RF Exposure Report

Report No.: SABEMT-WTW-P20080442
FCC ID: K7S-08277
Test Model: E9450
Series Model: E8250
Received Date: Aug. 21, 2020
Test Date: Sep. 09, 2020
Issued Date: Oct. 20, 2020

Applicant: Belkin International, Inc.
Address: 12045 East Waterfront Drive Playa Vista, CA. 90094, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
FCC Registration /
Designation Number: 723255 / TW2022 only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Release Control Record 3
1 Certificate of Conformity 4
2 RF Exposure 5
2.1 Limits For Maximum Permissible Exposure (MPE) 5
2.2 MPE Calculation Formula 5
2.3 Classification 5
2.4 Antenna Gain 6
2.5 Calculation Result 7

Release Control Record

Issue No.	Description	Date Issued
SABEMT-WTW-P20080442	Original release.	Oct. 20, 2020

1 Certificate of Conformity

Product: AX5400 DUAL-BAND GIGABIT WiFi 6 ROUTER
Brand: Linksys
Test Model: E9450
Series Model: E8250
Sample Status: ENGINEERING SAMPLE
Applicant: Belkin International, Inc.
Test Date: Sep. 09, 2020
Standards: FCC Part 2 (Section 2.1091) IEEE C95.3-2002

References Test Guidance KDB 447498 D01 General RF Exposure Guidance v06

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : \qquad , Date: \qquad Oct. 20, 2020 Joyce Kuo / Specialist

Approved by : \qquad , Date: \qquad Oct. 20, 2020

Clark Lin / Technical Manager

2 RF Exposure

2.1 Limits For Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength $(\mathrm{A} / \mathrm{m})$	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Average Time $($ minutes $)$
Limits For General Population / Uncontrolled Exposure				
$0.3-1.34$	614	1.63	$(100)^{\star}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{\star}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	\ldots	\ldots	$\mathrm{f} / 1500$	30
$1500-100,000$	\ldots	\ldots	1.0	30

$\mathrm{f}=$ Frequency in MHz ; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

$\mathrm{Pd}=\left(\right.$ Pout $\left.^{*} \mathrm{G}\right) /\left(4^{*} \mathrm{pi}^{*} \mathrm{r}^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
$\mathrm{G}=$ gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$R=$ distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 43 cm away from the body of the user. So, this device is classified as Mobile Device.

2.4 Antenna Gain

Antenna NO.	Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connector Type
Ant 1_Dual Band	4.79	2.4-2.4835GHz	Dipole	i-pex(MHF)
	4.26	$5.15-5.25 \mathrm{GHz}$		
	4.79	$5.25-5.35 \mathrm{GHz}$		
	5.58	$5.47-5.725 \mathrm{GHz}$		
	5.58	$5.725-5.85 \mathrm{GHz}$		
Ant 2_Dual Band	5.15	$2.4-2.4835 \mathrm{GHz}$	Dipole	i-pex(MHF)
	5.74	$5.15-5.25 \mathrm{GHz}$		
	6.37	$5.25-5.35 \mathrm{GHz}$		
	6.87	$5.47-5.725 \mathrm{GHz}$		
	6.3	$5.725-5.85 \mathrm{GHz}$		
Ant 3_A Band	4.16	$5.15-5.25 \mathrm{GHz}$	Dipole	i-pex(MHF)
	4.44	$5.25-5.35 \mathrm{GHz}$		
	5.72	$5.47-5.725 \mathrm{GHz}$		
	5.82	$5.725-5.85 \mathrm{GHz}$		
Ant 3_A Band	4.28	$5.15-5.25 \mathrm{GHz}$	Dipole	i-pex(MHF)
	4.67	$5.25-5.35 \mathrm{GHz}$		
	4.43	$5.47-5.725 \mathrm{GHz}$		
	4.17	$5.725-5.85 \mathrm{GHz}$		

*The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.5 Calculation Result

Operation Mode	Evaluation Frequency (MHz)	Max AV Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit $\left(\mathrm{mW} / \mathrm{m}^{2}\right)$
WiFi 2.4G	$2412-2462$	526.096	7.98	43	0.14221	1
WiFi 5G $($ U-NII-1)	$5180-5240$	827.684	10.66	43	0.41468	1
WiFi 5G $($ U-NII-2A)	$5250-5320$	204.544	11.12	43	0.11393	1
WiFi 5G $($ U-NII-2C)	$5500-5720$	198.692	11.71	43	0.16233	1
WiFi 5G $(U-N I I-3)$	$5745-5825$	927.009	11.52	43	0.56616	1

Note:

1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
2. 2.4GHz: Directional gain $=10 \log \left[\left(10^{G 0 / 20}+10^{\mathrm{G} 1 / 20}\right)^{2} / 2\right]=7.98 \mathrm{dBi}$

5 GHz U-NII-1: Directional gain $=$ The directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}+10^{\mathrm{G4} 420}\right)^{2} / 4\right]=$ 10.66 dBi

5 GHz U-NII-2A: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}+10^{\mathrm{G} 4 / 20}\right)^{2} / 4\right]=11.12 \mathrm{dBi}$
5 GHz U-NII-2C: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}+10^{\mathrm{G} 4 / 20}\right)^{2} / 4\right]=11.71 \mathrm{dBi}$
5 GHz U-NII-3: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}+10^{\mathrm{G} 4 / 20}\right)^{2} / 4\right]=11.52 \mathrm{dBi}$

Conclusion:

The formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1
CPD = Calculation power density
LPD = Limit of power density
WLAN 2.4GHz + WLAN $5 G H z=0.14221 / 1+0.56616 / 1=0.70837$
Therefore the maximum calculations of above situations are less than the " 1 " limit.

