RF Exposure Report

Report No.: SABCKS-WTW-P20110426
FCC ID: K7S-03685
Test Model: MX8500
Series Model: MX85EC, MX85WH, MX85MS
Received Date: Nov. 12, 2020
Test Date: Dec. 08, 2020
Issued Date: Mar. 02, 2021

Applicant: Belkin International, Inc.
Address: 12045 East Waterfront Drive, Playa Vista, CA 90094

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
FCC Registration /
Designation Number: 723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Release Control Record 3
1 Certificate of Conformity 4
2 RF Exposure 5
2.1 Limits for Maximum Permissible Exposure (MPE) 5
2.2 MPE Calculation Formula 5
2.3 Classification 5
2.4 Antenna Gain 6
2.5 Calculation Result 8

Release Control Record

Issue No.	Description	Date Issued
SABCKS-WTW-P20110426	Original release.	Mar. 02, 2021

1 Certificate of Conformity

Product: Linksys Tri-Band 802.11ax Wireless Router
Brand: Linksys
Test Model: MX8500
Series Model: MX85EC, MX85WH, MX85MS
Sample Status: Engineering sample
Applicant: Belkin International, Inc.
Test Date: Dec. 08, 2020
Standards: FCC Part 2 (Section 2.1091)
IEEE C95.3-2002
References Test Guidance: KDB 447498 D01 General RF Exposure Guidance v06

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : \qquad
\qquad , Date:
Claire Kuan / Specialist

Approved by : \qquad , Date: \qquad Mar. 02, 2021

Clark Lin / Technical Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength $(\mathrm{A} / \mathrm{m})$	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Average Time $($ minutes $)$
Limits For General Population / Uncontrolled Exposure				
$0.3-1.34$	614	1.63	$(100)^{\star}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{\star}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	\ldots	\ldots	$\mathrm{f} / 1500$	30
$1500-100,000$	\ldots	\ldots	1.0	30

$\mathrm{f}=$ Frequency in MHz ; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

$\mathrm{Pd}=\left(\right.$ Pout $\left.^{*} \mathrm{G}\right) /\left(4^{*} \mathrm{pi}^{*} \mathrm{r}^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
$\mathrm{G}=$ gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$R=$ distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 30 cm away from the body of the user. So, this device is classified as Mobile Device.

2.4 Antenna Gain

For WLAN(2.4 GHz)

Antenna Type	Dipole on PCB
Antenna Connector	i-pex (MHF)
Antenna No.	Gain (dBi)
	$2.4 \sim 2.4835 \mathrm{GHz}$
Ant1	2.5
Ant2	3.1
Ant3	3.1
Ant4	2.8

The following antenna allocation table was provided to the EUT.

2G Antenna port		2G Antenna port		TX Function	
Degree -45°	2GA1	Degree $+45^{\circ}$	2 GB 1	MIMO	Correlated
Degree -45°	2 GA 2	Degree $+45^{\circ}$	2 GB 2	MIMO	

For WLAN(5GHz)

Antenna Type	Dipole on PCB	
Antenna Connector	i-pex (MHF)	
Antenna No.	Gain (dBi)	
	$5150 \mathrm{MHz} \sim 5250 \mathrm{MHz}$	$5745 \mathrm{MHz} \sim 5825 \mathrm{MHz}$
Ant1	4.9	5.4
Ant2	5.1	4.8
Ant3	4.1	5.7
Ant4	3.0	5.8

The following antenna allocation table was provided to the EUT.

5 G Antenna port		5 G Antenna port		TX Function	
Degree -45°	5 GC	Degree $+45^{\circ}$	5 GD	MIMO	Correlated
Degree -45°	5 GA	Degree $+45^{\circ}$	5 GB	MIMO	

For WLAN $(6 \mathrm{GHz}$)

Antenna Type	Dipole on PCB			
Antenna Connector	i-pex (MHF)			
Antenna No.	Gain (dBi)			
	$5105 M H z \sim 6425 M H z$	$6425 M H z \sim 6525 M H z ~$	$6525 \mathrm{MHz} \sim 6875 \mathrm{MHz}$	$6875 \mathrm{MHz} \sim 7125 \mathrm{MHz}$
Ant1	5.3	4.3	3.6	4.1
Ant2	4.8	4.1	3.4	4.4
Ant3	5.1	5.1	4.5	4.8
Ant4	3.2	4.5	5.4	5.9

The following antenna allocation table was provided to the EUT.

6G Antenna port		6G Antenna port		TX Function	
Degree -45°	6 GD	Degree $+45^{\circ}$	6 GC	MIMO	Correlated
Degree -45°	6 GB	Degree $+45^{\circ}$	6 GA	MIMO	

For BT-LE

Frequency Range (GHz)	Antenna Gain (dBi)	Antenna Type	Antenna Connector
$2.4 \sim 2.4835$	2	PCB	i-pex (MHF)

Note:
All antennas are dipole type. Thus antennas are all used the same type, the difference is only in the placement direction. According this condition, 2GA1 / 2GA2 are cross-polarization, 2GB1 / 2GB2 are cross-polarization, 5GA / 5GC are cross-polarization, 5GB / 5GD are cross-polarization, 6GA / 6GC are cross-polarization, 6GB / 6GD are cross-polarization.
*The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.5 Calculation Result

Operation Mode	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Pass / Fail
WLAN 2.4GHz	993.158	5.96	30	0.34639	1	Pass
WLAN 5GHz U-NII-1	653.703	8.01	30	0.36553	1	Pass
WLAN 5GHz U-NII-3	689.979	8.76	30	0.45855	1	Pass
BT-LE	9.354	2	30	0.00131	1	Pass
Operation Mode	Max. EIRP (mW)	Distance (cm)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Pass / Fail	
WLAN 6GHz U-NII-5	509.33	30	0.04508	1	Pass	
WLAN 6GHz U-NII-6	249.459	30	0.02204	1	Pass	
WLAN 6GHz U-NII-7	518.8	30	0.04589	1	Pass	
WLAN 6GHz U-NII-8	522.396	30	0.04619	1	Pass	

Note: 1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
2. For WLAN 2.4 GHz 802.11b: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 3 / 20}\right)^{2} / 2\right]=5.96 \mathrm{dBi}$
3. For WLAN 2.4 GHz 802.11 g : Directional gain $=10 \log \left[\left(10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}\right)^{2} / 2\right]=5.96 \mathrm{dBi}$
4. For WLAN 2.4GHz_802.11n (HT20), VHT20, 802.11ax (HE20): Directional gain $=10 \log \left[\left(10^{\text {G2 } 220}+\right.\right.$ $\left.10^{\mathrm{G} 3 / 20}\right)^{2} / 2$] $=5.96 \mathrm{dBi}$
5. For WLAN 2.4GHz_802.11n (HT40), VHT40, 802.11ax (HE40): Directional gain $=10 \log \left[\left(10^{\mathrm{G} 2 / 20}+\right.\right.$ $\left.\left.10^{G 3 / 20}\right)^{2} / 2\right]=5.96 \mathrm{dBi}$
6. For WLAN 5 GHz U-NII-1: Directional gain $=10 \log \left[\left(10^{\mathrm{G} / 20}+10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}\right)^{2 / 4}\right]=8.01 \mathrm{dBi}$
9. For WLAN 5 GHz U-NII-3: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 0 / 20}+10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}\right)^{2} / 4\right]=8.76 \mathrm{dBi}$
10. For WLAN 6 GHz U-NII-5: Directional gain $=10 \log \left[\left(10^{G 0 / 20}+10^{\mathrm{G} 1 / 20}\right)^{2} / 2\right]=8.06 \mathrm{dBi}$
11. For WLAN 6 GHz U-NII-6: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}\right)^{2} / 2\right]=7.82 \mathrm{dBi}$
12. For WLAN 6 GHz U-NII-7: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}\right)^{2} / 2\right]=7.97 \mathrm{dBi}$
13. For WLAN 6 GHz U-NII-8: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 2 / 20}+10^{\mathrm{G} 3 / 20}\right)^{2} / 2\right]=8.38 \mathrm{dBi}$

Conclusion:

The formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1
CPD = Calculation power density
LPD $=$ Limit of power density

WLAN 2.4GHz + WLAN 5GHz + BT-LE + WLAN 6GHz =
$0.34639 / 1+0.45855 / 1+0.0 .00131 / 1+0.4619 / 1=0.85244$
Therefore the maximum calculations of above situations are less than the " 1 " limit.

--- END ---

