    | BOONTON                            | 56518         | 3233            | 2009-05-04                                                         |
| S-Parameter Network<br>Analyzer | Agilent                            | 8753ES        | MY40001340      | 2009-12-01                                                         |
| Calibration Kit                 | Agilent                            | 85033C        | 2920A03287      | (not necessary)                                                    |
| Dielectric Probe Kit            | Agilent                            | 85070E        | MY44300101      | (not necessary)                                                    |

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 10 of 66



## 2.2 DASY4 Measurement System Diagram

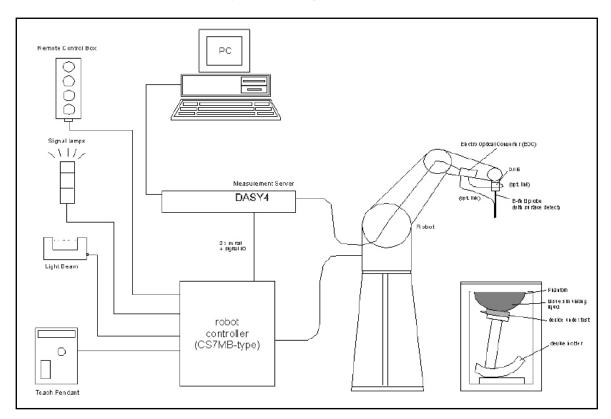



Fig. 1 The DASY4 Measurement System



Fig. 2 The DASY4 System Photo

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 11 of 66

The DASY4 system consists of the following items:

- A fixed-on-ground high precision 6-axis robot with controller and software and an arm extension for moving the Data Acquisition Electronics (DAE) and Probe.
- A dosimetric probe, an isotropic E-field probe optimized and calibrated for usage in head or body tissue simulating liquids. Some of the probes are equipped with an optical surface detector system.
- A Data Acquisition Electronic (DAE) performing the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. DAE is powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to Electro-Optical Coupler (EOC).
- The EOC performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server performing all real-time data evaluation for field measurements and surface detection, controlling robot movements and handling safety operation. A computer with operating Windows 2000 is used for server.
- DASY4 software and SEMCAD data evaluation software are installed in PC.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed well according to the given recipes.
- System validation dipoles is used to validate the proper functioning of the system

## 2.3 DASY4 Measurement Server



Fig. 3 DASY4 Measurement Server

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Page No.

: 12 of 66

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power pentium, 32MB chipdisk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server.

## 2.4 DAE (Data Acquisition Electronics)



Fig. 4 DAE Photo

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 13 of 66



Some probes are equipped with an optical multifiber line, ending at the front of the probe tip. This line is connected to the EOC box on the robot arm and provides automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. If the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases during the approach, reaches a maximum and then decreases. If the probe perpendicularly touches the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2<sup>nd</sup> order fitting. The approach is stopped upon reaching the maximum.

The optical surface detection works in transparent liquids and on di\_use reflecting surfaces with a repeatability of better than  $\pm 0.1$ mm. The distance of the maximum depends on the fiber and the surrounding media. It is typically 1.0mm to 2.0mm in tissue simulating mixtures. The distance can be measured with the surface check job (described in the reference guide).

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 14 of 66

## 2.5 Phantom

The phantom used for all tests i.e. for both system performance checking and device testing, was the twinheaded "SAM Twin Phantom V4.0", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

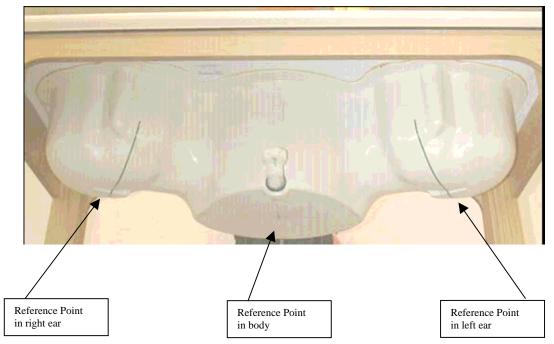



Fig. 5 SAM Twin Phantom and the definition points

## 2.6 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integrated part of the Dasy system.



Fig. 6 Device holder supplied by SPEAG

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 15 of 66



## 2.7 Specifications of Probes

The E-Field Probes ET3DV6 or EX3DV4, manufactured and calibrated annually by Schmid & Partner Engineering AG with following specification are used for the dosimetric measurements.

#### ET3DV6:

- Dynamic range:  $5 \mu \text{ W/g} \sim 100 \text{ mW/g}$
- Tip diameter: 6.8 mm
- Probe linearity:  $\pm 0.2 \text{ dB} (30\text{MHz to } 3 \text{ GHz})$
- Axial isotropy:  $\pm 0.2 \text{ dB}$
- Spherical isotropy:  $\pm 0.4 \text{ dB}$
- Distance from probe tip to dipole centers: 2.7 mm
- Calibration range: 900MHz/1750MHz/1900MHz//2450MHz for head and body simulating liquids.

#### EX3DV4:

- Dynamic range:  $10 \mu \text{ W/g} \sim 100 \text{ mW/g}$
- Tip diameter: 2.5 mm
- Probe linearity:  $\pm 0.2 \text{ dB}$  (30MHz to 3 GHz)
- Axial isotropy:  $\pm 0.2 \text{ dB}$
- Spherical isotropy:  $\pm 0.4 \text{ dB}$
- Distance from probe tip to dipole centers: 1.0 mm
- Calibration range: 900MHz/1810MHz for head simulating liquid and

Cerpass Technology Corp.

Issued Date : Jan. 09, 2009

Page No.

: 16 of 66

## 2.8 SAR Measurement Procedures in DASY4

## **Step 1 Setup a Call Connection**

Establish a call in handset at the maximum power level with a base station simulator via air interface.

## **Step 2 Power Reference Measurement**

To measure the local E-field value at a fixed location which value will be taken as a reference value for calculating a possible power drift.

#### Step 3 Area Scan

To measure the SAR distribution with a grid with spacing of 15 mm x 15 mm and kept with a constant distance to the inner surface of the phantom. Additional all peaks within 3 dB of the maximum SAR are searched.

## Step 4 Zoom Scan

At these points (maximum number of SAR peaks is two), a cube of 32 mm x 32 mm x 30 mm is applied to and measured with 5 x 5 x 7 points. With these measured data, a peak spatial-average SAR value can be calculated by SEMCAD software.

#### **Step 5 Power Drift Measurement**

Repetition of the E-field measurement at the fixed location mentioned in Step 1 to make sure the two results differ by less than  $\pm$  0.2 dB.

## 2.9 Simulating Liquids

Liquid Recipes for this test report are as following:

**BSL 2450MHz band (Body)** 

| Ingredient | % by weight |
|------------|-------------|
| Water      | 68.12       |
| DGBE       | 31.72       |
| Salt       | 0.16        |

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

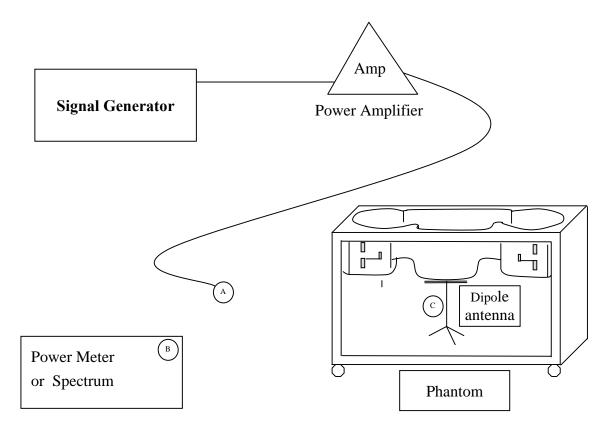
: 17 of 66

## 2.10 System Performance Check

#### **2.10.1 Purpose**

- 1. To verify the simulating liquids are valid for testing.
- 2. To verify the performance of testing system is valid for testing.

## 2.10.2 System Performance Check Procedure


The DASY4 installation includes predefined files with recommended procedures for measurements and the system performance check. They are read-only document files and destined as fully defined but unmeasured masks, so the finished system performance check must be saved under a different name. The system performance check document requires the SAM Twin Phantom, so this phantom must be properly installed in your system. (User defined measurement procedures can be created by opening a new document or editing an existing document file). Before you start the system performance check, you need only to tell the system with which components (probe, medium, and device) you are performing the system performance check; the system will take care of all parameters.

- The Power Reference Measurement and Power Drift Measurement jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above  $\pm 0.1$  dB), the system performance check should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below  $\pm 0.02$  dB.
- The Surface Check job tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above  $\pm 0.1 \text{mm}$ ). In that case it is better to abort the system performance check and stir the liquid.
- The Area Scan job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable. Schmid & Partner Engineering AG, DASY4 Manual, February 2005 16-2 System Performance Check Application Notes If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result.
- The Zoom Scan job measures the field in a volume around the peak SAR value assessed in the previous Area Scan job (for more information see the application note on SAR evaluation). If the system performance check gives reasonable results, the SAR peak, 1 g and 10 g spatial average SAR values normalized to 1W dipole input power give reference data for comparisons. The next sections analyze the expected uncertainties of these values, as well as additional checks for further information or troubleshooting.

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 18 of 66

## 2.10.3 System Performance Check Setup



#### Note:

- 1. A connected to B is used to make sure whether the input power is 250mW for target frequency..
- 2. A connected to C is used to input the measured power to dipole antenna

## 2.10.4 Result of System Performance Check: Valid Result

**2450MHz band - Diepole Antenna:** D2450V2 (S/N: 764)

| Date of<br>Measurement               | SAR@1g                       | Dielectric I                 | Temperature                       |                        |
|--------------------------------------|------------------------------|------------------------------|-----------------------------------|------------------------|
| And<br>Reference Value               | [W/kg]                       | <b>E</b> r                   | <b>σ</b> [S/m]                    | [°C]                   |
| Body 2450MHz<br>Recommended<br>Value | 12.7 ±10%<br>[11.43 ~ 13.97] | 52.7 ±10%<br>[47.43 ~ 57.97] | 1.95 ± 5%<br>[1.8525 ~<br>2.0475] | $22.0 \pm 2$ [20 ~ 24] |
| 2009-01-05                           | 13.7                         | 50.8                         | 1.98                              | 21.2                   |

Cerpass Technology Corp.

Issued Date

: Jan. 09, 2009

#### 3 **Results**

#### **Summary of Test Results** 3.1

| No deviations from the technical specification(s) were ascertained in the course of the tests performed. |  |
|----------------------------------------------------------------------------------------------------------|--|
| The deviations as specified in this chapter were ascertained in the course of the tests Performed.       |  |

#### **Description for EUT testing position** 3.2

| EUT position | Horizontal-Down | Horizontal-Up | Vertical-Back | Vertical-Front |
|--------------|-----------------|---------------|---------------|----------------|
| Description  | Orientation 1   | Orientation 2 | Orientation 3 | Orientation 4  |

#### Check the conducted output power of worst mode 3.3

| Mode              | Channel | Power (dBm) | Note  |
|-------------------|---------|-------------|-------|
| IEEE 802.11b      | 06      | 17.40       | Worst |
| IEEE 802.11g      | 06      | 14.03       |       |
| IEEE 802.11n HT20 | 06      | 13.69       |       |
| IEEE 802.11n HT40 | 06      | 13.91       |       |

#### Check the position for worst result 3.4

| Fre     | quenc | y    | USB<br>orientation | Conducted Power (dBm) |       |       | SAR@1g<br>[W/kg] | Power<br>Drift | Note  |
|---------|-------|------|--------------------|-----------------------|-------|-------|------------------|----------------|-------|
| Mode    | CH    | MHz  | Officiation        | Before                | After | Drift | [W/Kg]           | (dB)           |       |
| 802.11b | 06    | 2437 | 1                  | 17.3                  | 17.2  | -0.1  | 0.110            | 0.154          | Worse |
| 802.11b | 06    | 2437 | 2                  | 17.3                  | 17.1  | -0.2  | 0.107            | -0.175         |       |
| 802.11b | 06    | 2437 | 3                  | 17.4                  | 17.2  | -0.2  | 0.036            | 0.132          |       |
| 802.11b | 06    | 2437 | 4                  | 17.3                  | 17.2  | -0.1  | 0.033            | 0.030          |       |

#### **Double check the other mode result** 3.5

Cerpass Technology Corp. Issued Date : Jan. 09, 2009 : 20 of 66 Page No.

# CERPASS TECHNOLOGY CORP.

| Freq      | uency | 7    | USB<br>orientation | Conducted Power (dBm) |       |       | SAR@1g<br>[W/kg] | Power<br>Drift | Note    |
|-----------|-------|------|--------------------|-----------------------|-------|-------|------------------|----------------|---------|
| Mode      | CH    | MHz  | orientation        | Before                | After | Drift | [W/Kg]           | (dB)           |         |
| 802.11g   | 06    | 2437 | 1                  | 13.9                  | 13.8  | -0.1  | 0.037            | -0.136         |         |
| 802.11n20 | 06    | 2437 | 1                  | 13.6                  | 13.4  | -0.2  | 0.027            | -0.120         |         |
| 802.11n40 | 06    | 2437 | 1                  | 13.8                  | 13.7  | -0.1  | 0.027            | 0.118          |         |
| 802.11b   | 11    | 2462 | 1                  | 17.3                  | 17.2  | -0.1  | 0.129            | 0.198          | Largest |
| 802.11b   | 01    | 2412 | 1                  | 17.3                  | 17.1  | -0.2  | 0.106            | 0.101          |         |

## 3.6 Increments distance check

| Fre     | quenc | y    | USB<br>orientation   | Conducted Power (dBm) |       |       | SAR@1g<br>[W/kg] | Power<br>Drift | Note |
|---------|-------|------|----------------------|-----------------------|-------|-------|------------------|----------------|------|
| Mode    | СН    | MHz  | orientation          | Before                | After | Drift | [W/Kg]           | (dB)           |      |
| 802.11b | 11    | 2462 | 1 (initial position) | 17.3                  | 17.2  | -0.1  | 0.129            | 0.198          |      |
| 802.11b | 11    | 2462 | 1 (5mm increments)   | 17.3                  | 17.2  | -0.1  | 0.055            | 0.163          |      |

The Max Body SAR@2450MHz@1g was 0.129 W/kg, less than limitation of 1.6 W/kg.

Issued Date : Jan. 09, 2009 Cerpass Technology Corp. : 21 of 66


## 3.7 Measurement Position

## 3.7.1 USB Orientation 1 of EUT Position



The horizontal-down of the EUT to the flat phantom distance 5 mm

## 3.7.2 USB Orientation 2 of EUT Position



The horizontal-up of the EUT to the flat phantom distance 5 mm

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

## 3.7.3 USB Orientation 3 of EUT Position



The vertical-back of the EUT to the flat phantom distance 5 mm

## 3.7.4 USB Orientation 4 of EUT Position



The vertical-front of the EUT to the flat phantom distance 5 mm

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

## 4 The Description of Test Procedure for FCC

### 4.1 Scan Procedure

First coarse scans were used for determination of the field distribution. Next a cube scan, 5x5x7 points covering a volume of 32x32x30mm was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the coarse scan and again at the end of the cube scan.

## 4.2 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation. The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Lagre Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the cube scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics. In the cube scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

## 4.3 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m] or [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 24 of 66

## 4.4 Data Evaluation

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

| Probe parameters:  | - Sensitivity             | $Norm_i, a_{i0}, a_{i1}, a_{i2}$ |
|--------------------|---------------------------|----------------------------------|
| -                  | - Conversion factor       | $ConvF_i$                        |
|                    | - Diode compression point | $dcp_i$                          |
| Device parameters: | - Frequency               | f                                |
|                    | - Crest factor            | cf                               |
| Media parameters:  | - Conductivity            | $\sigma$                         |
|                    | - Density                 | P                                |

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with 
$$V_i$$
 = compensated signal of channel i (i = x, y, z)  
 $U_i$  = input signal of channel i (i = x, y, z)  
 $cf$  = crest factor of exciting field (DASY parameter)  
 $dcp_i$  = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – field  
probes : 
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$
 H – field  
probes : 
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 25 of 66



 $H_i$ 

#### CERPASS TECHNOLOGY CORP.

with  $V_i$  = compensated signal of channel i (i = x, y, z)  $Norm_i$  = sensor sensitivity of channel i (i = x, y, z)  $\mu V/(V/m)^2$  for E-field Probes ConvF = sensitivity enhancement in solution  $a_{ij}$  = sensor sensitivity factors for H-field probes f = carrier frequency [GHz]  $E_i$  = electric field strength of channel i in V/m

= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g  $E_{tot}$  = total field strength in V/m  $\sigma$  = conductivity in [mho/m] or [Siemens/m]  $\rho$  = equivalent tissue density in g/cm<sup>3</sup>

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Cerpass Technology Corp.

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Issued Date : Jan. 09, 2009

Page No.

: 26 of 66



## 5 Measurement Uncertainty

## 5.1 Measurement Uncertainty I (According to IEEE 1528)

| ]                            | $\begin{array}{c} {\sf DASY4} \ {\sf U} \\ {\sf Accord} \end{array}$ | Incer |            |         |         | t            |               |          |
|------------------------------|----------------------------------------------------------------------|-------|------------|---------|---------|--------------|---------------|----------|
|                              | Uncertainty                                                          | Prob. | Div.       | $(c_i)$ | $(c_i)$ | Std. Unc.    | Std. Unc.     | $(v_i)$  |
| Error Description            | value                                                                | Dist. |            | 1g      | 10g     | (1g)         | (10g)         | $v_{ef}$ |
| Measurement System           |                                                                      |       |            |         |         |              | , _,          | 1        |
| Probe Calibration            | ±5.9 %                                                               | N     | 1          | 1       | 1       | ±5.9 %       | ±5.9 %        | $\infty$ |
| Axial Isotropy               | ±4.7 %                                                               | R     | $\sqrt{3}$ | 0.7     | 0.7     | ±1.9 %       | ±1.9%         | $\infty$ |
| Hemispherical Isotropy       | ±9.6 %                                                               | R     | $\sqrt{3}$ | 0.7     | 0.7     | ±3.9 %       | ±3.9 %        | $\infty$ |
| Boundary Effects             | ±1.0 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±0.6 %       | ±0.6 %        | $\infty$ |
| Linearity                    | ±4.7 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±2.7 %       | ±2.7%         | $\infty$ |
| System Detection Limits      | ±1.0 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±0.6 %       | ±0.6%         | $\infty$ |
| Readout Electronics          | ±0.3 %                                                               | N     | 1          | 1       | 1       | ±0.3 %       | ±0.3%         | $\infty$ |
| Response Time                | ±0.8 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±0.5 %       | ±0.5%         | $\infty$ |
| Integration Time             | ±2.6 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±1.5 %       | ±1.5%         | $\infty$ |
| RF Ambient Conditions        | ±3.0 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±1.7 %       | ±1.7%         | $\infty$ |
| Probe Positioner             | ±0.4 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±0.2 %       | ±0.2%         | $\infty$ |
| Probe Positioning            | ±2.9 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±1.7 %       | ±1.7%         | $\infty$ |
| Max. SAR Eval.               | ±1.0 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±0.6 %       | ±0.6%         | $\infty$ |
| Test Sample Related          |                                                                      |       |            |         |         |              |               |          |
| Device Positioning           | ±2.9 %                                                               | N     | 1          | 1       | 1       | ±2.9 %       | ±2.9 %        | 145      |
| Device Holder                | ±3.6 %                                                               | N     | 1          | 1       | 1       | ±3.6 %       | ±3.6 %        | 5        |
| Power Drift                  | ±5.0 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±2.9 %       | ±2.9 %        | $\infty$ |
| Phantom and Setup            |                                                                      |       |            |         |         |              |               |          |
| Phantom Uncertainty          | ±4.0 %                                                               | R     | $\sqrt{3}$ | 1       | 1       | ±2.3 %       | ±2.3 %        | $\infty$ |
| Liquid Conductivity (target) | ±5.0 %                                                               | R     | $\sqrt{3}$ | 0.64    | 0.43    | ±1.8 %       | ±1.2%         | $\infty$ |
| Liquid Conductivity (meas.)  | ±2.5 %                                                               | N     | 1          | 0.64    | 0.43    | ±1.6 %       | $\pm 1.1 \%$  | $\infty$ |
| Liquid Permittivity (target) | ±5.0 %                                                               | R     | $\sqrt{3}$ | 0.6     | 0.49    | ±1.7 %       | $\pm 1.4 \%$  | $\infty$ |
| Liquid Permittivity (meas.)  | ±2.5 %                                                               | N     | 1          | 0.6     | 0.49    | ±1.5 %       | ±1.2%         | $\infty$ |
| Combined Std. Uncertainty    |                                                                      |       |            |         |         | ±10.8 %      | ±10.6 %       | 330      |
| Expanded STD Uncertain       | ty                                                                   |       |            |         |         | $\pm 21.6\%$ | $\pm 21.1 \%$ |          |

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 27 of 66



## 5.2 Measurement Uncertainty II (According to IEC 62209)

| DASY4 Uncertainty Budget According to IEC 62209 [3] |              |       |            |         |              |               |               |           |
|-----------------------------------------------------|--------------|-------|------------|---------|--------------|---------------|---------------|-----------|
|                                                     | Uncertainty  | Prob. | Div.       | $(c_i)$ | $(c_i)$      | Std. Unc.     | Std. Unc.     | $(v_i)$   |
| Error Description                                   | value        | Dist. |            | 1g      | 10g          | (1g)          | (10g)         | $v_{eff}$ |
| Measurement System                                  |              |       |            |         |              |               |               |           |
| Probe Calibration                                   | $\pm 5.9 \%$ | N     | 1          | 1       | 1            | $\pm 5.9 \%$  | ±5.9 %        | $\infty$  |
| Axial Isotropy                                      | $\pm 4.7\%$  | R     | $\sqrt{3}$ | 0.7     | 0.7          | $\pm 1.9\%$   | ±1.9 %        | $\infty$  |
| Spherical Isotropy                                  | $\pm 9.6 \%$ | R     | $\sqrt{3}$ | 0.7     | 0.7          | $\pm 3.9 \%$  | ±3.9 %        | $\infty$  |
| Boundary Effects                                    | ±1.0 %       | R     | $\sqrt{3}$ | 1       | 1            | ±0.6 %        | ±0.6 %        | $\infty$  |
| Linearity                                           | ±4.7%        | R     | $\sqrt{3}$ | 1       | 1            | $\pm 2.7 \%$  | $\pm 2.7 \%$  | $\infty$  |
| Detection Limits                                    | ±1.0 %       | R     | $\sqrt{3}$ | 1       | 1            | ±0.6 %        | ±0.6 %        | $\infty$  |
| Readout Electronics                                 | $\pm 0.3 \%$ | N     | 1          | 1       | 1            | ±0.3 %        | ±0.3 %        | $\infty$  |
| Response Time                                       | ±0.8 %       | R     | $\sqrt{3}$ | 1       | 1            | ±0.5 %        | ±0.5 %        | $\infty$  |
| Integration Time                                    | $\pm 2.6 \%$ | R     | $\sqrt{3}$ | 1       | 1            | $\pm 1.5 \%$  | $\pm 1.5 \%$  | $\infty$  |
| Perturbation of the Environment                     | ±3.0 %       | R     | $\sqrt{3}$ | 1       | 1            | ±1.7%         | ±1.7 %        | $\infty$  |
| Probe Positioner Mech. Restr.                       | $\pm 0.4 \%$ | R     | $\sqrt{3}$ | 1       | 1            | $\pm 0.2 \%$  | ±0.2 %        | $\infty$  |
| Probe Positioning                                   | $\pm 2.9 \%$ | R     | $\sqrt{3}$ | 1       | 1            | ±1.7 %        | ±1.7 %        | $\infty$  |
| Post-Processing                                     | ±1.0 %       | R     | $\sqrt{3}$ | 1       | 1            | ±0.6 %        | ±0.6 %        | $\infty$  |
| Test Sample Related                                 |              |       |            |         |              |               |               |           |
| Test Sample Positioning                             | $\pm 2.9 \%$ | N     | 1          | 1       | 1            | $\pm 2.9 \%$  | $\pm 2.9,\%$  | 145       |
| Device Holder Uncertainty                           | ±3.6 %       | N     | 1          | 1       | 1            | $\pm 3.6\%$   | ±3.6 %        | 5         |
| Drift of Output Power                               | ±5.0 %       | R     | $\sqrt{3}$ | 1       | 1            | $\pm 2.9 \%$  | $\pm 2.9 \%$  | $\infty$  |
| Phantom and Setup                                   |              |       |            |         |              |               |               |           |
| Phantom Uncertainty                                 | $\pm 4.0 \%$ | R     | $\sqrt{3}$ | 1       | 1            | $\pm 2.3 \%$  | $\pm 2.3 \%$  | $\infty$  |
| Liquid Conductivity (target)                        | ±5.0 %       | R     | $\sqrt{3}$ | 0.7     | 0.5          | ±2.0 %        | $\pm 1.4 \%$  | $\infty$  |
| Liquid Conductivity (meas.)                         | $\pm 4.3\%$  | R     | $\sqrt{3}$ | 0.7     | 0.5          | $\pm 1.7,\%$  | ±1.2 %        | $\infty$  |
| Liquid Permittivity (target)                        | ±5.0 %       | R     | $\sqrt{3}$ | 0.6     | 0.5          | $\pm 1.7 \%$  | $\pm 1.4 \%$  | $\infty$  |
| Liquid Permittivity (meas.)                         | $\pm 4.3\%$  | R     | $\sqrt{3}$ | 0.6     | 0.5          | $\pm 1.5 \%$  | $\pm 1.2 \%$  | $\infty$  |
| Combined Std. Uncertainty                           |              |       |            |         |              | $\pm 10.5 \%$ | $\pm 10.2 \%$ | 330       |
| Expanded Uncertainty                                |              |       |            |         | $\pm 21.0\%$ | $\pm 20.5\%$  |               |           |

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 28 of 66



#### 6 References

## 1. [ANSI/IEEE C95.1-1992]

Safety Levels with Respect to Human Exposure to Radio Frrequency Electromagnetic Fields, 3 kHz to 300 GHz. The Institute of Electrical and Electronics Engineers, Inc. (IEEE), 1992.

### 2. [ANSI/IEEE C95.3-1992]

Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave". The Institute of Electrical and Electronics Engineers, Inc. (IEEE), 1992.

#### 3. [FCC Report and Order 96-326]

Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, 1996.

#### 4. [FCC OET Bulletin 65]

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. OET Bulletin 65 Edition 97-01, August 1997. Federal Communications Commission (FCC), Office of Engineering & Technology. (OET)

## 5. [FCC OET Bulletin 65 Supplement C]

Additional Information for Evaluating Compliance of Mobile and Portable Device with FCC Limits for Human Exposure to Radiofrequency Emissions. Supplement C (Edition 01-01) to OET Bulletin 65, June 2001. Federal Communications Commission (FCC), Office of Engineering & Technology. (OET)

#### 6. [DASY 4]

Schmid & Partner Engineering AG: DASY 4 Manual, September 2005.

## 7. **[IEEE 1528-2003]**

IEEE Std 1528-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wirless Communications Devices: Measurement Techniques. 1528-2003, 19<sup>th</sup> December, 2003, The Institute of Electrical and Electronics Engineers, Inc. (IEEE).

## 8. [RSS-102, Issue 2]

Radio Standards Specification 102, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) sets out the requirements and measurement techniques used to evaluate radio frequency (RF) exposure compliance of radiocommunication apparatus designed to be used within the vicinity of the human body. November, 2005. Industry Canada.

## 9. [Health Canada Safety Code 6]

Canada's Safety Code 6: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)

## 7 Annex: Test Results of DASY4 (Refer to ANNEX)

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Page No.

: 29 of 66

# ANNEX Index of Annex

| ANNEX A: CONSTRUCTION PHOTOS OF E | UT 31 |
|-----------------------------------|-------|
| ANNEX B: SAR RESULTS              |       |
| ANNEX C: DIPOLE CERTIFICATE       | 49    |
| ANNEX D: PROBE CERTIFICATE        | 55    |

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

: 30 of 66

## **ANNEX A: CONSTRUCTION PHOTOS OF EUT**

## 1. Outside view 1 of EUT



## 2. Outside view 2 of EUT



: 31 of 66

Page No.

Cerpass Technology Corp. Issued Date : Jan. 09, 2009



## 3. Inside View 1 of EUT



## 4. Inside View 1 of EUT

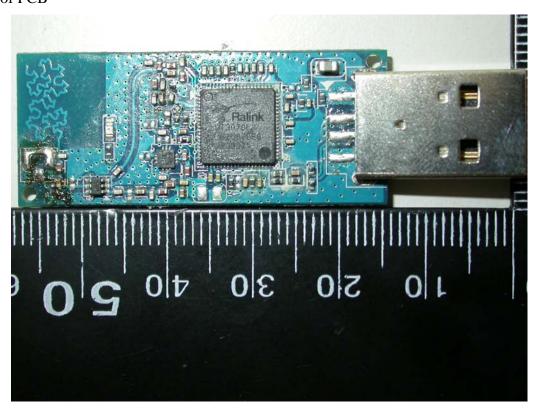


Cerpass Technology Corp.

Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No.

: 32 of 66

: Jan. 09, 2009


Issued Date



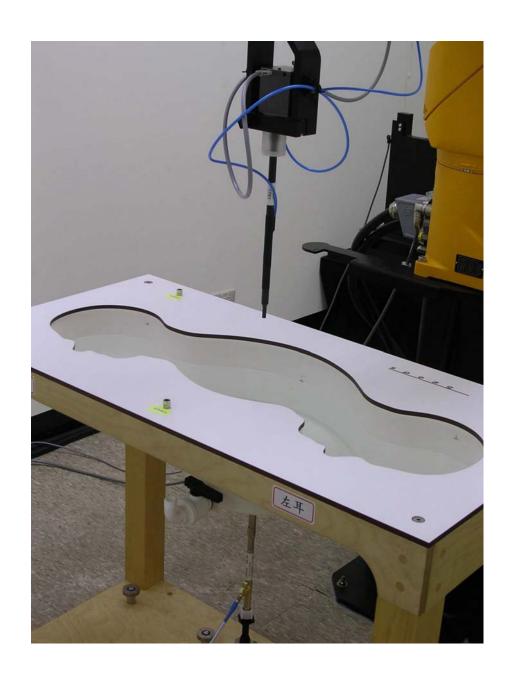
## 5. Front view of PCB



## 6. Rear view of PCB



Issued Date : Jan. 09, 2009


Cerpass Technology Corp.

Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 33 of 66

## **ANNEX B: SAR RESULTS**

# System Performance Check

# Body



Cerpass Technology Corp.

Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 34 of 66

Date/Time: 1/5/2009 9:21:08 AM

Test Laboratory: Electronics Testing Center, Taiwan

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:764

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz;  $\sigma = 1.98$  mho/m;  $\varepsilon_r = 50.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

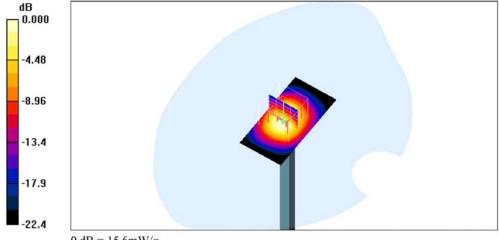
Air temperature: 20 degC; Liquid temperature: 21.2 degC;

Phantom section: Flat Section

#### DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347 Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

## SPC/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

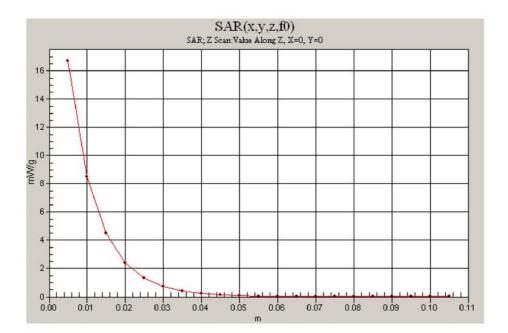

Reference Value = 87.1 V/m; Power Drift = -0.080 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.28 mW/g Maximum value of SAR (measured) = 15.6 mW/g

## SPC/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 16.7 mW/g

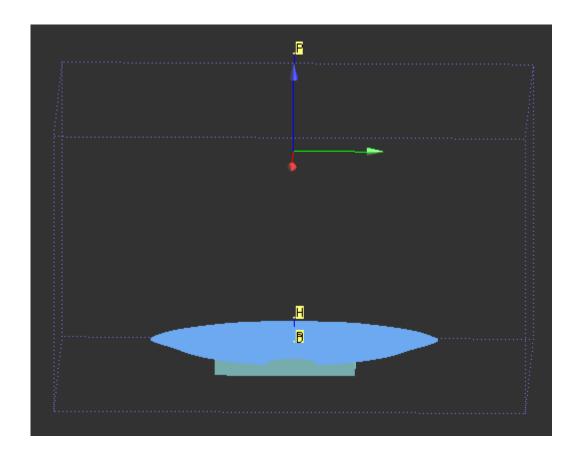



0 dB = 15.6 mW/g

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100






Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 36 of 66



# Body



Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 37 of 66

Date/Time: 1/5/2009 10:12:14 AM

Test Laboratory: Electronics Testing Center, Taiwan

# DUT: USB dongle; Type: F6D4050; Serial: N/A

Communication System: IEEE 802.11b/g/n; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz;  $\sigma = 1.96$  mho/m;  $\varepsilon_r = 50.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Air temperature: 20 degC; Liquid temperature: 21.2 degC;

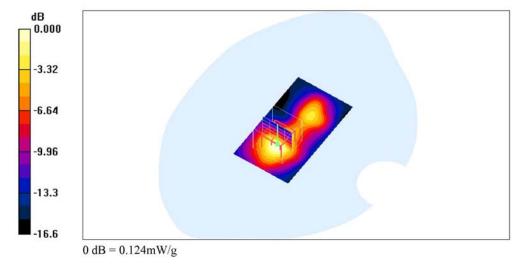
Phantom section: Flat Section

# DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

# 802.11b\_CH06\_orientation 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm


Reference Value = 3.88 V/m; Power Drift = 0.154 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.110 mW/g; SAR(10 g) = 0.053 mW/g

Maximum value of SAR (measured) = 0.124 mW/g

# **802.11b\_CH06\_orientation 1/Area Scan (41x71x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.132 mW/g



Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Date/Time: 1/5/2009 10:36:24 AM

Test Laboratory: Electronics Testing Center, Taiwan

## DUT: USB dongle; Type: F6D4050; Serial: N/A

Communication System: IEEE 802.11b/g/n; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz;  $\sigma = 1.96$  mho/m;  $\varepsilon_r = 50.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Air temperature: 20 degC; Liquid temperature: 21.2 degC;

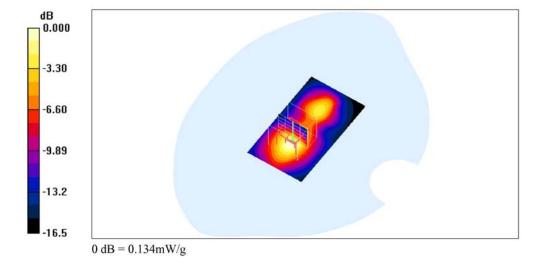
Phantom section: Flat Section

# DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

**802.11b\_CH06\_orientation 2/Area Scan (41x71x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.134 mW/g

# 802.11b\_CH06\_orientation 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 4.94 V/m; Power Drift = -0.175 dB

Peak SAR (extrapolated) = 0.204 W/kg

SAR(1 g) = 0.107 mW/g; SAR(10 g) = 0.052 mW/g

Maximum value of SAR (measured) = 0.120 mW/g



Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No.

: 39 of 66

Date/Time: 1/5/2009 11:45:58 AM

: 40 of 66

Page No.

Test Laboratory: Electronics Testing Center, Taiwan

# DUT: USB dongle; Type: F6D4050; Serial: N/A

Communication System: IEEE 802.11b/g/n; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz;  $\sigma = 1.96$  mho/m;  $\varepsilon_r = 50.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Air temperature: 20 degC; Liquid temperature: 21.2 degC;

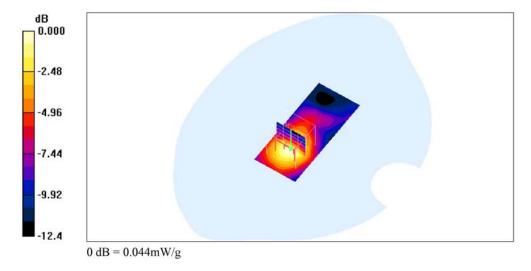
Phantom section: Flat Section

# DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

# 802.11b\_CH06\_orientation 3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm


Reference Value = 2.23 V/m; Power Drift = 0.132 dB

Peak SAR (extrapolated) = 0.061 W/kg

SAR(1 g) = 0.036 mW/g; SAR(10 g) = 0.020 mW/g

Maximum value of SAR (measured) = 0.040 mW/g

# **802.11b\_CH06\_orientation 3/Area Scan (31x71x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.044 mW/g



Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Date/Time: 1/5/2009 12:06:25 PM

Test Laboratory: Electronics Testing Center, Taiwan

# DUT: USB dongle; Type: F6D4050; Serial: N/A

Communication System: IEEE 802.11b/g/n; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz;  $\sigma = 1.96$  mho/m;  $\varepsilon_r = 50.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Air temperature: 20 degC; Liquid temperature: 21.2 degC;

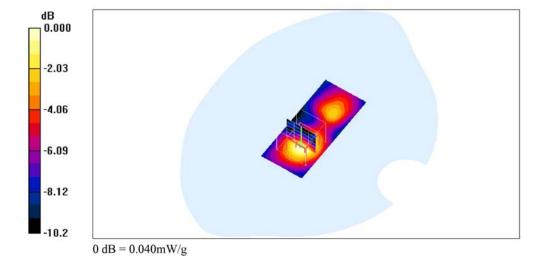
Phantom section: Flat Section

# DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

802.11b CH06 orientation 4/Area Scan (31x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.040 mW/g

# 802.11b\_CH06\_orientation 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 2.36 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 0.070 W/kg

SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.018 mW/g

Maximum value of SAR (measured) = 0.035 mW/g



Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No.

: 41 of 66

Date/Time: 1/5/2009 12:46:18 PM

Test Laboratory: Electronics Testing Center, Taiwan

# DUT: USB dongle; Type: F6D4050; Serial: N/A

Communication System: IEEE 802.11b/g/n; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz;  $\sigma = 1.96$  mho/m;  $\varepsilon_r = 50.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Air temperature: 20 degC; Liquid temperature: 21.2 degC;

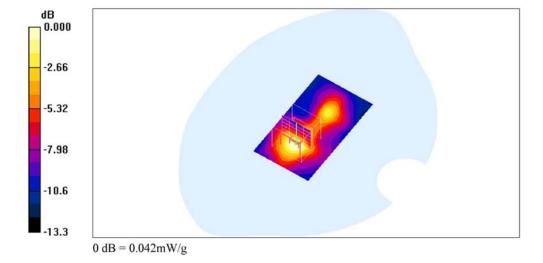
Phantom section: Flat Section

# DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

802.11g\_CH06\_orientation 1/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.047 mW/g

# 802.11g\_CH06\_orientation 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 2.79 V/m; Power Drift = -0.136 dB

Peak SAR (extrapolated) = 0.061 W/kg

SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.020 mW/g

Maximum value of SAR (measured) = 0.042 mW/g



Cerpass Technology Corp. Issued Date

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No.

: 42 of 66

Date/Time: 1/5/2009 1:02:29 PM

: 43 of 66

Page No.

Test Laboratory: Electronics Testing Center, Taiwan

# DUT: USB dongle; Type: F6D4050; Serial: N/A

Communication System: IEEE 802.11b/g/n; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz;  $\sigma = 1.96$  mho/m;  $\varepsilon_r = 50.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

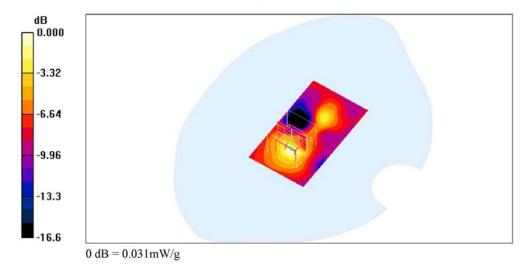
Air temperature: 20 degC; Liquid temperature: 21.2 degC;

Phantom section: Flat Section

## DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

# **802.11n20\_CH06\_orientation 1/Area Scan (41x71x1):** Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.029 mW/g

# **802.11n20\_CH06\_orientation 1/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.80 V/m; Power Drift = -0.120 dB

Peak SAR (extrapolated) = 0.046 W/kg

SAR(1 g) = 0.027 mW/g; SAR(10 g) = 0.015 mW/g Maximum value of SAR (measured) = 0.031 mW/g



Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Date/Time: 1/5/2009 1:24:55 PM

: 44 of 66

Page No.

Test Laboratory: Electronics Testing Center, Taiwan

# DUT: USB dongle; Type: F6D4050; Serial: N/A

Communication System: IEEE 802.11b/g/n; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz;  $\sigma = 1.96$  mho/m;  $\varepsilon_r = 50.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

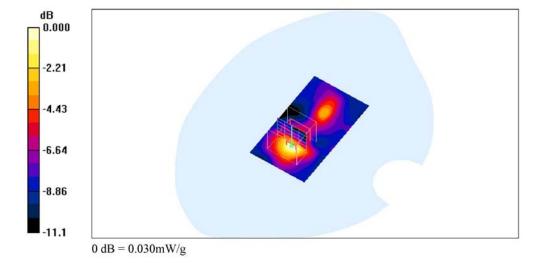
Air temperature: 20 degC; Liquid temperature: 21.2 degC;

Phantom section: Flat Section

### DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

# **802.11n40\_CH06\_orientation 1/Area Scan (41x71x1):** Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.030 mW/g

# **802.11n40\_CH06\_orientation 1/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.73 V/m; Power Drift = 0.118 dB

Peak SAR (extrapolated) = 0.048 W/kg

SAR(1 g) = 0.027 mW/g; SAR(10 g) = 0.014 mW/g Maximum value of SAR (measured) = 0.031 mW/g



Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Date/Time: 1/5/2009 2:43:09 PM

Issued Date : Jan. 09, 2009

Page No.

: 45 of 66

Test Laboratory: Electronics Testing Center, Taiwan

# DUT: USB dongle; Type: F6D4050; Serial: N/A

Communication System: IEEE 802.11b/g/n; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz;  $\sigma = 1.99$  mho/m;  $\varepsilon_r = 50.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Air temperature: 20 degC; Liquid temperature: 21.2 degC;

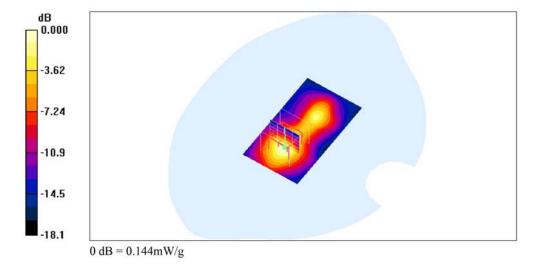
Phantom section: Flat Section

# DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

# 802.11b\_CH11\_orientation 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm


Reference Value = 3.95 V/m; Power Drift = 0.198 dB

Peak SAR (extrapolated) = 0.259 W/kg

SAR(1 g) = 0.129 mW/g; SAR(10 g) = 0.062 mW/g

Maximum value of SAR (measured) = 0.144 mW/g

# **802.11b\_CH11\_orientation 1/Area Scan (41x71x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.151 mW/g





Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 46 of 66

Date/Time: 1/5/2009 3:03:29 PM

Test Laboratory: Electronics Testing Center, Taiwan

# DUT: USB dongle; Type: F6D4050; Serial: N/A

Communication System: IEEE 802.11b/g/n; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz;  $\sigma = 1.93$  mho/m;  $\varepsilon_r = 50.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Air temperature: 20 degC; Liquid temperature: 21.2 degC;

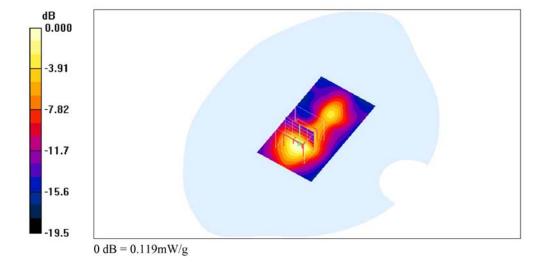
Phantom section: Flat Section

# DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

802.11b CH01 orientation 1/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.122 mW/g

# 802.11b\_CH01\_orientation 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 3.16 V/m; Power Drift = 0.101 dB

Peak SAR (extrapolated) = 0.206 W/kg

SAR(1 g) = 0.106 mW/g; SAR(10 g) = 0.050 mW/g

Maximum value of SAR (measured) = 0.119 mW/g



Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No.

: 47 of 66

Date/Time: 1/5/2009 3:55:50 PM

Test Laboratory: Electronics Testing Center, Taiwan

# DUT: USB dongle; Type: F6D4050; Serial: N/A

Communication System: IEEE 802.11b/g/n; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz;  $\sigma = 1.99 \text{ mho/m}$ ;  $\varepsilon_r = 50.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Air temperature: 20 degC; Liquid temperature: 21.2 degC;

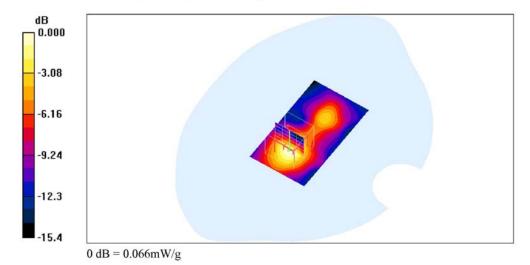
Phantom section: Flat Section

## DASY4 Configuration:

- Probe: EX3DV4 SN3555; ConvF(6.17, 6.17, 6.17); Calibrated: 9/19/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn629; Calibrated: 9/23/2008
- Phantom: SAM 12-2; Type: SAM4.0; Serial: TP-1347
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160

# 802.11b\_CH11\_orientation 1\_10mm/Area Scan (41x71x1): Measurement grid: dx=15mm,

Maximum value of SAR (interpolated) = 0.066 mW/g


# 802.11b\_CH11\_orientation 1\_10mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.30 V/m; Power Drift = 0.163 dB

Peak SAR (extrapolated) = 0.102 W/kg

SAR(1 g) = 0.055 mW/g; SAR(10 g) = 0.029 mW/gMaximum value of SAR (measured) = 0.061 mW/g



Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No.

: 48 of 66



# ANNEX C: DIPOLE CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

D2450V2-764 Sep08

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

ETC (Auden)

Accreditation No.: SCS 108

S

C

CALIBRATION CERTIFICATE D2450V2 - SN: 764 Object QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits September 24, 2008 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID# Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) Oct-08 GB37480704 Power meter EPM-442A Oct-08 Power sensor HP 8481A US37292783 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) Jul-09 SN: S5086 (20g) Reference 20 dB Attenuator Jul-09 01-Jul-08 (No. 217-00867) Type-N mismatch combination SN: 5047.2 / 06327 Apr-09 SN: 3025 28-Apr-08 (No. ES3-3025\_Apr08) Reference Probe ES3DV2 SN: 601 14-Mar-08 (No. DAE4-601\_Mar08) Mar-09 DAE4 Scheduled Check Secondary Standards ID# Check Date (in house) In house check: Oct-09 MY41092317 18-Oct-02 (in house check Oct-07) Power sensor HP 8481A In house check: Oct-09 RF generator R&S SMT-06 4-Aug-99 (in house check Oct-07) 100005 18-Oct-01 (in house check Oct-07) In house check: Oct-08 US37390585 S4206 Network Analyzer HP 8753E Signature Function Laboratory Technician on Kastrati Calibrated by: Approved by: Issued: September 25, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-764\_Sep08

Page 1 of 9

Cerpass Technology Corp. Issued Date

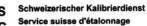
Tel:886-2-2792-3366 Fax:886-2-2792-1100

Issued Date : Ja

: Jan. 09, 2009

Page No.

: 49 of 66




# Calibration Laboratory of

Schmid & Partner **Engineering AG** 







Servizio svizzero di taratura **Swiss Calibration Service** 

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

### **Additional Documentation:**

d) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-764\_Sep08

Page 2 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No.

: 50 of 66

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1

| DASY Version                 | DASY5                     | V5.0        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V5.0 |             |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 2450 MHz ± 1 MHz          |             |

Head TSL parameters

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 39.8 ± 6 %   | 1.80 mho/m ± 6 % |
| Head TSL temperature during test | (22.0 ± 0.2) °C |              | 1                |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 250 mW input power | 13.3 mW / g               |
| SAR normalized                                        | normalized to 1W   | 53.2 mW / g               |
| SAR for nominal Head TSL parameters 1                 | normalized to 1W   | 53.6 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 6.19 mW / g               |
| SAR normalized                                          | normalized to 1W   | 24.8 mW/g                 |
| SAR for nominal Head TSL parameters <sup>1</sup>        | normalized to 1W   | 24.9 mW /g ± 16.5 % (k=2) |

Certificate No: D2450V2-764\_Sep08

Page 3 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No.

: 51 of 66

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"



# **Body TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 50.7 ± 6 %   | 1.97 mho/m ± 6 % |
| Body TSL temperature during test | (22.0 ± 0.2) °C |              | _                |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 250 mW input power | 12.7 mW/g                 |
| SAR normalized                                        | normalized to 1W   | 50.8 mW/g                 |
| SAR for nominal Body TSL parameters <sup>2</sup>      | normalized to 1W   | 49.5 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 5.83 mW / g               |
| SAR normalized                                          | normalized to 1W   | 23.3 mW / g               |
| SAR for nominal Body TSL parameters <sup>2</sup>        | normalized to 1W   | 22.9 mW /g ± 16.5 % (k=2) |

Certificate No: D2450V2-764\_Sep08

Page 4 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100 Pa

Page No. : 52 of 66

<sup>&</sup>lt;sup>2</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"



# **Appendix**

## **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | $52.3 \Omega + 0.5 j\Omega$ |  |
|--------------------------------------|-----------------------------|--|
| Return Loss                          | - 32.7 dB                   |  |

# Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 47.8 Ω + 3.5 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 27.5 dB       |  |

# **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.151 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

# **Additional EUT Data**

| Manufactured by | SPEAG          |
|-----------------|----------------|
| Manufactured on | April 10, 2004 |

Certificate No: D2450V2-764\_Sep08

Page 5 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 53 of 66

## **DASY5 Validation Report for Head TSL**

Date/Time: 24.09.2008 12:28:28

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN764

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 2450 MHz;  $\sigma = 1.8$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

# DASY5 Configuration:

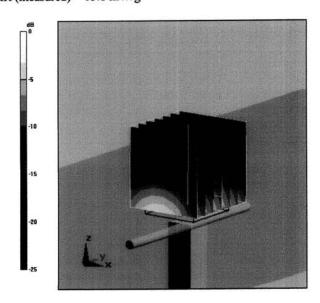
Probe: ES3DV2 - SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 28.04.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87


# Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 96.2 V/m; Power Drift = 0.014 dB

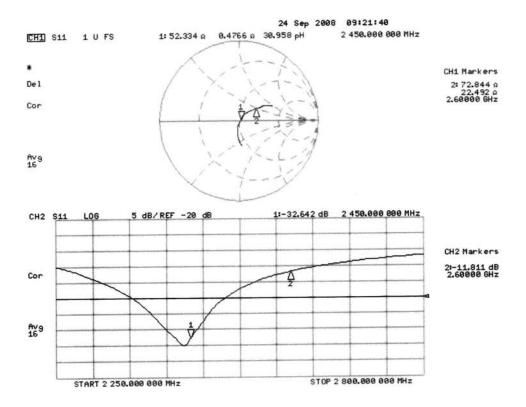
Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.19 mW/g Maximum value of SAR (measured) = 15.8 mW/g



0 dB = 15.8 mW/g

Certificate No: D2450V2-764\_Sep08


Page 6 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 54 of 66

# Impedance Measurement Plot for Head TSL



Cerpass Technology Corp.

Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 55 of 66

Issued Date : Jan. 09, 2009

# **DASY5 Validation Report for Body TSL**

Date/Time: 18.09.2008 13:33:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:764

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz;  $\sigma = 1.97$  mho/m;  $\epsilon_r = 50.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

## DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.07, 4.07, 4.07); Calibrated: 28.04.2008

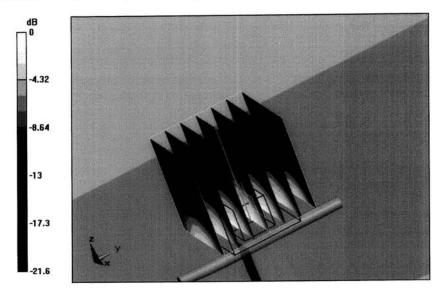
Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

# Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 91.8 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 26.4 W/kg

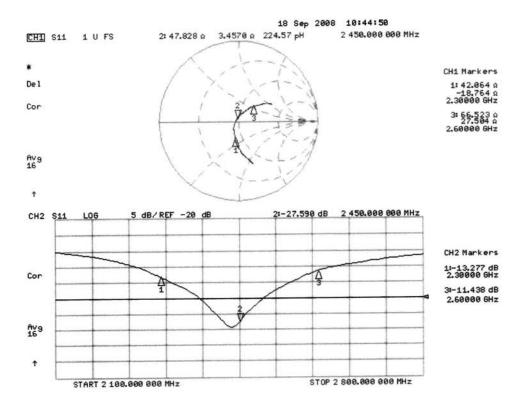
SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.83 mW/g

Maximum value of SAR (measured) = 15.7 mW/g



0 dB = 15.7 mW/g

Certificate No: D2450V2-764\_Sep08


Page 8 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 56 of 66

# Impedance Measurement Plot for Body TSL



Certificate No: D2450V2-764\_Sep08

Page 9 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009



# **ANNEX D: PROBE CERTIFICATE**

**Calibration Laboratory of** Schmid & Partner **Engineering AG** 





S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

ETC (Auden)

Icate No: EX3-3555 Sep08

Accreditation No.: SCS 108

| Calibration procedure(s)  QA CAL-01.v6, QA CAL-14.v3 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes  Calibration procedure for dosimetric E-field probes  In Tolerance  This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.  Calibration Equipment used (M&TE critical for calibration)  Primary Standards  ID # Cal Date (Certificate No.) Scheduled Calibration  Primary Standards  Prower sensor E4419B  GB41293874  I-Apr-08 (No. 217-00788)  Apr-09  Power sensor E4412A  MY41495277  I-Apr-08 (No. 217-00788)  Apr-09  Apr-0 | N. i                                                                                                                                                                                                                                         | EX3DV4 - SN:35                                                                                                                       | 355                                                                                                                                                                                                                                                                                                          | MANAGEMENT OF THE PARTY OF THE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure for dosimetric E-field probes  Calibration date:  September 19, 2008  In Tolerance  This calibrated item  In Tolerance  This calibrated documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.  All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.  Calibration Equipment used (M&TE critical for calibration)  Primary Standards  D# Cal Date (Certificate No.) Scheduled Calibration  Primary Standards  Dower meter E4419B  GB41293874  1-Apr-08 (No. 217-00788)  Apr-09  Apr-09  Apr-09  Apr-09  Apr-09  Reference 3 dB Attenuator  Reference 3 dB Attenuator  SN: S5054 (3c)  1-Jul-08 (No. 217-00787)  Apr-09  Reference 20 dB Attenuator  SN: S5086 (20b)  31-Mar-08 (No. 217-00787)  Apr-09  Reference 20 dB Attenuator  SN: S5086 (20b)  31-Mar-08 (No. 217-00787)  Apr-09  Apr-09  Apr-09  Apr-09  Reference Probe ES3DV2  SN: 3013  2-Jan-08 (No. 217-00788)  Sep-09  Check Date (in house)  Scheduled Check  In house check: Oct-09  In house check: Oct-08  Name  Function  Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Object                                                                                                                                                                                                                                       | EX3DV4 - SN:35                                                                                                                       |                                                                                                                                                                                                                                                                                                              | 2. 体别是他们是这样的是这种是是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.  All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.  Calibration Equipment used (M&TE critical for calibration)  Primary Standards  ID # Cal Date (Certificate No.) Scheduled Calibration  Power meter E4419B GB41293874 1-Apr-08 (No. 217-00788) Apr-09  Power sensor E4412A MY41495277 1-Apr-08 (No. 217-00788) Apr-09  Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09  Reference 3 dB Attenuator SN: S5054 (3c) 1-Jul-08 (No. 217-00786) Jul-09  Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Apr-09  Reference 30 dB Attenuator SN: S5129 (30b) 1-Jul-08 (No. 217-00787) Apr-09  Reference Probe ES3DV2 SN: 3013 2-Jan-08 (No. ES3-3013_Jan08) Jan-09  SAE4  Secondary Standards  ID # Check Date (in house) Scheduled Check  RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-08  Name Function Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calibration procedure(s)                                                                                                                                                                                                                     | QA CAL-01.v6, (<br>Calibration proce                                                                                                 | QA CAL-14.v3 and QA CAL-23.v3<br>edure for dosimetric E-field probes                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.  All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.  Calibration Equipment used (M&TE critical for calibration)  Primary Standards    D #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Calibration date:                                                                                                                                                                                                                            | September 19, 2                                                                                                                      | 2008                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Primary Standards   D #   Call Idea   Call | Condition of the calibrated item                                                                                                                                                                                                             | In Tolerance                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A MY41498087 Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator SN: \$5054 (3c) 1-Jul-08 (No. 217-00788) Apr-09 Jul-09 Reference 30 dB Attenuator Reference 30 dB Attenuator SN: \$5129 (30b) 1-Jul-08 (No. 217-00787) Apr-09 Jul-09 Reference Probe ES3DV2 SN: \$660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09  Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8648C US37390585 Name Function Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All calibrations have been conduc                                                                                                                                                                                                            | cted in the closed laborate                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Power meter E4419B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Power sensor E4412A MY41495277 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 Reference 3 dB Attenuator SN: S5054 (3c) 1-Jul-08 (No. 217-00865) Jul-09 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Apr-09 Reference 30 dB Attenuator SN: S5129 (30b) 1-Jul-08 (No. 217-00866) Jul-09 Reference Probe ES3DV2 SN: 3013 2-Jan-08 (No. ES3-3013_Jan-08) Jan-09 Reference Probe ES3DV2 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Reference Probe ES3DV2 ID # Check Date (in house) Scheduled Check Reference Probe ES3DV2 US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-08 Reference Probe ES3DV2 IN S605 Proceedings of the probe of th | Primary Standards                                                                                                                                                                                                                            | ID#                                                                                                                                  | Cal Date (Certificate No.)                                                                                                                                                                                                                                                                                   | Scheduled Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 Reference 3 dB Attenuator SN: S5054 (3c) 1-Jul-08 (No. 217-00865) Jul-09 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Apr-09 Reference 30 dB Attenuator SN: S5129 (30b) 1-Jul-08 (No. 217-00866) Jul-09 Reference Probe ES3DV2 SN: 3013 2-Jan-08 (No. ES3-3013_Jan-08) Jan-09 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep-08) Sep-09  Secondary Standards ID # Check Date (in house) Scheduled Check Reference Probe ES3DV2 US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E Name Function Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Seference 3 dB Attenuator   SN: S5054 (3c)   1-Jul-08 (No. 217-00865)   Jul-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Power meter E4419B                                                                                                                                                                                                                           | GB41293874                                                                                                                           | 1-Apr-08 (No. 217-00788)                                                                                                                                                                                                                                                                                     | Apr-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reference 20 dB Attenuator   SN: S5086 (20b)   31-Mar-08 (No. 217-00787)   Apr-09   Jul-09   Reference 30 dB Attenuator   SN: S5129 (30b)   1-Jul-08 (No. 217-00866)   Jul-09   Jul-0   | Power meter E4419B<br>Power sensor E4412A                                                                                                                                                                                                    | GB41293874<br>MY41495277                                                                                                             | 1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)                                                                                                                                                                                                                                                         | Apr-09<br>Apr-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Secondary Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Power meter E4419B<br>Power sensor E4412A<br>Power sensor E4412A                                                                                                                                                                             | GB41293874<br>MY41495277<br>MY41498087                                                                                               | 1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)                                                                                                                                                                                                                             | Apr-09<br>Apr-09<br>Apr-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Secondary Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator                                                                                                                                                         | GB41293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)                                                                             | 1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)<br>1-Jul-08 (No. 217-00865)                                                                                                                                                                                                 | Apr-09<br>Apr-09<br>Apr-09<br>Jul-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SN: 660   9-Sep-08 (No. DAE4-660_Sep08)   Sep-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator                                                                                                                              | GB41293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5086 (20b)                                                          | 1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)<br>1-Jul-08 (No. 217-00865)<br>31-Mar-08 (No. 217-00787)                                                                                                                                                                    | Apr-09<br>Apr-09<br>Apr-09<br>Jul-09<br>Apr-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08  Name Function Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator                                                                                                   | GB41293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)                                       | 1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)<br>1-Jul-08 (No. 217-00865)<br>31-Mar-08 (No. 217-00787)<br>1-Jul-08 (No. 217-00866)                                                                                                                                        | Apr-09<br>Apr-09<br>Apr-09<br>Jul-09<br>Apr-09<br>Jul-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 In house check: Oct-08  | Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2                                                                            | GB41293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: 3013                           | 1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)<br>1-Apr-08 (No. 217-00788)<br>1-Jul-08 (No. 217-00865)<br>31-Mar-08 (No. 217-00787)<br>1-Jul-08 (No. 217-00866)<br>2-Jan-08 (No. ES3-3013_Jan08)                                                                                                       | Apr-09<br>Apr-09<br>Apr-09<br>Jul-09<br>Apr-09<br>Jul-09<br>Jan-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08  Name Function Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4                                                                       | GB41293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 660                | 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00865) 31-Mar-08 (No. 217-00867) 1-Jul-08 (No. 217-00866) 2-Jan-08 (No. ES3-3013_Jan08) 9-Sep-08 (No. DAE4-660_Sep08)                                                                                           | Apr-09 Apr-09 Apr-09 Jul-09 Apr-09 Jul-09 Jan-09 Sep-09 Scheduled Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards                                                   | GB41293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 660                | 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00865) 31-Mar-08 (No. 217-00787) 1-Jul-08 (No. 217-00866) 2-Jan-08 (No. ES3-3013_Jan08) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house)                                                                     | Apr-09 Apr-09 Apr-09 Jul-09 Apr-09 Jul-09 Jan-09 Sep-09 Scheduled Check In house check: Oct-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calibrated by: Katja Pokovic Technical Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4  Secondary Standards RF generator HP 8648C | GB41293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 660                | 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00865) 31-Mar-08 (No. 217-00867) 1-Jul-08 (No. 217-00866) 2-Jan-08 (No. ES3-3013_Jan08) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house)                                                                     | Apr-09 Apr-09 Apr-09 Jul-09 Apr-09 Jul-09 Jan-09 Sep-09 Scheduled Check In house check: Oct-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4  Secondary Standards RF generator HP 8648C                            | GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660  ID # US3642U01700 US37390585       | 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00865) 31-Mar-08 (No. 217-00867) 1-Jul-08 (No. 217-00866) 2-Jan-08 (No. ES3-3013_Jan08) 9-Sep-08 (No. DAE4-660_Sep08)  Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) | Apr-09 Apr-09 Apr-09 Jul-09 Apr-09 Jul-09 Jan-09 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Approved by: Niels Kuster Quality Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E   | GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660  ID # US3642U01700 US37390585  Name | 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00865) 31-Mar-08 (No. 217-00867) 1-Jul-08 (No. 217-00866) 2-Jan-08 (No. ES3-3013_Jan08) 9-Sep-08 (No. DAE4-660_Sep08)  Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) | Apr-09 Apr-09 Apr-09 Jul-09 Apr-09 Jul-09 Jan-09 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Certificate No: EX3-3555\_Sep08

Page 1 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 58 of 66



# Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL sensitivity in free space NORMx,y,z sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP φ rotation around probe axis

Polarization φ Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

# Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

# Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization  $\vartheta$  = 0 (f  $\leq$  900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \le 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3555\_Sep08

Page 2 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 59 of 66

September 19, 2008

# Probe EX3DV4

SN:3555

Manufactured:

July 13, 2004

Last calibrated:

September 27, 2007

Recalibrated:

September 19, 2008

# Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3555\_Sep08

Page 3 of 9

Cerpass Technology Corp.

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Issued Date : Jan. 09, 2009

Page No.

: 60 of 66

September 19, 2008

# DASY - Parameters of Probe: EX3DV4 SN:3555

| Sensitivity in Free Space <sup>A</sup> | Diode Compression <sup>B</sup> |
|----------------------------------------|--------------------------------|
| definitivity in Free Opace             | 5.000                          |

| NormX | 0.40 ± 10.1%        | $\mu V/(V/m)^2$ | DCP X | 95 mV  |
|-------|---------------------|-----------------|-------|--------|
| NormY | <b>0.41</b> ± 10.1% | $\mu V/(V/m)^2$ | DCP Y | 103 mV |
| NormZ | 0.40 ± 10.1%        | $\mu V/(V/m)^2$ | DCP Z | 93 mV  |

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

# **Boundary Effect**

TSL 900 MHz Typical SAR gradient: 5 % per mm

| Sensor Cente          | er to Phantom Surface Distance | 2.0 mm | 3.0 mm |  |
|-----------------------|--------------------------------|--------|--------|--|
| SAR <sub>be</sub> [%] | Without Correction Algorithm   | 10.4   | 6.0    |  |
| SAR <sub>be</sub> [%] | With Correction Algorithm      | 8.0    | 0.5    |  |

TSL 1750 MHz Typical SAR gradient: 10 % per mm

| Sensor Cente          | er to Phantom Surface Distance | 2.0 mm | 3.0 mm |  |
|-----------------------|--------------------------------|--------|--------|--|
| SAR <sub>be</sub> [%] | Without Correction Algorithm   | 8.6    | 4.6    |  |
| SAR <sub>be</sub> [%] | With Correction Algorithm      | 0.6    | 0.1    |  |

# Sensor Offset

Probe Tip to Sensor Center 1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

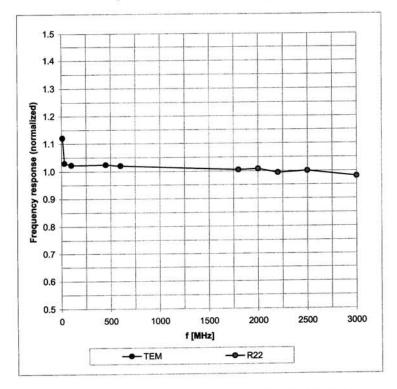
Certificate No: EX3-3555\_Sep08

Page 4 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 61 of 66


<sup>&</sup>lt;sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 8).

<sup>&</sup>lt;sup>B</sup> Numerical linearization parameter: uncertainty not required.

September 19, 2008

# Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

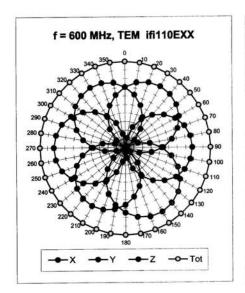


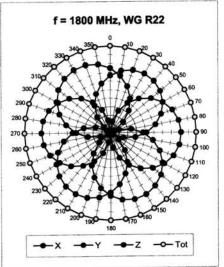
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

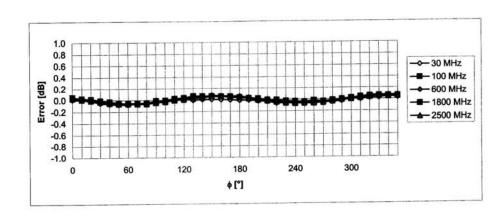
Certificate No: EX3-3555\_Sep08

Page 5 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009


Tel:886-2-2792-3366 Fax:886-2-2792-1100


Page No. : 62 of 66




## September 19, 2008

# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$





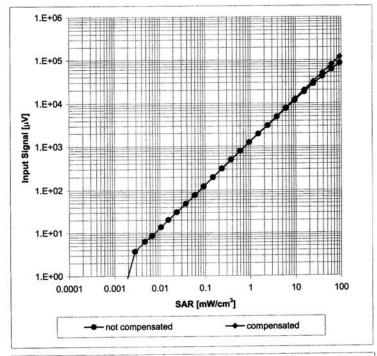


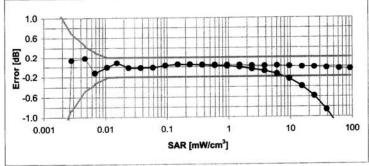
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3555\_Sep08

Page 6 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009


Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 63 of 66




# September 19, 2008

# Dynamic Range f(SAR<sub>head</sub>)

(Waveguide R22, f = 1800 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

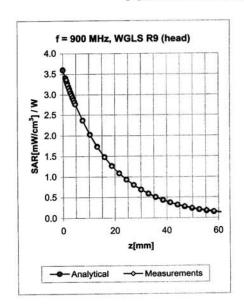
Certificate No: EX3-3555\_Sep08

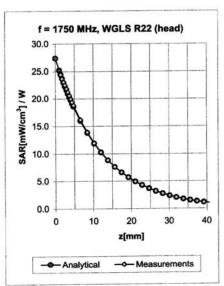
Page 7 of 9

Cerpass Technology Corp.

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Issued Date : Ja


: Jan. 09, 2009


Page No. : 64 of 66



# September 19, 2008

# **Conversion Factor Assessment**





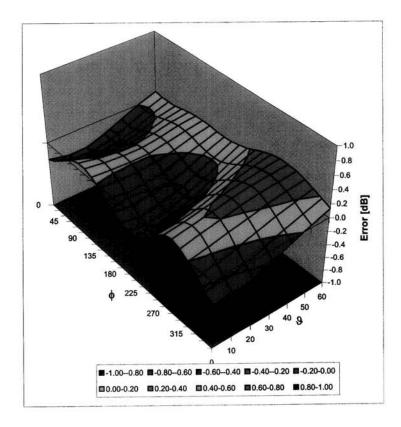
| f [MHz] | Validity [MHz] <sup>C</sup> | TSL  | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty  |
|---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------|
| 900     | ± 50 / ± 100                | Head | 41.5 ± 5%    | 0.97 ± 5%    | 0.29  | 1.13  | 8.03 ± 11.0% (k=2) |
| 1750    | ± 50 / ± 100                | Head | 40.1 ± 5%    | 1.37 ± 5%    | 0.39  | 0.79  | 7.03 ± 11.0% (k=2) |
| 1950    | ± 50 / ± 100                | Head | 40.0 ± 5%    | 1.40 ± 5%    | 0.66  | 0.62  | 6.68 ± 11.0% (k=2) |
| 2450    | ± 50 / ± 100                | Head | 39.2 ± 5%    | 1.80 ± 5%    | 0.47  | 0.72  | 6.40 ± 11.0% (k=2) |
| 900     | ± 50 / ± 100                | Body | 55.0 ± 5%    | 1.05 ± 5%    | 0.30  | 1.17  | 8.01 ± 11.0% (k=2) |
| 1750    | ± 50 / ± 100                | Body | 53.4 ± 5%    | 1.49 ± 5%    | 0.38  | 0.85  | 6.87 ± 11.0% (k=2) |
| 1950    | ± 50 / ± 100                | Body | 53.3 ± 5%    | 1.52 ± 5%    | 0.32  | 0.92  | 6.70 ± 11.0% (k=2) |
| 2450    | ± 50 / ± 100                | Body | 52.7 ± 5%    | 1.95 ± 5%    | 0.34  | 1.00  | 6.17 ± 11.0% (k=2) |
| 5200    | ± 50 / ± 100                | Body | 49.0 ± 5%    | 5.30 ± 5%    | 0.48  | 1.70  | 4.08 ± 13.1% (k=2) |
| 5500    | ± 50 / ± 100                | Body | 48.6 ± 5%    | 5.65 ± 5%    | 0.48  | 1.70  | 3.86 ± 13.1% (k=2) |
| 5800    | ± 50 / ± 100                | Body | 48.2 ± 5%    | 6.00 ± 5%    | 0.48  | 1.70  | 3.82 ± 13.1% (k=2) |

 $<sup>^{\</sup>rm C}$  The validity of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3555\_Sep08

Page 8 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009


Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 65 of 66

September 19, 2008

# **Deviation from Isotropy in HSL**

Error (φ, θ), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3555\_Sep08

Page 9 of 9

Cerpass Technology Corp. Issued Date : Jan. 09, 2009

Tel:886-2-2792-3366 Fax:886-2-2792-1100

Page No. : 66 of 66