

Supplemental "Transmit Simultaneously" Test Report				
Report No.:	RFBEMT-WTW-P20080442-2			
FCC ID:	K7S-08277			
Test Model:	E9450			
Series Model:	E8250			
Received Date:	Aug. 21, 2020			
Test Date:	Sep. 07 to 14, 2020			
Issued Date:	Oct. 20, 2020			
	Belkin International, Inc. 12045 East Waterfront Drive Playa Vista, CA. 90094, USA			
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory			
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan			
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan			
FCC Registration / Designation Number:	723255 / TW2022			

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of raise such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification.

Table of Contents

Re	Release Control Record					
1	Certificate of Conformity					
2	Summary of Test Results					
	2.1 2.2	Measurement Uncertainty Modification Record				
3	G	General Information	6			
	3.1 3.1.1 3.2 3.2.1	5	. 10 . 12 . 13			
4	Т	est Types and Results	. 14			
	4.1.2 4.1.3	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures Deviation from Test Standard	. 14 . 15 . 17			
•	4.1.5 4.1.6	Test Setup EUT Operating Conditions Test Results Conducted Emission Measurement	. 18 . 19 . 20			
•	4.2.1 4.2.2 4.2.3	Limits of Conducted Emission Measurement Test Instruments Test Procedures	. 23 . 23 . 24			
•	4.2.5 4.2.6 4.2.7	Deviation from Test Standard Test Setup EUT Operating Conditions Test Results	. 24 . 24 . 25			
	4.3.2	Conducted Out of Band Emission Measurement Limits of Conducted Out of Band Emission Measurement Test Setup Test Instruments	. 27 . 27			
	4.3.4 4.3.5 4.3.6	Test Procedures Deviation from Test Standard EUT Operating Conditions Test Results	. 27 . 27 . 27			
5		Pictures of Test Arrangements				
Ap		lix – Information of the Testing Laboratories				

Release Control Record Description Issue No. Date Issued RFBEMT-WTW-P20080442-2 Original release. Oct. 20, 2020

1 Certificate of Conformity

Product:	AX5400 DUAL-BAND GIGABIT WiFi 6 ROUTER		
Brand:	Linksys		
Test Model:	E9450		
Series Model:	E8250		
Sample Status:	Engineering sample		
Applicant: Belkin International, Inc.			
Test Date:	Sep. 07 to 14, 2020		
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)		
	47 CFR FCC Part 15, Subpart E (Section 15.407)		
	ANSI C63.10: 2013		

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Vivian Huan	9,	Date:	Oct. 20, 2020
Vivian Huang / Specialis	t		
Jail	,	Date:	Oct. 20, 2020
Clark Lin / Technical Mana	ger		
	Vivian Huang / Specialis	Vivian Huang / Specialist	Vivian Huang / Specialist , Date:

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C, E (SECTION 15.247, 15.407)					
FCC Clause	Test Item	Result	Remarks		
15.207 15.407(b)(6)	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -10.17 dB at 0.40781 MHz.		
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -0.9 dB at 17475.00 MHz.		

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)	
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB	
Conducted emissions	-	2.5 dB	
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB	
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.5 dB	
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.1 dB	
	18GHz ~ 40GHz	5.3 dB	

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	AX5400 DUAL-BAND GIGABIT WiFi 6 ROUTER
Brand	Linksys
Test Model	E9450
Series Model	E8250
Status of EUT	Engineering sample
Driver version	5.02L.07p1
Power Supply Rating	12Vdc from power adapter
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT20/40 in 2.4GHz 1024QAM for OFDMA in 11ax HE mode
Modulation Technology	DSSS, OFDM, OFDMA
Transfer Rate	802.11b: up to 11 Mbps 802.11a/g: up to 54 Mbps 802.11n: up to 600 Mbps 802.11ac: up to 3466.7 Mbps 802.11ax: up to 4803.9 Mbps
Operating Frequency	2.4GHz: 2.412 ~ 2.462GHz
	5GHz: 5.18~5.32GHz, 5.50 ~ 5.58GHz & 5.66 ~ 5.72GHz, 5.745 ~ 5.825GHz
Number of Channel	2.4GHz: 802.11b, 802.11g, 802.11n (HT20), VHT20, 802.11ax (HE20): 11 802.11n (HT40), VHT40, 802.11ax (HE40): 7 5GHz: 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 22 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 10 802.11ac (VHT80), 802.11ax (HE80): 5 802.11ac (VHT160), 802.11ax (HE160): 1
Output Power	CDD Mode: 2.412 ~ 2.462 GHz: 526.096 mW 5.18 ~ 5.25 GHz: 827.684 mW 5.25 ~ 5.32GHz: 204.544 mW 5.50 ~ 5.58GHz & 5.66GHz ~ 5.72GHz: 198.692 mW 5.745 ~ 5.825 GHz: 927.009 mW Beamforming Mode: 5.18 ~ 5.25 GHz: 300.596 mW 5.25 ~ 5.32GHz: 57.597 mW 5.26 ~ 5.58GHz & 5.66GHz ~ 5.72GHz: 66.971 mW 5.745 ~ 5.825 GHz: 278.769 mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	Adapter x 1
Data Cable Supplied	RJ45 Cable x1 (Unshielded, 1m)

Note:

1. The EUT has two model names, which are identical to each other in all aspects except for the following information:

Brand Name	Model Name	Difference
Liekeve	E9450	For marketing
Linksys	E8250	For marketing

From the above models, model: E9450 was selected as representative model for the test and its data are recorded in this report.

2. The EUT has below radios as following table:

Radio 1	Radio 2	
WLAN 2.4GHz	WLAN 5GHz	

3. Simultaneously transmission condition.

Condition	Technology		
1	WLAN (2.4GHz)	WLAN (5GHz)	
Nate. The enterior of the simultaneous expection has been explored and us non-compliance use found			

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

4. The EUT must be supplied one power adapter and following different models could be chosen as following table:

No.	Brand	Model name	Spec	plug
1	APD	WB-24J12R	INPUT: 100-240Vac~50/60Hz 0.6A OUTPUT: 12Vdc 2.0A OUTPUT Cable: Unshielded, 1.5m	US/EU/UK (Detachable)
2	APD	WB-24J12FU	INPUT: 100-240Vac~50/60Hz 0.6A OUTPUT: 12Vdc 2.0A OUTPUT Cable: Unshielded, 1.5m	US
3	Ktec	KSA-24W-120200D5	INPUT: 100-240Vac~50/60Hz 0.6A OUTPUT: 12Vdc 2.0A OUTPUT Cable: Unshielded, 1.5m	US/EU/UK (Detachable)
4	Ktec	KSA-24W-120200HU	INPUT: 100-240Vac~50/60Hz 0.6A OUTPUT: 12Vdc 2.0A OUTPUT Cable: Unshielded, 1.5m	US

Note:

1. From the above models, the worst Radiated Emissions and Conducted Emissions test was found in Adapter 3. Therefore only the test data of the modes were recorded in this report.

Antenna No.	Antenna Net Gain(dBi)	Frequency Range	Antenna Type	Connector Type
	4.79	2.4-2.4835GHz		i-pex(MHF)
	4.26	5.15-5.25GHz		
Ant 1_Dual Band	4.79	5.25-5.35GHz	Dipole	
	5.58	5.47-5.725GHz		
	5.58	5.725-5.85GHz		
	5.15	2.4-2.4835GHz		
	5.74	5.15-5.25GHz	Dipole	i-pex(MHF)
Ant 2_Dual Band	6.37	5.25-5.35GHz		
	6.87	5.47-5.725GHz		
	6.3	5.725-5.85GHz		
	4.16	5.15-5.25GHz	- Dipole i-po	
Ant 2 A Rond	4.44	5.25-5.35GHz		
Ant 3_A Band	5.72	5.47-5.725GHz		i-pex(MHF)
	5.82	5.725-5.85GHz		
Ant 3_A Band	4.28	5.15-5.25GHz	- Dipole i-pex(MF	
	4.67	5.25-5.35GHz		
	4.43	5.47-5.725GHz		i-pex(ivinr)
	4.17	5.725-5.85GHz		

5. The antennas provided to the EUT, please refer to the following table:

2.4GHz Band						
MODULATION MODE	TX & RX CON	IFIGURATION				
802.11b	2TX	2RX				
802.11g	2TX	2RX				
802.11n (HT20)	2TX	2RX				
802.11n (HT40)	2TX	2RX				
VHT20	2TX	2RX				
VHT40	2TX	2RX				
802.11ax (HE20)	2TX	2RX				
802.11ax (HE40)	2TX	2RX				
	5GHz Band					
MODULATION MODE	TX & RX CON	IFIGURATION				
802.11a	4TX	4RX				
802.11n (HT20)	4TX	4RX				
802.11n (HT40)	4TX	4RX				
802.11ac (VHT20)	4TX	4RX				
802.11ac (VHT40)	4TX	4RX				
802.11ac (VHT80)	4TX	4RX				
802.11ac (VHT160)	4TX	4RX				
802.11ax (HE20)	4TX	4RX				
802.11ax (HE40)	4TX	4RX				
802.11ax (HE80)	4TX	4RX				
802.11ax (HE160)	4TX	4RX				
Noto:						

6. The EUT incorporates a MIMO function:

Note:

1. All of modulation mode support beamforming function except 2.4GHz Band and 802.11a modulation mode.

2. The EUT support Beamforming and CDD mode, therefore both mode were investigated and the worst case scenario was identified. The worst case data were presented in test report.

7. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

8. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.1.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE		APPLICABLE TO				DESCRIPTION
		RE≥1G	RE≥1G RE<1G		ОВ	DESCRIPTION
-						-
Where RE≥1G: Radiated Emission above 1GHz & RE<1G: Radiated Emission below 1GHz						
PLC: Power Line Conducted Emission OB: Conducted Out-Band Emission Measurement				nission Measurement		
Radiated Emission Test (Above 1GHz):						

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
2.4GHz: 802.11ax (HE20)	1 to 11	6	OFDMA	BPSK
+	36 to 64,	105	05014	5501/
5GHz: 802.11ax (HE20)	100 to 144, 149 to 165	165	OFDMA	BPSK

Radiated Emission Test (Below 1GHz):

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
2.4GHz: 802.11ax (HE20)	1 to 11	6	OFDMA	BPSK
+ 5GHz: 802.11ax (HE20)	36 to 64, 100 to 144, 149 to 165	165	OFDMA	BPSK

Power Line Conducted Emission Test:

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
2.4GHz: 802.11ax (HE20)	1 to 11	6	OFDMA	BPSK
+ 5GHz: 802.11ax (HE20)	36 to 64, 100 to 144, 149 to 165	165	OFDMA	BPSK

Conducted Out-Band Emission Measurement:

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

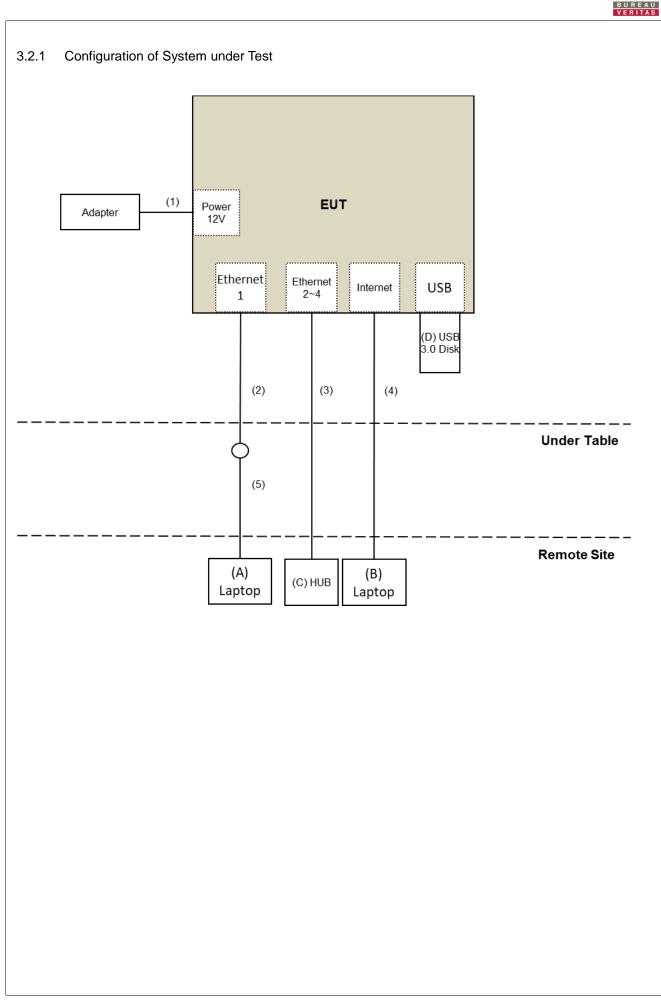
Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
2.4GHz: 802.11ax (HE20)	1 to 11	6	OFDMA	BPSK
+ 5GHz: 802.11ax (HE20)	36 to 64, 100 to 144, 149 to 165	165	OFDMA	BPSK

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	24deg. C, 69%RH	120Vac, 60Hz	Kevin Ko
RE<1G	22deg. C, 70%RH	120Vac, 60Hz	Ryan Du
PLC	PLC 25deg. C, 75%RH		Sampson Chen
ОВ	OB 25deg. C, 60%RH		Jyunchun Lin

3.2 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	Lenovo	81A4	YD02YN76	NA	Provided by Lab
В.	HUB	ZyXEL	GS1100-16	S150H44000046	FCC DoC	Provided by Lab
C.	Laptop	DELL	E5430	HYV4VY1	FCC DoC	Provided by Lab
D.	UBS 3.0 Disk	SanDisk	Ultra Flalr USB 3.0	NA	NA	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.5	No	0	Supplied by client
2.	RJ-45 Cable	1	1	No	0	Supplied by client
3.	RJ-45 Cable	3	10	No	0	Provided by Lab
4.	RJ-45 Cable	1	10	No	0	Provided by Lab
5.	RJ-45 Cable	1	10	No	0	Provided by Lab

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applic	able To	Limit		
789033 D02 Genera	I UNII Test Procedure	Field Strength at 3m		
New Rul	es v02r01	PK:74 (dBµV/m)	AV:54 (dBµV/m)	
Frequency Band	Applicable To	EIRP Limit	Equivalent Field Strength at 3m	
5150~5250 MHz	15.407(b)(1)			
5250~5350 MHz	15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)	
5470~5725 MHz	15.407(b)(3)			
5725~5850 MHz	15.407(b)(4)(i)	PK: -27 (dBm/MHz) ^{*1} PK: 10 (dBm/MHz) ^{*2} PK: 15.6 (dBm/MHz) ^{*3} PK: 27 (dBm/MHz) ^{*4}	PK: 68.2(dBμV/m) ^{*1} PK: 105.2 (dBμV/m) ^{*2} PK: 110.8(dBμV/m) ^{*3} PK: 122.2 (dBμV/m) ^{*4}	
5725~5850 MHz	15.407(b)(4)(i)	PK: -27 (dBm/MHz) ^{*1} PK: 10 (dBm/MHz) ^{*2} PK: 15.6 (dBm/MHz) ^{*3} PK: 27 (dBm/MHz) ^{*4}	PK: 68.2(dBμV/m) ^{*1} PK: 105.2 (dBμV/m) ^{*2} PK: 110.8(dBμV/m) ^{*3} PK: 122.2 (dBμV/m) ^{*4}	
-	more above of the band ge increasing linearly to t 5 MHz above.	a level ^{*4} from 5 MHz above	le increasing linearly to 10 Iz above. or below the band edge to a level of 27 dBm/MHz at	

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \mu V/$$

JV/m, where P is the eirp (Watts).

4.1.2 Test Instruments

For Radiated Emission test:

DESCRIPTION &			CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver Agilent	N9038A	MY51210202	Dec. 13, 2019	Dec. 12, 2020
Pre-Amplifier EMCI	EMC001340	980142	May 25, 2020	May 24, 2021
Loop Antenna Electro-Metrics	EM-6879	264	Feb. 18, 2020	Feb. 17, 2021
RF Cable	NA	LOOPCAB-001	Jan. 08, 2020	Jan. 07, 2021
RF Cable	NA	LOOPCAB-002	Jan. 08, 2020	Jan. 07, 2021
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Oct. 23, 2019	Oct. 22, 2020
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Nov. 11, 2019	Nov. 10, 2020
RF Cable	8D	966-4-1	Mar. 18, 2020	Mar. 17, 2021
RF Cable	8D	966-4-2	Mar. 18, 2020	Mar. 17, 2021
RF Cable	8D	966-4-3	Mar. 18, 2020	Mar. 17, 2021
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Sep. 26, 2019	Sep. 25, 2020
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Nov. 24, 2019	Nov. 23, 2020
Pre-Amplifier EMCI	EMC 12630 SE	980638	Apr. 08, 2020	Apr. 07, 2021
RF Cable	EMC104-SM-SM-1200	160923	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-2000	180502	Apr. 29, 2020	Apr. 28, 2021
RF Cable	EMC104-SM-SM-6000	180418	Apr. 29, 2020	Apr. 28, 2021
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 15, 2020	Jan. 14, 2021
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 24, 2019	Nov. 23, 2020
RF Cable	EMC102-KM-KM-1200	160924	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC-KM-KM-4000	200214	Mar. 11, 2020	Mar. 10, 2021
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 4.
- 3. Tested Date: Sep. 08 to 10, 2020

For other test items:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
Spectrum Analyzer R&S	FSV40	100964	May 29, 2020	May 28, 2021	
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 14, 2020	Apr. 13, 2021	
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA	

NOTE: 1. The test was performed in Oven room 2.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Sep. 14, 2020

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

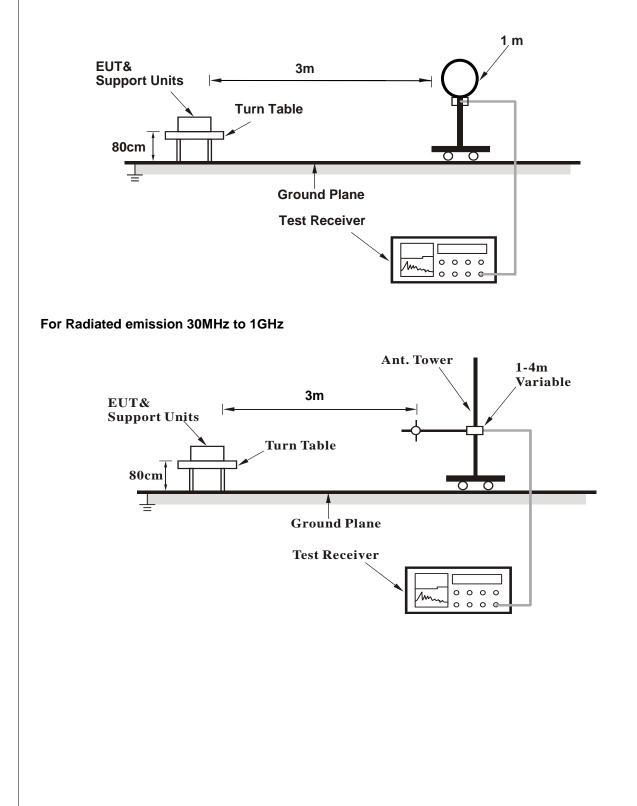
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

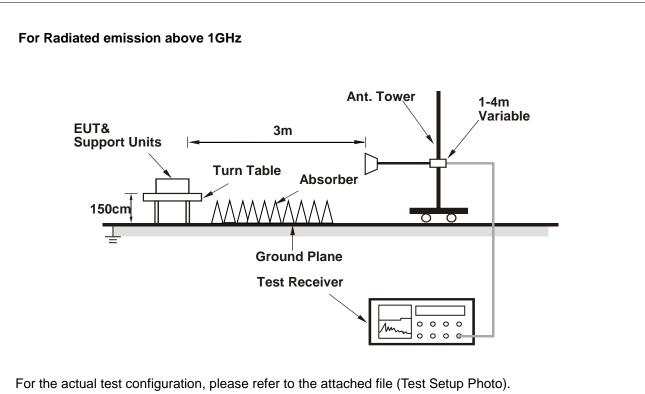
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

- 4.1.6 EUT Operating Conditions
- a. Connected the EUT with the Laptop which is placed on on remote site.
- b. Controlling software (accessMTool_REL_3_1_0_3) has been activated to set the EUT under transmission condition continuously.

4.1.7 Test Results

Above 1GHz Data:

Frequency Range 1GHz			Hz ~ 40GHz		Detector Fun	ction	Peak (PK) Average (AV)				
Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emissio Level (dBuV/r	on	Limit dBuV/m)	Margin (dB)	Antenna	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	4874.00	46.4 Pł	<	74.0	-27.6	1.47 H	97	46.3	0.1		
2	4874.00	43.4 A\	/	54.0	-10.6	1.47 H	97	43.3	0.1		
3	7311.00	49.4 PK		49.4 PK		74.0	-24.6	1.20 H	294	42.8	6.6
4	7311.00	39.7 A\	/	54.0	-14.3	1.20 H	294	33.1	6.6		
5	11650.00	63.1 Pł	<	74.0	-10.9	1.39 H	263	51.8	11.3		
6	11650.00	52.4 A\	/	54.0	-1.6	1.39 H	263	41.1	11.3		
7	#17475.00	67.3 Pł	<	68.2	-0.9	2.27 H	303	48.8	18.5		
		A	nten	na Polarit	y & Test [Distance : Ver	tical at 3 m	า			
No	Frequency (MHz)	Emissie Level (dBuV/r		Limit dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	4874.00	46.1 Pł	<	74.0	-27.9	1.62 V	349	46.0	0.1		
2	4874.00	41.2 A\	/	54.0	-12.8	1.62 V	349	41.1	0.1		
3	7311.00	47.8 Pł	<	74.0	-26.2	1.26 V	256	41.2	6.6		
4	7311.00	36.1 A\	/	54.0	-17.9	1.26 V	256	29.5	6.6		
5	11650.00	58.5 Pł	<	74.0	-15.5	3.57 V	127	47.2	11.3		
6	11650.00	47.9 A\	/	54.0	-6.1	3.57 V	127	36.6	11.3		
7	#17475.00	47.6 Pł	<	68.2	-20.6	4.00 V	253	29.1	18.5		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " # ": The radiated frequency is out of the restricted band.

Below 1GHz Data:

Free	quency Ran	ge g	9kHz ~ 1GHz Detector Function				Quasi-Peak (QP)		
	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m		Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	37.53	32.2 QP	40.0	-7.8	1.00 H	267	40.7	-8.5	
2	82.37	31.2 QP	40.0	-8.8	2.50 H	16	44.3	-13.1	
3	104.94	31.6 QP	43.5	-11.9	1.50 H	163	42.7	-11.1	

-12.8

-17.4

-18.5

Remarks:

129.01

235.77

295.70

4

5

6

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

43.5

46.0

46.0

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

30.7 QP

28.6 QP

27.5 QP

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

2.00 H

1.50 H

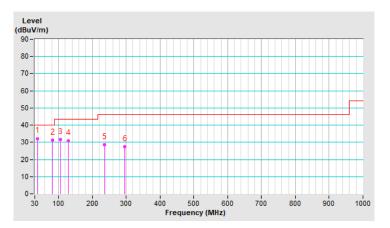
1.00 H

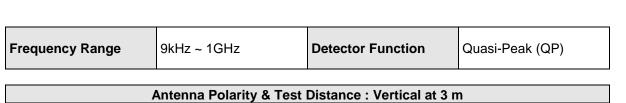
245

91

231

39.5


37.7


34.1

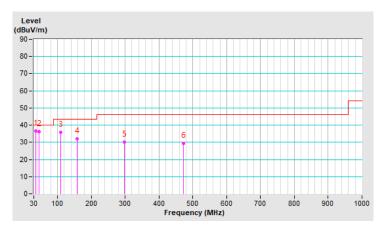
-8.8

-9.1

-6.6

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	36.39	36.6 QP	40.0	-3.4	1.00 V	118	45.5	-8.9		
2	45.04	36.3 QP	40.0	-3.7	1.00 V	277	44.1	-7.8		
3	108.94	35.8 QP	43.5	-7.7	1.00 V	35	46.4	-10.6		
4	157.83	32.1 QP	43.5	-11.4	2.00 V	348	39.4	-7.3		
5	297.01	30.2 QP	46.0	-15.8	1.50 V	13	36.7	-6.5		
6	472.51	29.2 QP	46.0	-16.8	1.00 V	27	30.9	-1.7		

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 19, 2020	Mar. 18, 2021
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	005	Aug. 29, 2020	Aug. 28, 2021
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

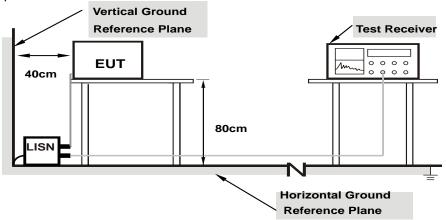
Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Conduction 1.

3 Tested Date: Sep. 07, 2020

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

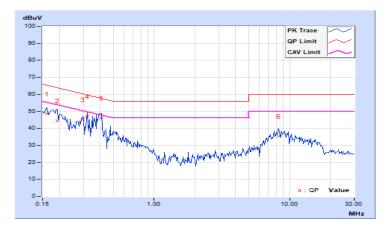
4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phas	е	Line (L)		Dete	Detector Function			Quasi-Peak (QP) / Average (AV)			
	Phase Of Power : Line (L)											
	Frequency	Correction	Readin	g Value	Emissio	on Level	Lir	nit	Margin			
No		Factor	(dBuV)		(dB	(dBuV)		(dBuV)		B)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.16172	9.93	38.40	26.42	48.33	36.35	65.38	55.38	-17.05	-19.03		
2	0.19297	9.95	34.56	24.54	44.51	34.49	63.91	53.91	-19.40	-19.42		
3	0.29844	9.96	35.27	26.52	45.23	36.48	60.29	50.29	-15.06	-13.81		
4	0.32188	9.97	37.27	29.25	47.24	39.22	59.66	49.66	-12.42	-10.44		
5	0.40781	9.98	35.98	27.54	45.96	37.52	57.69	47.69	-11.73	-10.17		
6	8.35938	10.52	24.72	15.50	35.24	26.02	60.00	50.00	-24.76	-23.98		

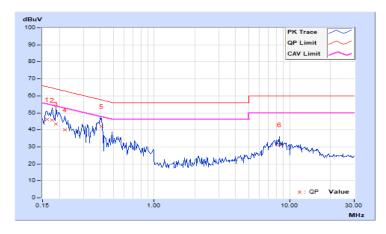
Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss


5. Emission Level = Correction Factor + Reading Value

										/
Phas	е	Ne	Neutral (N) Detector Function Quasi-Peak (QP) / Average (AV)							
	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		g Value BuV)		on Level suV)		mit BuV)		rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16172	9.94	36.24	19.35	46.18	29.29	65.38	55.38	-19.20	-26.09
2	0.17734	9.95	35.75	20.71	45.70	30.66	64.61	54.61	-18.91	-23.95
3	0.18906	9.95	33.54	17.72	43.49	27.67	64.08	54.08	-20.59	-26.41
4	0.22031	9.96	30.05	17.76	40.01	27.72	62.81	52.81	-22.80	-25.09
5	0.41172	10.00	32.14	20.46	42.14	30.46	57.61	47.61	-15.47	-17.15
6	8.39453	10.47	20.92	11.66	31.39	22.13	60.00	50.00	-28.61	-27.87

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.
- 4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.

Cł	ain 0		Chain 1	
31.5 <u>-</u> 20- 10- -10- -20- -30- -40- -50-	Ref 31.5 dBm Att 20 dB VBW 300 kHz Offiel 21.5 dB SWT 400 ms 2 D1 (13.03 dBm)	Marker 1 [T1] -46.27 dBm 1.00916 GHz 1.00916 GHz 1.00916 GHz 1.00916 GHz 4.4391 GHz Marker 3 [T1] -43.41 dBm 5.03124 GHz 5.83064 GHz Marker 4 [T1] 3.29 dBm 39.83512 GHz	315	Marker 1 [T1] 48 00 dBm 2 42330 GHz 2 42330 GHz 2 42339 GHz 2 42339 GHz 2 42359 GHz 4 45160 GHz 5 4256 GHz 3 68 6 GHz 3 68 87009 GHz
-60 - -68.5 -	Start 30 MHz 3.997 GHz/ Stop 40 GHz	BUREAU VERITAS	-60- -68-5- 	BU REAU VERITAS

2.4GHz_802.11ax (HE20) CH6 + 5GHz_802.11ax (HE20) CH165

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---