

FCC TEST REPORT

REPORT NO.: RF111024D07A

MODEL NO.: F5L104, F5L107

FCC ID: K7SF5L104

RECEIVED: Oct. 24, 2011

TESTED: Oct. 26 ~ 28, 2011

ISSUED: Feb. 3, 2012

APPLICANT: BELKIN INTERNATIONAL, INC.

ADDRESS: 12045 East Waterfront Drive Playa Vista California United

States 90094

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch

LAB LOCATION: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New

Taipei City, Taiwan (R.O.C.)

This test report consists of 51 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

RELEAS	E CONTROL RECORD	4
1.	CERTIFICATION	5
2. 2.1	SUMMARY OF TEST RESULTSMEASUREMENT UNCERTAINTY	6 7
3. 3.1 3.2 3.2.1 3.2.2 3.3.3 3.3.4	GENERAL INFORMATION	
4. 4.1 4.1.1	TEST TYPES AND RESULTS CONDUCTED EMISSION MEASUREMENT LIMITS OF CONDUCTED EMISSION MEASUREMENT	14 14
4.1.2 4.1.3 4.1.4 4.1.5	TEST INSTRUMENTS TEST PROCEDURES DEVIATION FROM TEST STANDARD TEST SETUP	15 16 16
4.1.6 4.1.7 4.2 4.2.1	EUT OPERATING CONDITIONS TEST RESULTSRADIATED EMISSION MEASUREMENTLIMITS OF RADIATED EMISSION MEASUREMENT	17 19
4.2.2 4.2.3 4.2.4 4.2.5	TEST INSTRUMENTS TEST PROCEDURES DEVIATION FROM TEST STANDARD TEST SETUP	21 21
4.2.6 4.2.7 4.3 4.3.1	EUT OPERATING CONDITIONS TEST RESULTS NUMBER OF HOPPING FREQUENCY USEDLIMIT OF HOPPING FREQUENCY USED	22 23 28
4.3.2 4.3.3 4.3.4	TEST INSTRUMENTS TEST PROCEDURES DEVIATION FROM TEST STANDARD	28 28 29
4.3.5 4.3.6 4.4 4.4.1	TEST SETUP TEST RESULTS DWELL TIME ON EACH CHANNEL LIMIT OF DWELL TIME USED	29 31 31
4.4.2 4.4.3 4.4.4 4.4.5	TEST INSTRUMENTS TEST PROCEDURES DEVIATION FROM TEST STANDARD TEST SETUP	31 31
4.4.6 4.5	TEST RESULTSCHANNEL BANDWIDTH	

4.5.1	LIMITS OF CHANNEL BANDWIDTH	36
4.5.2	TEST INSTRUMENTS	36
4.5.3	TEST PROCEDURE	
4.5.4	DEVIATION FROM TEST STANDARD	37
4.5.5	TEST SETUP	
4.5.6	EUT OPERATING CONDITION	37
4.5.7	TEST RESULTS	38
4.6	HOPPING CHANNEL SEPARATION	
4.6.1	LIMIT OF HOPPING CHANNEL SEPARATION	39
4.6.2	TEST INSTRUMENTS	39
4.6.3	TEST PROCEDURES	
4.6.4	DEVIATION FROM TEST STANDARD	39
4.6.5	TEST SETUP	39
4.6.6	TEST RESULTS	
4.7	MAXIMUM PEAK OUTPUT POWER	
4.7.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	41
4.7.2	TEST INSTRUMENTS	41
4.7.3	TEST PROCEDURES	
4.7.4	DEVIATION FROM TEST STANDARD	41
4.7.5	TEST SETUP	
4.7.6	EUT OPERATING CONDITION	
4.7.7	TEST RESULTS	43
4.8	BAND EDGES MEASUREMENT	
4.8.1	LIMITS OF BAND EDGES MEASUREMENT	
4.8.2	TEST INSTRUMENTS	
4.8.3	TEST PROCEDURE	
4.8.4	DEVIATION FROM TEST STANDARD	_
4.8.5	EUT OPERATING CONDITION	
4.8.6	TEST RESULTS	46
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	49
6.	INFORMATION ON THE TESTING LABORATORIES	50
7.	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	51

RELEASE CONTROL RECORD

ISSUE NO. REASON FOR CHANGE		DATE ISSUED
RF111024D07A	Original release	Feb. 3, 2012

Report No.: RF111024D07A Reference No.: 111024D07, 111212D30

ort No.: RF111024D07A 4 Report Format Version 4.0.0

1. CERTIFICATION

PRODUCT: Bluetooth Keyboard

BRAND NAME: BELKIN

MODEL NO.: F5L104, F5L107

APPLICANT: BELKIN INTERNATIONAL, INC.

TESTED: Oct. 26 ~ 28, 2011

TEST ITEM: ENGINEERING SAMPLE

STANDARDS: FCC Part 15, Subpart C (Section 15.247)

ANSI C63.4-2003 ANSI C63.10-2009

The above equipment (Model: F5L104) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY

Annie Chang / Senior Specialist)

DATE: teb 3 2012

ADDROVED BY

(Ken Liu / Manager)

, DATE: Feb. 3. 2012

(Ken Liu / Manager)

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 15, Subpart C						
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK				
15.207	AC Power Conducted Emission	PASS	Meets Class B Limit Minimum passing margin is –11.44dB at 0.637MHz				
15.247(a)(1) (iii)	Number of Hopping Frequency Used Spec.: At least 15 channels	PASS	Meet the requirement of limit.				
15.247(a)(1) (iii)	Dwell Time on Each Channel Spec.: Max. 0.4 second within 31.6 second	PASS	Meet the requirement of limit.				
15.247(a)(1)	1. Hopping Channel Separation Spec.: Min. 25 kHz or 20 dB bandwidth, whichever is greater (see Note) 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit.				
15.247(b)	Maximum Peak Output Power Spec.: max. 21dBm (see Note)	PASS	Meet the requirement of limit.				
15.247(d)	Transmitter Radiated Emissions Spec.: Table 15.209	PASS	Meet the requirement of limit. Minimum passing margin is –5.7dB at 52.60MHz.				
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	No antenna connector is used.				

NOTE: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

MEASUREMENT	FREQUENCY	UNCERTAINTY	
Dadiated emissions	30MHz ~ 1GHz	3.87 dB	
Radiated emissions	Above 1GHz	3.36 dB	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Bluetooth Keyboard
MODEL NO.	F5L104, F5L107
: 7C =8	`?+G:)
POWER SUPPLY	5Vdc from host equipment
FOWER SOFFEI	3.7Vdc from battery
MODULATION TYPE	GFSK
RADIO TECHNOLOGY	FHSS
TRANSFER RATE	723.2Kbps
OPERATING FREQUENCY	2402 ~ 2480MHz
NUMBER OF CHANNEL	79
OUTPUT POWER	0.6mW
ANTENNA TYPE	Printed antenna with -0.56dBi gain
ANTENNA CONNECTOR	N/A
DATA CABLE	USB port
I/O PORTS	1.5m shielded USB cable (for charge only)
ASSOCIATED DEVICES	N/A

NOTE:

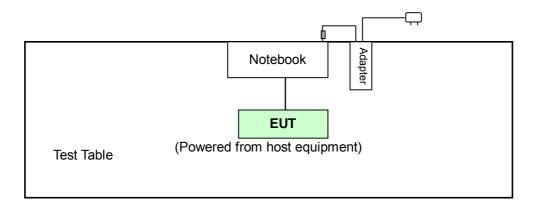
- 1. The EUT is a Bluetooth Keyboard.
- 2. The EUT has several models, which are identical to each other except for the following:

Brand Name	Model No.	Differentiation
BELKIN	F5L104	the YourType Keyboard Folio for Samsung Galaxy Tab 10.1 (with Andriod OS)
	F5L107	for other Android varieties

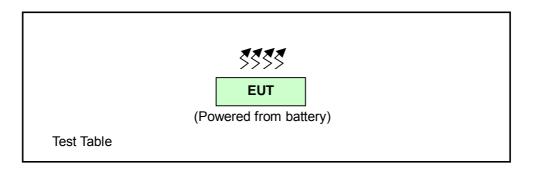
During the test, model: **F5L104** was selected as the representative one and therefore only its test data was recorded in this report.

- 3. USB cable is for battery charging only. The keyboard will not initiate communication with PC through this cable.
- 4. For more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES


79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		



3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

FOR MODE A:

FOR MODE B:

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE		Applic	cable to		Description
MODE	PLC	RE<1G	RE ³ 1G	APCM	Description
Α	\checkmark	V	√	√	Operating + Charge mode (EUT with Notebook)
В	Note	√	-	-	Operating mode (EUT only)

Where PLC: Power Line Conducted Emission RE<1G: Radiated Emission below 1GHz

RE³1G: Radiated Emission above 1GHz APCM: Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

POWER LINE CONDUCTED EMISSION TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
Α	0 to 78	0	FHSS	GFSK	DH5

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
A & B	0 to 78	0	FHSS	GFSK	DH5

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
Α	0 to 78	0, 39, 78	FHSS	GFSK	DH5

BANDEDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
A	0 to 78	0, 78	FHSS	GFSK	DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
А	0 to 78	0, 39, 78	FHSS	GFSK	DH5

TEST CONDITION:

APPLICABLE TO	EUT CONFIGURE MODE	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
PLC	А	24deg. C, 68% RH	120Vac, 60Hz (SYSTEM)	Chad Lee
RE ³ 1G	А	27deg. C, 81% RH	120Vac, 60Hz (SYSTEM)	Nick Chen
RE<1G	А	24deg. C, 68% RH	120Vac, 60Hz (SYSTEM)	Nick Chen
	В	24deg. C, 68% RH	3.7Vdc	Nick Chen
APCM	Α	22deg. C, 78% RH	120Vac, 60Hz (SYSTEM)	Jun Wu

12

3.3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (Section 15.247)
ANSI C63.4-2003
ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

3.3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK	DELL	PP27L	8SNZ12S	FCC DoC Approved
'	COMPUTER	DELL	FF27L	03NZ 123	PCC DOC Approved

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

NOTE: All power cords of the above support units are non-shielded (1.8m).

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)				
	Quasi-peak	Average			
0.15 ~ 0.5	66 to 56	56 to 46			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

14

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Report No.: RF111024D07A Reference No.: 111024D07, 111212D30 Report Format Version 4.0.0

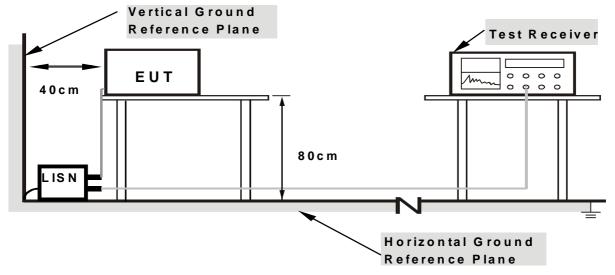
4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESCS 30	100276	Dec. 31, 2010	Dec. 30, 2011
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ESH3-Z5	100219 Nov. 24, 2010		Nov. 23, 2011
LISN With Adapter (for EUT)	AD10	C10Ada-001	Nov. 24, 2010	Nov. 23, 2011
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100218	Nov. 24, 2010	Nov. 23, 2011
Software	ADT_Cond_V7.3.7	NA	NA	NA
Software	ADT_ISN_V7.3.7	NA	NA	NA
RF cable (JYEBAO)	5D-FB	Cable-C10.01	Feb. 22, 2011	Feb. 21, 2012
SUHNER Terminator (For ROHDE & SCHWARZ LISN)	65BNC-5001	E1-010773	Feb. 26, 2011	Feb. 25, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Shielded Room No. 10.
- 3. The VCCI Site Registration No. C-1852.

4.1.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

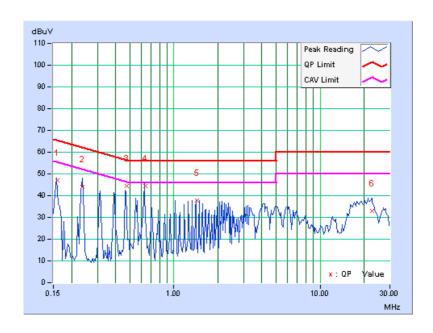
4.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

- a. Turn on the power of all equipment.
- b. Notebook ran a test program (provided by manufacture) to enable EUT under transmitting condition at specific channel continuously.
- c. Set the EUT under charging condition.


4.1.7 TEST RESULTS

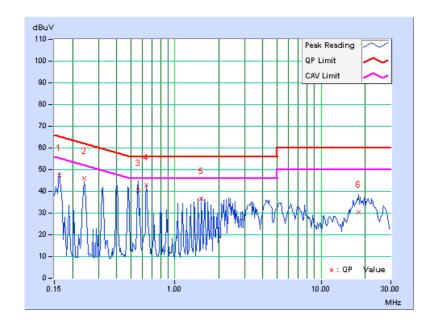
TEST MODE	А	6dB BANDWIDTH	9kHz
CHANNEL	Channel 0	PHASE	Line 1

	Freq.	Corr.	Reading	g Value	Emis Le	ssion vel	Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.159	0.17	46.98	-	47.15	-	65.51	55.51	-18.36	-
2	0.236	0.18	44.05	-	44.23	-	62.24	52.24	-18.01	-
3	0.479	0.24	44.14	-	44.38	-	56.35	46.35	-11.97	-
4	0.637	0.25	44.31	-	44.56	•	56.00	46.00	-11.44	-
5	1.440	0.30	37.43	-	37.73	-	56.00	46.00	-18.27	-
6	22.652	1.42	31.58	-	33.00	-	60.00	50.00	-27.00	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Reference No.: 111024D07, 111212D30



TEST MODE	А	6dB BANDWIDTH	9kHz
CHANNEL	Channel 0	PHASE	Line 2

	Freq.	Corr.	Readin	g Value		sion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.162	0.18	47.27	-	47.45	-	65.37	55.37	-17.93	-
2	0.241	0.19	45.61	-	45.80	-	62.06	52.06	-16.25	-
3	0.562	0.26	40.25	-	40.51	-	56.00	46.00	-15.49	-
4	0.641	0.26	42.59	-	42.85	-	56.00	46.00	-13.15	-
5	1.523	0.31	36.51	-	36.82	-	56.00	46.00	-19.18	-
6	18.039	0.94	29.45	-	30.39	-	60.00	50.00	-29.61	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Mar. 04, 2011	Mar. 03, 2012
HP Preamplifier	8449B	3008A01201	Mar. 04, 2011	Mar. 03, 2012
Agilent Spectrum Analyzer	E4446A	MY46180403	Jun. 22, 2011	Jun. 21, 2012
Schwarzbeck Antenna	VULB 9168	137	Apr. 12, 2011	Apr. 11, 2012
Schwarzbeck Antenna	VHBA 9123	480	May 06, 2011	May 05, 2012
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	ADT_Radiated_V 7.6.15.9.2	NA	NA	NA
SUHNER RF cable	SF102	CABLE-CH6	Aug. 19, 2011	Aug. 18, 2012
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	May 16, 2011	May 15, 2012
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA

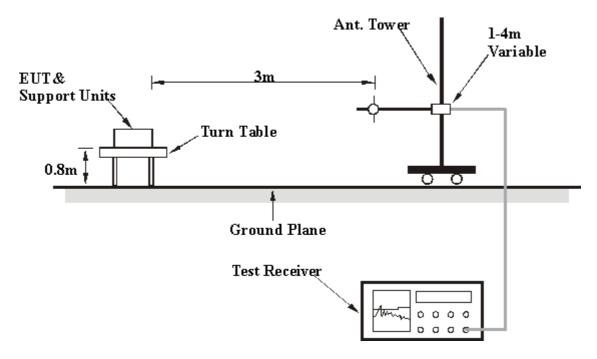
NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 3. The test was performed in Chamber No. 6.
- 4. The Industry Canada Reference No. IC 7450E-6.
- 5. The FCC Site Registration No. is 447212.

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak method or average method as specified and then reported in data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Set the EUT under transmission/receiving condition continuously at specific channel frequency.

4.2.7 TEST RESULTS

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 0	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	27deg. C, 81%RH	TESTED BY	Nick Chen	
TEST MODE	Α			

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	58.0 PK	74.0	-16.0	1.05 H	273	25.82	32.15
2	2390.00	47.4 AV	54.0	-6.6	1.05 H	273	15.26	32.15
3	#2400.00	54.3 PK	74.6	-20.3	1.05 H	273	22.15	32.19
4	#2400.00	24.2 AV	44.5	-20.3	1.05 H	273	-7.95	32.19
5	*2402.00	94.6 PK			1.05 H	273	62.44	32.20
6	*2402.00	64.5 AV			1.05 H	273	32.34	32.20
7	4804.00	49.0 PK	74.0	-25.0	1.00 H	273	10.39	38.61
8	4804.00	18.9 AV	54.0	-35.1	1.00 H	273	-19.71	38.61
		ANTENNA	A POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	57.2 PK	74.0	-16.8	1.00 V	54	25.04	32.15
2	2390.00	46.8 AV	54.0	-7.2	1.00 V	54	14.63	32.15
3	#2400.00	50.8 PK	71.1	-20.3	1.00 V	54	18.57	32.19
4	#2400.00	20.7 AV	41.0	-20.3	1.00 V	54	-11.53	32.19
5	*2402.00	91.1 PK			1.00 V	54	58.86	32.20
6	*2402.00	61.0 AV			1.00 V	54	28.76	32.20
7	4804.00	50.3 PK	74.0	-23.7	1.00 V	266	11.73	38.61
8	4804.00	20.2 AV	54.0	-33.8	1.00 V	266	-18.37	38.61

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB.
- 7. Average value = peak reading + 20log(duty cycle).
- 8. "#":The radiated frequency is out the restricted band.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 39	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	27deg. C, 81%RH	TESTED BY	Nick Chen	
TEST MODE	А			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2441.00	94.6 PK			1.11 H	165	62.29	32.35			
2	*2441.00	64.5 AV			1.11 H	165	32.19	32.35			
3	4882.00	55.7 PK	74.0	-18.3	1.09 H	166	16.92	38.80			
4	4882.00	25.6 AV	54.0	-28.4	1.09 H	166	-13.18	38.80			
		ANTENNA	A POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2441.00	90.5 PK			1.00 V	86	58.17	32.35			
	*2441.00	00 1 11 1			1.00 V	86	28.07	32.35			
2	2441.00	60.4 AV			1.00 V	00	20.07	02.00			
3	4882.00	60.4 AV 48.9 PK	74.0	-25.1	1.00 V	49	10.11	38.80			

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB.
- 7. Average value = peak reading + 20log(duty cycle).

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 78	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	27deg. C, 81%RH	TESTED BY	Nick Chen	
TEST MODE	А			

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	93.8 PK			1.05 H	196	61.33	32.49
2	*2480.00	63.7 AV			1.05 H	196	31.23	32.49
3	2483.50	52.1 PK	74.0	-21.9	1.05 H	196	19.61	32.51
4	2483.50	22.0 AV	54.0	-32.0	1.05 H	196	-10.49	32.51
5	4960.00	49.4 PK	74.0	-24.6	1.11 H	208	10.38	38.98
6	4960.00	19.3 AV	54.0	-34.7	1.11 H	208	-19.72	38.98
		ANTENNA	A POLARIT	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	88.7 PK			1.18 V	109	56.21	32.49
2	*2480.00	58.6 AV			1.18 V	109	26.11	32.49
3	2483.50	47.0 PK	74.0	-27.0	1.18 V	109	14.49	32.51
4	2483.50	16.9 AV	54.0	-37.1	1.18 V	109	-15.61	32.51
5	4960.00	48.7 PK	74.0	-25.3	1.00 V	157	9.75	38.98

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB.
- 7. Average value = peak reading + 20log(duty cycle).

BELOW 1GHz WORST-CASE DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 0	FREQUENCY RANGE	Below 1000MHz	
INPUT POWER (SYSTEM)	120Vac, 60Hz	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	24deg. C, 68%RH	TESTED BY	Nick Chen	
TEST MODE	Α			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	52.60	30.6 QP	40.0	-9.4	1.02 H	175	16.88	13.72		
2	191.40	33.7 QP	43.5	-9.8	1.12 H	244	21.60	12.09		
3	199.47	36.9 QP	43.5	-6.6	1.32 H	250	25.52	11.39		
4	239.82	36.2 QP	46.0	-9.8	1.07 H	271	23.07	13.10		
5	265.64	34.4 QP	46.0	-11.6	1.00 H	295	20.17	14.20		
6	322.13	33.3 QP	46.0	-12.7	1.24 H	31	17.01	16.31		
7	373.78	34.3 QP	46.0	-11.7	1.00 H	334	16.40	17.90		
		ANTENNA	POLARIT	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	52.60	34.3 QP	40.0	-5.7	1.07 V	217	20.56	13.72		
2	65.51	28.2 QP	40.0	-11.8	1.23 V	214	15.22	12.94		
3	146.21	32.7 QP	43.5	-10.8	1.02 V	193	18.51	14.15		
4	165.57	31.4 QP	43.5	-12.1	1.13 V	142	17.12	14.24		
5	199.47	31.4 QP	43.5	-12.1	1.28 V	340	20.00	11.39		
6	795.02	33.5 QP	46.0	-12.5	1.00 V	229	6.97	26.49		

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 0	FREQUENCY RANGE	Below 1000MHz	
INPUT POWER	3.7Vdc	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	24deg. C, 68%RH	TESTED BY	Nick Chen	
TEST MODE	В			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	759.52	25.7 QP	46.0	-20.3	1.12 H	241	0.08	25.65		
2	798.25	26.5 QP	46.0	-19.5	1.02 H	10	-0.09	26.57		
3	822.46	26.9 QP	46.0	-19.1	1.32 H	115	0.03	26.89		
4	866.04	27.0 QP	46.0	-19.0	1.14 H	247	-0.42	27.41		
5	899.93	27.9 QP	46.0	-18.1	1.24 H	187	0.14	27.78		
6	919.30	27.6 QP	46.0	-18.4	1.50 H	10	-0.41	28.03		
		ANTENNA	A POLARIT	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	(dBuV/m) HEIGHT (m) (dBuV)									
	, ,	LEVEL (dBuV/m)	(dBuV/m)	MARGIN (dB)	7	ANGLE (Degree)		FACTOR (dB/m)		
1	46.14		(dBuV/m) 40.0	-18.4	7					
1 2	46.14 76.81	(dBuV/m)	` ′		HEIGHT (m)	(Degree)	(dBuV)	(dB/m)		
<u> </u>		(dBuV/m) 21.6 QP	40.0	-18.4	HEIGHT (m)	(Degree) 226	(dBuV) 7.64	(dB/m) 14.00		
2	76.81	(dBuV/m) 21.6 QP 24.9 QP	40.0	-18.4 -15.1	1.07 V 1.24 V	(Degree) 226 94	(dBuV) 7.64 13.90	(dB/m) 14.00 11.00		
2	76.81 107.47	(dBuV/m) 21.6 QP 24.9 QP 22.7 QP	40.0 40.0 43.5	-18.4 -15.1 -20.8	1.07 V 1.24 V 1.22 V	(Degree) 226 94 214	(dBuV) 7.64 13.90 12.13	(dB/m) 14.00 11.00 10.53		
3 4	76.81 107.47 746.61	(dBuV/m) 21.6 QP 24.9 QP 22.7 QP 25.2 QP	40.0 40.0 43.5 46.0	-18.4 -15.1 -20.8 -20.8	1.07 V 1.24 V 1.22 V 1.33 V	(Degree) 226 94 214 355	7.64 13.90 12.13 -0.11	(dB/m) 14.00 11.00 10.53 25.34		

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

4.3 NUMBER OF HOPPING FREQUENCY USED

4.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

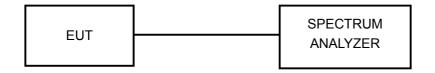
4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100036	Apr. 29, 2011	Apr. 28, 2012

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURES

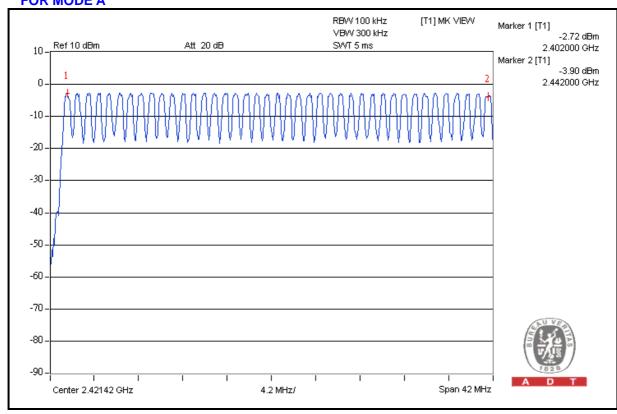
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

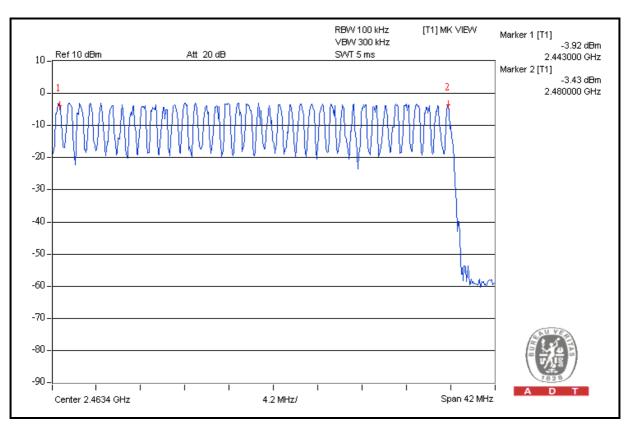

Report Format Version 4.0.0

4.3.4 DEVIATION FROM TEST STANDARD

No deviation.

4.3.5 TEST SETUP




4.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.4 DWELL TIME ON EACH CHANNEL

4.4.1 LIMIT OF DWELL TIME USED

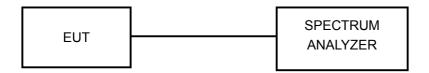
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100036	Apr. 29, 2011	Apr. 28, 2012

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.4.3 TEST PROCEDURES

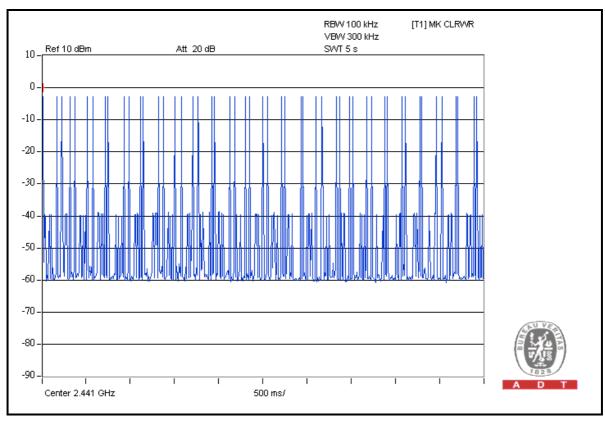

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

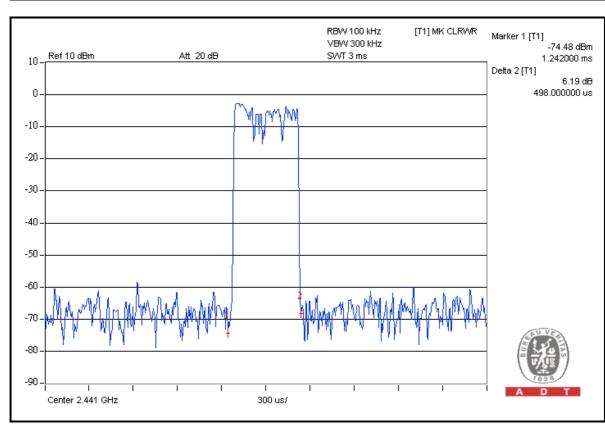
4.4.4 DEVIATION FROM TEST STANDARD

No deviation.

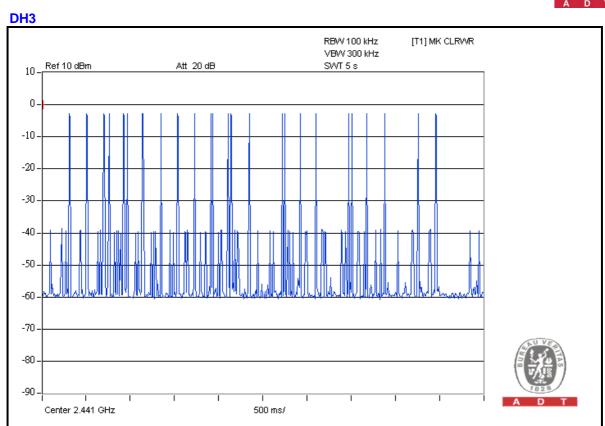
4.4.5 TEST SETUP

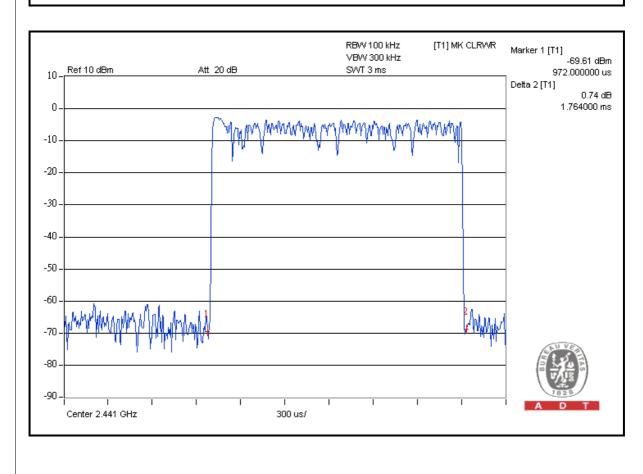
4.4.6 TEST RESULTS

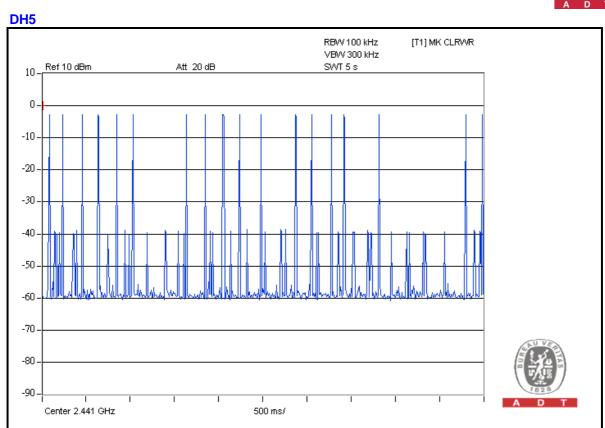

FOR MODE A

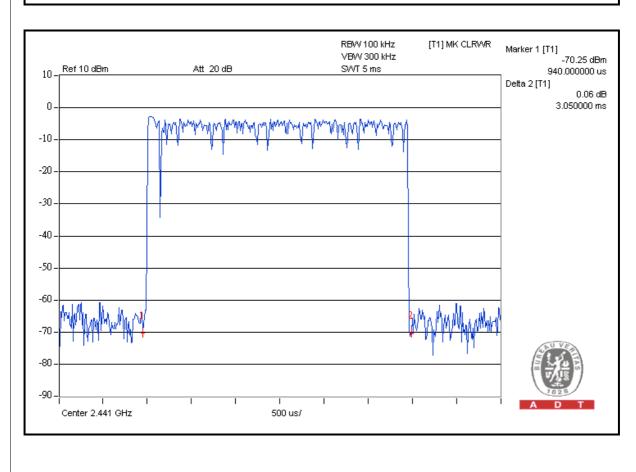

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) *6.32=316.00 times	0.498	157.368	400
DH3	25 (times / 5 sec) *6.32=158.00 times	1.764	278.712	400
DH5	18 (times / 5 sec) *6.32=113.76 times	3.050	346.968	400

NOTE: Test plots of the transmitting time slot are shown on next 3 pages for test channel 39.




DH1





4.5 CHANNEL BANDWIDTH

4.5.1 LIMITS OF CHANNEL BANDWIDTH

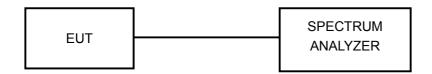
For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100036	Apr. 29, 2011	Apr. 28, 2012

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURE


- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

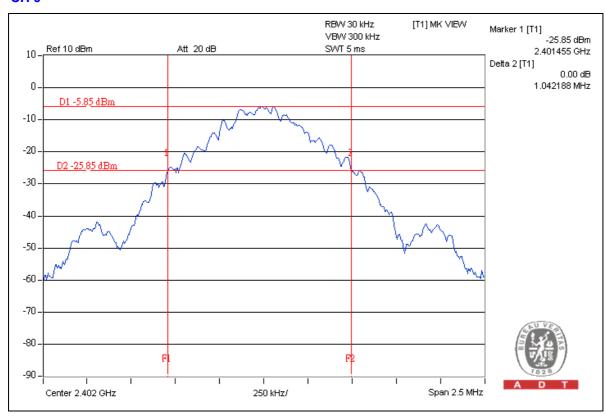
4.5.4 DEVIATION FROM TEST STANDARD

No deviation.

4.5.5 TEST SETUP

4.5.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.



4.5.7 TEST RESULTS

FOR MODE A

CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (MHz)
0	2402	1.04
39	2441	1.03
78	2480	1.04

CH₀

4.6 HOPPING CHANNEL SEPARATION

4.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

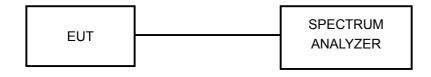
4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100036	Apr. 29, 2011	Apr. 28, 2012

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.

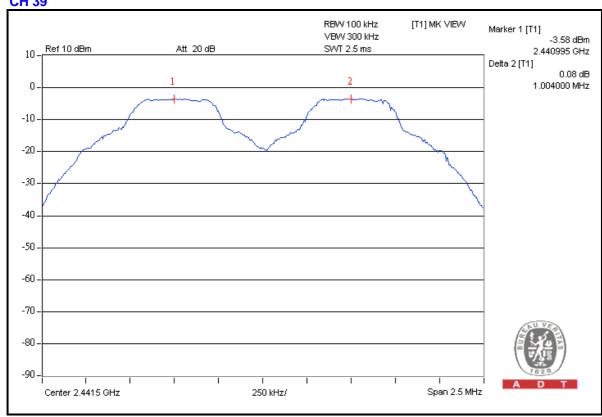

39

5. Repeat above procedures until all frequencies measured were complete.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation.

4.6.5 TEST SETUP


4.6.6 TEST RESULTS

FOR MODE A

CHANNEL	FREQUENCY (MHz)	ADJACENT CHANNEL SEPARATION (MHz)	20dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	1.00	1.04	0.69	PASS
39	2441	1.00	1.03	0.69	PASS
78	2480	1.00	1.04	0.69	PASS

NOTE: The minimum limit is two-third 20dB bandwidth. Test results please refer to following plot.

CH 39

4.7 MAXIMUM PEAK OUTPUT POWER

4.7.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

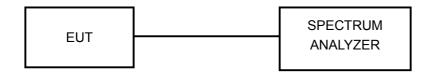
The Maximum Peak Output Power Measurement is 125mW.

4.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100036	Apr. 29, 2011	Apr. 28, 2012

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.7.3 TEST PROCEDURES


- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3 MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.4 DEVIATION FROM TEST STANDARD

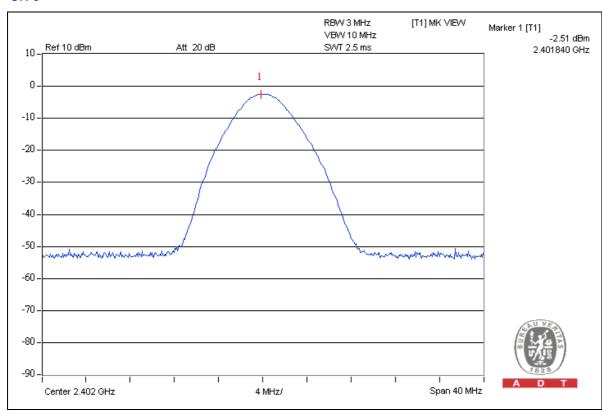
No deviation

4.7.5 TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.7.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.



4.7.7 TEST RESULTS

FOR MODE A

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (dBm)	PEAK POWER OUTPUT (mW)	PEAK POWER LIMIT (mW)	PASS/FAIL
0	2402	-2.5	0.6	125	PASS
39	2441	-2.7	0.5	125	PASS
78	2480	-3.0	0.5	125	PASS

CH₀

4.8 BAND EDGES MEASUREMENT

4.8.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	CALIBRATED UNTIL	
FOR CONDUCTED MEASUREMENT:					
SPECTRUM ANALYZER	FSP 40	100036	Apr. 29, 2011	Apr. 28, 2012	
FOR RADIATED MEASUREM	IENT:				
HP Preamplifier	8447D	2432A03504	Mar. 04, 2011	Mar. 03, 2012	
HP Preamplifier	8449B	3008A01201	Mar. 04, 2011	Mar. 03, 2012	
Agilent Spectrum Analyzer	E4446A	MY4618040 3	Jun. 22, 2011	Jun. 21, 2012	
Schwarzbeck Antenna	VULB 9168	137	Apr. 12, 2011	Apr. 11, 2012	
Schwarzbeck Antenna	VHBA 9123	480	May 06, 2011	May 05, 2012	
ADT. Turn Table	TT100	0306	NA	NA	
ADT. Tower	AT100	0306	NA	NA	
Software	ADT_Radiate d_V7.6.15.9.2	NA	NA	NA	
SUHNER RF cable	SF102	CABLE-CH6	Aug. 19, 2011	Aug. 18, 2012	
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	May 16, 2011	May 15, 2012	
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA	

NOTE: The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.8.3 TEST PROCEDURE

FOR CONDUCTED MEASUREMENT:

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

FOR RADIATED MEASUREMENT:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. Set both RBW and VBW of spectrum analyzer to 1MHz and 3MHz with suitable frequency span including 100MHz bandwidth from band edge. The band edges was measured and recorded.

NOTE: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz

4.8.4 DEVIATION FROM TEST STANDARD

No deviation.

4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

45

4.8.6 TEST RESULTS

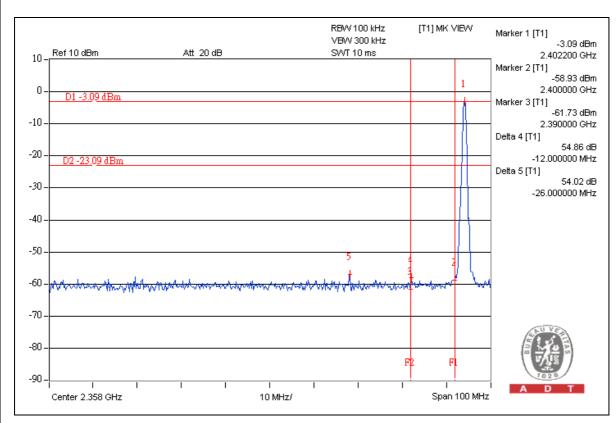
The spectrum plots are attached on the following 4 images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(d).

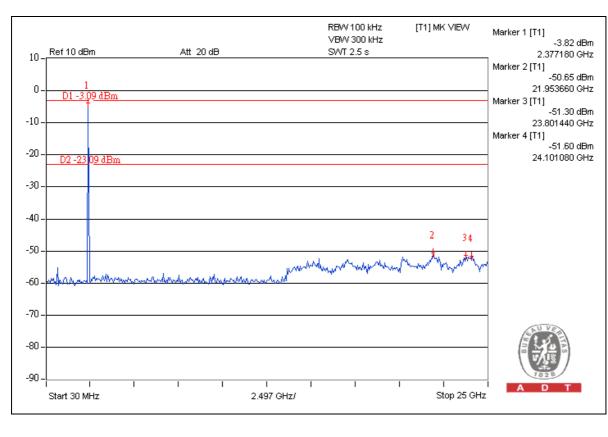
The spectrum plots (RBW =100kHz, VBW = 300kHz) are attached on the following pages.

FOR MODE A

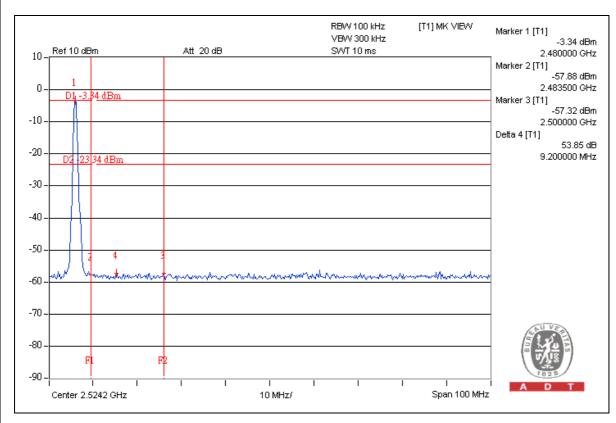
RESTRICT BAND (2310 ~ 2390 MHz)

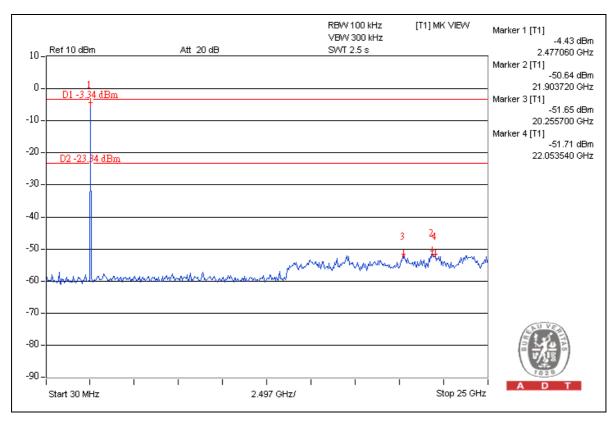
FREQUENCY (MHz)	FUNDAMENTAL EMISSION (dBuV/m)	DELTA (dB)	MAXIMUM FIELD STRENGTH IN RESTRICT BAND (dBuV/m)	LIMIT (dBuV/m)
2402.00 (PK)	94.6	54.0	40.6	74.00
2402.00 (AV)	-	-	10.5	54.00


RESTRICT BAND (2483.5 ~ 2500 MHz)


FREQUENCY (MHz)	FUNDAMENTAL EMISSION (dBuV/m)	DELTA (dB)	MAXIMUM FIELD STRENGTH IN RESTRICT BAND (dBuV/m)	LIMIT (dBuV/m)
2480.00 (PK)	93.8	53.9	39.9	74.00
2480.00 (AV)	-	-	9.8	54.00

NOTE:


- 1. Delta = Amplitude between the peak of the fundamental and the peak of the band edge emission. Please check following 2 pages.
- 2. Maximum field strength in restrict band (PK value) = Fundamental emission (PK value) Delta.
- 3. Average value = Peak value + 20 Log (duty cycle) = Peak value -30.1dB.
- 4. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30.1 dB.



5. PHOTOGRAPHS OF THE TEST CONFIGURATION Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5.phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26051924 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Email: service.adt@tw.bureauveritas.com

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the tes	No a	ny modifications	are made to	the EUT by	y the lab	during	the test
--	------	------------------	-------------	------------	-----------	--------	----------

---END---