

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Keyboard Folio

Model: F5L090, F5L090xx, F5L096xx, F5L094xx, F5L095xx
(X="A-Z" or "0-9" or blank)

Brand: Belkin

Test Report Number: SZ110623B02-RP

Prepared for

Belkin International Inc.
12045 East Waterfront Drive, Playa Vista, CA 90094

Issued by:

Compliance Certification Services Inc.
Linkuo Laboratory
No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan
County 33841, Taiwan(R.O.C.)
TEL: 886-3-324-0332

FAX: 886-3-324-5235 E-Mail: service@ccsrf.com Issued Date:June 29, 2011

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test result of this report relate only to the tested sample identified in this report.

FCC ID: K7SF5L090 Page 1 of 42

Revision History

Rev.	Issue No.	Revisions	Effect Page	Revised By
00	SZ110623B02-RP	Initial Issue	ALL	Ethan Huang

FCC ID: K7SF5L090 Page 2 of 42

TABLE OF CONTENTS

1 TE	EST RESULT CERTIFICATION	4
2 EL	UT DESCRIPTION	5
3 TE	EST METHODOLOGY	6
3.1.	. DESCRIPTION OF TEST MODES	6
4 FA	ACILITIES AND ACCREDITATIONS	7
4.1.		
4.2.	. ACCREDITATIONS	7
4.3.	. MEASUREMENT UNCERTAINTY	7
5 SE	ETUP OF EQUIPMENT UNDER TEST	8
5.1.	. SETUP CONFIGURATION OF EUT	8
5.2.	SUPPORT EQUIPMENT	8
6 FC	CC PART 15.247 REQUIREMENTS	9
6.1.		
6.2.		
6.3.	. PEAK POWER SPECTRAL DENSITY	14
6.4.		
6.5.		21
6.6.		
6.7.	,	
6.8.	. spurious emissions	28
6.9.	. POWERLINE CONDUCTED EMISSIONS	40

1 TEST RESULT CERTIFICATION

Product:	Keyboard Folio
Model:	F5L090, F5L090xx, F5L096xx, F5L094xx, F5L095xx (X="A-Z" or "0-9" or blank)
Brand:	Belkin
Tested:	June 23~28, 2011
Applicant:	Belkin International Inc. 12045 East Waterfront Drive, Playa Vista, CA 90094
Manufacturer:	Dongguan Primax Electronic & Telecommunication Products Ltd. Liu Wu District, Shek Kit Town, Dongguan City, Guangdong Province, P.R. China

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 15 Subpart C	No non-compliance noted			

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.207, 15.209 and 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Ethan Huang

Manager

Compliance Certification Service Inc.

Reviewed by:

Aven Zhou

Supervisor of Report Dept.

Compliance Certification Service Inc.

sen zhou

FCC ID: K7SF5L090 Page 4 of 42

2 EUT DESCRIPTION

Product	Keyboard Folio
Model Number	F5L090, F5L090xx, F5L096xx, F5L094xx, F5L095xx (X="A-Z" or "0-9" or blank)
Trade Name	Belkin
Model Discrepancy	All models are identical to each other except for market designation for marketing purpose, and not affect the safety and electromagnetic compatibility of the product.
Identify Number	SZ110623B02-RP
Power Supply	DC 5V Supplied by the PC or DC 3.7V supplied by the battery
Received Date	June 23, 2011
Frequency Range	2402 ~ 2480 MHz
Transmit Power	1.32dBm
Modulation Technique	FHSS(GFSK)
Number of Channels	79 Channels
Antenna Specification	PCB Antenna Gain: 0.52dBi (Max)
Temperature Range	0°C ~ +35°C

Note: This submittal(s) (test report) is intended for FCC ID: <u>K7SFL090</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

FCC ID: K7SF5L090 Page 5 of 42

3 TEST METHODOLOGY

3.1. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

The following test mode(s) were scanned during the preliminary test below 1G:

Test Item	Test mode	Worse mode
Conducted Emission	Mode 1: Normal Link with Charge	•
Radiated Emission	Mode 1: Normal Link with Charge	•

Above 1G, Channel Low (2402MHz) \(\) Mid (2441MHz) and High (2480MHz) were chosen for full testing for GFSK.

FCC ID: K7SF5L090 Page 6 of 42

4 FACILITIES AND ACCREDITATIONS

4.1. FACILITIES

All measurement facilities used to collect the measurement data are located at No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, Taiwan(R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.4:2003, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

4.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA A2LA Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA FCC
Japan VCCI
Canada INDUSTRY CANADA
Taiwan BSMI
Norway Nemko

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty	
Conducted emissions	9kHz~30MHz	+/- 3.18dB	
	30MHz ~ 200MHz	+/- 3.79dB	
Radiated emissions	200MHz ~1000MHz	+/- 3.62dB	
	Above 1000MHz	+/- 5.04dB	
Band Edges	+/-0.182 dB		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

FCC ID: K7SF5L090 Page 7 of 42

5 SETUP OF EQUIPMENT UNDER TEST

5.1. SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

5.2. SUPPORT EQUIPMENT

No.	Equipment	Model No.	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
1	NOTEBOOK	Studio 1435	S315448686549	N/A	DELL	N/A	Unshielded 1.80m

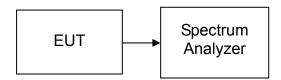
Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

FCC ID: K7SF5L090 Page 8 of 42

6 FCC PART 15.247 REQUIREMENTS

6.1. 20DB BANDWIDTH


None; for reporting purpose only.

MEASUREMENT EQUIPMENT USED

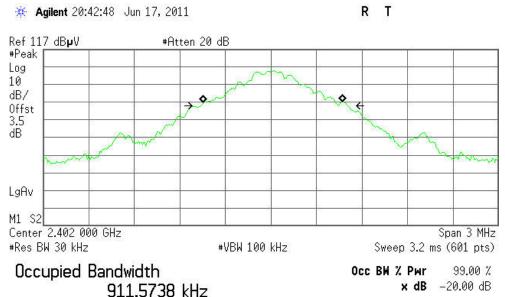
Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2011	03/21/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

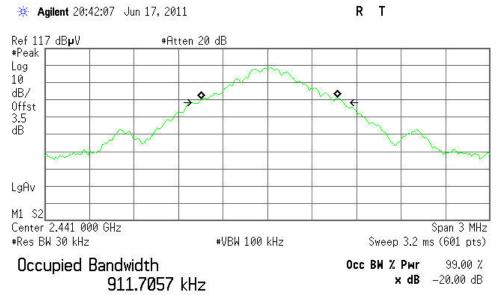
TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT, then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=30kHz, VBW=30kHz, Span=3MHz, Sweep = auto
- 4. Mark the peak frequency and 20dB (upper and lower) frequency.
- 5. Repeat until all the test channels are investigated.


TEST RESULTS

No non-compliance noted

FCC ID: K7SF5L090 Page 9 of 42

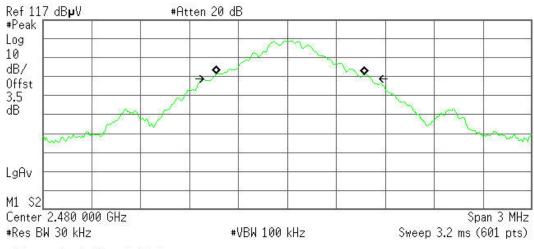

Test plot

20dB Bandwidth (CH Low)

Transmit Freg Error 12.057 kHz x dB Bandwidth 971.909 kHz

20dB Bandwidth (CH Mid)

Transmit Freq Error 12.866 kHz x dB Bandwidth 968.812 kHz


FCC ID: K7SF5L090 Page 10 of 42

20dB Bandwidth (CH High)

R T

Occupied Bandwidth 904.9925 kHz

Occ BW % Pwr 99.00 % x dB -20.00 dB

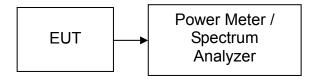
Transmit Freq Error 15.813 kHz x dB Bandwidth 969.556 kHz

FCC ID: K7SF5L090 Page 11 of 42

6.2. PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:


- 1. For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.
- 3. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
RF Power Meter & Sensor	Anritsu	ML2487A	6K00001491	02/23/2011	02/23/2012
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2011	03/21/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

FCC ID: K7SF5L090 Page 12 of 42

TEST RESULTS

No non-compliance noted

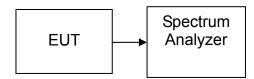
Test Data

Channel	Frequency (MHz)	Reading Power (dBm)	Factor (dB)	Output Powel (dBm)	Output Power (W)	Limit (mW)	
Low	2402	-3.44000	3.50	0.06	0.00101		Pass
M id	2441	-2.64000	3.50	0.86	0.00122	125	Pass
High	2480	-2.18000	3.50	1.32	0.00136		Pass

FCC ID: K7SF5L090 Page 13 of 42

6.3. PEAK POWER SPECTRAL DENSITY

LIMIT


- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2011	03/21/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

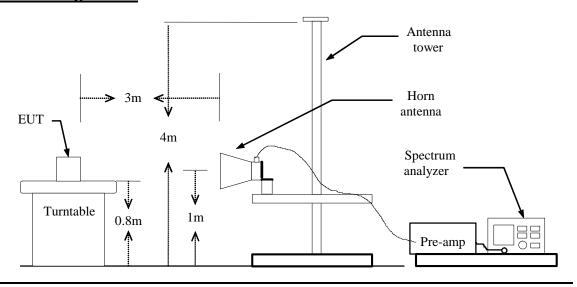
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 4. Record the max. reading.
- 5. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

Not applicable. Since EUT is the Bluetooth device.

FCC ID: K7SF5L090 Page 14 of 42

6.4. BAND EDGES MEASUREMENT


LIMIT

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

MEASUREMENT EQUIPMENT USED

	Radiated Emission Test Site 966 (2)							
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2011	03/21/2012			
Amplifier	MITEQ	AM-1604-3000	1411843	03/21/2011	03/21/2012			
Turn Table	EMCO	2081-1.21	N/A	N.C.R	N.C.R			
Controller	CT	N/A	N/A	N.C.R	N.C.R			
High Noise Amplifier	Agilent	8449B	3008A01838	06/18/2011	06/18/2012			
Site NSA	C&C	N/A	N/A	N.C.R	N.C.R			
Bilog Antenna	SCHAFFNER	CBL6143	5082	06/18/2011	06/18/2012			
Horn Antenna	SCHWARZBECK	BBHA9120D	D286	03/19/2011	03/19/2012			
Signal Generator	Anritsu	MG3694A	#050125	03/21/2011	03/21/2012			
Horn Antenna	TRC	HA0301	N/A	03/19/2011	03/19/2012			
Loop Antenna	A.R.A	PLA-1030/B	1029	03/19/2011	03/19/2012			
Power Sensor	Anritsu	MA2491A	030619	06/18/2011	06/18/2012			
Power Meter	Anritsu	ML2487A	6K00001491	06/18/2011	06/18/2012			
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/30/2011	03/30/2012			

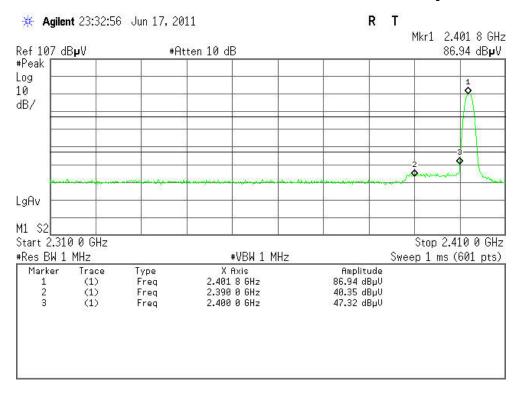
Test Configuration

FCC ID: K7SF5L090 Page 15 of 42

TEST PROCEDURE

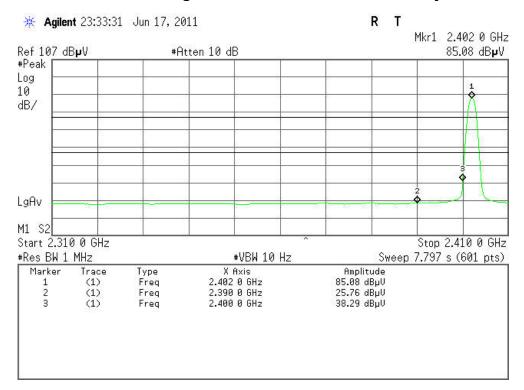
- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS


Refer to attach spectrum analyzer data chart.

FCC ID: K7SF5L090 Page 16 of 42

Test Data


Band Edges (CH-Low)

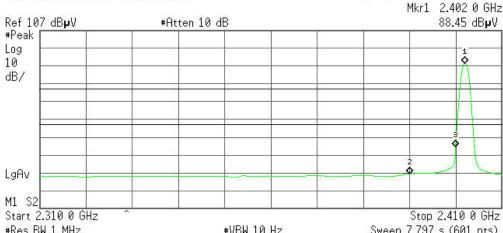
Detector mode: Peak Polarity: Vertical

Detector mode: Average

Polarity: Vertical

FCC ID: K7SF5L090 Page 17 of 42

Polarity: Horizontal Detector mode: Peak * Agilent 23:36:04 Jun 17, 2011 R T Mkr1 2.401 8 GH; Ref 107 dBpV 88.88 dBµV #Atten 10 dB #Peak Log 10 dB/ LgAv M1 S2 Start 2.310 0 GHz Stop 2.410 0 GHz #Res BW 1 MHz UDU 1 MU-Sweep 1 ms (601 pts)

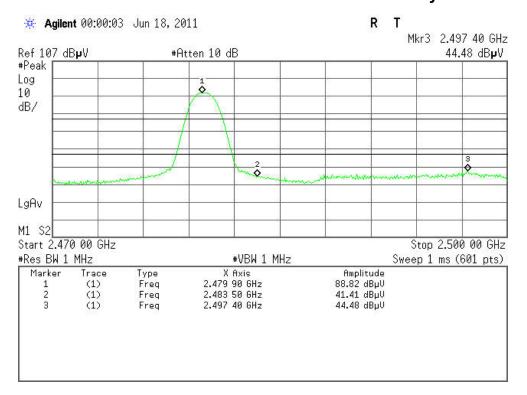

Ve2 DM T	I'IIIZ		ADM T IJUS	
Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.401 8 GHz	88.88 dBµV
2	(1)	Freq	2.390 0 GHz	38.68 dBµV
3	(1)	Freq	2.400 0 GHz	50.05 dBµV

Detector mode: Average

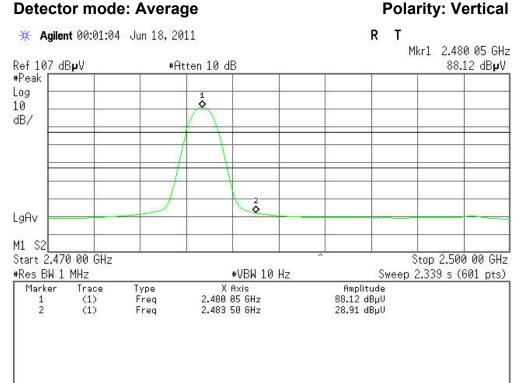
*** Agilent** 23:36:47 Jun 17, 2011

Polarity: Horizontal

R

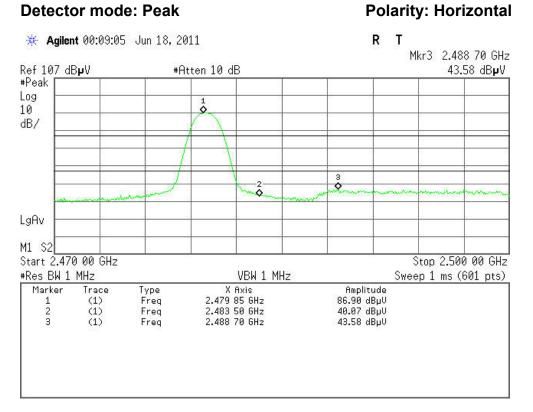


es DM T	I'IIIZ		#ADM TO US	oweeh (") of a foot his
Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.402 0 GHz	88.45 dBµV
2	(1)	Freq	2.390 0 GHz	26.65 dBµV
2 3	(1)	Freq	2.400 0 GHz	41.40 dBµV

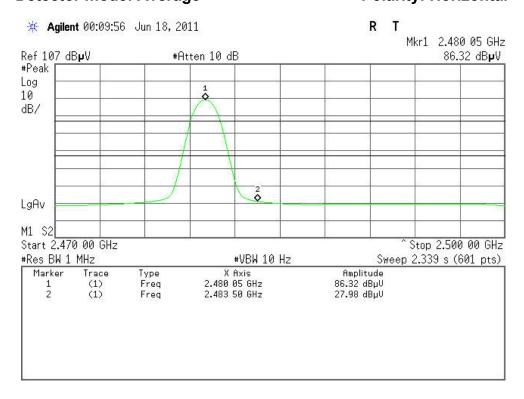


Band Edges (CH-High)

Detector mode: Peak Polarity: Vertical



Detector mode: Average



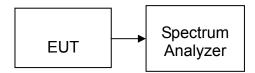
FCC ID: K7SF5L090 Page 19 of 42

Detector mode: Average Polarity: Horizontal

FCC ID: K7SF5L090 Page 20 of 42

6.5. FREQUENCY SEPARATION

LIMIT


According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2011	03/21/2012
Spectrum Analyzer	R&S	FSP30	1093.4495.30	07/22/2010	07/22/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

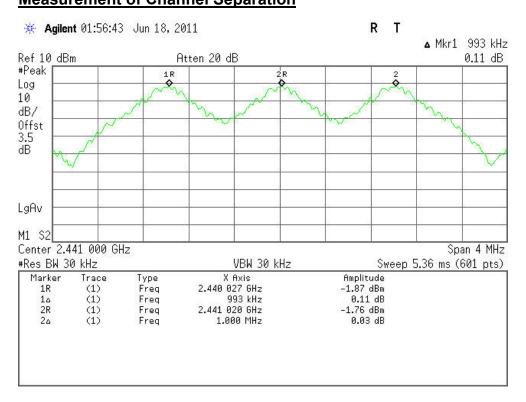
Test Configuration

TEST PROCEDURE

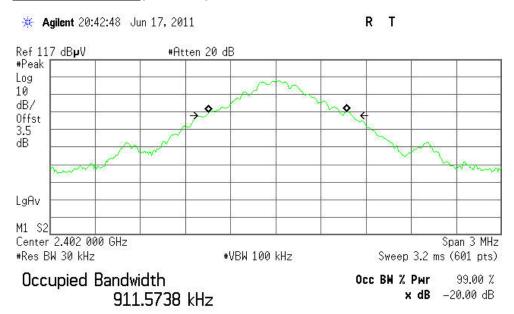
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW=30kHz, VBW=30kHz, Adjust Span to 4 MHz, Sweep = auto.
- 5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

TEST RESULTS

No non-compliance noted


Test Data

Channel Separation (MHz)	Two-thirds of the 20 dB Bandwidth (kHz)	Channel Separation Limit	Result
1.000	647.939	> Two-thirds of the 20 dB Bandwidth	Pass


FCC ID: K7SF5L090 Page 21 of 42

Measurement of Channel Separation

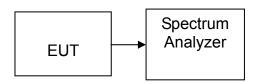
20 dB bandwidth(CH Low)

Transmit Freq Error 12.057 kHz x dB Bandwidth 971.909 kHz

FCC ID: K7SF5L090 Page 22 of 42

6.6. NUMBER OF HOPPING FREQUENCY

LIMIT


According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2011	03/21/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2402MHz, Stop = 2441MHz, Sweep = 1ms and Start=2441MHz, Stop = 2480MHz, Sweep = 1ms.
- 4. Set the spectrum analyzer as RBW, VBW=300kHz,
- 5. Max hold, view and count how many channel in the band.

TEST RESULTS

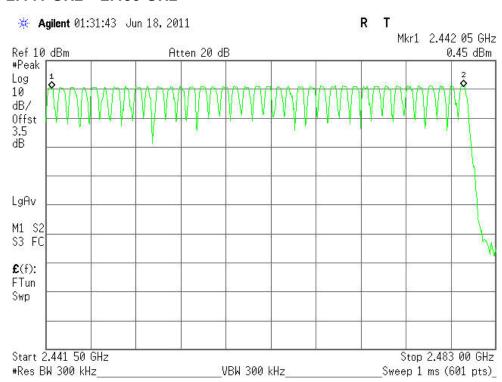
No non-compliance noted

Test Data

GFSK

Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS

FCC ID: K7SF5L090 Page 23 of 42


Test Plot (GFSK)

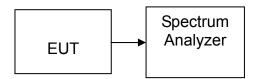
Channel Number

2.400 GHz - 2.441 GHz

2.441 GHz - 2.483 GHz

6.7. TIME OF OCCUPANCY (DWELL TIME)

LIMIT


According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2011	03/21/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5. Repeat above procedures until all frequency measured were complete.

FCC ID: K7SF5L090 Page 25 of 42

TEST RESULTS

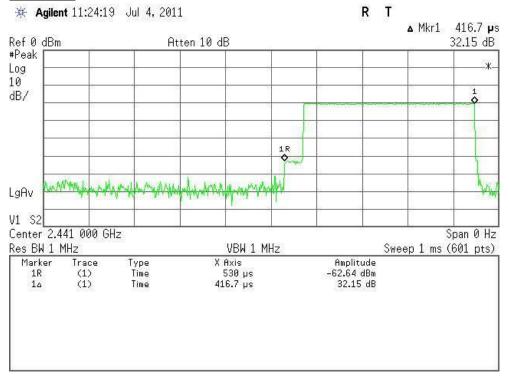
No non-compliance noted

Test Data

<u>DH 1</u>

CH Mid: 0.416* (1600/2)/79* 31.6 = 51.2 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	0.416	133.12	31.60	400.00	PASS


FCC ID: K7SF5L090 Page 26 of 42

Test Plot

DH 1

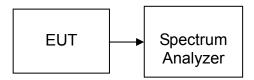
(CH Mid)

FCC ID: K7SF5L090 Page 27 of 42

6.8. SPURIOUS EMISSIONS

6.8.1. Conducted Measurement

LIMIT


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c).

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2011	03/21/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

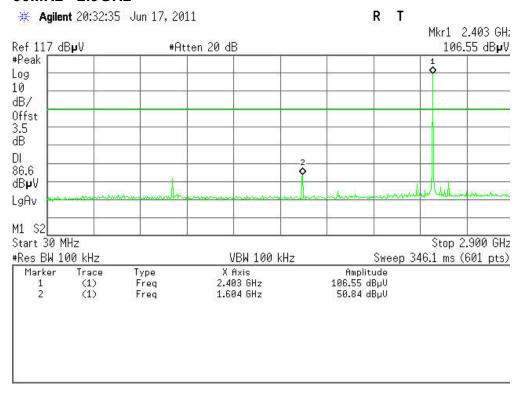
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

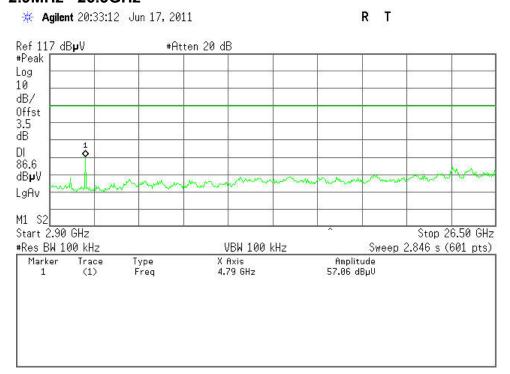
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 100 KHz.

Measurements are made over the 30MHz to 26GHzrange with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

No non-compliance noted

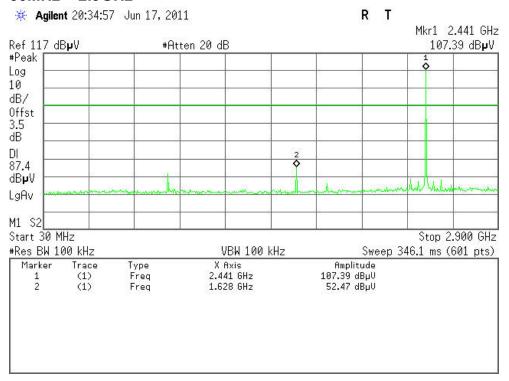

FCC ID: K7SF5L090 Page 28 of 42


Test Plot (GFSK)

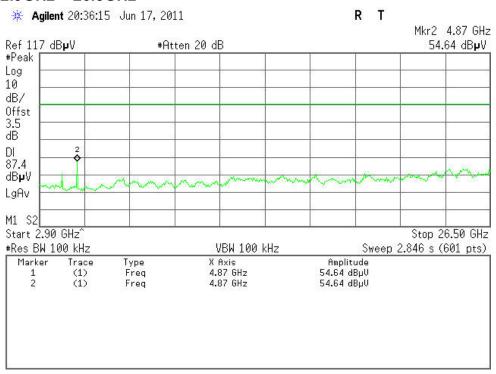
CH Low

30MHz ~2.9GHz

2.9MHz ~26.5GHz

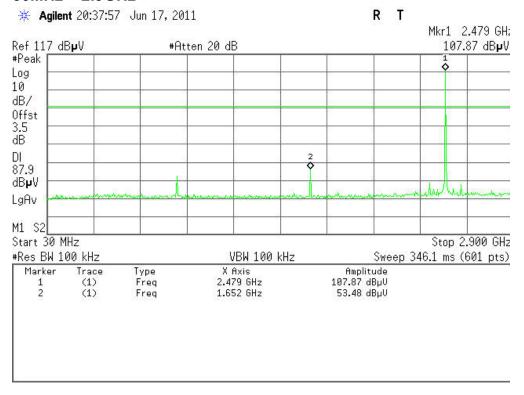


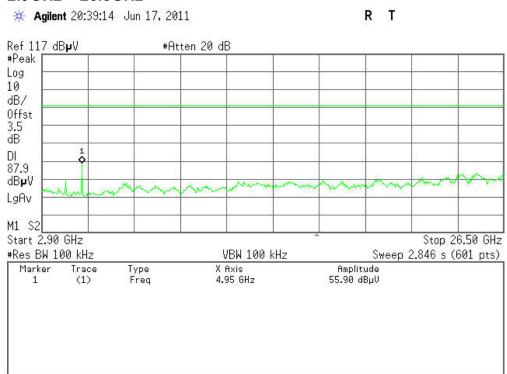
FCC ID: K7SF5L090 Page 29 of 42



CH Mid

30MHz ~ 2.9GHz


2.9GHz ~ 26.5GHz


FCC ID: K7SF5L090 Page 30 of 42

CH High

30MHz ~ 2.9GHz

2.9GHz ~ 26.5GHz

6.8.2. Radiated Emissions

LIMIT

1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

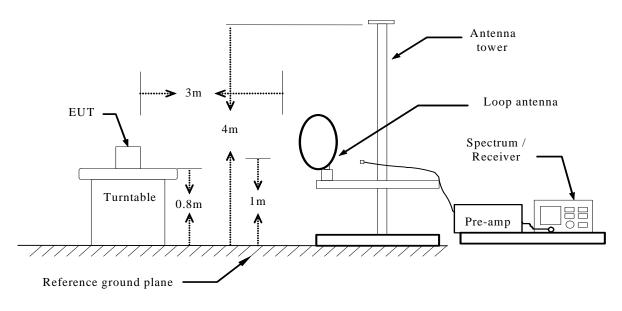
Note: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the above emission table, the tighter limit applies at the band edges.

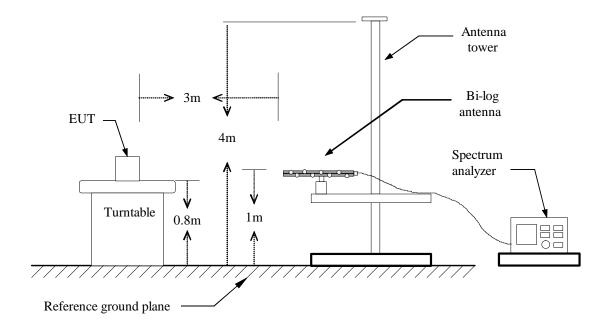
Frequency (Hz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

FCC ID: K7SF5L090 Page 32 of 42

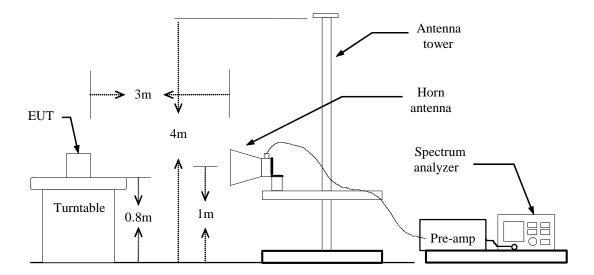
MEASUREMENT EQUIPMENT USED


	Radiated I	Emission Test Sit	e 966 (2)		
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2011	03/21/2012
Amplifier	MITEQ	AM-1604-3000	1411843	03/21/2011	03/21/2012
Turn Table	EMCO	2081-1.21	N/A	N.C.R	N.C.R
Controller	СТ	N/A	N/A	N.C.R	N.C.R
High Noise Amplifier	Agilent	8449B	3008A01838	06/18/2011	06/18/2012
Site NSA	C&C	N/A	N/A	N.C.R	N.C.R
Bilog Antenna	SCHAFFNER	CBL6143	5082	06/18/2011	06/18/2012
Horn Antenna	SCHWARZBECK	BBHA9120D	D286	03/19/2011	03/19/2012
Signal Generator	Anritsu	MG3694A	#050125	03/21/2011	03/21/2012
Horn Antenna	TRC	HA0301	N/A	03/19/2011	03/19/2012
Loop Antenna	A.R.A	PLA-1030/B	1029	03/19/2011	03/19/2012
Power Sensor	Anritsu	MA2491A	030619	06/18/2011	06/18/2012
Power Meter	Anritsu	ML2487A	6K00001491	06/18/2011	06/18/2012
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/30/2011	03/30/2012

Remark: Each piece of equipment is scheduled for calibration once a year.


FCC ID: K7SF5L090 Page 33 of 42

Test Configuration


Below 30MHz

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

FCC ID: K7SF5L090 Page 35 of 42

TEST RESULTS

Below 1 GHz

Operation Mode:NormalTest Date:June 27,2011Temperature:26°CTested by:Sunday HuHumidity:60% RHPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/Q.P)	Reading (dBuV/m)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Safe Margin (dB)
303.216	V	Peak	38.11	-18.76	19.35	46.00	-26.65
432.550	V	Peak	37.11	-15.07	22.04	46.00	-23.96
550.566	٧	Peak	33.71	-12.89	20.82	46.00	-25.18
696.066	V	Peak	33.35	-11.44	21.91	46.00	-24.09
876.433	V	Peak	33.94	-9.38	24.56	46.00	-21.44
899.766	V	Peak	34.47	-9.10	25.37	46.00	-20.63
99.516	Н	Peak	46.86	-23.10	23.76	46.00	-22.24
479.433	Н	Peak	36.00	-13.93	22.07	46.00	-23.93
503.683	Н	Peak	36.91	-13.79	23.12	46.00	-22.88
527.933	Н	Peak	35.09	-13.15	21.94	46.00	-24.06
637.866	Н	Peak	34.00	-12.13	21.87	46.00	-24.13
899.766	Н	Peak	33.92	-9.10	24.82	46.00	-21.18

^{**}Remark: No emission found between lowest internal used/generated frequency to 30MHz. **Notes:**

- 1. Measuring frequencies from 9kHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

5. Freq(MHz). = Emission frequency in MHz

Reading (dBuV/m) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss – Amplifier gain Actual FS (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Safe Margin(dB) = Measured(dBuV/m) - Limits(dBuV/m)

Ant. H/V = Current carrying line of reading

Detector = Mark Peak Reading or Quasi-peak Reading

FCC ID: K7SF5L090 Page 36 of 42

Above 1 GHz

Operation Mode: TX(CH Low) Test Date: June 27,2011

Temperature: 24°C **Tested by:** Sunday Hu

Humidity: 52% RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	
(IVITIZ)	II/V					437				Remark
		(dBuV)	(dBuV)	(dB)	Peak	AV	(aBuv/m)	(dBuV/m)		
					(dBuV/m)	(dBuV/m)				
1198.33	V	57.22		-11.42	45.80		74.00	54.00	-8.20	Peak
1595.00	V	55.19		-10.31	44.88		74.00	54.00	-9.12	Peak
2003.33	V	52.66		-9.28	43.38		74.00	54.00	-10.62	Peak
2995.00	V	51.47		-5.99	45.48		74.00	54.00	-8.52	Peak
N/A										
1198.33	Н	55.07		-11.42	43.65		74.00	54.00	-10.35	Peak
1805.00	Н	53.40		-10.15	43.25		74.00	54.00	-10.75	Peak
2995.00	Н	49.51		-5.99	43.52		74.00	54.00	-10.48	Peak
4908.33	Н	45.42		-0.30	45.12		74.00	54.00	-8.88	Peak
N/A										

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Freq.(MHz) = Emission frequency in MHz

Reading (dBuV/m) = Uncorrected Analyzer / Receiver Reading
Corr. Factor (dB) = Antenna factor + Cable loss – Amplifier gain

Actual FS (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Actual FS (dBuV/m)- Limit (dBuV/m)

Pk = Peak Reading
AV. = Average Reading

Remark = Mark Peak Reading or Quasi-peak Reading

FCC ID: K7SF5L090 Page 37 of 42

Operation Mode: TX(CH Mid) Test Date: June 27, 2011

Temperature: 24°C **Tested by:** Sunday Hu

Humidity: 52% RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	
(,		(dBuV)	(dBuV)	(dB)	Peak	AV		(dBuV/m)	` '	Remark
		,	,	, ,	(dBuV/m)	(dBuV/m)		,		
1198.33	V	57.13		-11.42	45.71		74.00	54.00	-8.29	Peak
3193.33	V	49.10		-5.51	43.59		74.00	54.00	-10.41	Peak
3730.00	V	47.11		-3.85	43.26		74.00	54.00	-10.74	Peak
5596.67	V	45.31		1.49	46.80		74.00	54.00	-7.20	Peak
N/A										
1490.00	Н	52.77		-10.30	42.47		74.00	54.00	-11.53	Peak
1723.33	Н	59.53		-10.21	49.32		74.00	54.00	-4.68	Peak
2995.00	Н	49.63		-5.99	43.64		74.00	54.00	-10.36	Peak
4208.33	Н	47.00		-2.90	44.10		74.00	54.00	-9.90	Peak
N/A										
_	_								_	

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Freq.(MHz) = Emission frequency in MHz

Reading (dBuV/m) = Uncorrected Analyzer / Receiver Reading
Corr. Factor (dB) = Antenna factor + Cable loss – Amplifier gain

Actual FS (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Actual FS (dBuV/m)- Limit (dBuV/m)

Pk = Peak Reading
AV. = Average Reading

Remark = Mark Peak Reading or Quasi-peak Reading

FCC ID: K7SF5L090 Page 38 of 42

Operation Mode:TX(CH High)Test Date:June 27,2011Temperature:24 °CTested by:Sunday HuHumidity:52% RHPolarity:Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	
(141112)	11/4	(dBuV)	(dBuV)		Peak	AV		(dBuV/m)		Remark
		(ubuv)	(ubuv)	(dB)			, ,	(ubuv/iii)		
					(dBuV/m)	(dBuV/m)				
1198.33	V	58.49		-11.42	47.07		74.00	54.00	-6.93	Peak
1590.00	V	56.23		-10.31	45.92		74.00	54.00	-8.08	Peak
1991.66	V	52.79		-9.31	43.48		74.00	54.00	-10.52	Peak
2983.33	V	51.54		-6.07	45.47		74.00	54.00	-8.53	Peak
N/A										
1198.33	Н	54.69		-11.42	43.27		74.00	54.00	-10.73	Peak
1501.66	Н	51.92		-10.31	41.61		74.00	54.00	-12.39	Peak
1816.66	Н	53.07		-10.09	42.98		74.00	54.00	-11.02	Peak
2995.00	Н	50.05		-5.99	44.06		74.00	54.00	-9.94	Peak
N/A										

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Freq.(MHz) = Emission frequency in MHz

Reading (dBuV/m) = Uncorrected Analyzer / Receiver Reading
Corr. Factor (dB) = Antenna factor + Cable loss – Amplifier gain
Actual FS (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Actual FS (dBuV/m)-Limit (dBuV/m)

Pk = Peak Reading
AV. = Average Reading

Remark = Mark Peak Reading or Quasi-peak Reading

FCC ID: K7SF5L090 Page 39 of 42

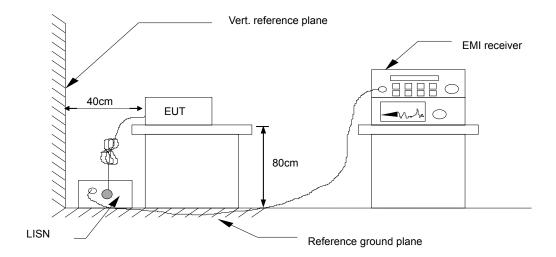
6.9. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Fraguency Bango (MUz)	Limits (dBµV)					
Frequency Range (MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.


MEASUREMENT EQUIPMENT USED

	Cond	lucted Emission	Test Site		
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
ESCI EMI TEST RECEIVE.ESCI	ROHDE&SCHWARZ	1166.5950 03	100145	03/21/2011	03/21/2012
LISN	FCC	FCC-LISN-50-50-2-M	01068	03/21/2011	03/21/2012
LISN	EMCO	3825/2	8901-1459	03/21/2011	03/21/2012
CDN	FCC	FCC-TILISN-T4	20182	03/21/2011	03/21/2012
CDN	FCC	FCC-TLISN-T8-02	20183	03/21/2011	03/21/2012
CDN	FCC	FCC-TLISN-T4-02	20382	03/21/2011	03/21/2012
CDN	FCC	FCC-TLISN-T4-02	20383	03/21/2011	03/21/2012
CDN	FCC	FCC-801-T8-RJ45	04030	03/21/2011	03/21/2012
Current Probe	STODDART AIRCRAFT	91550-1	345-73	03/21/2011	03/21/2012
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/30/2011	03/30/2012

Remark: Each piece of equipment is scheduled for calibration once a year.

FCC ID: K7SF5L090 Page 40 of 42

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

FCC ID: K7SF5L090 Page 41 of 42

Test Data

Model No.	F5L090	RBW,VBW	9 kHz
Environmental Conditions	26°C, 60% RH	Test Mode	Mode 1
Tested by	Sunday Hu		

(The chart below shows the highest readings taken from the final data.)

	Frequency Range Investigated (150 kHz to 30 MHz)										
Freq.	Q.P.	AVG	Cor.	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	Line	
(MHz)	Level	Level	Factor	Result	Result	Limit	Limit	Margin	Margin		
	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB uV)	(dB uV)	(dB)	(dB)	(L1/L2)	
0.430	34.34	19.90	11.51	45.85	31.41	57.25	47.25	-11.40	-15.84	L1	
1.158	34.23	24.15	11.53	45.76	35.68	56.00	46.00	-10.24	-10.32	L1	
1.842	35.27	25.75	11.55	46.82	37.30	56.00	46.00	-9.18	-8.70	L1	
3.046	34.83	22.42	11.60	46.43	34.02	56.00	46.00	-9.57	-11.98	L1	
3.342	35.05	18.41	11.61	46.66	30.02	56.00	46.00	-9.34	-15.98	L1	
7.802	35.40	19.78	11.84	47.24	31.62	60.00	50.00	-12.76	-18.38	L1	
0.166	45.99	7.58	11.52	57.51	19.10	65.15	55.15	-7.64	-36.05	L2	
0.394	36.55	26.07	11.53	48.08	37.60	57.98	47.98	-9.90	-10.38	L2	
1.309	36.09	26.66	11.53	47.62	38.19	56.00	46.00	-8.38	-7.81	L2	
1.601	36.19	22.36	11.54	47.73	33.90	56.00	46.00	-8.27	-12.10	L2	
3.410	36.64	22.79	11.61	48.25	34.40	56.00	46.00	-7.75	-11.60	L2	
6.434	38.18	25.53	11.76	49.94	37.29	60.00	50.00	-10.06	-12.71	L2	

NOTE: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

FCC ID: K7SF5L090 Page 42 of 42

^{2.} Those frequencies only show peak emission level because that was below the Average limit, so no need to check average anymore.