

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to \$15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See \$1.1307(b)(1) of this chapter.

EUT Specification

EUT	N1 Vision Router v2
	WLAN: 2.412GHz ~ 2.462GHz
Frequency band	WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz
(Operating)	□ WLAN: 5.745GHz ~ 5.825GHz
	Others
Device category	Portable (<20cm separation)
	Mobile (>20cm separation)
	Others
Exposure classification	$\bigcirc \text{Occupational/Controlled exposure } (S = 5 \text{mW/cm}^2)$
	General Population/Uncontrolled exposure
	$(S=1 \text{mW/cm}^2)$
Antenna diversity	Single antenna
	Multiple antennas
	Tx diversity
	Rx diversity
	X Tx/Rx diversity
Max. output power	IEEE 802.11b mode: 14.46 dBm (27.96 mW)
	IEEE 802.11g mode: 17.86 dBm (61.09 mW)
	draft 802.11n Standard-20 MHz Channel mode: 16.28 dBm (42.46 mW)
	draft 802.11n Wide-40 MHz Channel mode: 18.69 dBm (73.96 mW)
Antenna gain (Max)	1.8 dBi (Numeric gain: 1.51)
Evaluation applied	MPE Evaluation*
	SAR Evaluation
	N/A

Remark:

- 1. The maximum output power is <u>18.69dBm (73.96mW) at 2452MHz (with 1.51 numeric antenna</u> gain.)
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- *3.* For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where $E = Field$ strength in Volts / meter
 $P = Power$ in Watts
 $G = Numeric$ antenna gain
 $d = Distance$ in meters
 $S = Power$ density in milliwatts / square centimeter

 E^{2}

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000 and$$

 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1
Where $d = Distance$ in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ density in mW/cm^2

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

IEEE 802.11b mode:

EUT output power = 27.96 mW Numeric Antenna gain = 1.51

 \rightarrow Power density = 0.00840 mW/cm²

IEEE 802.11g mode:

EUT output power = 61.09 mW

Numeric Antenna gain = 1.51

 \rightarrow Power density = 0.01835 mW/cm²

draft 802.11n Standard-20 MHz Channel mode:

EUT output power = 42.46 mW Numeric Antenna gain = 1.51

 \rightarrow Power density = 0.01276 mW/cm²

draft 802.11n Wide-40 MHz Channel mode:

EUT output power = 73.96 mW

Numeric Antenna gain = 1.51

 \rightarrow Power density = 0.02222 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)