

FCC Test Report
(BT-EDR)

Report No.: RFBGMK-WTW-P21030811-1

FCC ID: K7SAUF001V2

Test Model: AUF001 V2

Received Date: Mar. 23, 2021

Test Date: Apr. 20 to May 8, 2021

Issued Date: May 25, 2021

Applicant: Belkin International., Inc

Address: 12045 East Waterfront Drive, Playa Vista, CA 90094, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
 Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

FCC Registration / Designation Number: 198487 / TW2021

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Repo	rt Issue History Record	. 4
Relea	se Control Record	4
1	Certificate of Conformity	5
2	Summary of Test Results	6
2.1 2.2	Measurement Uncertainty Modification Record	
3	General Information	7
3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.5	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards and References	8 9 .10 .11 .11 .12
4	Test Types and Results	13
4.1 4.1.1 4.1.2	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments	13
4.1.3	Test Procedures	
4.1.4	Deviation from Test Standard	
4.1.5 4.1.6	Test Setup EUT Operating Conditions	
4.1.7	Test Results	
4.2	Conducted Emission Measurement	26
4.2.1	Limits of Conducted Emission Measurement	
4.2.2	Test Instruments	
4.2.3	Test Procedures	
4.2.4 4.2.5	Deviation From Test Standard	
4.2.5	Test Setup EUT Operating Condition	
4.2.7	Test Results	
4.3	Number of Hopping Frequency Used	
4.3.1	Limits of Hopping Frequency Used Measurement	
4.3.2	Test Setup	
4.3.3	Test Instruments	
4.3.4	Test Procedure	
4.3.5	Deviation from Test Standard	
4.3.6	Test Results	
4.4	Dwell Time on Each Channel	
4.4.1	Limits of Dwell Time on Each Channel Measurement	
4.4.2 4.4.3	Test Setup Test Instruments	
4.4.3	Test Procedures	
4.4.4	Deviation from Test Standard	
4.4.6	Test Results	
4.5	Channel Bandwidth	
4.5.1	Limits of Channel Bandwidth Measurement	
4.5.2	Test Setup	
4.5.3	Test Instruments	
4.5.4	Test Procedure	
4.5.5	Deviation from Test Standard	35

4.5.6 4.5.7 4.6	EUT Operating Condition Test Results	36
4.6.1	Hopping Channel Separation Limits of Hopping Channel Separation Measurement	37
4.6.2	Test Setup	
4.6.3	Test Instruments	
4.6.4	Test Procedure	
4.6.5	Deviation from Test Standard	
4.6.6	Test Results	
4.7	Maximum Output Power Measurement	
4.7.1	Limits of Maximum Output Power Measurement	
4.7.2	Test Setup	
4.7.3	Test Instruments	
4.7.4	Test Procedure	
4.7.5	Deviation from Test Standard	39
4.7.6	EUT Operating Condition	39
4.7.7	Test Results	40
4.8	Conducted Out of Band Emission Measurement	41
4.8.1	Limits of Conducted Out of Band Emission Measurement	41
4.8.2	Test Instruments	41
4.8.3	Test Procedure	41
4.8.4	Deviation from Test Standard	
4.8.5	EUT Operating Condition	41
4.8.6	Test Results	
5	Pictures of Test Arrangements	44
Annex	A - Bandedge Measurement	45
Apper	dix – Information of the Testing Laboratories	47

Report Issue History Record

Issue No.	Description	Date Issued
RFBGMK-WTW-P21030811-1	Original release.	May 25, 2021

Release Control Record

Issue No.	Description	Date Issued
RFBGMK-WTW-P21030811-1	Original release.	May 25, 2021

1 **Certificate of Conformity**

Product:	SOUNDFORM™ Charge Bluetooth Speaker + Wireless Charger
Brand:	belkin
Test Model:	AUF001 V2
Sample Status:	Engineering sample
Applicant:	Belkin International., Inc
Test Date:	Apr. 20 to May 8, 2021
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Chang

Annie Chang / Senior Specialist

, Date: May 25, 2021

Approved by :

Date: May 25, 2021

Rex Lai / Associate Technical Manager

2 Summary of Test Results

	47 CFR FCC Part 15, Su	bpart C (Sec	tion 15.247)
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -13.17dB at 0.39943MHz.
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.
15.247(b)	Maximum Peak Output Power	Pass	Meet the requirement of limit.
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -4.43dB at 2483.50MHz.
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.
15.203	Antenna Requirement	Pass	No antenna connector is used.

NOTE:

1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2. If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

3. For 2.4GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	3.00 dB
Conducted Emissions	9kHz ~ 40GHz	2.63 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.61 dB
	30MHz ~ 1GHz	5.43 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.42 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	SOUNDFORM™ Charge Bluetooth Speaker + Wireless Charger
Brand	belkin
Test Model	AUF001 V2
Status of EUT	Engineering sample
Dewer Currely Dating	I/P rating: 12Vdc, 1.5A
Power Supply Rating	O/P rating: 10W
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	Up to 3Mbps
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	79
Output Power	1.349mW
Antenna Type	PCB antenna with 4.98dBi gain
Antenna Connector	N/A
Accessory Device	Wall charger
Data Cable Supplied	N/A

Note:

1. The EUT is a SOUNDFORM[™] Charge Bluetooth Speaker + Wireless Charger with Qi charging function.

	<u>g</u>	
Wall charger	1	2
Brand	belkin	belkin
Model	DSA-18PFR-12 FEU	DSA-18PFR-12 FUS
Plug Type	EU	US
Input Power	100-240Vac, 50/60Hz, 0.6A	100-240Vac, 50/60Hz, 0.6A
Output Power	+12.0Vdc, 1.5A, 18W	+12.0Vdc, 1.5A, 18W
Dowerline	AC 2 Pin, Non-shielded DC (1.5m)	AC 2 Pin, Non-shielded DC (1.5m)
Power Line	attached on Wall charger	attached on Wall charger
The two wall chargers a	re identical with each other except for thei	r plug type difference.

2. The EUT uses following Wall charger.

During the test, **Wall charger 2** was selected as the representative one for the test.

- 3. The emission of the simultaneous operation (BT and Qi) has been evaluated and no non-compliance was found.
- 4. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
- 5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

79 channels are provided for BT-EDR mode:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

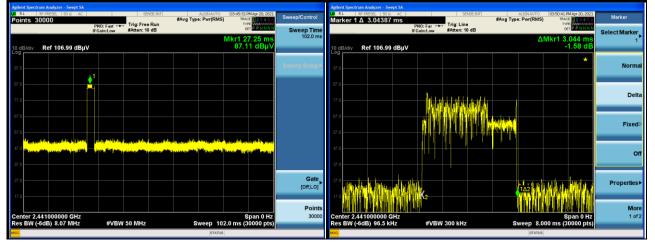
3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To			Description	
Mode	RE≥1G	RE<1G	PLC	APCM		Description	
-	\checkmark	\checkmark	\checkmark	\checkmark	-		
here R	E≥1G: Radiat	ed Emission ab	ove 1GHz	RE<1G	Radiated Emission	n below 1GHz	
		ne Conducted E st (Above 1				lucted Measurement	
between architectu	available n ure).	nodulations,	data rates a	and ante		om all possible cor T with antenna dive pelow.	
EUT Config Mode	ure Avail	able Channel	Tested Cha	annel	Modulation Technology	Modulation Type	Packet Type
		o / T o		'8	FHSS	GFSK	DUIC
-		0 to 78	0, 39, 7	•			DH5
Pre-Scar between	n has been available n	0 to 78 st (Below 1)	0, 39, 7 GHz): o determine	the wor		8DPSK om all possible cor T with antenna dive	3DH5
Pre-Scar between architectu Following	n has been available n ure). g channel(s	0 to 78 st (Below 1) conducted t nodulations,) was (were	0, 39, 7 GHz): o determine data rates a) selected fo	8 the wor	st-case mode fro	8DPSK om all possible cor T with antenna dive pelow.	3DH5 nbinations ersity
Pre-Scar between architectu Following	n has been available n ure). g channel(s	0 to 78 st (Below 1) conducted t nodulations,	0, 39, 7 GHz): o determine data rates a	8 the wor	st-case mode fro nna ports (if EU al test as listed l	8DPSK om all possible cor T with antenna dive	3DH5
Pre-Scar between architectu Following EUT Config	n has been available n ure). g channel(s	0 to 78 st (Below 1) conducted t nodulations,) was (were	0, 39, 7 GHz): o determine data rates a) selected fo	8 the wor	st-case mode fro nna ports (if EU al test as listed f Modulation	8DPSK om all possible cor T with antenna dive pelow.	3DH5 nbinations ersity
Pre-Scar between architectu Following EUT Config Mode - - - - - - - - - - - - - - - - - - -	n has been available n ure). g channel(s ure Avail Conducter n has been available n ure). g channel(s	0 to 78 st (Below 1) conducted t nodulations,) was (were able Channel 0 to 78 d Emission conducted t nodulations,	0, 39, 7 GHz): o determine data rates a) selected fo Tested Cha 39 Test: o determine data rates a	e the wor and ante or the fina annel	st-case mode fro nna ports (if EU al test as listed f Modulation Technology FHSS st-case mode fro nna ports (if EU al test as listed f	8DPSK om all possible cor T with antenna dive below. Modulation Type GFSK om all possible cor T with antenna dive	3DH5 nbinations ersity Packet Type DH5 nbinations
Pre-Scar between architectu Following EUT Config Mode 	n has been available n ure). g channel(s ure Avail Conducteen n has been available n ure). g channel(s	0 to 78 st (Below 1) conducted t nodulations,) was (were able Channel 0 to 78 d Emission conducted t nodulations,	0, 39, 7 GHz): o determine data rates a) selected fo Tested Cha 39 Test: o determine data rates a	e the wor and ante or the fin annel	st-case mode fro nna ports (if EU al test as listed f Modulation Technology FHSS	8DPSK om all possible cor T with antenna dive below. Modulation Type GFSK om all possible cor T with antenna dive	3DH5 nbinations ersity Packet Type DH5 nbinations

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

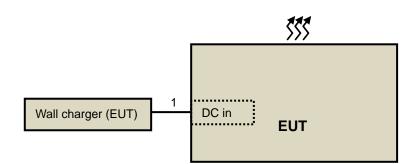

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	21deg. C, 63%RH	120Vac, 60Hz	Jed Wu
RE<1G	21deg. C, 63%RH	120Vac, 60Hz	Jed Wu
PLC	25deg. C, 75%RH	120Vac, 60Hz	Jed Wu
APCM	25deg. C, 76%RH	120Vac, 60Hz	Pirar Hsieh

3.3 Duty Cycle of Test Signal

Duty cycle = 3.044/100 = 0.03044, Duty factor = $20^{\circ}\log(0.03044) = -30.3$



3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC cable	1	1.5	Ν	0	Supplied by client

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02 All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 18, 2021	Feb. 17, 2022
HP Preamplifier	8449B	3008A01201	Feb. 19, 2021	Feb. 18, 2022
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 18, 2021	Feb. 17, 2022
Agilent TEST RECEIVER	N9038A	MY51210129	Mar. 12, 2021	Mar. 11, 2022
Schwarzbeck Antenna	VULB 9168	139	Nov. 6, 2020	Nov. 5, 2021
Schwarzbeck Antenna	VHBA 9123	480	Jun. 3, 2019	Jun. 2, 2021
Schwarzbeck Horn Antenna	BBHA-9170	212	Nov. 22, 2020	Nov. 21, 2021
EMCO Horn Antenna	3115	00027024	Nov. 22, 2020	Nov.21, 2021
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.5	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF102	Cable-CH6-01	Jul. 9, 2020	Jul. 8, 2021
EMEC RF cable With 3/4dB PAD	EM102-KMKM	01	Aug. 21, 2020	Aug. 20, 2021
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	Jun. 16, 2020	Jun. 15, 2021
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Jul. 22, 2020	Jul. 21, 2021
Loop Antenna EMCI	LPA600	270	Aug. 23, 2019	Aug. 22, 2021
EMCO Horn Antenna	3115	00028257	Nov. 22, 2020	Nov. 21, 2021
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 8, 2020	Sep. 7, 2021
Anritsu Power Sensor	MA2411B	0738404	Apr. 15, 2021	Apr. 14, 2022
Anritsu Power Meter	ML2495A	0842014	Apr. 14, 2021	Apr. 13, 2022

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- **Note:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection at frequency above 1GHz. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty cycle correction factor. The duty cycle correction factor refer to Chapter 3.3 of this report.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission above 1GHz Ant. Tower 1-4m Variable EUT& 3m Support Units **Turn Table** Absorber 150cm 00 **Ground Plane Test Receiver** 0 0 0 0 1m 0 0 0 e

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

RF Mode	TX BT_GFSK	Channel	CH 0:2402 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2390.00	55.68 PK	74.00	-18.32	2.39 H	151	54.72	0.96			
2	2390.00	47.26 AV	54.00	-6.74	2.39 H	151	46.30	0.96			
3	*2402.00	97.45 PK			2.39 H	151	96.42	1.03			
4	*2402.00	67.15 AV			2.39 H	151	66.12	1.03			
5	4804.00	51.68 PK	74.00	-22.32	2.46 H	116	42.71	8.97			
6	4804.00	21.38 AV	54.00	-32.62	2.46 H	116	12.41	8.97			
		Anto	nna Dalarit		stance i Vor	tion at 2 m					

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	52.38 PK	74.00	-21.62	1.31 V	245	51.42	0.96		
2	2390.00	43.09 AV	54.00	-10.91	1.31 V	245	42.13	0.96		
3	*2402.00	93.31 PK			1.31 V	245	92.28	1.03		
4	*2402.00	63.01 AV			1.31 V	245	61.98	1.03		
5	4804.00	51.32 PK	74.00	-22.68	2.41 V	316	42.35	8.97		
6	4804.00	21.02 AV	54.00	-32.98	2.41 V	316	12.05	8.97		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(3.044 ms / 100 ms) = -30.3 dB

Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_GFSK	Channel	CH 39:2441 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2441.00	92.55 PK			2.11 H	158	91.39	1.16			
2	*2441.00	62.25 AV			2.11 H	158	61.09	1.16			
3	4882.00	51.00 PK	74.00	-23.00	2.63 H	154	41.94	9.06			
4	4882.00	20.70 AV	54.00	-33.30	2.63 H	154	11.64	9.06			

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2441.00	88.52 PK			1.66 V	251	87.36	1.16			
2	*2441.00	58.22 AV			1.66 V	251	57.06	1.16			
3	4882.00	50.71 PK	74.00	-23.29	2.13 V	321	41.65	9.06			
4	4882.00	20.41 AV	54.00	-33.59	2.13 V	321	11.35	9.06			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

- 5. " * ": Fundamental frequency.
- The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(3.044 ms / 100 ms) = -30.3 dB

Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_GFSK	Channel	CH 78:2480 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Kange			Average (AV)

equency (MHz) 2480.00 2480.00 2483.50 2483.50	Emission Level (dBuV/m) 96.69 PK 66.39 AV 69.57 PK 46.15 AV	Limit (dBuV/m) 74.00	Margin (dB)	Antenna Height (m) 2.50 H 2.50 H	Table Angle (Degree) 157	Raw Value (dBuV) 95.28	Correction Factor (dB/m) 1.41
2480.00 2483.50 2483.50	66.39 AV 69.57 PK	74.00			-	95.28	1.41
2483.50 2483.50	69.57 PK	74.00		2.50 H			
2483.50		74.00		1	157	64.98	1.41
	16 15 AV		-4.43	2.50 H	157	68.14	1.43
	40.13 AV	54.00	-7.85	2.50 H	157	44.72	1.43
4960.00	51.66 PK	74.00	-22.34	2.55 H	138	42.51	9.15
4960.00	21.36 AV	54.00	-32.64	2.55 H	138	12.21	9.15
	Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m		
equency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
2480.00	93.67 PK			1.43 V	243	92.26	1.41
2480.00	63.37 AV			1.43 V	243	61.96	1.41
2483.50	67.18 PK	74.00	-6.82	1.43 V	243	65.75	1.43
2483.50	43.49 AV	54.00	-10.51	1.43 V	243	42.06	1.43
4960.00	51.41 PK	74.00	-22.59	2.50 V	306	42.26	9.15
4960.00	21.11 AV	54.00	-32.89	2.50 V	306	11.96	9.15
4 e ()	960.00 equency (MHz) 2480.00 2480.00 483.50 960.00	960.00 21.36 AV Ante Equency (MHz) Emission (dBuV/m) 2480.00 93.67 PK 2480.00 63.37 AV 4483.50 67.18 PK 4483.50 43.49 AV 960.00 51.41 PK 960.00 21.11 AV	960.00 21.36 AV 54.00 Antenna Polarit equency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) 2480.00 93.67 PK	960.00 21.36 AV 54.00 -32.64 Antenna Polarity & Test Diatema Polarity & Test	960.00 21.36 AV 54.00 -32.64 2.55 H Antenna Polarity & Test Distance : Ver equency (MHz) Emission (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) 2480.00 93.67 PK 1.43 V 1.43 V 2480.00 63.37 AV 1.43 V 1.43 V 483.50 67.18 PK 74.00 -6.82 1.43 V 960.00 51.41 PK 74.00 -22.59 2.50 V 960.00 21.11 AV 54.00 -32.89 2.50 V	960.00 21.36 AV 54.00 -32.64 2.55 H 138 Antenna Polarity & Test Distance : Vertical at 3 m equency (MHz) Emission (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (Degree) 2480.00 93.67 PK 1.43 V 243 2480.00 63.37 AV 1.43 V 243 483.50 67.18 PK 74.00 -6.82 1.43 V 243 483.50 43.49 AV 54.00 -10.51 1.43 V 243 960.00 51.41 PK 74.00 -22.59 2.50 V 306 960.00 21.11 AV 54.00 -32.89 2.50 V 306	960.00 21.36 AV 54.00 -32.64 2.55 H 138 12.21 Antenna Polarity & Test Distance : Vertical at 3 m equency (MHz) Emission Level (dBuV/m) Margin (dB) Antenna Height (m) Table Angle (Degree) Raw Value (dBuV) 2480.00 93.67 PK 1.43 V 243 92.26 2480.00 63.37 AV 1.43 V 243 61.96 483.50 67.18 PK 74.00 -6.82 1.43 V 243 65.75 483.50 43.49 AV 54.00 -10.51 1.43 V 243 42.06 960.00 51.41 PK 74.00 -22.59 2.50 V 306 42.26

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(3.044 ms / 100 ms) = -30.3 dB
 Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_8DPSK	Channel	CH 0:2402 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
Trequency Mange	1GHZ ~ 25GHZ	Detector r unction	Average (AV)

		Anter	nna Polarity	& Test Dist	ance : Horiz	zontal at 3 r	n				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2390.00	48.38 PK	74.00	-25.62	1.10 H	154	47.42	0.96			
2	2390.00	41.74 AV	54.00	-12.26	1.10 H	154	40.78	0.96			
3	*2402.00	90.44 PK			1.10 H	154	89.41	1.03			
4	*2402.00	60.14 AV			1.10 H	154	59.11	1.03			
5	4804.00	51.22 PK	74.00	-22.78	3.11 H	239	42.25	8.97			
6	4804.00	20.92 AV	54.00	-33.08	3.11 H	239	11.95	8.97			
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m					
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2390.00	47.24 PK	74.00	-26.76	1.31 V	245	46.28	0.96			
2	2390.00	38.97 AV	54.00	-15.03	1.31 V	245	38.01	0.96			
3	*2402.00	89.14 PK			1.31 V	245	88.11	1.03			
4	*2402.00	58.84 AV			1.31 V	245	57.81	1.03			
5	4804.00	50.33 PK	74.00	-23.67	2.64 V	326	41.36	8.97			
	4004.00	20.02.41/	F4 00	22.07	2641/	226	11 06	9.07			
6	6 4804.00 20.03 AV 54.00 -33.97 2.64 V 326 11.06 8.97										

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula:
20 log(Duty cycle) = 20 log(3.044 ms / 100 ms) = -30.3 dB
Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_8DPSK	Channel	CH 39:2441 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2441.00	88.38 PK			1.23 H	164	87.22	1.16			
2	*2441.00	58.08 AV			1.23 H	164	56.92	1.16			
3	4882.00	51.12 PK	74.00	-22.88	2.95 H	253	42.06	9.06			
4	4882.00	20.82 AV	54.00	-33.18	2.95 H	253	11.76	9.06			

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2441.00	87.64 PK			1.52 V	252	86.48	1.16			
2	*2441.00	57.34 AV			1.52 V	252	56.18	1.16			
3	4882.00	50.29 PK	74.00	-23.71	2.48 V	313	41.23	9.06			
4	4882.00	19.99 AV	54.00	-34.01	2.48 V	313	10.93	9.06			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

- 5. " * ": Fundamental frequency.
- The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(3.044 ms / 100 ms) = -30.3 dB

Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_8DPSK	Channel	CH 78:2480 MHz
Frequency Range	 1GHz ~ 25GHz	Detector Function	Peak (PK)
		Delector Function	Average (AV)

		Anter	nna Polarity	& Test Dist	ance : Horiz	zontal at 3 n	n	
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	90.63 PK			1.36 H	142	89.22	1.41
2	*2480.00	60.33 AV			1.36 H	142	58.92	1.41
3	2483.50	62.49 PK	74.00	-11.51	1.36 H	142	61.06	1.43
4	2483.50	39.75 AV	54.00	-14.25	1.36 H	142	38.32	1.43
5	4960.00	51.35 PK	74.00	-22.65	2.82 H	246	42.20	9.15
6	4960.00	21.05 AV	54.00	-32.95	2.82 H	246	11.90	9.15
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m		
No	Frequency	Emission	Limit	Margin	Antenna	Table Angle	Raw Value	Correction Factor
NO	(MHz)	Level (dBuV/m)	(dBuV/m)	(dB)	Height (m)	Angle (Degree)	(dBuV)	(dB/m)
1		Level	(dBuV/m)	-		-		
	(MHz)	(dBuV/m)	(dBuV/m)	-	(m)	(Degree)	(dBuV)	(dB/m)
1	(MHz) *2480.00	(dBuV/m) 89.30 PK	(dBuV/m) 74.00	-	(m) 1.43 V	(Degree) 241	(dBuV) 87.89	(dB/m) 1.41
1	(MHz) *2480.00 *2480.00	(dBuV/m) 89.30 PK 59.00 AV		(dB)	(m) 1.43 V 1.43 V	(Degree) 241 241	(dBuV) 87.89 57.59	(dB/m) 1.41 1.41
1 2 3	(MHz) *2480.00 *2480.00 2483.50	Level (dBuV/m) 89.30 PK 59.00 AV 61.40 PK	74.00	(dB) -12.60	(m) 1.43 V 1.43 V 1.43 V	(Degree) 241 241 241 241	(dBuV) 87.89 57.59 59.97	(dB/m) 1.41 1.41 1.43
1 2 3 4	(MHz) *2480.00 *2483.50 2483.50 2483.50	Level (dBuV/m) 89.30 PK 59.00 AV 61.40 PK 38.84 AV	74.00 54.00	(dB) -12.60 -15.16	(m) 1.43 V 1.43 V 1.43 V 1.43 V	(Degree) 241 241 241 241 241	(dBuV) 87.89 57.59 59.97 37.41	(dB/m) 1.41 1.41 1.43 1.43

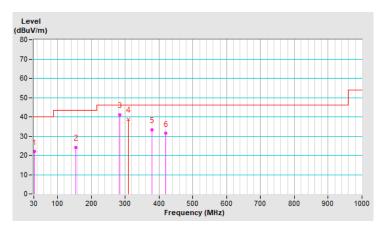
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(3.044 ms / 100 ms) = -30.3 dB
 Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_GFSK	Channel	CH 39:2441 MHz	
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)	


	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	31.16	21.87 QP	40.00	-18.13	1.49 H	60	30.73	-8.86			
2	153.34	24.12 QP	43.50	-19.38	1.05 H	99	30.52	-6.40			
3	284.04	41.04 QP	46.00	-4.96	1.23 H	219	45.80	-4.76			
4	309.86	38.68 QP	46.00	-7.32	1.59 H	124	42.66	-3.98			
5	379.69	33.28 QP	46.00	-12.72	1.47 H	134	35.67	-2.39			
6	419.36	31.36 QP	46.00	-14.64	1.82 H	164	32.93	-1.57			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

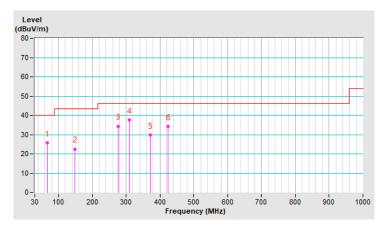
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX BT_GFSK	Channel	CH 39:2441 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	66.67	25.60 QP	40.00	-14.40	1.56 V	105	33.97	-8.37			
2	148.78	22.46 QP	43.50	-21.04	1.26 V	80	29.05	-6.59			
3	276.19	34.34 QP	46.00	-11.66	1.88 V	187	39.37	-5.03			
4	309.31	37.53 QP	46.00	-8.47	2.14 V	156	41.54	-4.01			
5	371.78	29.74 QP	46.00	-16.26	2.59 V	250	32.34	-2.60			
6	423.09	34.09 QP	46.00	-11.91	1.72 V	180	35.47	-1.38			


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

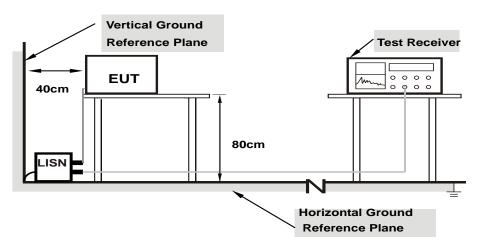
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
ROHDE & SCHWARZ TEST RECEIVER	ESR3	102412	Jan. 29, 2021	Jan. 28, 2022
SCHWARZBECK Artificial Mains Network (for EUT)	NSLK 8128	8128-244	Nov. 19, 2020	Nov. 18, 2021
LISN With Adapter (for EUT)	AD10	C05Ada-001	Nov. 19, 2020	Nov. 18, 2021
R&S Artificial Mains Network (for peripheral)	ESH3-Z5	100220	Dec. 1, 2020	Nov. 30, 2021
Software	Cond_V7.3.7.4	NA	NA	NA
RF cable (JYEBAO) With 10dB PAD	5D-FB	Cable-C05.01	Jan. 29, 2021	Jan. 28, 2022
LYNICS Terminator (For R&S LISN)	0900510	E1-01-305	Feb. 17, 2021	Feb. 16, 2022

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 5. (Conduction 5)

3. The VCCI Site Registration No. C-11093.


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation From Test Standard

No deviation.

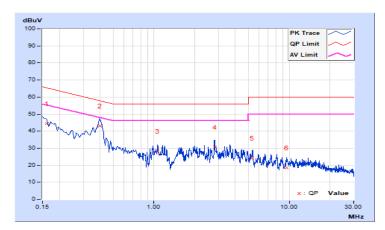
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as item 4.1.6.

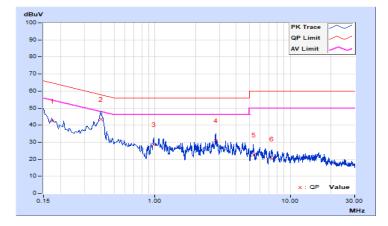

4.2.7 Test Results

Frequency Range 150	ö0kHz ~ 30MHz	LIATACTOL FUNCTION	Quasi-Peak (QP) / Average (AV)
---------------------	---------------	--------------------	-----------------------------------

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor	Reading Value (dBuV)		-		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16265	10.01	34.42	31.23	44.43	41.24	65.33	55.33	-20.90	-14.09	
2	0.40079	10.02	33.04	24.24	43.06	34.26	57.84	47.84	-14.78	-13.58	
3	1.06593	10.10	18.34	14.15	28.44	24.25	56.00	46.00	-27.56	-21.75	
4	2.80935	10.20	20.53	15.50	30.73	25.70	56.00	46.00	-25.27	-20.30	
5	5.35809	10.37	13.73	8.48	24.10	18.85	60.00	50.00	-35.90	-31.15	
6	9.59283	10.62	8.01	3.66	18.63	14.28	60.00	50.00	-41.37	-35.72	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range150kHz ~ 30MHzDetector FunctionQuasi-Peak (QF Average (AV)	P) /
--	------

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.17496	9.93	32.64	29.78	42.57	39.71	64.72	54.72	-22.15	-15.01	
2	0.39943	9.96	33.36	24.74	43.32	34.70	57.87	47.87	-14.55	-13.17	
3	0.97876	10.01	18.73	14.69	28.74	24.70	56.00	46.00	-27.26	-21.30	
4	2.80644	10.11	20.89	15.92	31.00	26.03	56.00	46.00	-25.00	-19.97	
5	5.36327	10.27	12.20	7.13	22.47	17.40	60.00	50.00	-37.53	-32.60	
6	7.32251	10.39	9.97	4.74	20.36	15.13	60.00	50.00	-39.64	-34.87	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.
- 4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

	GFSK
RBW 300 kHz [T1] MP VEW Marker 1 [VBW 300 kHz 11= Ref 11 dBm Att 20 dB SWT 1 ms Offset 1 dB Marker 2 [-1.70 dBm 2.40200 GHz 11-Ref 11 dBm Att 20 dB SWT 1 ms 2.44300 GHz
	2.44200 GHz 2 44000 GHz 2 1 1 1 1 1 1 1 1 1 1 1 1 1
-10 -	-20-
-30	-30
-50	-50
-70	-70
-80	-80
	8DPSK
용짜 300 Hrz [T1] MP VEW Marker 1 [VWW 300 Hrz , Ref11 d5m Att 20 d5 SVT 1 ma	T1] RBW 300 H/z [T1] MP VEW Marker 1 [T1] VBW 300 H/z VBW 300 H/z 24 / 20 //B 5 // 10 // 1 //b
VBW 300 kHz	RBW 300 kHz [[1] MP VEW VBW 300 Hz Marker t [[1] .7.02 dBm 2.4020 GHz Marker t [[1] .7.02 dBm 2.4020 GHz 11 - 687 dBm 2.44200 GHz 0ffset 1 dB All 20 dB SWT 1 ms All 20 GHZ 2.4020 GHz 11 - 687 dBm 2.44200 GHZ Offset 1 dB Marker 2 [[1] 2.4020 GHZ Marker 2 [1] 2.4020 GHZ
VBW 200 KHz mainer (11 - Ref 11 dBm Att 20 dB SWT 1 ms 0 ffset 1 dB Marker 2 [1	RBW 300 kHz [[1]] MP VEW Marker 1 [[1]] -7.02 dBm 2.40200 GHz VBW 300 kHz [[1]] MP VEW Marker 1 [[1]] -7.02 dBm 2.40200 GHz 11 Ref 11 dBm All 20 dB SWT 1 ms 2.44000 GHz 11 Offset 1 dB Offset 1 dB Marker 2 [[1]] -7.37 dBm
VBW 200 M/z market 1/1 -Ref 111 dBm Att 20 dB SWT 1 ms 0 - - 0 - - 1 - -	T1] .7.73 dBm REf11 dBm All 20 dB SWT 1 ms [T1] MP VEW Marker 1 [T1] .7.02 dBm 2.40200 GHz 11 Ref 11 dBm All 20 dB SWT 1 ms 2.40300 GHz 2.40300 GHz 11 Offset 1 dB .7.03 dBm 2.4300 GHz .7.03 dBm 2.4300 GHz 2.44200 GHz 1 .7.03 dBm .7.37 dBm 2.4300 GHz .7.37 dBm 2.44200 GHz 1 .7.37 dBm .7.37 dBm .7.37 dBm .7.37 dBm
11 Ref 11 dbm Att 20 db SWT 1 ms 0 1 Offset 1 dB Att 20 db Marker 2 [1] -10 -10 -20 -40 -40 -40	11 .7.73 dbm 2.40200 GHz 11 Ref 11 dbm All 20 dB SWT 1 ms [1] P VEW VBW 300 H/z Marker 1 [11] .7.72 dbm 2.44200 GHz 11 .6.87 dbm 2.44200 GHz 0 .7.37 dbm 2.48000 GHz .7.37 dbm 2.48000 GHz -10 .0 .7.37 dbm 2.48000 GHz .7.37 dbm 2.48000 GHz .7.37 dbm 2.48000 GHz
11 Ref 11 dBm Att 20 dB SWT 1 ms 01 Offset 1 dB Att 20 dB Att 20 dB 0 1 Contract 1 dB Att 20 dB 0 1 Contract 2 dB	11 -7.73 dbm 240200 GHz Ref 11 dbm All 20 db TI I I I I I I I I I I I I I I I I I I
VBW 300 M/2 mailed 10 111 = Ref 11 dbm Att 20 dB SWT 1 ms Offset 1 dB 0 1 -0 -10 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	T1] -7.73 dbm 2.40200 GHz RBW 300 kHz [T1] MP VEW VW 300 kHz Marker 1 [T1] -7.72 dbm 2.44200 GHz 11 Ref 11 dbm Att 20 dB SWT 1 ms 2.44300 GHz 11 Offset 1 dB -7.73 dBm 2.44200 GHz -7.37 dBm 2.44300 GHz -7.37 dBm 2.44300 GHz -10 -1 -2 -10 -1 -2 -10 -20 -30 -30 -30 -30 -50 -50 -50 -50 -50 -50

4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

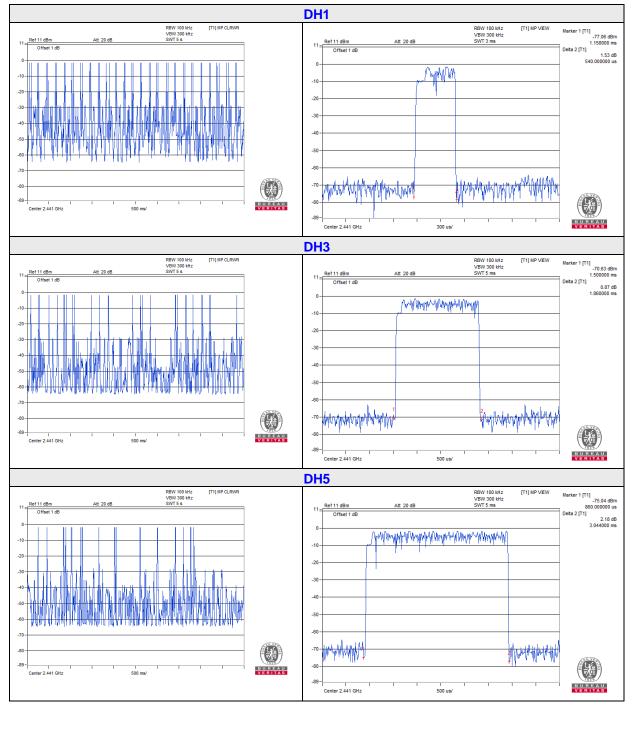
4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

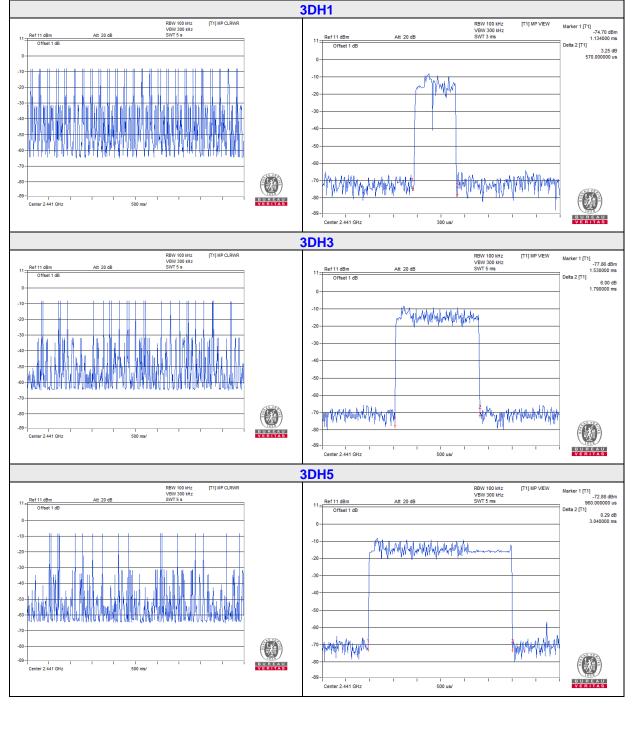
4.4.5 Deviation from Test Standard


No deviation.

4.4.6 Test Results **GFSK**

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) * 6.32 = 316 times	0.540	170.64	400
DH3	25 (times / 5 sec) * 6.32 = 158 times	1.860	293.88	400
DH5	17 (times / 5 sec) * 6.32 = 108 times	3.044	328.75	400

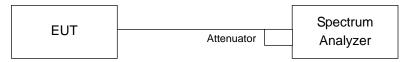
NOTE: Test plots of the transmitting time slot are shown as follows.



8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
3DH1	50 (times / 5 sec) * 6.32 = 316 times	0.57	180.12	400
3DH3	25 (times / 5 sec) * 6.32 = 158 times	1.79	282.82	400
3DH5	17 (times / 5 sec) * 6.32 = 108 times	3.04	328.32	400

NOTE: Test plots of the transmitting time slot are shown as follows.



4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)				
		GFSK	8DPSK			
0	2402	1.04	1.26			
39	2441	0.98	1.26			
78	2480	0.87	1.25			

Spectrum Plot of Worst Value									
GFSK			8D	PSK					
BBW 20 Miz. VBW 100 Miz. [T1] MP VEW VBW 100 Miz. Marker 11 Ref 11 dBm Att 20 dB SWT 100 ms 0 Dt =1_46 dBm Deta 2] -10 -20 D2=221.46 dBm -20 D2=221.46 dBm -20 -30 -40 -20 -50 -50 -20 -60 -50 -50 -60 -70 -70 -80 -71 -72	-21.46 dBm 2.40163 GHz	11 Ref 11 dBm 0 Offset 1 dB 0 D12.74 dBm -10 D222.74 dBm -30 D222.74 dBm -80	All 20 dB	RBW 30 Miz VBW 100 Miz SWT 1 06 ms 2 VBW 100 Miz 2 VBW 100	[T1] MP VEW	Marker 1 [71] -27.74 dBm 2.40144 GHz Deta 2 [71] 0.00 dB 1.26 MHz 1.26 MHz			

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

4.6.3 Test Instruments

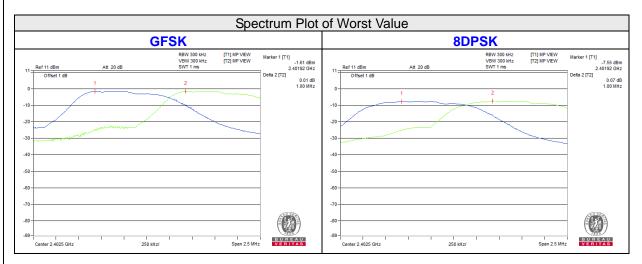
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

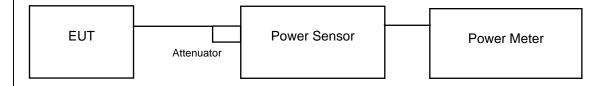
4.6.5 Deviation from Test Standard


No deviation.

4.6.6 Test Results

Channel	Frequency (MHz)		Channel on (MHz)		dB th (MHz)		ım Limit Hz)	Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	1.04	1.26	0.70	0.84	Pass
39	2441	1.00	1.00	0.98	1.26	0.66	0.84	Pass
78	2480	1.00	1.00	0.87	1.25	0.58	0.84	Pass

NOTE: The minimum limit is two-third 20dB bandwidth.



4.7 Maximum Output Power Measurement

4.7.1 Limits of Maximum Output Power Measurement

Refer to Regulation 15.247 (a)(1), the Maximum Output Power Measurement is 125mW.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHZ)	Output Power (mW)		Output Power (dBm)		Power Limit (mW)	Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK		
0	2402	1.143	0.338	0.58	-4.71	125	Pass
39	2441	1.349	0.383	1.30	-4.17	125	Pass
78	2480	1.271	0.364	1.04	-4.39	125	Pass

FOR AVERAGE POWER

Channel	Frequency (MHZ)		Power W)	Output Power (dBm)	
		GFSK	8DPSK	GFSK	8DPSK
0	2402	1.050	0.273	0.21	-5.64
39	2441	1.216	0.316	0.85	-5.00
78	2480	1.125	0.292	0.51	-5.34

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

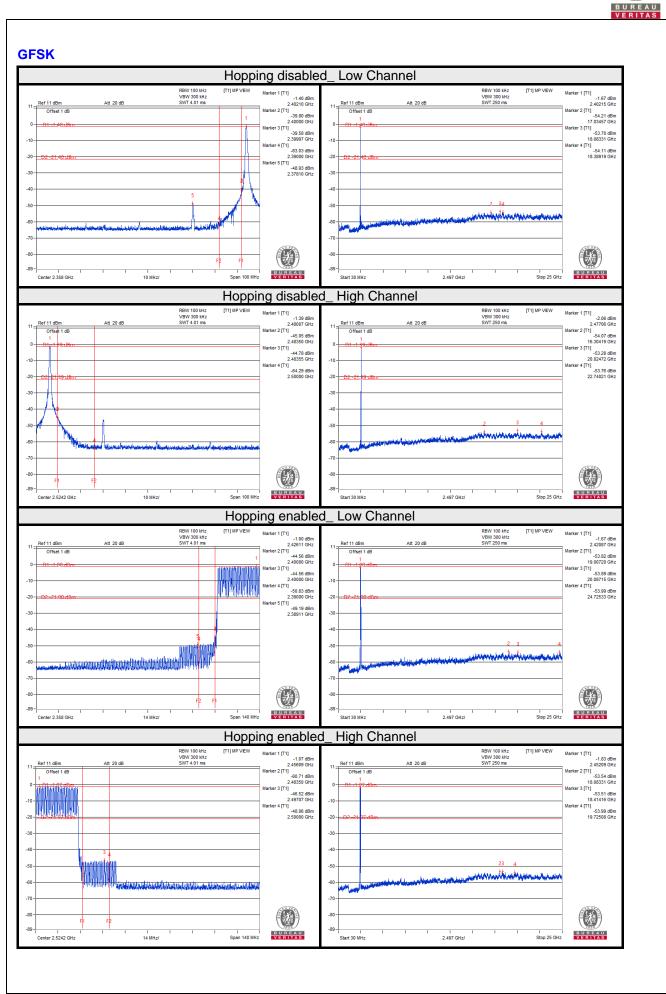
4.8.2 Test Instruments

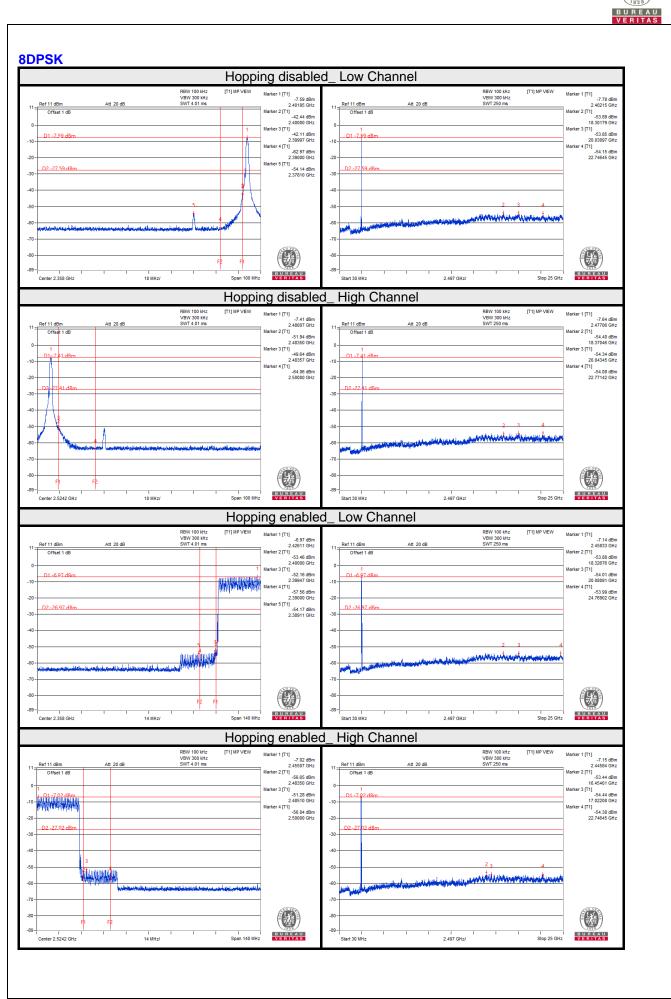
Refer to section 4.1.2 to get information of above instrument.

4.8.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

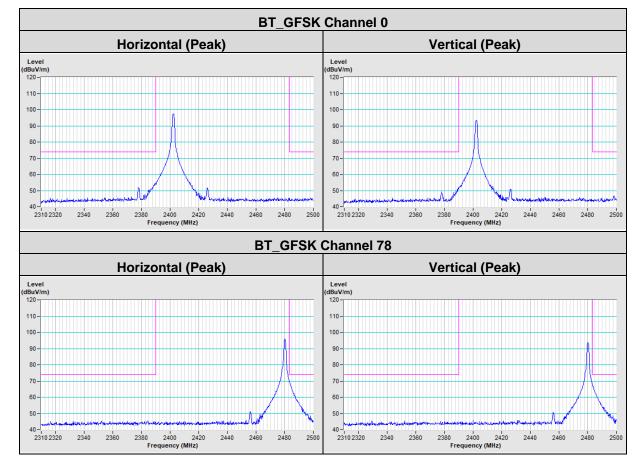

No deviation.

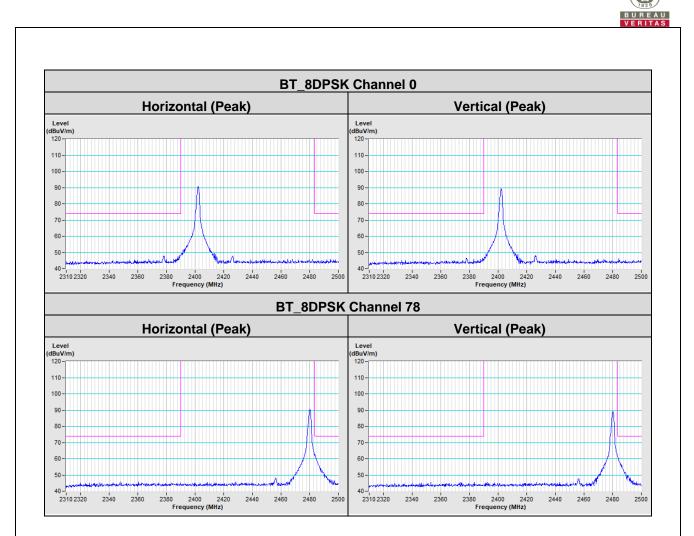

4.8.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.




5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Annex A - Bandedge Measurement

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----