

A Test Lab Techno Corp.

Changan Lab: No. 140 -1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C.
Tel: 886-3-271-0188 / Fax: 886-3-271-0190

SAR EVALUATION REPORT

Test Report No. : 0812FS13

Applicant : Giant Electronics Ltd.

Trade Mark : Motorola Model Number : MR350

Battery Type : Ni-MH Battery (3.6V , 650mAh)

Alkaline Battery (1.5V * 3PCS)

Product Name : Two Way Radio with GMRS, FRS and Weather Band Receiver

Date of Test : Dec. 15 ~ 16, 2008

Test Environment : Ambient Temperature : 22 \pm 2 $^{\circ}$ C

Relative Humidity: 40 - 70 %

Test Specification : Standard C95.1-1999

IEEE Std. 1528-2003

2.1093;FCC/OET Bulletin 65 Supplement C [July 2001]

Max. SAR : 0.273 W/kg FRS FACE SAR _ 15mm (50% Duty Cycle)

0.408 W/kg FRS Body SAR With Headset_15mm(50% Duty Cycle)
0.260 W/kg FRS Body SAR With Headset & Belt Clip (50% Duty Cycle)

1.521 W/kg GMRS FACE SAR _ 15mm (50% Duty Cycle)

1.368 W/kg GMRS Body SAR With Headset_15mm(50% Duty Cycle)
0.817 W/kg GMRS Body SAR With Headset & Belt Clip (50% Duty Cycle)

(Condition: 50% Duty Cycle and positive power drift)

Test Lab : Changan Lab.

- 1. The test operations have to be performed with cautious behavior, the test results are as attached.
- The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- 3. The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full.

Country Huang

20081224

Measurement Center Manager

Sam Chuang Testing Engineer 20081224

Contents

1.	Descr	ription of Equipment under Test (EUT)	3
2.	Other	Accessories	5
3.	Introd	luction	8
4.	SAR I	Definition	9
5.	SARI	Measurement Setup	.10
6.	Syste	m Components	.12
	6.1	DASY4 E-Field Probe System	.12
	6.3	Robot	.15
	6.4	Measurement Server	.15
	6.5	Device Holder for Transmitters	.16
	6.6	Phantom - SAM v4.0	.17
	6.7	Data Storage and Evaluation	.17
7.	Test E	Equipment List	.20
8.	Tissu	e Simulating Liquids	.21
	8.1	Ingredients	.22
	8.2	Recipes	.22
	8.3	Liquid Confirmation	.23
9.	Meas	urement Process	.25
	9.1	Device and Test Conditions	.25
	9.2	System Performance Check	.26
	9.3	Dosimetric Assessment Setup	.30
	9.4	Spatial Peak SAR Evaluation	.32
10.	Meas	urement Uncertainty	.33
11.	SAR	Fest Results Summary	.35
	11.1	FRS Face SAR -15mm Spacing	.35
	11.2	FRS Body SAR with Headset _ 15 mm Spacing	.37
	11.3	FRS Body SAR with Headset and Belt Clip	.39
	11.4	GMRS Brain SAR -15mm Spacing	.41
	11.5	GMRS Body SAR with Headset _ 15 mm Spacing	.43
	11.6	GMRS Body SAR with Headset and Belt Clip	.45
	11.7	EUT Setup up Photo	.47
	11.8	Std. C95.1-1999 RF Exposure Limit	.52
12.	Conc	lusion	.53
13.	Refer	ences	.54
App	endix	A - System Performance Check	.55
App	endix	B - SAR Measurement Data	.56
App	endix	C - Calibration	.57

1. <u>Description of Equipment under Test (EUT)</u>

Applicant : Giant Electronics Ltd.

7/F, Elite Industrial Building, 135 - 137 Hoi Bun Rd, Kwun Tong, Kolwoon, HK

Manufacturer : Giant Electronics Ltd.

Manufacturer Address : 7/F, Elite Industrial Building, 135 - 137 Hoi Bun Rd, Kwun Tong,

Kolwoon, HK

FCC ID : K7GMRCEJ

Product Name : Two Way Radio with GMRS, FRS and Weather Band Receiver

Trade Mark : Motorola

Model Number : MR350

Battery Type : Ni-MH Battery (3.6V , 650mAh)

Alkaline Battery (1.5V * 3 PCS)

Test Device : Production Unit

TX Frequency : 467.5625 - 467.7125 MHz FRS

462.5500 - 462.7250 MHz GMRS

Max. RF Output Power : 0.325 W (25.12 dBm) ERP FRS

1.914 W (32.82 dBm) ERP GMRS

Max. SAR Measurement : 0.273 W/kg FRS FACE SAR -15mm (50% Duty Cycle)

0.408 W/kg FRS Body SAR With Headset_15mm (50% Duty Cycle)0.260 W/kg FRS Body SAR With Headset & Belt Clip (50% Duty Cycle)

1.521 W/kg GMRS FACE SAR _ 15mm (50% Duty Cycle)

1.368 W/kg GMRS Body SAR With Headset_15mm(50% Duty Cycle)

0.817 W/kg GMRS Body SAR With Headset & Belt Clip (50% Duty Cycle)

(Condition: 50% Duty Cycle and positive power drift)

Antenna Type : Fixed
Antenna Gain : 0dBi

Device Category : Portable

RF Exposure Environment : General Population / Uncontrolled

Battery Option : Standard

Application Type : Certification

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for Uncontrolled environment / General Population exposure limits specified in Standard C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE Std. 1528-2003.

2. Other Accessories

Figure 2. Headset

Figure 3. USB Cable

Figure 4. Belt Clip

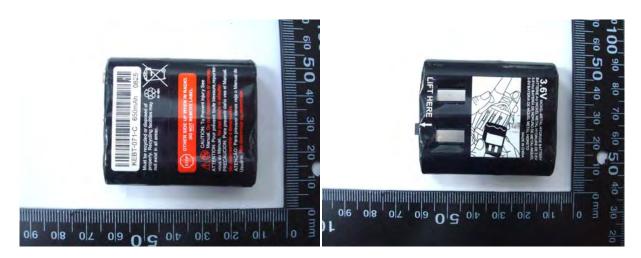


Figure 5. Ni-MH Battery (3.6V 650mAh)

Figure 6. Alkaline Battery (1.5V * 3 PCS)

Figure 7. AC Adapter

Figure 8. AC Adapter For Charging Tray

Figure 9. Charging Tray

3. <u>Introduction</u>

The A Test Lab Techno. Corp. RF Testing Laboratory has performed measurements of the maximum potential exposure to the user of **Giant Electronics Ltd. Trade Mark: Motorola Model(s)**: MR350. The test procedures, as described in American National Standards, Institute C95.1 - 1999 [1], FCC/OET Bulletin 65 Supplement C [July 2001] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the Uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

4. SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 10).

SAR =
$$\frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

Figure 10.SAR Mathematical Equation

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = RMS electric field strength (V/m)

*Note:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [2]

5. SAR Measurement Setup

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than ± 0.025 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length = 300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick) and remote control, and is used to drive the robot motors. The Measurement Server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chipdisk and 64MB RAM. The necessary circuits for communication with either the DAE3 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The PC consists of the Intel Pentium 4 2.4GHz computer with WindowsXP system and SAR Measurement Software DASY4, Post Processor SEMCAD, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection...etc. is connected to the Electro-optical converter (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the Measurement Server.

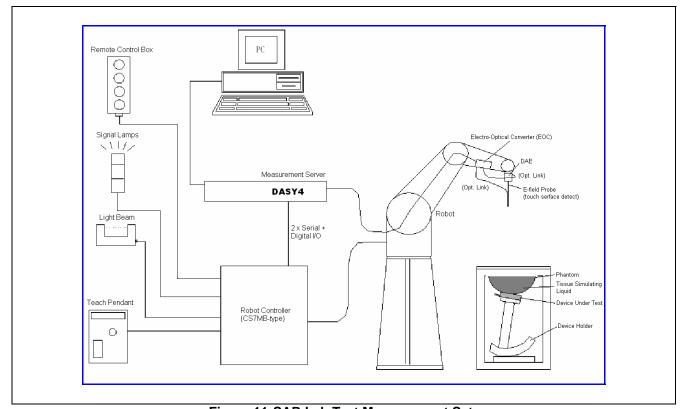


Figure 11. SAR Lab Test Measurement Setup

The DAE4 (or DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in [3].

6. System Components

6.1 DASY4 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 or ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

6.1.1 **E-Field Probe Specification**

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

System

Built-in shielding against static charges

PEEK enclosure material

(resistant to organic solvents, e.q., glycol)

Calibration In air from 10 MHz to 6 GHz

In brain and muscle simulating tissue at

frequencies of 450MHz, 900MHz, 1800MHz, 2000MHz

and 2450MHz (accuracy ±8%)

Calibration for other liquids and frequencies upon request

Frequency 10 MHz to > 6 GHz; Linearity: ±0.2 dB

(30 MHz to 3 GHz)

Directivity ±0.3 dB in brain tissue (rotation around probe axis)

±0.5 dB in brain tissue (rotation normal probe axis)

Dynamic Range 10 μ W/g to > 100mW/g; Linearity: \pm 0.2dB

Surface Detection ±0.2 mm repeatability in air and clear liquids

over diffuse reflecting surface

Dimensions Overall length: 330mm

Tip length: 20mm

Body diameter: 12mm

Tip diameter: 2.5mm

Distance from probe tip to dipole centers: 1.0mm

Application General dosimetry up to 6GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

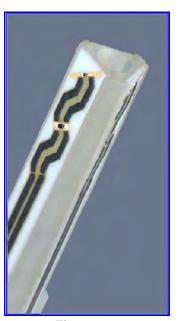


Figure 12. **E-field Probe**

Figure 13. Probe setup on robot

6.1.2 E-Field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure described in $\{4\}$ with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in $\{5\}$ and found to be better than ± 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1GHz, and in a wave guide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (head or body),

Δ T = Temperature increase due to RF exposure.

Or
$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.2 Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Pentium 4

Clock Speed: 2.4GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 v4.7 (Build 71) & SEMCAD v1.8 (Build 184)

Connecting Lines: Optical downlink for data and status info

Optical uplink for commands and clock

6.3 Robot

Positioner: Stäubli Unimation Corp. Robot Model: RX90L

Repeatability: ±0.025 mm

No. of Axis: 6

6.4 Measurement Server

Processor: PC/104 with a 166MHz low-power Pentium

I/O-board: Link to DAE3

16-bit A/D converter for surface detection system

Digital I/O interface

Serial link to robot

Direct emergency stop output for robot

6.5 Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the IEEE SCC34-SC2 and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

*Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations [6]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Larger DUT cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.

Figure 14. Device Holder

6.6 Phantom - SAM v4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Figure 15. SAM Twin Phantom

Shell Thickness	2 ± 0.2 mm
Filling Volume	Approx. 25 liters
Dimensions	810×1000×500 mm (H×L×W)

Table 1. Specification of SAM v4.0

6.7 Data Storage and Evaluation

6.7.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

6.7.2 Data Evaluation

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi

- Diode compression point dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field probes :
$$H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

with V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 $\mu \text{ V/(V/m)}^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

*Note: that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

7. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calib	ration
Wallulacturei	Hame or Equipment	турелиюцег	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Field Probe	ET3DV6	1530	Sep. 23, 2008	Sep. 23, 2009
SPEAG	450MHz System Validation Kit	D450V2	1021	Mar. 19, 2008	Mar. 19, 2009
SPEAG	Data Acquisition Electronics	DAE4	541	Feb. 21, 2008	Feb. 21, 2009
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	SAM V4.0	1009	NCR	NCR
SPEAG	Robot	Staubli RX90L	F00/589B1/A/01	NCR	NCR
SPEAG	Software	DASY4 V4.7 Build 55	N/A	NCR	NCR
SPEAG	Software	SEMCAD V1.8 Build 176	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
R&S	Wireless Communication Test Set	CMU200	112387	Oct. 31, 2008	Oct. 31, 2009
Agilent	Wireless Communication Test Set	E5515C	MY47511156	May. 27, 2008	May. 27, 2009
Agilent	ENA Series Network Analyzer	E5071B	MY42402996	Nov. 04, 2008	Nov. 04, 2009
Agilent	Dielectric Probe Kit	85070C	US99360094	NCR	NCR
R&S	Power Sensor	NRP-Z22	100179	May. 03, 2008	May. 03, 2009
Agilent	Signal Generator	E8257D	MY44320425	Jul. 03, 2008	Jul. 03, 2009
Agilent	Dual Directional Coupler	778D	50334	NCR	NCR
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NCR	NCR

Table 2. Test Equipment List

8. <u>Tissue Simulating Liquids</u>

The Head and body mixtures consist of a viscous gel using hydroxethylcellullouse (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8720ES Network Analyzer.

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	Н	ead	В	dy	
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 - 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

Table 3. Tissue dielectric parameters for head and body phantoms

8.1 Ingredients

The following ingredients are used:

- Water: deionized water (pure H₂0), resistivity ≥ 16 M Ω -as basis for the liquid
- Sugar: refied white sugar (typically 99.7 % sucrose, available as crystal sugar in food shops)
 to reduce relative permittivity
- Salt: pure NaCl -to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20 °C), CAS # 54290 -to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 -to prevent the spread of bacteria and molds
- DGBE: Diethylenglycol-monobuthyl ether (DGBE), Fluka Chemie GmbH, CAS # 112-34-5 -to reduce relative permittivity

8.2 Recipes

The following tables give the recipes for tissue simulating liquids to be used in different frequency bands.

Note: The goal dielectric parameters (at 22 °C) must be achieved within a tolerance of $\pm 5\%$ for ϵ and $\pm 5\%$ for σ .

Liquid type	HSL 4	50 - A		
Ingredient	Weight (g)	Weight (%)		
Water	522.94	38.91		
Sugar	765.09	56.93		
Cellulose	3.39	0.25		
Salt	50.94	3.79		
Preventol	1.63	0.12		
Total amount	1'344.00	100.00		
Goal dielectric parameters				
Frequency [MHz]	45	50		
Relative Permittivity	43.5			
Conductivity [S/m]	0.8	87		

Liquid type	HSL 4	50 - B		
Ingredient	Weight (g)	Weight (%)		
Water	590.62	46.21		
Sugar	654.00	51.17		
Cellulose	2.36	0.18		
Salt	29.96	2.34		
Preventol	1.06	0.08		
Total amount	1'278.00	100.00		
Goal dielectric parameters				
Frequency [MHz]	450			
Relative Permittivity	56.7			
Conductivity [S/m]	0.0	94		

8.3 Liquid Confirmation

8.3.1 Parameters

Liquid \	Liquid Verify												
Ambient Temperature : $22\pm2~^{\circ}{\rm C}$; Relative Humidity : 40-70 $\%$													
Liquid Type	· Fron · Paramotore Iarnot Vallio						Limit (%)	Measured Date					
450MHz	450MHz	lHz 22.0	εr	43.5	44.61	2.55	± 5	Dec. 15, 2008					
Head		22.0	σ	0.87	0.880	1.15	± 5	Dec. 15, 2008					
450MHz	1450MHz 22 ()		22.0	εr	56.7	56.26	-0.78	± 5	Dec. 15, 2008				
Body		22.0	σ	0.94	0.940	0.00	± 5	Dec. 15, 2008					
450MHz	450MU-	22.0	εr	56.7	56.26	-0.78	± 5	Dog 16 2009					
Body	450MHz	22.0	σ	0.94	0.940	0.00	± 5	Dec. 16, 2008					

Table 4. Measured Tissue dielectric parameters for head and body phantoms

8.3.2 Liquid Depth

The liquid level was during measurement 15cm ± 0.5 cm.

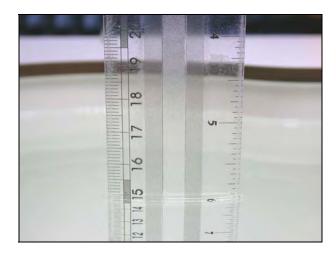


Figure 16. Head-Tissue-Simulating-Liquid

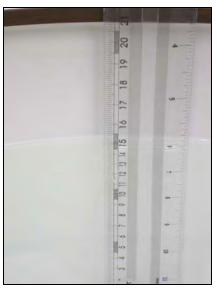


Figure 17. Body-Tissue-Simulating-Liquid

9. Measurement Process

9.1 Device and Test Conditions

The Test Device was provided by Giant Electronics Ltd. for this evaluation. The spatial peak SAR values were assessed for the lowest, middle and highest channels defined by FRS (Ch8 = 467.5625 MHz, Ch11 = 467.6375 MHz, Ch14 = 467.7125 MHz) and GMRS (Ch15 = 462.5500 MHz, Ch04 = 462.6375 MHz, Ch22 = 462.7250 MHz) systems. Battery and accessories shall be those specified by the manufacturer. The battery shall be fully charged before each measurement and there shall be no external connections.

Usage		Operates with a built-in test mode by client					
Distance between antenna axis at and the liquid so	the joint	EUT back to ph	nantom, 15mm separation nantom, 15mm separation hantom, to attach belt c	n.			
Simulating hum Head/Body	an	Body					
EUT Battery		Fully-charged with Ni-MH Battery or Alkaline Battery.					
	С	hannel	Frequency MHz	Before SAR Test (dBm)	After SAR Test (dBm)		
		Lowest - 8	467.5625	25.12	25.11		
Output Power	FRS	Middle - 11	467.6375	25.12	25.09		
(ERP)		Highest - 14	467.7125	25.12	25.10		
		Lowest - 15	462.5500	32.82	32.81		
	GMRS	Middle - 4	462.6375	32.82	32.80		
		Highest - 22	462.7250	32.82	32.80		

9.2 System Performance Check

9.2.1 Symmetric Dipoles for System Validation

Construction Symmetrical dipole with I/4 balun enables measurement

of feed point impedance with NWA matched for use near flat phantoms filled with head simulating solutions Includes distance holder and tripod adaptor Calibration Calibrated SAR value for specified position and input power at the flat phantom in head simulating solutions.

Frequency 450, 900, 1800, 1950, 2000, 2450, 5000MHz

Return Loss > 20 dB at specified validation position **Power Capability** > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Options Dipoles for other frequencies or solutions and other

calibration conditions are available upon request

Dimensions D450V2: dipole length 270 mm; overall height 330 mm

D900V2: dipole length 149 mm; overall height 330 mm D1800V2: dipole length 72 mm; overall height 300 mm

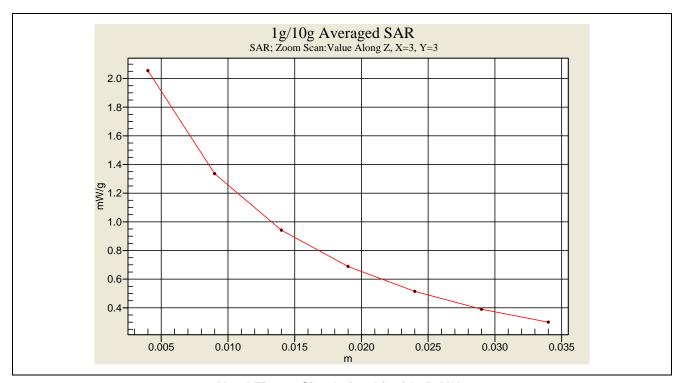
D1950V2: dipole length 62 mm; overall height 300 mm D2000V2: dipole length 65 mm; overall height 300 mm

D2450V2: dipole length 51.5 mm; overall height 300 mm

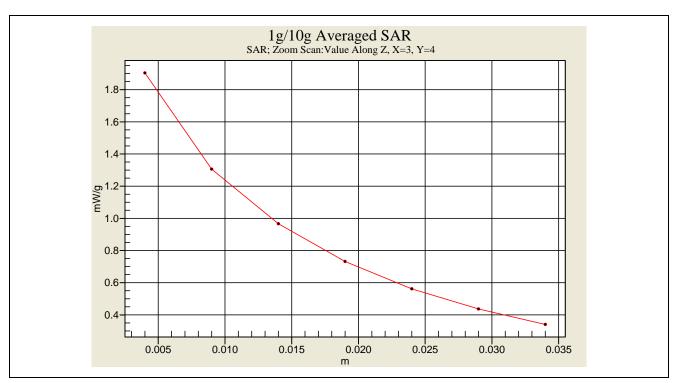
D5GHzV2: dipole length 20.6 mm; overall height 450 mm

Figure 18. Validation Kit

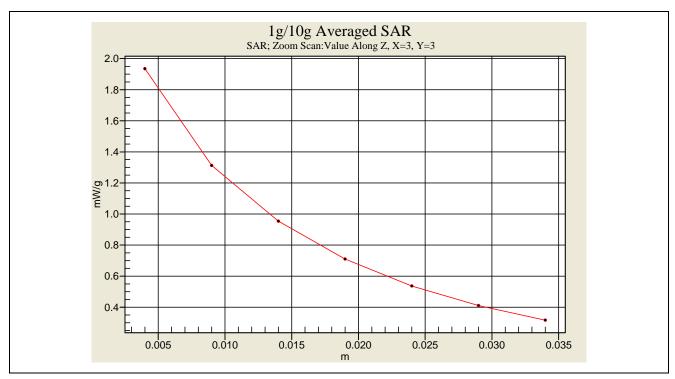
9.2.2 Validation


Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 10%. The validation was performed at 450 MHz.

Valida	Mixture Ty	ype		SAR _{1g} mW/g]		R _{10g} V/g]	Date of Calibration				
D450V2-SN1021		Head			4.90	3.27		Mor 10, 2009			
D450V2	-3N1021	Body			4.72	3.17		Mar. 19, 2008			
Frequency (MHz)	Power	SAR _{1g} SA (mW/g) (mV		\R _{10g}	Drift (dB)		rence ntage	Date			
(vv /g) (ab)		1g	10g				
450	398mW	1.92	1	25 - 0.023		-1.5%	-3.8%	Dec. 15, 2008			
(Head)	Normalize to 1 Watt	4.82	3	.14		0.020		0.020	-1.5/0	-3.0 /0	Dec. 13, 2006
450	398mW	1.8	1	.25	-0.053	-4.3%	-0.8%	Dec. 15, 2008			
(Body)	Normalize to 1 Watt	4.52	3	.14	-0.000	- 	-0.0 /0	Dec. 13, 2000			
450	398mW	1.83	1	.25	-0.032	-2.7%	-0.8%	Dec. 16, 2008			
(Body)	Normalize to 1 Watt	4.60	3	.14	-0.032	-2.7 /0	-0.0 /0	Dec. 10, 2006			


Detail results see Appendix A.

Z-axis Plot of System Performance Check


Head-Tissue-Simulating-Liquid 450MHz

Body-Tissue-Simulating-Liquid 450MHz (2008.12.15)

Z-axis Plot of System Performance Check

Body-Tissue-Simulating-Liquid 450MHz (2008.12.16)

9.3 Dosimetric Assessment Setup

9.3.1 Body Test Position

Body - Worn Configuration

Body - Worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device.

Body - Worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 15 mm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. For this test:

- The EUT is placed into the holster/belt clip and the holster is positioned against the surface of the phantom in a normal operating position.
- Since this EUT doesn't supply any body-worn accessory to the end user, a distance of 15mm was tested to confirm the necessary "minimum SAR separation distance".

(*Note: This distance includes the 2 mm phantom shell thickness.)

9.3.2 Measurement Procedures

The evaluation was performed with the following procedures:

Surface Check:

A surface checks job gathers data used with optical surface detection. It determines the distance from the phantom surface where the reflection from the optical detector has its peak. Any following measurement jobs using optical surface detection will then rely on this value. The surface check performs its search a specified number of times, so that the repeatability can be verified. The probe tip distance is 1.3mm to phantom inner surface during scans.

Reference:

The reference job measures the field at a specified reference position, at 4 mm from the selected section's grid reference point.

Area Scan:

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines can find the maximum locations even in relatively coarse grids. When an area scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. Any following zoom scan within the same procedure will then perform fine scans around these maxima. The area covered the entire dimension of the EUT and the horizontal grid spacing was $15 \text{ mm} \times 15 \text{ mm}$.

Zoom Scan:

Zoom scans are used to assess the highest averaged SAR for cubic averaging volumes with 1 g and 10 g of simulated tissue. The zoom scan measures $5 \times 5 \times 7$ points in a $32 \times 32 \times 30$ mm cube whose base faces are centered around the maxima returned from a preceding area scan within the same procedure.

Drift:

The drift job measures the field at the same location as the most recent reference job within the same procedure, with the same settings. The drift measurement gives the field difference in dB from the last reference measurement. Several drift measurements are possible for each reference measurement. This allows monitoring of the power drift of the device in the batch process. If the value changed by more than 5%, the evaluation was repeated.

9.4 Spatial Peak SAR Evaluation

The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. Based on the Draft: SCC-34, SC-2, WG-2 - Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of $(32\times32\times30)$ mm³ $(5\times5\times7$ points). The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Postprocessing engine (SEMCAD). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into three stages:

Interpolation and Extrapolation

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY4, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and SAR extrapolation routines. The interpolation, Maxima Search and extrapolation routines are all based on the modified Quadratic Shepard's method [7].

10. Measurement Uncertainty

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than $\pm 27~\%$ (8).

According to Std. C95.3 [9], the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

According to CENELEC (10) , typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

Source of Uncertainty	Uncertainty Value	Probability Distribution	Divisor	Ci	Standard Uncertainty ±1%(1-g)	V _i or V _{eff}
Type-A	0.9 %	Normal	1	1	0.9	9
Measurement System						
Probe Calibration	7 %	Normal	2	1	3.5	∞
Axial Isotropy	0.2dB	Rectangular	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
Hemispherical Isotropy	9.6 %	Rectangular	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞
Spatial Resolution	0 %	Rectangular	$\sqrt{3}$	1	0	∞
Boundary Effect	11.0 %	Rectangular	$\sqrt{3}$	1	6.4	∞
Linearity	0.2dB	Rectangular	$\sqrt{3}$	1	2.7	∞
Detection Limit	1.0 %	Rectangular	$\sqrt{3}$	1	0.6	∞
Readout Electronics	1.0 %	Normal	1	1	1.0	∞
RF Ambient Conditions	3.0 %	Rectangular	$\sqrt{3}$	1	1.73	∞
Probe Positioner Mech. Const.	0.4 %	Rectangular	$\sqrt{3}$	1	0.2	∞
Probe Positioning	0.35 %	Rectangular	$\sqrt{3}$	1	0.2	∞
Extrapolation and Integration	3.9 %	Rectangular	$\sqrt{3}$	1	2.3	∞
Test sample Related						
Test sample Positioning	4.7 %	Normal	1	1	4.7	5
Device Holder Uncertainty	6.1 %	Normal	1	1	6.1	5
Drift of Output Power	5.0 %	Rectangular	$\sqrt{3}$	1	2.9	∞
Phantom and Setup						
Phantom Uncertainty (Including temperature effects)	4.0%	Rectangular	$\sqrt{3}$	1	2.3	∞
Liquid Conductivity (target)	5.0%	Rectangular	$\sqrt{3}$	0.6	1.7	∞
Liquid Conductivity (meas.)	10.0%	Rectangular	$\sqrt{3}$	0.6	3.4	∞
Liquid Permittivity (target)	5.0%	Rectangular	$\sqrt{3}$	0.6	1.7	∞
Liquid Permittivity (meas.)	5.0%	Rectangular	$\sqrt{3}$	0.6	1.7	∞
Combined standard uncertainty		RSS			13.5	88.7
Expanded uncertainty (Coverage factor = 2)		Normal (k=2)			27	

Table 5. Uncertainty Budget of DASY

SAR Test Results Summary

11.1 FRS Face SAR -15mm Spacing

Ambient:

Temperature (°C): Relative HUMIDITY (%): 22 ± 2 40-70

Liquid:

Mixture Type: **HSL450** Liquid Temperature (°C) : 22

> Depth of liquid (cm): 15

Measurement:

Crest Factor: Probe S/N: 1530 1

Frequency					SAR₁g[mW/g]	_		
		Modulation	Battery	Accessory	Duty Cycle		Power Drift	Amb. Temp	Remark
MHz	Ch.				100%	50%	J		
467.5625	8	FM	Ni-MH	N/A	0.540	0.270	-0.049	21.00	-
467.5625	8	FM	Alkaline	N/A	0.420	0.210	-0.042	21.00	-
467.5625	8	FM	Ni-MH	N/A	0.447	0.224	-0.049	21.00	With USB Cable
467.5625	8	FM	Ni-MH	N/A	0.518	0.259	-0.016	21.00	With AC Adapter
467.6375	11	FM	Ni-MH	N/A	0.514	0.257	-0.034	21.00	-
467.7125	14	FM	Ni-MH	N/A	0.442	0.221	-0.028	21.00	-
Std. C95.1-1999 - Safety Limit Spatial Peak							l.6 W/kg (ı		

Uncontrolled Exposure/General Population

Averaged over 1 gram

SAR values are scaled for the power drift

Frequen	су	_	SAR _{1g} [ı	mW/g]	power drift	+ power drift		[mW/g] power drift)	
		Battery	Duty Cycle		(dB)	10^(dB/10)	Duty Cycle		
MHz	Ch.		100%	50%			100%	50%	
467.5625	8	Ni-MH	0.540	0.270	-0.049	1.011	0.546	0.273	
467.5625	8	Alkaline	0.420	0.210	-0.042	1.010	0.424	0.212	
467.5625	8	Ni-MH	0.447	0.224	-0.049	1.011	0.452	0.226	
467.5625	8	Ni-MH	0.518	0.259	-0.016	1.004	0.520	0.260	
467.6375	11	Ni-MH	0.514	0.514 0.257		1.008	0.518	0.259	
467.7125	14	Ni-MH	0.442	0.221	-0.028	1.006	0.445	0.222	

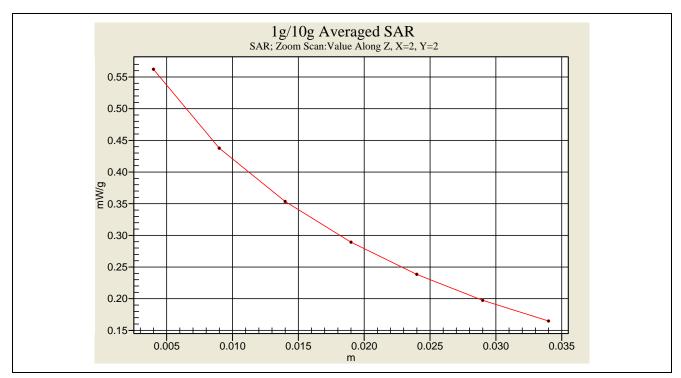
SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$

Where

Px is the unknown power (i.e. the power at the highest drift)


Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

Face SAR -1.5 cm Spacing _ CH8_Ni-MH Battery

11.2 FRS Body SAR with Headset _ 15 mm Spacing

Ambient:

Temperature ($^{\circ}$): 22 ± 2 Relative HUMIDITY ($^{\circ}$): 40-70

Liquid:

Mixture Type : MSL450 Liquid Temperature ($^{\circ}$) : 22

Depth of liquid (cm): 15

Measurement:

Crest Factor: 1 Probe S/N: 1530

Eroguon	·CV				SAR _{1g} [mW/g]	-	Amb		
Frequen	Су	Modulation	Battery	Accessory	Duty Cycle		Power Drift	Amb. Temp	Remark	
MHz	Ch.				100%	50%	5	Tomp		
467.5625	8	FM	Ni-MH	Headset	0.795	0.398	-0.015	21.00	-	
467.5625	8	FM	Alkaline	Headset	0.808	0.404	-0.045	21.00	-	
467.5625	8	FM	Ni-MH	Headset	0.375	0.188	-0.016	21.00	With USB Cable	
467.5625	8	FM	Ni-MH	Headset	0.360	0.180	-0.008	21.00	With AC Adapter	
467.6375	11	FM	Ni-MH	Headset	0.607	0.304	-0.014	21.00	-	
467.7125	14	FM	Ni-MH	Headset	0.546	0.273	-0.052	21.00	-	
Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population							l.6 W/kg (ı raged ove			

◆ SAR values are scaled for the power drift

Frequen	су	_	SAR _{1g} [mW/g]		power drift	+ power drift	SAR _{1g} [mW/g] (include +power drift)		
		Battery		Duty Cycle		10^(dB/10)	Duty Cycle		
MHz	Ch.		100%	50%			100%	50%	
467.5625	8	Ni-MH	0.795	0.398	-0.015	1.003	0.798	0.399	
467.5625	8	Alkaline	0.808	0.404	-0.045	1.010	0.816	0.408	
467.5625	8	Ni-MH	0.375	0.188	-0.016	1.004	0.376	0.188	
467.5625	8	Ni-MH	0.360	0.180	-0.008	1.002	0.361	0.180	
467.6375	11	Ni-MH	0.607	0.304	-0.014	1.003	0.609	0.304	
467.7125	14	Ni-MH	0.546	0.273	-0.052	1.012	0.553	0.276	

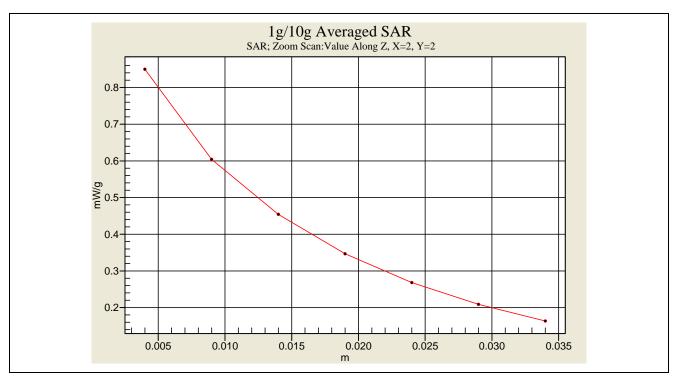
SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$

Where

Px is the unknown power (i.e. the power at the highest drift)


Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

Body SAR with Headset _15 mm Spacing _ CH8_Alkaline Battery

11.3 FRS Body SAR with Headset and Belt Clip

Ambient:

Temperature ($^{\circ}$): 22 ± 2 Relative HUMIDITY ($^{\circ}$): 40-70

Liquid:

Mixture Type : MSL450 Liquid Temperature ($^{\circ}$) : 22

Depth of liquid (cm): 15

Measurement:

Crest Factor: 1 Probe S/N: 1530

Eroguon	·CV				SAR _{1g} [mW/g]	_		
Frequen	Су	Modulation	Battery	Accessory	Duty	Cycle	Power Drift	Amb. Temp	Remark
MHz	Ch.				100%	50%	5	Tomp	
467.5625	8	FM	Ni-MH	Headset/Belt Clip	0.514	0.257	-0.049	21.00	-
467.5625	8	FM	Alkaline	Headset/Belt Clip	0.494	0.247	-0.083	21.00	-
467.5625	8	FM	Ni-MH	Headset/Belt Clip	0.250	0.125	-0.031	21.00	With USB Cable
467.5625	8	FM	Ni-MH	Headset/Belt Clip	0.299	0.150	0.008	21.00	With AC Adapter
467.6375	11	FM	Ni-MH	Headset/Belt Clip	0.443	0.222	-0.003	21.00	-
467.7125	14	FM	Ni-MH	Headset/Belt Clip	0.311	0.156	-0.004	21.00	-
Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population							6 W/kg (aged ove		m

◆ SAR values are scaled for the power drift

Frequen			SAR _{1g} [mW/g]		power drift	+ power drift	SAR _{1g} [mW/g] (include +power drift)		
		Battery	Duty Cycle		(dB)	10^(dB/10)	Duty Cycle		
MHz	Ch.		100%	50%			100%	50%	
467.5625	8	Ni-MH	0.514	0.257	-0.049	1.011	0.520	0.260	
467.5625	8	Alkaline	0.494	0.247	-0.083	1.019	0.504	0.252	
467.5625	8	Ni-MH	0.250	0.125	-0.031	1.007	0.252	0.126	
467.5625	8	Ni-MH	0.299	0.150	0.008	1.002	0.300	0.150	
467.6375	11	Ni-MH	0.443	0.222	-0.003	1.001	0.443	0.222	
467.7125	14	Ni-MH	0.311	0.156	-0.004	1.001	0.311	0.156	

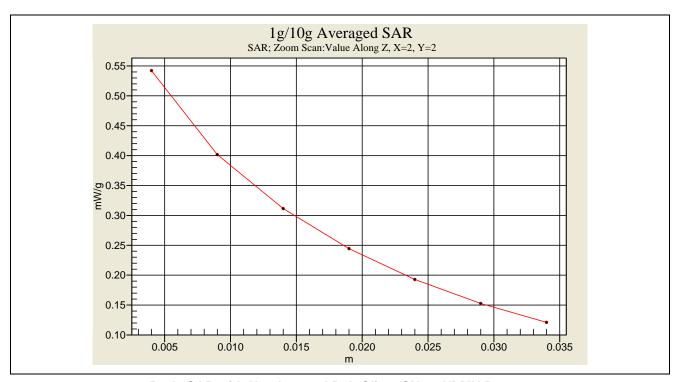
SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$

Where

Px is the unknown power (i.e. the power at the highest drift)


Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

Body SAR with Headset and Belt Clip _ CH8 _ Ni-MH Battery

11.4 GMRS Brain SAR -15mm Spacing

Ambient:

Relative HUMIDITY (%): Temperature (°C): 22 ± 2 40-70

Liquid:

Mixture Type: HSL450 Liquid Temperature (°C) : 22

> Depth of liquid (cm): 15

Measurement:

Crest Factor: Probe S/N: 1530

Frequen	CV/				SAR _{1g} [mW/g]		A!	
riequeii	Су	Modulation	Battery	Accessory	Duty Cycle		Power Drift	Amb. Temp	Remark
MHz	Ch.				100%	50%	2		
462.5500	15	FM	Ni-MH	N/A	3.020	1.510	-0.031	21.00	-
462.5500	15	FM	Alkaline	N/A	2.990	1.495	-0.065	21.00	-
462.5500	15	FM	Ni-MH	N/A	2.770	1.385	-0.045	21.00	With USB Cable
462.5500	15	FM	Ni-MH	N/A	2.660	1.330	-0.039	21.00	With AC Adapter
462.6375	4	FM	Ni-MH	N/A	2.770	1.385	-0.036	21.00	-
462.7250	22	FM	Ni-MH	N/A	2.780	1.390	-0.045	21.00	-
	Std. C95.1-1999 - Safety Limit Spatial Peak						.6 W/kg (ı		

Uncontrolled Exposure/General Population

Averaged over 1 gram

SAR values are scaled for the power drift

Frequen	Frequency Battery		SAR _{1g} [mW/g]		power drift	+ power drift	SAR _{1g} [mW/g] (include +power drift)	
			Duty Cycle		(dB)	10^(dB/10)	Duty Cycle	
MHz	Ch.		100%	50%			100%	50%
462.5500	15	Ni-MH	3.020	1.510	-0.031	1.007	3.042	1.521
462.5500	15	Alkaline	2.990	1.495	-0.065	1.015	3.035	1.518
462.5500	15	Ni-MH	2.770	1.385	-0.045	1.010	2.799	1.399
462.5500	15	Ni-MH	2.660	1.330	-0.039	1.009	2.684	1.342
462.6375	4	Ni-MH	2.770	1.385	-0.036	1.008	2.793	1.397
462.7250	22	Ni-MH	2.780	1.390	-0.045	1.010	2.809	1.404

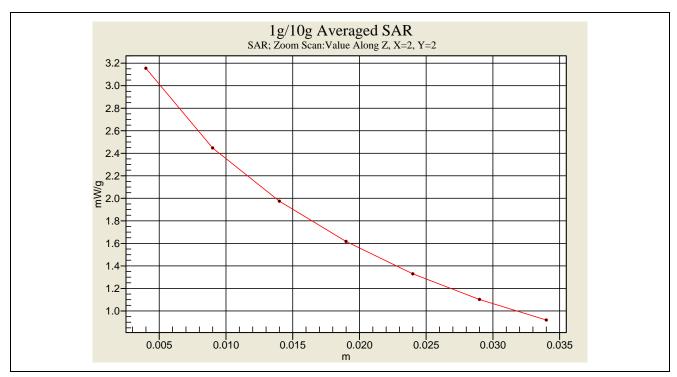
SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$

Where

Px is the unknown power (i.e. the power at the highest drift)


Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

Face SAR -1.5 cm Spacing _ CH15 _ Ni-MH Battery

11.5 GMRS Body SAR with Headset _ 15 mm Spacing

Ambient:

Temperature ($^{\circ}$): 22 ± 2 Relative HUMIDITY ($^{\circ}$): 40-70

Liquid:

Mixture Type: MSL450 Liquid Temperature (°C): 22

Depth of liquid (cm): 15

Measurement:

Crest Factor: 1 Probe S/N: 1530

Eroguon	·0\/				SAR _{1g} [mW/g]	_		
Frequen	Су	Modulation	Battery	Accessory	Duty Cycle		Power Drift	Amb. Temp	Remark
MHz	Ch.				100%	50%	5	Tomp	
462.5500	15	FM	Ni-MH	Headset	2.710	1.355	-0.017	21.00	-
462.6375	4	FM	Ni-MH	Headset	2.300	1.150	-0.003	21.00	-
462.7250	22	FM	Ni-MH	Headset	2.720	1.360	-0.026	21.00	-
462.7250	22	FM	Alkaline	Headset	2.590	1.295	-0.038	21.00	-
462.7250	22	FM	Ni-MH	Headset	2.100	1.050	0.003	21.00	With USB Cable
462.7250	22	FM	Ni-MH	Headset	2.010	1.005	0.008	21.00	With AC Adapter
	Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population						l.6 W/kg (ı eraged ove		

◆ SAR values are scaled for the power drift

Frequen	су	_	SAR _{1g} [mW/g] Duty Cycle		power drift	+ power drift	SAR _{1g} [mW/g] (include +power drift)	
		Battery			(dB)	10^(dB/10)	Duty Cycle	
MHz	Ch.		100%	50%			100%	50%
462.5500	15	Ni-MH	2.710	1.355	-0.017	1.004	2.721	1.360
462.6375	4	Ni-MH	2.300	1.150	-0.003	1.001	2.302	1.151
462.7250	22	Ni-MH	2.720	1.360	-0.026	1.006	2.736	1.368
462.7250	22	Alkaline	2.590	1.295	-0.038	1.009	2.613	1.306
462.7250	22	Ni-MH	2.100	1.050	0.003	1.001	2.101	1.051
462.7250	22	Ni-MH	2.010	1.005	0.008	1.002	2.014	1.007

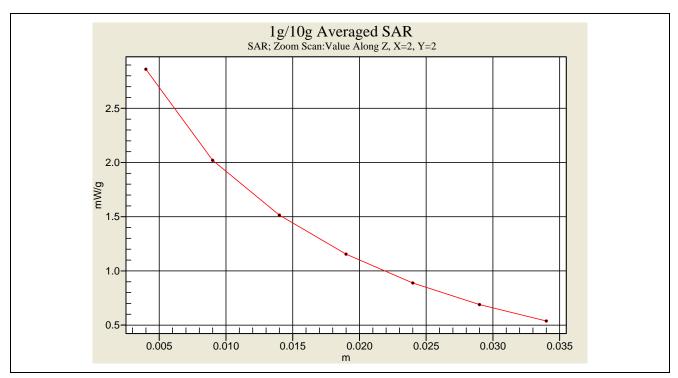
SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$

Where

Px is the unknown power (i.e. the power at the highest drift)


Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

Body SAR with Headset _15 mm Spacing _ CH22 _ Ni-MH Battery

11.6 GMRS Body SAR with Headset and Belt Clip

Ambient:

Temperature ($^{\circ}$): 22 ± 2 Relative HUMIDITY ($^{\circ}$): 40-70

Liquid:

Mixture Type : MSL450 Liquid Temperature ($^{\circ}$) : 22

Depth of liquid (cm): 15

Measurement:

Crest Factor: 1 Probe S/N: 1530

Frequen	·C\/					[mW/g]	_	A 1	
rrequen	Modulation Battery Accessory Duty Cycl		Cycle	Power Drift	Amb. Temp	Remark			
MHz	Ch.				100%	50%	J		
462.5500	15	FM	Ni-MH	Headset/Belt Clip	1.620	0.810	-0.038	21.00	-
462.5500	15	FM	Alkaline	Headset/Belt Clip	1.270	0.635	-0.034	21.00	-
462.5500	15	FM	Ni-MH	Headset/Belt Clip	1.090	0.545	-0.005	21.00	With USB Cable
462.5500	15	FM	Ni-MH	Headset/Belt Clip	1.500	0.750	-0.022	21.00	With AC Adapter
462.6375	4	FM	Ni-MH	Headset/Belt Clip	1.230	0.615	-0.015	21.00	-
462.7250	22	FM	Ni-MH	Headset/Belt Clip	1.110	0.555	-0.028	21.00	-
Unco	Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population						6 W/kg (aged ove		m

◆ SAR values are scaled for the power drift

Frequen			SAR _{1g} [mW/g]		power drift	+ power drift	SAR _{1g} [mW/g] (include +power drift)		
		Battery	Duty Cycle		(dB)	10^(dB/10)	Duty Cycle		
MHz	Ch.		100%	50%			100%	50%	
462.5500	15	Ni-MH	1.620	0.810	-0.038	1.009	1.634	0.817	
462.5500	15	Alkaline	1.270	0.635	-0.034	1.008	1.280	0.640	
462.5500	15	Ni-MH	1.090	0.545	-0.005	1.001	1.091	0.546	
462.5500	15	Ni-MH	1.500	0.750	-0.022	1.005	1.508	0.754	
462.6375	4	Ni-MH	1.230	0.615	-0.015	1.003	1.234	0.617	
462.7250	22	Ni-MH	1.110	0.555	-0.028	1.006	1.117	0.559	

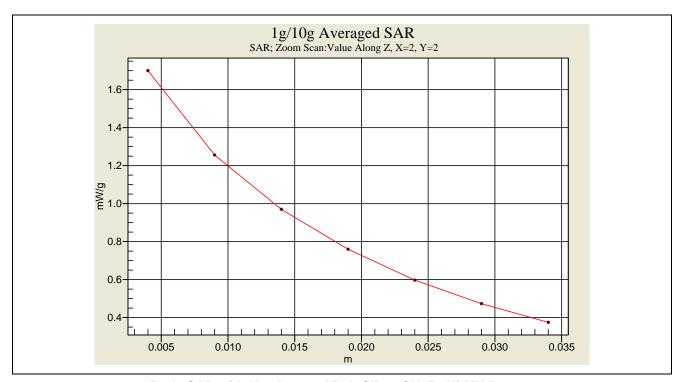
SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$

Where

Px is the unknown power (i.e. the power at the highest drift)


Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

Body SAR with Headset and Belt Clip _ CH15_ Ni-MH Battery

11.7 EUT Setup up Photo

SAR Test Setup _ Face Position

Figure 19. EUT Face to Phantom 15 mm spacing

SAR Test Setup _ Face Position

Figure 20. EUT Face to Phantom 15 mm spacing (Charging by USB Cable via computer)

SAR Test Setup _ Face Position

Figure 21. EUT Face to Phantom 15 mm spacing (Charging by AC Adapter)

Figure 22. EUT with Headset to Phantom 15 mm spacing

SAR Test Setup _ Body Position



Figure 23. EUT with Headset to Phantom 15 mm spacing (Charging by USB Cable via computer)

Figure 24. EUT with Headset to Phantom 15mm spacing (Charging by AC Adapter)

SAR Test Setup _ Body Position

Figure 25. EUT with Headset and Belt clip

Figure 26. EUT with Headset and Belt clip (Charging by USB Cable via computer)

Figure 27. EUT with Headset and Belt clip (Charging by AC Adapter)

11.8 Std. C95.1-1999 RF Exposure Limit

Human Exposure	Population Uncontrolled Exposure (W/kg) or (mW/g)	Occupational Controlled Exposure (W/kg) or (mW/g)
Spatial Peak SAR* (head)	1.60	8.00
Spatial Peak SAR** (Whole Body)	0.08	0.40
Spatial Peak SAR*** (Partial-Body)	1.60	8.00
Spatial Peak SAR**** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 6. Safety Limits for Partial Body Exposure

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / **Controlled Environments**: are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

12. Conclusion

The SAR test values found for the portable mobile device **Giant Electronics Ltd. Trade Mark : Motorola Model(s) : MR350** are below the maximum recommended level of 1.6 W/kg (mW/g).

13. References

- [1] Std. C95.1-1999, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Pokoviċ, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Poković, T. Schmid, and N. Kuster, "E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, *Dosimetric evaluation of mobile communications equipment with known precision*, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), *Human Exposure to Electromagnetic Fields High-frequency*: 10KHz-300GHz, Jan. 1995.

Appendix A - System Performance Check

See following Attached Pages for System Performance Check.

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 01:02:02

System Performance Check at 450 MHz_20081215_Head

DUT: Dipole 450MHz; Type: D450V2; Serial: D450V2 SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.88 \text{ mho/m}$; $\varepsilon_r = 44.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

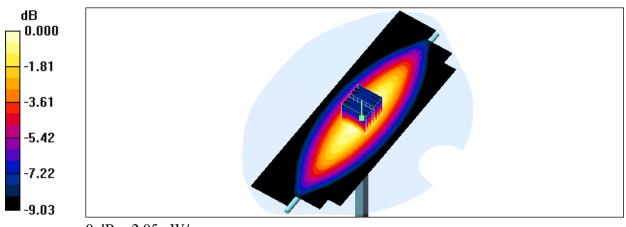
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

System Performance Check at 450 MHz/Area Scan (61x201x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.05 mW/g

System Performance Check at 450 MHz/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.4 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 3.13 W/kg

SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.25 mW/g

Maximum value of SAR (measured) = 2.05 mW/g

0 dB = 2.05 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 AM 09:22:36

System Performance Check at 450 MHz_20081215_Body

DUT: Dipole 450MHz; Type: D450V2; Serial: D450V2 SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.94 \text{ mho/m}$; $\varepsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

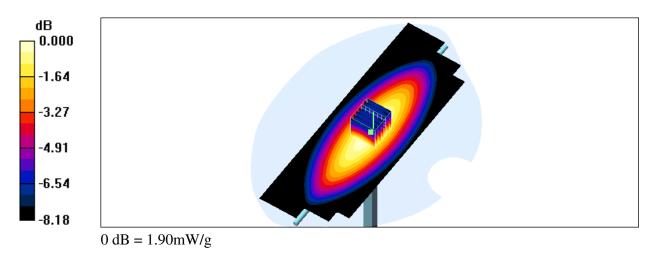
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

System Performance Check at 450 MHz/Area Scan (61x201x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.90 mW/g

System Performance Check at 450 MHz/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 46.1 V/m; Power Drift = -0.053 dB

Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 1.8 mW/g; SAR(10 g) = 1.25 mW/g

Maximum value of SAR (measured) = 1.90 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 09:02:12

System Performance Check at 450 MHz_20081216_Body

DUT: Dipole 450MHz; Type: D450V2; Serial: D450V2 SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.94 \text{ mho/m}$; $\varepsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

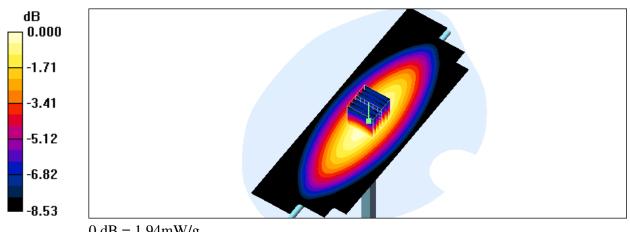
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

System Performance Check at 450 MHz/Area Scan (61x201x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.94 mW/g

System Performance Check at 450 MHz/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 46.4 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 2.84 W/kg

SAR(1 g) = 1.83 mW/g; SAR(10 g) = 1.25 mW/g

Maximum value of SAR (measured) = 1.94 mW/g

0 dB = 1.94 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 06:03:25

Flat_FRS CH8_Brain_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

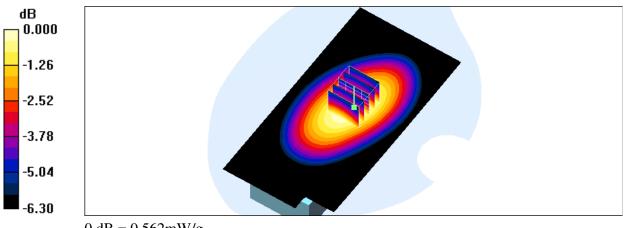
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.581 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.0 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.715 W/kg

SAR(1 g) = 0.540 mW/g; SAR(10 g) = 0.415 mW/g

Maximum value of SAR (measured) = 0.562 mW/g

0 dB = 0.562 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 10:24:12

Flat_FRS CH8_Brain_Alkaline_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

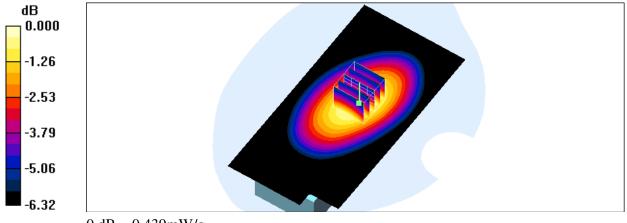
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.423 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.1 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 0.554 W/kg

SAR(1 g) = 0.420 mW/g; SAR(10 g) = 0.324 mW/g

Maximum value of SAR (measured) = 0.439 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 07:46:07

Flat_FRS CH8_Brain_Ni-MH_USB Cable_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

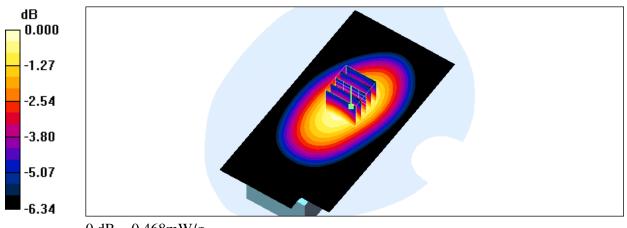
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.469 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.1 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.596 W/kg

SAR(1 g) = 0.447 mW/g; SAR(10 g) = 0.344 mW/g

Maximum value of SAR (measured) = 0.468 mW/g

0 dB = 0.468 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 08:03:39

Flat_FRS CH8_Brain_Ni-MH_USB AC adaptor_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

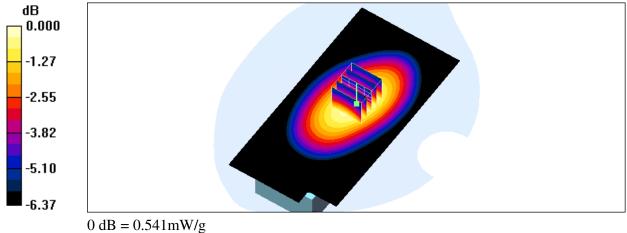
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.548 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.0 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.692 W/kg

SAR(1 g) = 0.518 mW/g; SAR(10 g) = 0.397 mW/g

Maximum value of SAR (measured) = 0.541 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 07:26:19

Flat_FRS CH11_Brain_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.6375 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

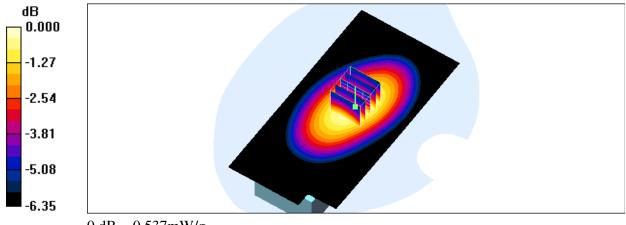
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.538 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.3 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 0.686 W/kg

SAR(1 g) = 0.514 mW/g; SAR(10 g) = 0.394 mW/g

Maximum value of SAR (measured) = 0.537 mW/g

0 dB = 0.537 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 07:07:33

Flat_FRS CH14_Brain_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.7125MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7125 MHz; $\sigma = 0.891 \text{ mho/m}$; $\varepsilon_r = 44.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

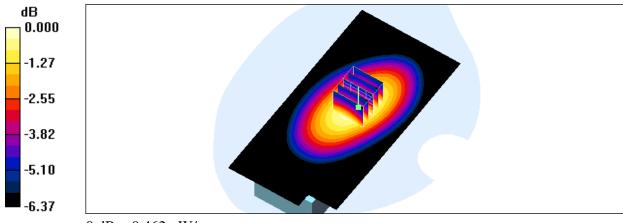
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.463 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.3 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.588 W/kg

SAR(1 g) = 0.442 mW/g; SAR(10 g) = 0.339 mW/g

Maximum value of SAR (measured) = 0.462 mW/g

0 dB = 0.462 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 12:09:46

Flat_FRS CH8_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

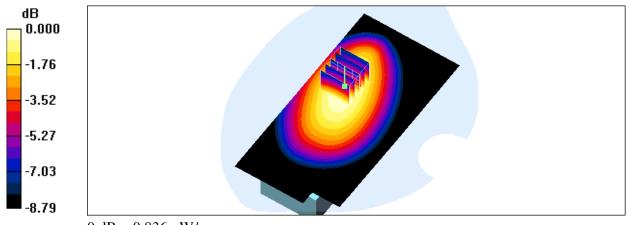
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.870 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.0 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.795 mW/g; SAR(10 g) = 0.570 mW/g

Maximum value of SAR (measured) = 0.836 mW/g

0 dB = 0.836 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 01:15:15

Flat_FRS CH8_Headset_muscle_Alkaline_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

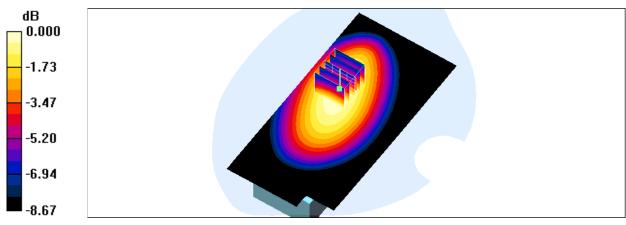
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.869 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.3 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.808 mW/g; SAR(10 g) = 0.580 mW/g

Maximum value of SAR (measured) = 0.850 mW/g

0 dB = 0.850 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 02:53:55

Flat_FRS CH8_Headset_muscle_Ni-MH_USB Cable_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

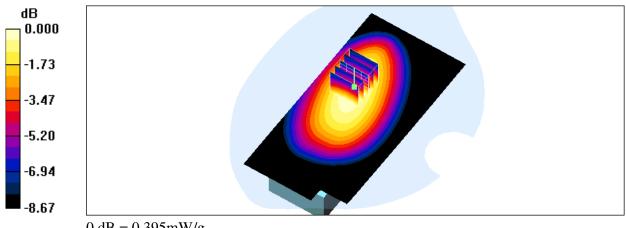
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.401 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.7 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.549 W/kg

SAR(1 g) = 0.375 mW/g; SAR(10 g) = 0.269 mW/g

Maximum value of SAR (measured) = 0.395 mW/g

0 dB = 0.395 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 03:12:40

Flat_FRS CH8_Headset_muscle_Ni-MH_USB AC adaptor_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

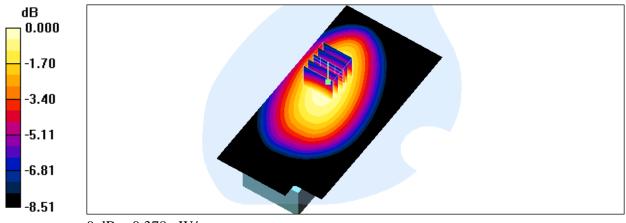
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.383 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.8 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.523 W/kg

SAR(1 g) = 0.360 mW/g; SAR(10 g) = 0.260 mW/g

Maximum value of SAR (measured) = 0.378 mW/g

0 dB = 0.378 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 12:31:56

Flat_FRS CH11_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.6375 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

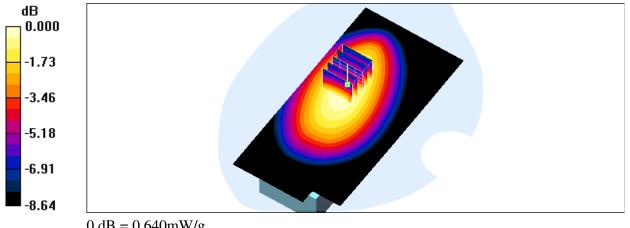
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.656 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.9 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 0.885 W/kg

SAR(1 g) = 0.607 mW/g; SAR(10 g) = 0.437 mW/g

Maximum value of SAR (measured) = 0.640 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 12:53:46

Flat_FRS CH14_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.7125 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7125 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

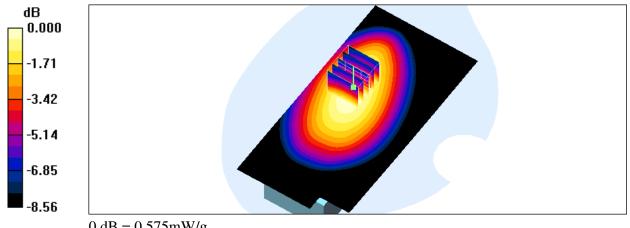
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.582 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.7 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 0.798 W/kg

SAR(1 g) = 0.546 mW/g; SAR(10 g) = 0.393 mW/g

Maximum value of SAR (measured) = 0.575 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 09:32:31

Flat_FRS CH8_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

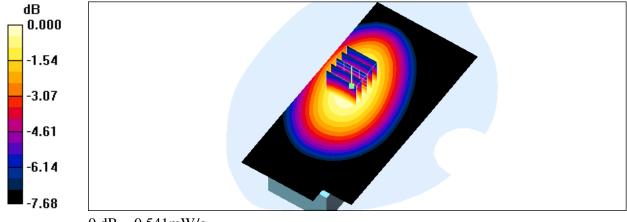
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.552 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.9 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.713 W/kg

SAR(1 g) = 0.514 mW/g; SAR(10 g) = 0.380 mW/g

Maximum value of SAR (measured) = 0.541 mW/g

0 dB = 0.541 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 12:42:44

Flat_FRS CH8_Headset_muscle_belt clip_Alkaline

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

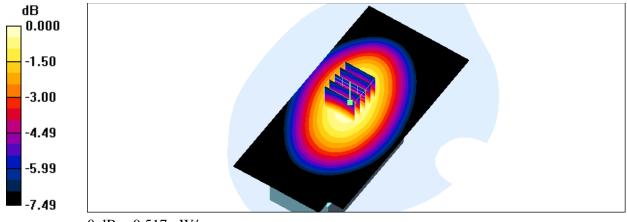
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.518 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.5 V/m; Power Drift = -0.083 dB

Peak SAR (extrapolated) = 0.683 W/kg

SAR(1 g) = 0.494 mW/g; SAR(10 g) = 0.367 mW/g

Maximum value of SAR (measured) = 0.517 mW/g

0 dB = 0.517 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 12:04:27

Flat_FRS CH8_Headset_muscle_belt clip_Ni-MH_USB Cable

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

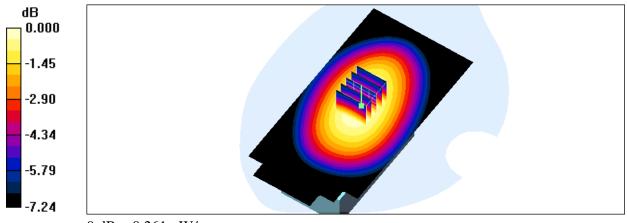
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.266 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.6 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 0.342 W/kg

SAR(1 g) = 0.250 mW/g; SAR(10 g) = 0.187 mW/g

Maximum value of SAR (measured) = 0.261 mW/g

0 dB = 0.261 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 12:21:33

Flat_FRS CH8_Headset_muscle_belt clip_Ni-MH_USB AC adaptor

DUT: MR350; Type:Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

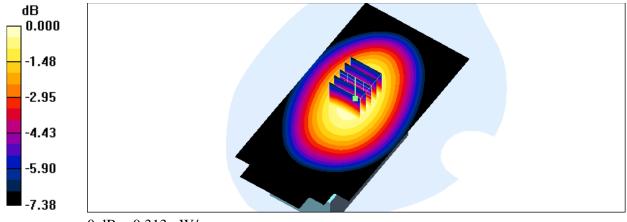
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.315 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.5 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 0.411 W/kg

SAR(1 g) = 0.299 mW/g; SAR(10 g) = 0.223 mW/g

Maximum value of SAR (measured) = 0.313 mW/g

0 dB = 0.313 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 10:05:53

Flat_FRS CH11_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.6325 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.6325 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

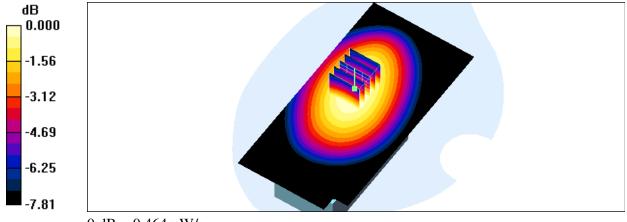
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.476 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.4 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 0.615 W/kg

SAR(1 g) = 0.443 mW/g; SAR(10 g) = 0.329 mW/g

Maximum value of SAR (measured) = 0.464 mW/g

0 dB = 0.464 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 11:39:56

Flat_FRS CH14_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type:Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.7125 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7125 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

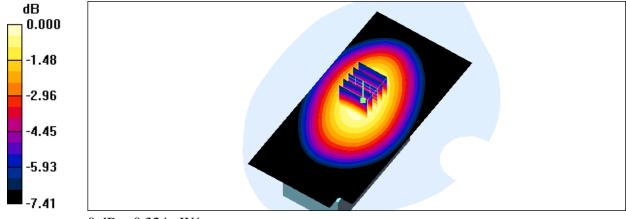
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.328 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.7 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 0.429 W/kg

SAR(1 g) = 0.311 mW/g; SAR(10 g) = 0.232 mW/g

Maximum value of SAR (measured) = 0.324 mW/g

0 dB = 0.324 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 08:23:20

Flat_GMRS CH15_Brain_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

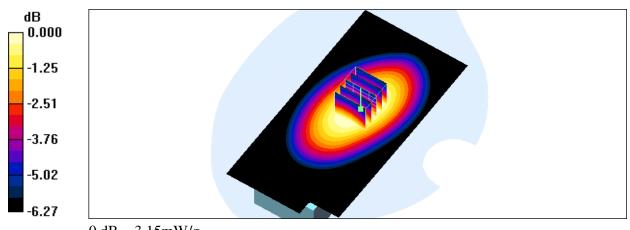
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.46 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 66.4 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 4.00 W/kg

SAR(1 g) = 3.02 mW/g; SAR(10 g) = 2.31 mW/g

Maximum value of SAR (measured) = 3.15 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 09:43:15

Flat_GMRS CH15_Brain_Alkaline_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

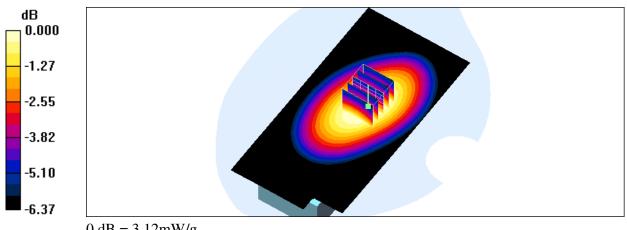
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.40 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 66.3 V/m; Power Drift = -0.065 dB

Peak SAR (extrapolated) = 3.97 W/kg

SAR(1 g) = 2.99 mW/g; SAR(10 g) = 2.29 mW/g

Maximum value of SAR (measured) = 3.12 mW/g

0 dB = 3.12 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 09:24:50

Flat_GMRS CH15_Brain_Ni-MH_USB Cable_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

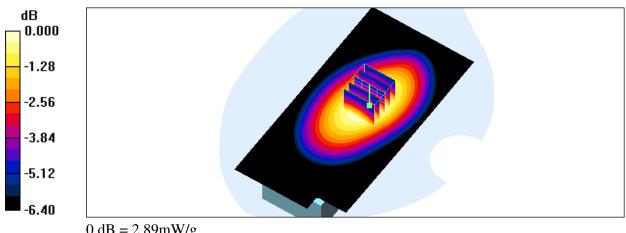
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.05 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 62.2 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 3.68 W/kg

SAR(1 g) = 2.77 mW/g; SAR(10 g) = 2.13 mW/g

Maximum value of SAR (measured) = 2.89 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 10:49:19

Flat_GMRS CH15_Brain_Ni-MH_USB AC adaptor_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

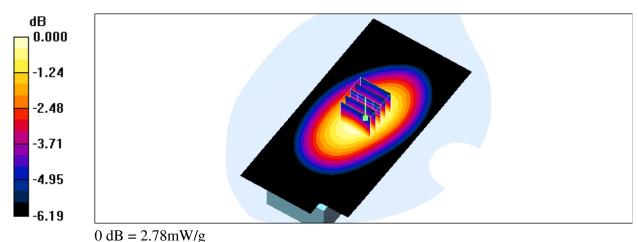
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.91 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 60.0 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 2.66 mW/g; SAR(10 g) = 2.06 mW/g

Maximum value of SAR (measured) = 2.78 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 08:42:23

Flat_GMRS CH4_Brain_Ni-MH_15mm

DUT: MR350; Type:Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6375 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

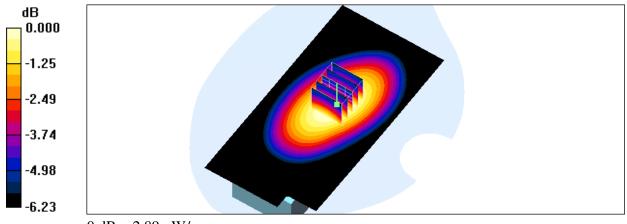
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.09 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 61.9 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.77 mW/g; SAR(10 g) = 2.12 mW/g

Maximum value of SAR (measured) = 2.89 mW/g

0 dB = 2.89 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 09:03:40

Flat_GMRS CH22_Brain_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

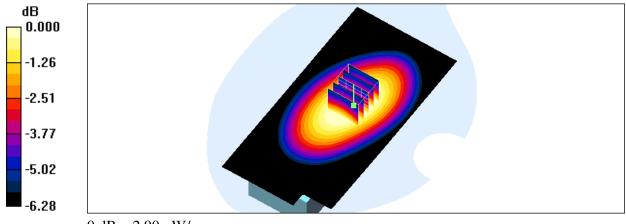
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.32 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 64.7 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.78 mW/g; SAR(10 g) = 2.13 mW/g

Maximum value of SAR (measured) = 2.90 mW/g

0 dB = 2.90 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 01:03:23

Flat_GMRS CH15_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

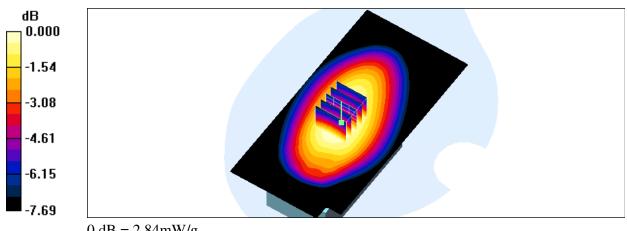
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.92 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.8 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 3.79 W/kg

SAR(1 g) = 2.71 mW/g; SAR(10 g) = 2.01 mW/g

Maximum value of SAR (measured) = 2.84 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 01:24:54

Flat_GMRS CH4_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6375 MHz; $\sigma = 0.948$ mho/m; $\varepsilon_r = 56$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

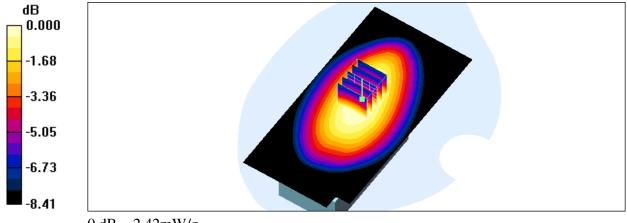
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.55 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 49.8 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.3 mW/g; SAR(10 g) = 1.67 mW/g

Maximum value of SAR (measured) = 2.42 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 01:43:57

Flat_GMRS CH22_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

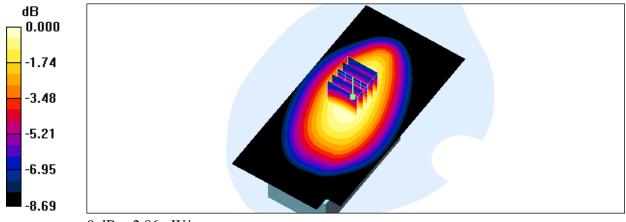
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.06 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.2 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 4.03 W/kg

SAR(1 g) = 2.72 mW/g; SAR(10 g) = 1.94 mW/g

Maximum value of SAR (measured) = 2.86 mW/g

0 dB = 2.86 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 02:39:01

Flat_GMRS CH22_Headset_muscle_Alkaline_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

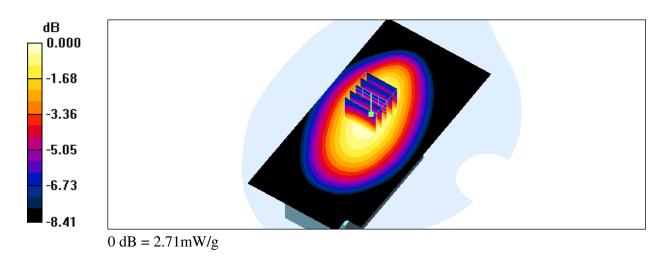
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.80 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.5 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 3.81 W/kg

SAR(1 g) = 2.59 mW/g; SAR(10 g) = 1.85 mW/g

Maximum value of SAR (measured) = 2.71 mW/g

28/36

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 02:03:48

Flat_GMRS CH22_Headset_muscle_Ni-MH_USB Cable_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

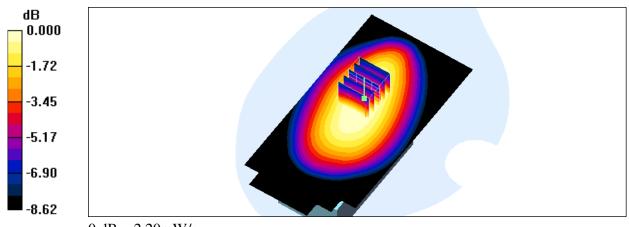
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.37 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 47.3 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 3.11 W/kg

SAR(1 g) = 2.1 mW/g; SAR(10 g) = 1.51 mW/g

Maximum value of SAR (measured) = 2.20 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 02:20:20

Flat_GMRS CH22_Headset_muscle_Ni-MH_USB AC adaptor_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

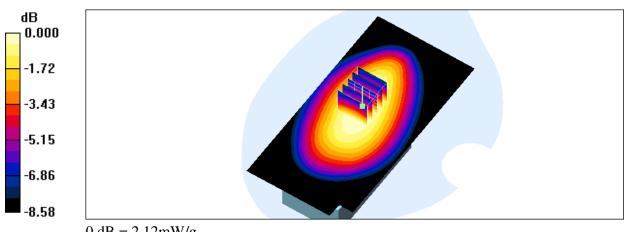
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.24 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 45.0 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 2.95 W/kg

SAR(1 g) = 2.01 mW/g; SAR(10 g) = 1.44 mW/g

Maximum value of SAR (measured) = 2.12 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 02:58:59

Flat_GMRS CH15_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

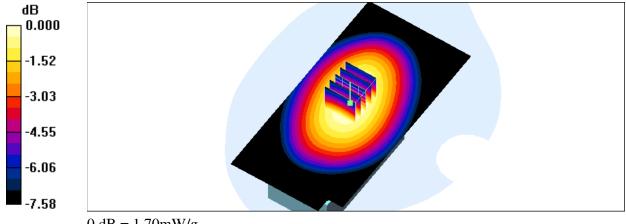
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.76 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 42.8 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 2.25 W/kg

SAR(1 g) = 1.62 mW/g; SAR(10 g) = 1.2 mW/g

Maximum value of SAR (measured) = 1.70 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 04:52:17

Flat_GMRS CH15_Headset_muscle_belt clip_Alkaline

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

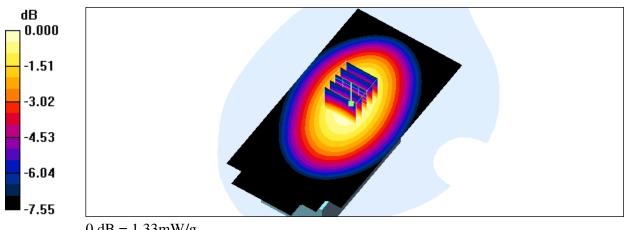
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.35 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 38.1 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 1.27 mW/g; SAR(10 g) = 0.940 mW/g

Maximum value of SAR (measured) = 1.33 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 04:33:45

Flat_GMRS CH15_Headset_muscle_belt clip_Ni-MH_USB Cable

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

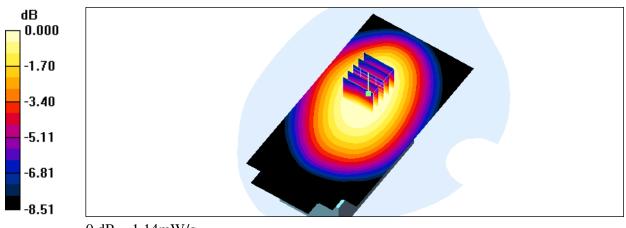
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.30 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 36.1 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.802 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

0 dB = 1.14 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 04:16:17

Flat_GMRS CH15_Headset_muscle_belt clip_Ni-MH_USB AC adaptor

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

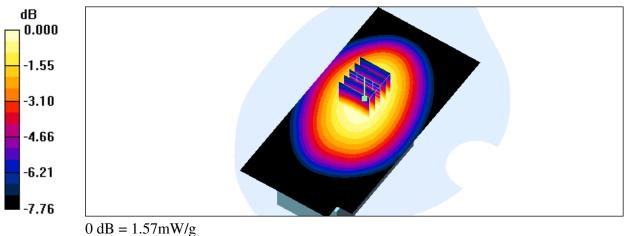
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.65 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 41.2 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 1.5 mW/g; SAR(10 g) = 1.1 mW/g

Maximum value of SAR (measured) = 1.57 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 03:16:58

Flat_GMRS CH4_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6375 MHz; $\sigma = 0.948$ mho/m; $\varepsilon_r = 56$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

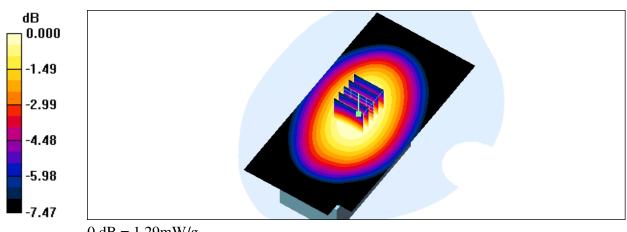
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.39 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 37.5 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.912 mW/g

Maximum value of SAR (measured) = 1.29 mW/g

0 dB = 1.29 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 03:35:49

Flat_GMRS CH22_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

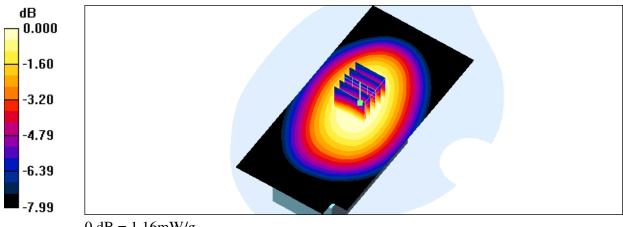
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.29 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 37.5 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.818 mW/g

Maximum value of SAR (measured) = 1.16 mW/g

Appendix B - SAR Measurement Data

See following Attached Pages for SAR Measurement Data.

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 06:03:25

Flat_FRS CH8_Brain_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

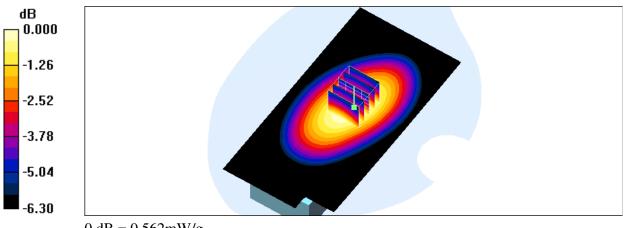
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.581 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.0 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.715 W/kg

SAR(1 g) = 0.540 mW/g; SAR(10 g) = 0.415 mW/g

Maximum value of SAR (measured) = 0.562 mW/g

0 dB = 0.562 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 10:24:12

Flat_FRS CH8_Brain_Alkaline_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

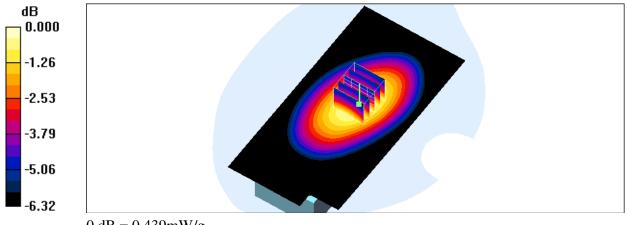
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.423 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.1 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 0.554 W/kg

SAR(1 g) = 0.420 mW/g; SAR(10 g) = 0.324 mW/g

Maximum value of SAR (measured) = 0.439 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 07:46:07

Flat_FRS CH8_Brain_Ni-MH_USB Cable_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

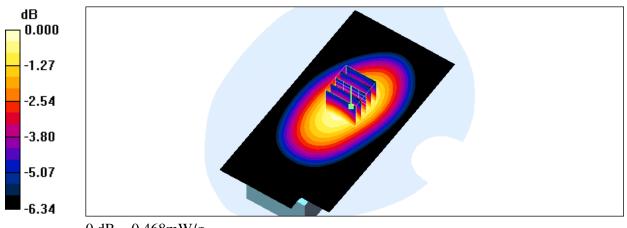
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.469 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.1 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.596 W/kg

SAR(1 g) = 0.447 mW/g; SAR(10 g) = 0.344 mW/g

Maximum value of SAR (measured) = 0.468 mW/g

0 dB = 0.468 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 08:03:39

Flat_FRS CH8_Brain_Ni-MH_USB AC adaptor_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

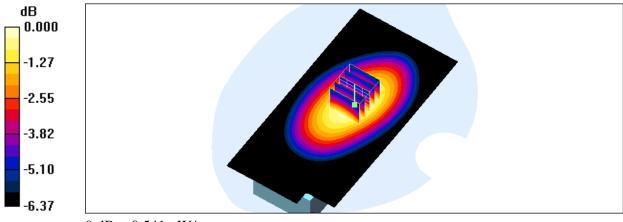
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.548 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.0 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.692 W/kg

SAR(1 g) = 0.518 mW/g; SAR(10 g) = 0.397 mW/g

Maximum value of SAR (measured) = 0.541 mW/g

0 dB = 0.541 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 07:26:19

Flat_FRS CH11_Brain_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.6375 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

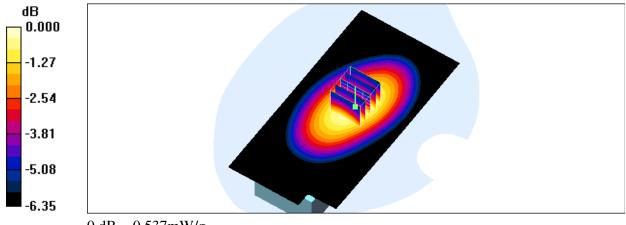
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.538 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.3 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 0.686 W/kg

SAR(1 g) = 0.514 mW/g; SAR(10 g) = 0.394 mW/g

Maximum value of SAR (measured) = 0.537 mW/g

0 dB = 0.537 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 07:07:33

Flat_FRS CH14_Brain_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.7125MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7125 MHz; $\sigma = 0.891 \text{ mho/m}$; $\varepsilon_r = 44.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

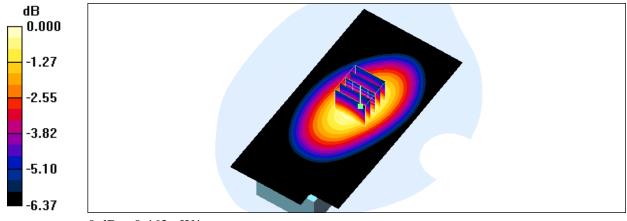
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.463 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.3 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.588 W/kg

SAR(1 g) = 0.442 mW/g; SAR(10 g) = 0.339 mW/g

Maximum value of SAR (measured) = 0.462 mW/g

0 dB = 0.462 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 12:09:46

Flat_FRS CH8_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

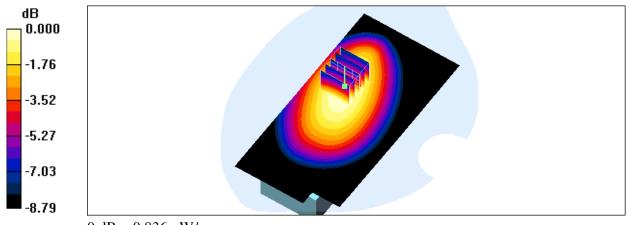
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.870 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.0 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.795 mW/g; SAR(10 g) = 0.570 mW/g

Maximum value of SAR (measured) = 0.836 mW/g

0 dB = 0.836 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 01:15:15

Flat_FRS CH8_Headset_muscle_Alkaline_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

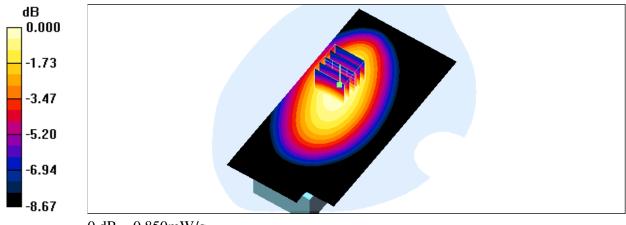
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.869 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.3 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.808 mW/g; SAR(10 g) = 0.580 mW/g

Maximum value of SAR (measured) = 0.850 mW/g

0 dB = 0.850 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 02:53:55

Flat_FRS CH8_Headset_muscle_Ni-MH_USB Cable_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

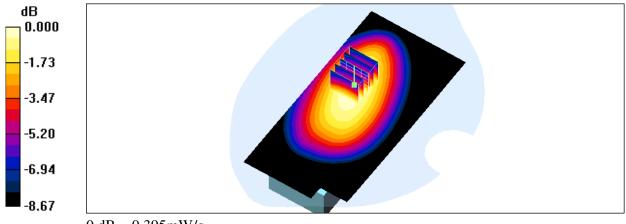
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.401 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.7 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.549 W/kg

SAR(1 g) = 0.375 mW/g; SAR(10 g) = 0.269 mW/g

Maximum value of SAR (measured) = 0.395 mW/g

0 dB = 0.395 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 03:12:40

Flat_FRS CH8_Headset_muscle_Ni-MH_USB AC adaptor_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

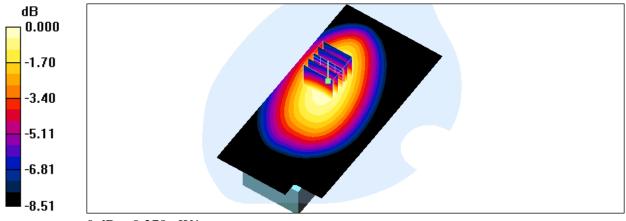
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.383 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.8 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.523 W/kg

SAR(1 g) = 0.360 mW/g; SAR(10 g) = 0.260 mW/g

Maximum value of SAR (measured) = 0.378 mW/g

0 dB = 0.378 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 12:31:56

Flat_FRS CH11_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.6375 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

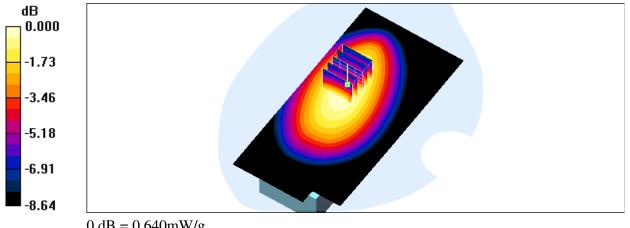
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.656 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.9 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 0.885 W/kg

SAR(1 g) = 0.607 mW/g; SAR(10 g) = 0.437 mW/g

Maximum value of SAR (measured) = 0.640 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 12:53:46

Flat_FRS CH14_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.7125 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7125 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

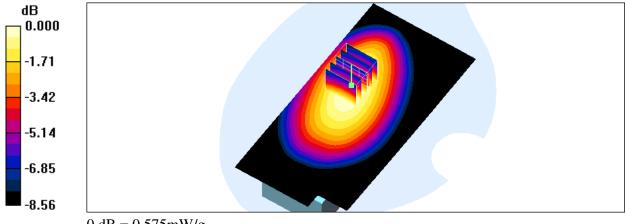
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.582 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.7 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 0.798 W/kg

SAR(1 g) = 0.546 mW/g; SAR(10 g) = 0.393 mW/g

Maximum value of SAR (measured) = 0.575 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 09:32:31

Flat_FRS CH8_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

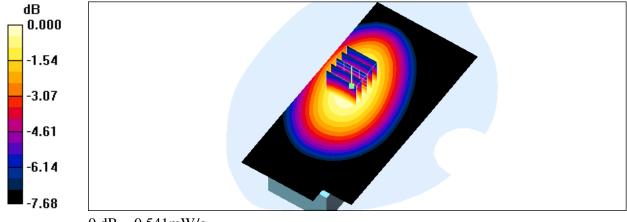
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.552 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.9 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.713 W/kg

SAR(1 g) = 0.514 mW/g; SAR(10 g) = 0.380 mW/g

Maximum value of SAR (measured) = 0.541 mW/g

0 dB = 0.541 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 12:42:44

Flat_FRS CH8_Headset_muscle_belt clip_Alkaline

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

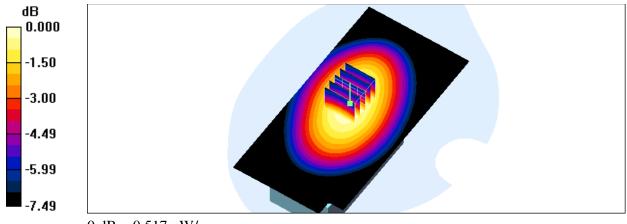
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.518 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.5 V/m; Power Drift = -0.083 dB

Peak SAR (extrapolated) = 0.683 W/kg

SAR(1 g) = 0.494 mW/g; SAR(10 g) = 0.367 mW/g

Maximum value of SAR (measured) = 0.517 mW/g

0 dB = 0.517 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 12:04:27

Flat_FRS CH8_Headset_muscle_belt clip_Ni-MH_USB Cable

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

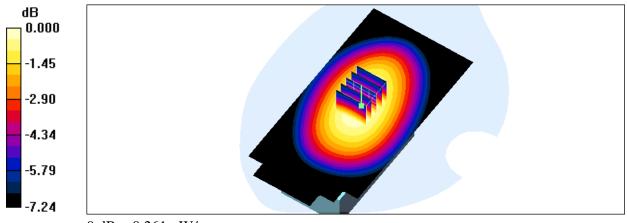
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.266 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.6 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 0.342 W/kg

SAR(1 g) = 0.250 mW/g; SAR(10 g) = 0.187 mW/g

Maximum value of SAR (measured) = 0.261 mW/g

0 dB = 0.261 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 12:21:33

Flat_FRS CH8_Headset_muscle_belt clip_Ni-MH_USB AC adaptor

DUT: MR350; Type:Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

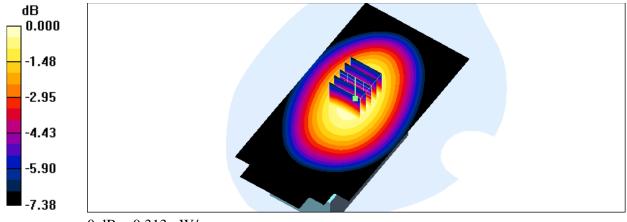
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.315 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.5 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 0.411 W/kg

SAR(1 g) = 0.299 mW/g; SAR(10 g) = 0.223 mW/g

Maximum value of SAR (measured) = 0.313 mW/g

0 dB = 0.313 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 10:05:53

Flat_FRS CH11_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.6325 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.6325 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

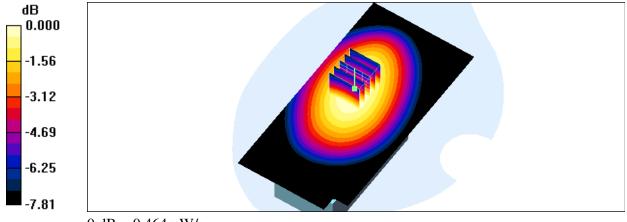
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.476 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.4 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 0.615 W/kg

SAR(1 g) = 0.443 mW/g; SAR(10 g) = 0.329 mW/g

Maximum value of SAR (measured) = 0.464 mW/g

0 dB = 0.464 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 AM 11:39:56

Flat_FRS CH14_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type:Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: FRS; Frequency: 467.7125 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7125 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

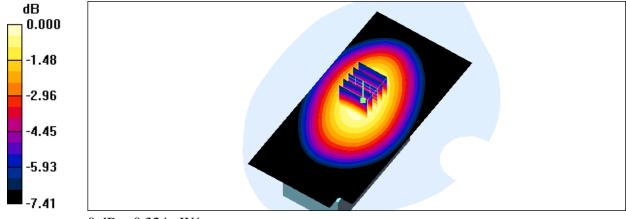
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.328 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.7 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 0.429 W/kg

SAR(1 g) = 0.311 mW/g; SAR(10 g) = 0.232 mW/g

Maximum value of SAR (measured) = 0.324 mW/g

0 dB = 0.324 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 08:23:20

Flat_GMRS CH15_Brain_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

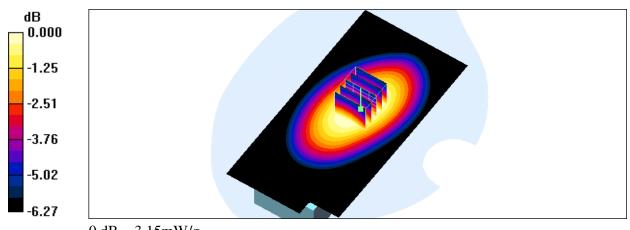
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.46 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 66.4 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 4.00 W/kg

SAR(1 g) = 3.02 mW/g; SAR(10 g) = 2.31 mW/g

Maximum value of SAR (measured) = 3.15 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 09:43:15

Flat_GMRS CH15_Brain_Alkaline_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

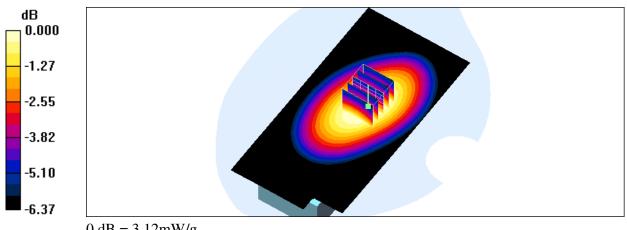
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.40 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 66.3 V/m; Power Drift = -0.065 dB

Peak SAR (extrapolated) = 3.97 W/kg

SAR(1 g) = 2.99 mW/g; SAR(10 g) = 2.29 mW/g

Maximum value of SAR (measured) = 3.12 mW/g

0 dB = 3.12 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 09:24:50

Flat_GMRS CH15_Brain_Ni-MH_USB Cable_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

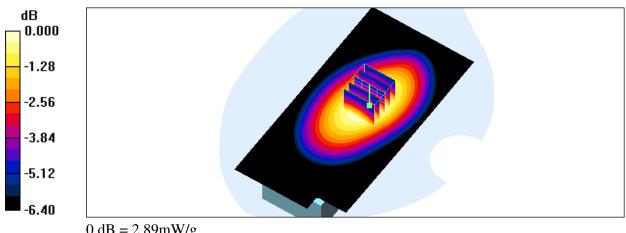
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.05 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 62.2 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 3.68 W/kg

SAR(1 g) = 2.77 mW/g; SAR(10 g) = 2.13 mW/g

Maximum value of SAR (measured) = 2.89 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 10:49:19

Flat_GMRS CH15_Brain_Ni-MH_USB AC adaptor_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

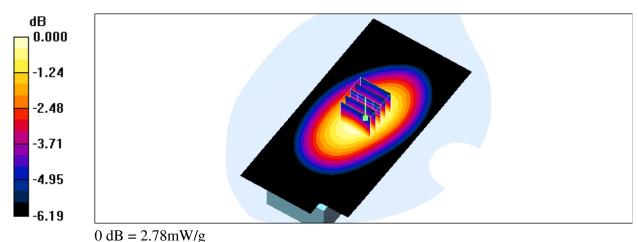
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.91 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 60.0 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 2.66 mW/g; SAR(10 g) = 2.06 mW/g

Maximum value of SAR (measured) = 2.78 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 08:42:23

Flat_GMRS CH4_Brain_Ni-MH_15mm

DUT: MR350; Type:Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6375 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

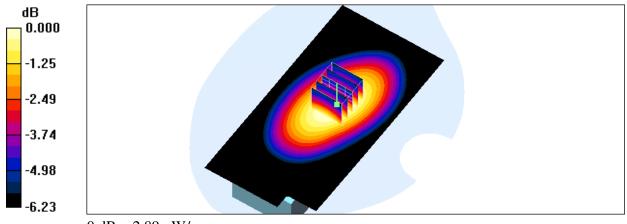
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.09 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 61.9 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.77 mW/g; SAR(10 g) = 2.12 mW/g

Maximum value of SAR (measured) = 2.89 mW/g

0 dB = 2.89 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/15 PM 09:03:40

Flat_GMRS CH22_Brain_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

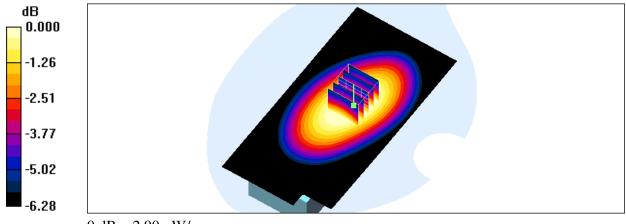
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.32 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 64.7 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.78 mW/g; SAR(10 g) = 2.13 mW/g

Maximum value of SAR (measured) = 2.90 mW/g

0 dB = 2.90 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 01:03:23

Flat_GMRS CH15_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

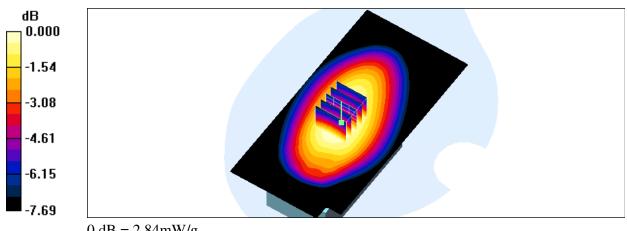
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.92 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.8 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 3.79 W/kg

SAR(1 g) = 2.71 mW/g; SAR(10 g) = 2.01 mW/g

Maximum value of SAR (measured) = 2.84 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 01:24:54

Flat_GMRS CH4_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6375 MHz; $\sigma = 0.948$ mho/m; $\varepsilon_r = 56$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

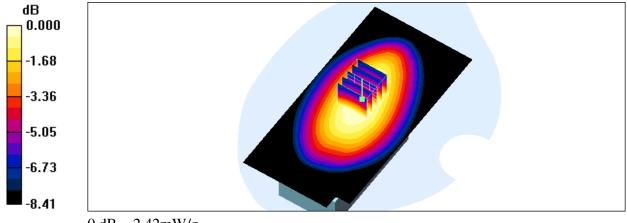
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.55 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 49.8 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.3 mW/g; SAR(10 g) = 1.67 mW/g

Maximum value of SAR (measured) = 2.42 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 01:43:57

Flat_GMRS CH22_Headset_muscle_Ni-MH_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

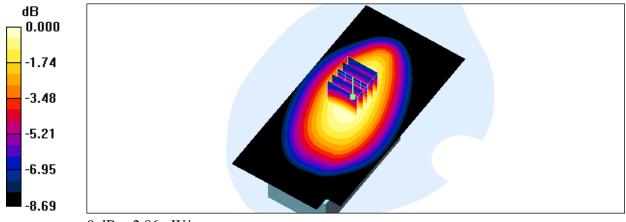
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.06 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.2 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 4.03 W/kg

SAR(1 g) = 2.72 mW/g; SAR(10 g) = 1.94 mW/g

Maximum value of SAR (measured) = 2.86 mW/g

0 dB = 2.86 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 02:39:01

Flat_GMRS CH22_Headset_muscle_Alkaline_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

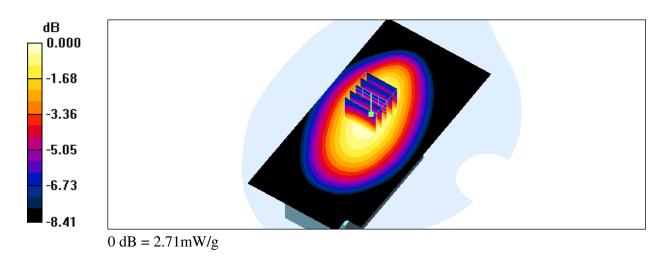
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.80 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.5 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 3.81 W/kg

SAR(1 g) = 2.59 mW/g; SAR(10 g) = 1.85 mW/g

Maximum value of SAR (measured) = 2.71 mW/g

28/36

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 02:03:48

Flat_GMRS CH22_Headset_muscle_Ni-MH_USB Cable_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

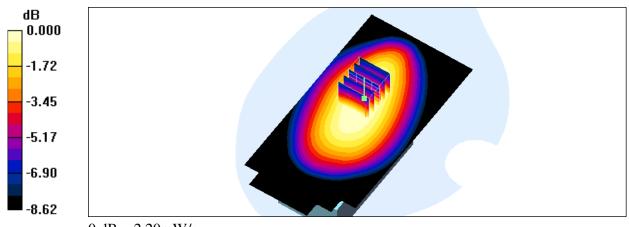
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.37 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 47.3 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 3.11 W/kg

SAR(1 g) = 2.1 mW/g; SAR(10 g) = 1.51 mW/g

Maximum value of SAR (measured) = 2.20 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 02:20:20

Flat_GMRS CH22_Headset_muscle_Ni-MH_USB AC adaptor_15mm

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

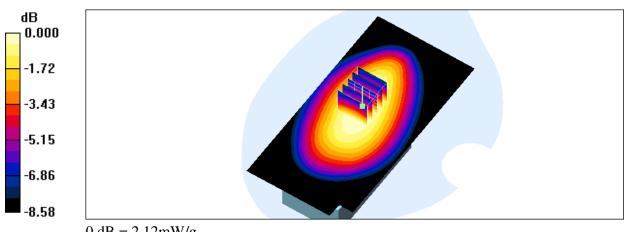
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.24 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 45.0 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 2.95 W/kg

SAR(1 g) = 2.01 mW/g; SAR(10 g) = 1.44 mW/g

Maximum value of SAR (measured) = 2.12 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 02:58:59

Flat_GMRS CH15_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

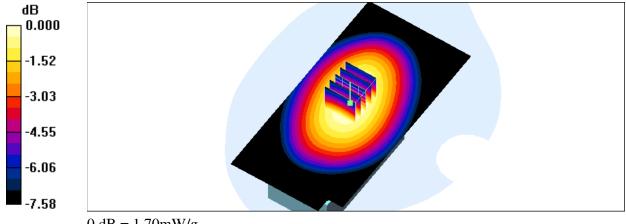
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.76 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 42.8 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 2.25 W/kg

SAR(1 g) = 1.62 mW/g; SAR(10 g) = 1.2 mW/g

Maximum value of SAR (measured) = 1.70 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 04:52:17

Flat_GMRS CH15_Headset_muscle_belt clip_Alkaline

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

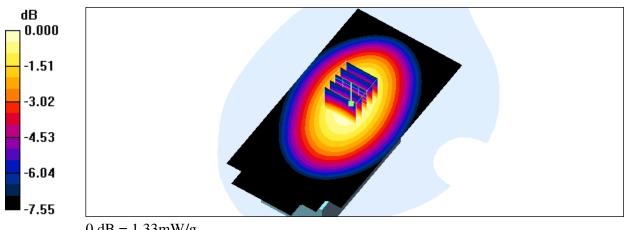
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.35 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 38.1 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 1.27 mW/g; SAR(10 g) = 0.940 mW/g

Maximum value of SAR (measured) = 1.33 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 04:33:45

Flat_GMRS CH15_Headset_muscle_belt clip_Ni-MH_USB Cable

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

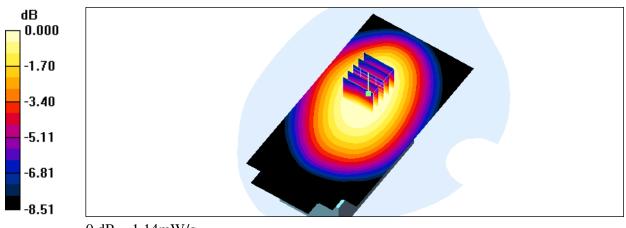
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.30 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 36.1 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.802 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

0 dB = 1.14 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 04:16:17

Flat_GMRS CH15_Headset_muscle_belt clip_Ni-MH_USB AC adaptor

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

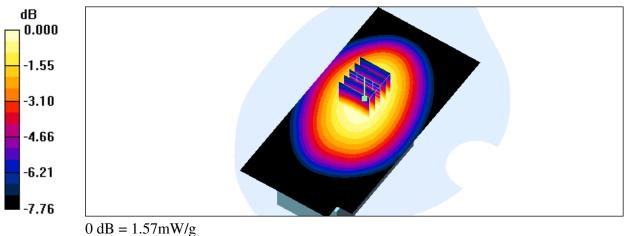
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.65 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 41.2 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 1.5 mW/g; SAR(10 g) = 1.1 mW/g

Maximum value of SAR (measured) = 1.57 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 03:16:58

Flat_GMRS CH4_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6375 MHz; $\sigma = 0.948$ mho/m; $\varepsilon_r = 56$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

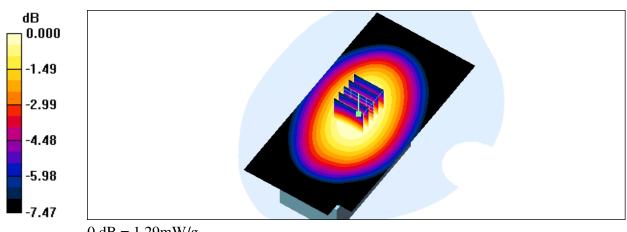
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.39 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 37.5 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.912 mW/g

Maximum value of SAR (measured) = 1.29 mW/g

0 dB = 1.29 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2008/12/16 PM 03:35:49

Flat_GMRS CH22_Headset_muscle_belt clip_Ni-MH

DUT: MR350; Type: Two Way Radio with GMRS,FRS and Weather Band Receiver;

FCC ID:K7GMRCEJ

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

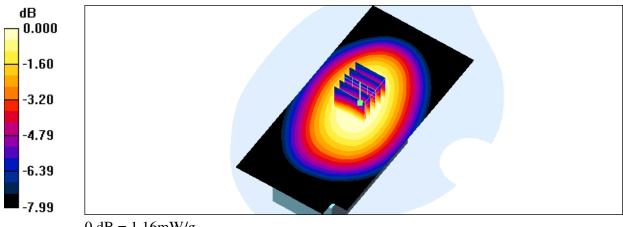
• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.29 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 37.5 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.818 mW/g

Maximum value of SAR (measured) = 1.16 mW/g

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D450V2 SN:1021 Calibration No.D450V2-1021_Mar08
- Probe _ ET3DV6 SN:1530Calibration No.ET3-1530_Sep08
- DAE _ DAE4 SN:541 Calibration No.DAE4-541_Feb08