

A Test Lab Techno Corp.

Changan Lab: No. 140 -1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C. Tel: 886-3-271-0188 / Fax: 886-3-271-0190

SAR EVALUATION REPORT

Test Report No. : 0901FS15-02

Applicant Giant Electronics Ltd.

FCC ID: **K7GMRCEE Trade Mark** Motorola **Model Number MR355**

Ni-MH Battery (3.6V, 650mAh) **Battery Type**

ALKALINE Battery X 3 (1.5V AA)

Two Way Radio with GMRS,FRS and Weather Band Receiver **Product Name**

Date of Test Jan. 19 ~ 20, 2009 ; Feb. 25, 2009 **Test Environment** Ambient Temperature : 22 ± 3 ℃

Relative Humidity: 40 - 70 %

Test Specification : Standard C95.1-2005

IEEE Std. 1528-2003

2.1093;FCC/OET Bulletin 65 Supplement C [July 2001]

: 0.319 W/kg FRS FACE SAR_15mm (50% Duty Cycle) Max. SAR

1.139 W/kg GMRS FACE SAR_15mm (50% Duty Cycle)

0.419 W/kg FRS Body SAR With Headset 15mm(50% Duty Cycle) 1.133 W/kg GMRS Body SAR With Headset_15mm (50% Duty Cycle)

0.213 W/kg FRS Body SAR With Headset_Belt Clip_15mm(50% Duty Cycle) 0.826 W/kg GMRS Body SAR With Headset_Belt Clip_15mm (50% Duty Cycle)

(Condition: 50% Duty Cycle and positive power drift)

Test Lab Changan Lab.

- 1. The test operations have to be performed with cautious behavior, the test results are as attached.
- 2. The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- 3. The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full.

Country Huand

Measurement Center Manager

Testing Engineer

Contents

1. Description of Equipment Under Test (EUT)	3
2. Other Accessories	5
3. Introduction	7
4. SAR Definition	7
5. SAR Measurement Setup	8
6. System Components	10
6.1 DASY4 E-Field Probe System	
6.2 Data Acquisition Electronic (DAE) System	13
6.3 Robot	13
6.4 Measurement Server	
6.5 Device Holder for Transmitters	14
6.6 Phantom - SAM v4.0	15
6.7 Data Storage and Evaluation	15
7. Test Equipment List	18
8. Tissue Simulating Liquids	19
8.1 Ingredients	20
8.2 Recipes	20
8.3 Liquid Confirmation	21
9. Measurement Process	23
9.1 Device and Test Conditions	23
9.2 System Performance Check	24
9.3 Dosimetric Assessment Setup	28
9.4 Spatial Peak SAR Evaluation	30
10. Measurement Uncertainty	31
11. SAR Test Results Summary	33
11.1 FRS Face SAR _ 15 mm Spacing	33
11.2 GMRS Face SAR _ 15mm Spacing	35
11.3 FRS Body SAR with Headset _ 15 mm Spacing	37
11.4 GMRS Body SAR with Headset _15 mm Spacing	39
11.5 FRS Body SAR with Headset & Belt Clip	41
11.6 GMRS Body SAR with Headset_Belt Clip	43
11.7 Setup Photo	45
11.8 Std. C95.1-2005 RF Exposure Limit	
12. Conclusion	50
13. References	51

Appendix

Appendix A - System Performance Check Appendix B - SAR Measurement Data

Appendix C - Calibration

1. <u>Description of Equipment Under Test (EUT)</u>

Applicant : Giant Electronics Ltd.

7/F, Elite Industrial Building, 135 - 137 Hoi Bun Rd, Kwun Tong, Kowloon, HK

Manufacturer : Giant Electronics Ltd.

Manufacturer Address : 7/F, Elite Industrial Building, 135 - 137 Hoi Bun Rd, Kwun Tong, Kowloon, HK

FCC ID : K7GMRCEE

Product Name : Two Way Radio with GMRS,FRS and Weather Band Receiver

Trade Mark : Motorola

Model Number : MR355

Battery Type : Ni-MH Battery (3.6V , 650mAh)

ALKALINE Battery X 3 (1.5V AA)

Test Device : Production Unit

TX Frequency : 467.5625 - 467.7125 MHz (FRS CH8 - CH 14)

462.5500 - 467.7250 MHz (GMRS CH15 - CH 30)

Max. RF Output Power : 0.38 W ERP (25.8 dBm) FRS

1.32 W ERP (31.2 dBm) GMRS

Max. SAR Measurement : 0.319 W/kg FRS FACE SAR _15mm (50% Duty Cycle)

1.139 W/kg GMRS FACE SAR _15mm (50% Duty Cycle)

0.419 W/kg FRS Body SAR With Headset_15mm (50% Duty Cycle)

1.133 W/kg GMRS Body SAR With Headset 15mm (50% Duty Cycle)

0.213 W/kg FRS Body SAR With Headset_Belt Clip_15mm (50% Duty Cycle)

0.826 W/kg GMRS Body SAR With Headset_Belt Clip_15mm (50% Duty Cycle)

(Condition: 50% Duty Cycle and positive power drift)

Antenna Type : Fixed Type

Antenna Gain : 0dBi

Device Category : Portable

RF Exposure Environment : General Population / Uncontrolled

Battery Option : Standard

Application Type : Certification

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in Standard C95.1-2005 and had been tested in accordance with the measurement procedures specified in IEEE Std. 1528-2003.

2. Other Accessories

Figure 2. Headset

Figure 4. ALKALINE Battery (1.5V AA)

Figure 5. Ni-MH Battery (3.6V 650mAh)

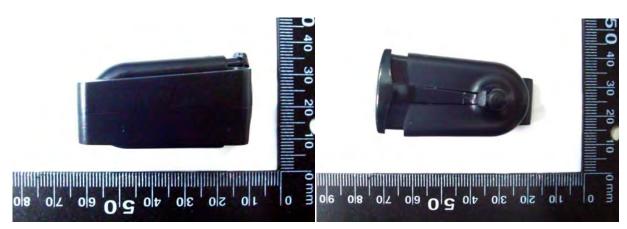


Figure 6. Belt Clip

Figure 7. USB Cable

Figure 8. AC Adapter

3. Introduction

The A Test Lab Techno Corp. RF Testing Laboratory has performed measurements of the maximum potential exposure to the user of **Giant Electronics Ltd. Trade Mark: Motorola Model(s)**: MR355. The test procedures, as described in American National Standards, , Institute C95.1 - 2005 [1], FCC/OET Bulletin 65 Supplement C [July 2001] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

4. SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 9).

SAR =
$$\frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

Figure 9. SAR Mathematical Equation

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = RMS electric field strength (V/m)

*Note:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [2]

5. SAR Measurement Setup

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than $\pm 0.025mm$. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length = 300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Measurement Server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chipdisk and 64MB RAM. The necessary circuits for communication with either the DAE3 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The PC consists of the Intel Pentium 4 2.4GHz computer with Windows2000 system and SAR Measurement Software DASY4, Post Processor SEMCAD, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection...etc. is connected to the Electro-optical converter (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the Measurement Server.

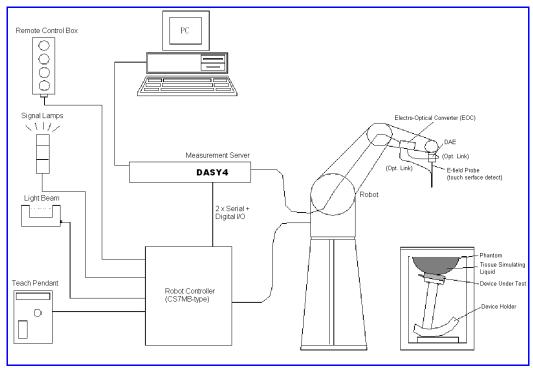


Figure 10. SAR Lab Test Measurement Setup

The DAE3 or DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in [3].

6. System Components

6.1 DASY4 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

6.1.1 E-Field Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

System

Built-in shielding against static charges

PEEK enclosure material

(resistant to organic solvents, e.q., glycol)

Calibration In air from 10 MHz to 6 GHz

In brain and muscle simulating tissue at

frequencies of 450MHz, 900MHz, 1800MHz, 2000MHz

and 2450MHz (accuracy ±8%)

Calibration for other liquids and frequencies upon request

Frequency 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB

(30 MHz to 3 GHz)

Directivity ±0.3 dB in brain tissue (rotation around probe axis)

±0.5 dB in brain tissue (rotation normal probe axis)

Dynamic Range 10 μ W/g to > 100mW/g; Linearity: \pm 0.2dB

Surface Detection ±0.2 mm repeatability in air and clear liquids

over diffuse reflecting surface

Dimensions Overall length: 330mm

Tip length: 20mm

Body diameter: 12mm

Tip diameter: 2.5mm

Distance from probe tip to dipole centers: 1.0mm

Application General dosimetry up to 6GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

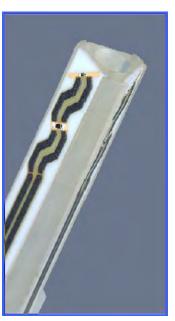


Figure 11. E-field Probe

Figure 12.
Probe setup on robot

6.1.2 E-Field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure described in $\{4\}$ with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in $\{5\}$ and found to be better than ± 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1GHz, and in a wave guide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (head or body),

 ΔT = Temperature increase due to RF exposure.

Or
$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.2 Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Pentium 4

Clock Speed: 2.4GHz

Operating System: Windows 2000 Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 v4.7 (Build 71) & SEMCAD v1.8 (Build 184)

Connecting Lines: Optical downlink for data and status info

Optical uplink for commands and clock

6.3 Robot

Positioner: Stäubli Unimation Corp. Robot Model: RX90L

Repeatability: ±0.025 mm

No. of Axis: 6

6.4 Measurement Server

Processor: PC/104 with a 166MHz low-power Pentium

I/O-board: Link to DAE3 or DEA 4

16-bit A/D converter for surface detection system

Digital I/O interface Serial link to robot

Direct emergency stop output for robot

6.5 Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the IEEE SCC34-SC2 and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

*Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations [6]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Larger DUT cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.

Figure 13. Device Holder

6.6 Phantom - SAM v4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Figure 14. SAM Twin Phantom

Shell Thickness	2 ±0.2 mm
Filling Volume	Approx. 25 liters
Dimensions	810×1000×500 mm (H×L×W)

Table 1. Specification of SAM v4.0

6.7 Data Storage and Evaluation

6.7.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

6.7.2 Data Evaluation

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi

- Diode compression point dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field probes :
$$H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

with V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 $\mu \, \text{V/(V/m)}^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

*Note: that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

7. <u>Test Equipment List</u>

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calib	ration
Manufacturei	Name of Equipment	турелиоцеі	Serial Nulliber	Last Cal.	Due Date
SPEAG	Dosimetric E-Field Probe	ET3DV6	1530	Sep. 23, 2008	Sep. 23, 2009
SPEAG	450MHz System Validation Kit	D450V2	1021	Mar. 19, 2008	Mar. 19, 2009
SPEAG	450MHz System Validation Kit	D450V2	1021	Feb. 02, 2009	Feb. 21, 2010
SPEAG	Data Acquisition Electronics	DAE4	541	Feb. 21, 2008	Feb. 21, 2009
SPEAG	Data Acquisition Electronics	DAE3	393	Aug. 25, 2008	Aug. 25, 2009
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	SAM V4.0	1009	NCR	NCR
SPEAG	Robot	Staubli RX90L	F00/589B1/A/01	NCR	NCR
SPEAG	Software	DASY4 V4.7 Build 71	N/A	NCR	NCR
SPEAG	Software	SEMCAD V1.8 Build 184	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
R&S	Wireless Communication Test Set	CMU200	112387	Oct. 31, 2008	Oct. 31, 2009
Agilent	Wireless Communication Test Set	E5515C	MY47511156	May. 27, 2008	May. 27, 2009
Agilent	ENA Series Network Analyzer	E5071B	MY42402996	Nov. 04, 2008	Nov. 04, 2009
Agilent	Dielectric Probe Kit	85070C	US99360094	NCR	NCR
R&S	Power Sensor	NRP-Z22	100179	May. 03, 2008	May. 03, 2009
Agilent	Signal Generator	E8257D	MY44320425	Jul. 03, 2008	Jul. 03, 2009
Agilent	Dual Directional Coupler	778D	50334	NCR	NCR
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NCR	NCR

Table 2. Test Equipment List

8. <u>Tissue Simulating Liquids</u>

The Head and body mixtures consist of a viscous gel using hydroxethylcellullouse (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8720ES Network Analyzer.

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	He	ad	Body		
(MHz)	٤r	ε _r σ (S/m)		σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 - 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	
($\varepsilon_{\rm r}$ = relative perr	nittivity, $\sigma = cc$	onductivity an	$d \rho = 1000 \text{ kg}$	ı/m³)	

Table 3. Tissue dielectric parameters for head and body phantoms

8.1 Ingredients

The following ingredients are used:

- Water: deionized water (pure H_20), resistivity $\geq 16 \text{ M } \Omega$ -as basis for the liquid
- Sugar: refied white sugar (typically 99.7 % sucrose, available as crystal sugar in food shops)
 to reduce relative permittivity
- Salt: pure NaCl -to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20 C), CAS # 54290 -to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 -to prevent the spread of bacteria and molds
- DGBE: Diethylenglycol-monobuthyl ether (DGBE), Fluka Chemie GmbH, CAS # 112-34-5 -to reduce relative permittivity

8.2 Recipes

The following tables give the recipes for tissue simulating liquids to be used in different frequency bands.

Note: The goal dielectric parameters (at 22 °C) must be achieved within a tolerance of $\pm 5\%$ for ϵ and $\pm 5\%$ for σ .

Liquid type	HSL 450 - A						
Ingredient	Weight (g)	Weight (%)					
Water	522.94	38.91					
Sugar	765.09	56.93					
Cellulose	3.39	0.25					
Salt	50.94	3.79					
Preventol	1.63	0.12					
Total amount	1'343.99	100.00					
Goal dielectric parameters							
Frequency [MHz]	45	50					
Relative Permittivity	43.5						
Conductivity [S/m]	3.0	37					

Liquid type	HSL 450 - B						
Ingredient	Weight (g)	Weight (%)					
Water	590.62	46.21					
Sugar	654.00	51.17					
Cellulose	2.36	0.18					
Salt	29.96	2.34					
Preventol	1.06	0.08					
Total amount	1'278.00	99.98					
Goal dielectric parameters							
Frequency [MHz]	45	50					
Relative Permittivity	56.7						
Conductivity [S/m]	0.0	94					

8.3 Liquid Confirmation

8.3.1 Parameters

Liquid \	Liquid Verify												
Ambient Temperature : $22\pm3~^{\circ}\mathrm{C}$; Relative Humidity : 40-70 $\%$													
Liquid Type	Freq.	Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date					
450MHz	450MHz	22.0	εr	43.5	44.60	2.53	± 5	Jan. 19, 2009					
Head	d 450101F12 22.	ad 450MH2 22	22.0	σ	0.87	0.88	1.15	± 5	Jan. 19, 2009				
450MHz	450MHz	22.0	εr	43.5	44.40	2.07	± 5	Feb. 25, 2009					
Head	450WII IZ	450101112 22.0	σ	0.87	0.88	1.15	± 5	Feb. 23, 2009					
450MHz	450MHz Body 450MHz	22.0	εr	56.7	56.30	-0.71	± 5	Jan. 20, 2009					
Body		700WII IZ		σ	0.94	0.94	0.00	± 5	Jan. 20, 2009				
450MHz	450MHz	22.0	εr	56.7	55.60	-1.94	± 5	Feb. 25, 2009					
Body		lz 22.0	σ	0.94	0.93	-1.06	± 5	Feb. 25, 2009					

Table 4. Measured Tissue dielectric parameters for head and body phantoms

8.3.2 Liquid Depth

The liquid level was during measurement 15cm ± 0.5 cm.

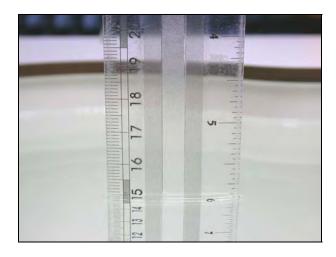


Figure 15. Head-Tissue-Simulating-Liquid

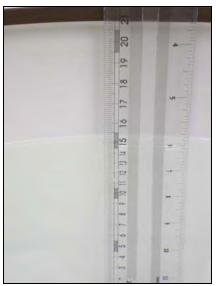


Figure 16. Body-Tissue-Simulating-Liquid

9. Measurement Process

9.1 Device and Test Conditions

The Test Device was provided by Giant Electronics Ltd. for this evaluation. The spatial peak SAR values were assessed for the lowest, middle and highest channels defined by FRS (Ch8 = 467.5625MHz, Ch11 = 467.6375MHz, Ch14 = 467.7125MHz) and GMRS (Ch15 = 462.5500MHz, Ch6 = 462.6875MHz, Ch30 = 467.7250MHz) systems. Battery and accessories shall be those specified by the manufacturer. The battery shall be fully charged before each measurement and there shall be no external connections.

Usage				Operates with a built-in test mode by client				
Distance between antenna axis at the joint and the liquid surface:				For Body, EUT front to phantom, 15mm separation. EUT back to phantom, 15mm separation. EUT back to phantom, to attach belt clip.				
Simulating human Head/Body				Head / Body				
EUT Battery				Fully-charged with Ni-	Fully-charged with Ni-MH battery or ALKALINE.			
		Channel		Frequency MHz	Before SAR Test (dBm)	After SAR Test (dBm)		
		Highest	- 14	467.7125	25.8	25.76		
Output Power (ERP)	FRS	FRS	FRS	Middle	- 11	467.6375	25.8	25.78
(EKF)		Lowest	- 08	467.5625	25.8	25.77		
		Highest	- 30	467.7250	31.2	31.17		
	GMRS	Middle	- 06	462.6875	31.2	31.18		
		Lowest	- 15	462.5500	31.2	31.15		

9.2 System Performance Check

9.2.1 Symmetric Dipoles for System Validation

Construction Symmetrical dipole with I/4 balun enables measurement

of feed point impedance with NWA matched for use near flat phantoms filled with head simulating solutions Includes distance holder and tripod adaptor Calibration Calibrated SAR value for specified position and input

power at the flat phantom in head simulating solutions.

 Frequency
 450, 900, 1800, 2000, 2450, 5000MHz

 Return Loss
 > 20 dB at specified validation position

 Power Capability
 > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Options Dipoles for other frequencies or solutions and other

calibration conditions are available upon request

Dimensions D450V2: dipole length 270 mm; overall height 330 mm

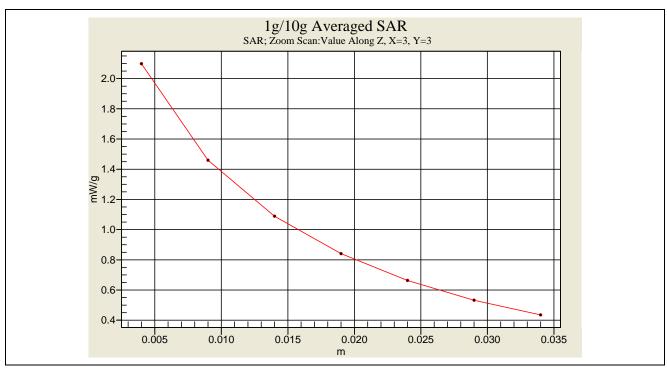
D900V2: dipole length 149 mm; overall height 330 mm

D1800V2: dipole length 72 mm; overall height 300 mm D2000V2: dipole length 65 mm; overall height 300 mm

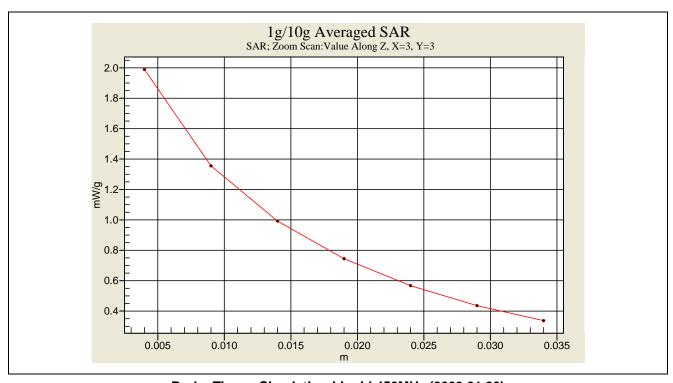
D2450V2: dipole length 51.5 mm; overall height 300 mm

D5GHzV2: dipole length 20.6 mm; overall height 450 mm

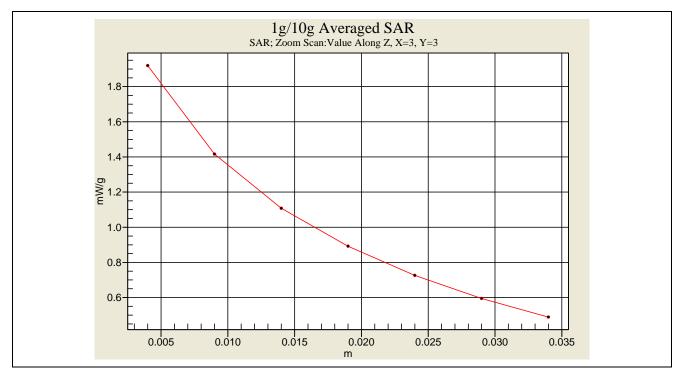
Figure 17. Validation Kit


9.2.2 Validation

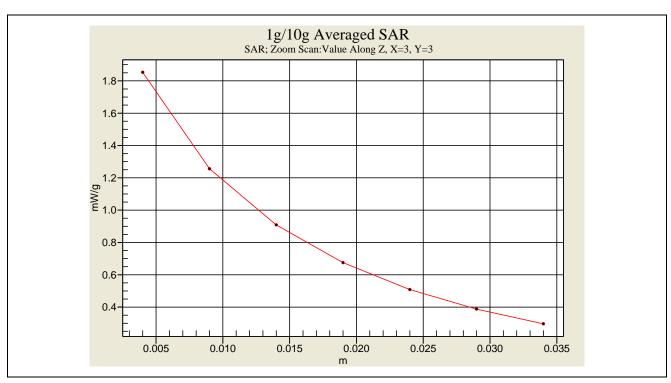
Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 10%. The validation was performed at 450 MHz.


Validation kit		Mixture Type			SAR _{1g} mW/g]	SAR _{10g} [mW/g]		Date of Calibration				
D450V2-SN1021		Head		4.90		3.	27					
D450V2	-SN 1021	Body			4.72	3.	17	Mar. 19, 2008				
D.450\/0	CN14.004	Head			4.77	3.	19	Fals 00 0000				
D450V2	-SN1021	Body			4.55	3.	07	Feb. 02, 2009				
Frequency (MHz)	Power	SAR _{1g} (mW/g)	SAR _{10g} (mW/g)		Drift (dB)		rence entage	Date				
(1.2)		(IIIVV/g)	(111)	w/g)	(0.2)	1g	10g					
450	398mW	1.97	1.36		1.36		1.36		0.015	1.0 %	4.6 %	Jan. 19, 2009
(Head)	Normalize to 1 Watt	4.95	3	.42	0.015	1.0 %	4.0 %	Jan. 19, 2009				
450	398mW	1.83	1	.33	0.040	2.00/	4.70/	Fals 05 0000				
(Head)	Normalize to 1 Watt	4.60	3	.34	-0.012	-3.6 %	4.7%	Feb. 25, 2009				
450	398mW	1.86	1	.28	0.000	4.4.0/	4.00/	lan 20 2000				
(Body)	Normalize to 1 Watt	4.67	3	.22	-0.028	-1.1 %	1.6 %	Jan. 20, 2009				
450	398mW	1.75	1	.19	-0.049	-3.3 %	-2.6 %	Feb. 25, 2009				
(Body)	Normalize to 1 Watt	4.40	2	.99	-0.043	-J.J /0	-2.U /0	1 60. 23, 2009				

Z-axis Plot of System Performance Check



Head-Tissue-Simulating-Liquid 450MHz (2009.01.19)



Body -Tissue-Simulating-Liquid 450MHz (2009.01.20)

Head-Tissue-Simulating-Liquid 450MHz (2009.02.25)

Body -Tissue-Simulating-Liquid 450MHz (2009.02.25)

9.3 Dosimetric Assessment Setup

9.3.1 Body Test Position

Body - Worn Configuration

Body - Worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device.

Body - Worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 15 mm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. For this test:

- The EUT is placed into the holster/belt clip and the holster is positioned against the surface of the phantom in a normal operating position.
- Since this EUT doesn't supply any body-worn accessory to the end user, a distance of 15 mm was tested to confirm the necessary "minimum SAR separation distance".

(*Note: This distance includes the 2 mm phantom shell thickness.)

9.3.2 Measurement Procedures

The evaluation was performed with the following procedures:

Surface Check:

A surface checks job gathers data used with optical surface detection. It determines the distance from the phantom surface where the reflection from the optical detector has its peak. Any following measurement jobs using optical surface detection will then rely on this value. The surface check performs its search a specified number of times, so that the repeatability can be verified. The probe tip distance is 1.3mm to phantom inner surface during scans.

Reference:

The reference job measures the field at a specified reference position, at 4 mm from the selected section's grid reference point.

Area Scan:

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines can find the maximum locations even in relatively coarse grids. When an area scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. Any following zoom scan within the same procedure will then perform fine scans around these maxima. The area covered the entire dimension of the EUT and the horizontal grid spacing was $15 \text{ mm} \times 15 \text{ mm}$.

Zoom Scan:

Zoom scans are used to assess the highest averaged SAR for cubic averaging volumes with 1 g and 10 g of simulated tissue. The zoom scan measures 5 x 5 x 7 points in a 32 x 32 x 30 mm cube whose base faces are centered around the maxima returned from a preceding area scan within the same procedure.

Drift:

The drift job measures the field at the same location as the most recent reference job within the same procedure, with the same settings. The drift measurement gives the field difference in dB from the last reference measurement. Several drift measurements are possible for each reference measurement. This allows monitoring of the power drift of the device in the batch process. If the value changed by more than 5%, the evaluation was repeated.

9.4 Spatial Peak SAR Evaluation

The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. Based on the Draft: SCC-34, SC-2, WG-2 - Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of $(32\times32\times30)$ mm³ $(5\times5\times7$ points). The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Postprocessing engine (SEMCAD). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into three stages:

Interpolation and Extrapolation

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY4, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and SAR extrapolation routines. The interpolation, Maxima Search and extrapolation routines are all based on the modified Quadratic Shepard's method [7].

10. Measurement Uncertainty

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than $\pm 27~\%$ [8].

According to Std. C95.3 [9], the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of \pm 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least \pm 2dB can be expected.

According to CENELEC (10) , typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

Source of Uncertainty	Uncertainty Value	Probability Distribution	Divisor	Ci	Standard Uncertainty ±1% (1-g)	V _i or V _{eff}
Type-A	0.9 %	Normal	1	1	0.9	9
Measurement System						
Probe Calibration	7 %	Normal	2	1	3.5	8
Axial Isotropy	0.2dB	Rectangular	$\sqrt{3}$	$\sqrt{0.5}$	1.9	8
Hemispherical Isotropy	9.6 %	Rectangular	$\sqrt{3}$	$\sqrt{0.5}$	3.9	8
Spatial Resolution	0 %	Rectangular	$\sqrt{3}$	1	0	8
Boundary Effect	11.0 %	Rectangular	$\sqrt{3}$	1	6.4	8
Linearity	0.2dB	Rectangular	$\sqrt{3}$	1	2.7	8
Detection Limit	1.0 %	Rectangular	$\sqrt{3}$	1	0.6	8
Readout Electronics	1.0 %	Normal	1	1	1.0	8
RF Ambient Conditions	3.0 %	Rectangular	$\sqrt{3}$	1	1.73	8
Probe Positioner Mech. Const.	0.4 %	Rectangular	$\sqrt{3}$	1	0.2	8
Probe Positioning	0.35 %	Rectangular	$\sqrt{3}$	1	0.2	8
Extrapolation and Integration	3.9 %	Rectangular	$\sqrt{3}$	1	2.3	8
Test sample Related						
Test sample Positioning	4.7 %	Normal	1	1	4.7	5
Device Holder Uncertainty	6.1 %	Normal	1	1	6.1	5
Drift of Output Power	5.0 %	Rectangular	$\sqrt{3}$	1	2.9	8
Phantom and Setup						
Phantom Uncertainty (Including temperature effects)	4.0%	Rectangular	$\sqrt{3}$	1	2.3	8
Liquid Conductivity (target)	5.0%	Rectangular	$\sqrt{3}$	0.6	1.7	8
Liquid Conductivity (meas.)	10.0%	Rectangular	$\sqrt{3}$	0.6	3.4	8
Liquid Permittivity (target)	5.0%	Rectangular	$\sqrt{3}$	0.6	1.7	8
Liquid Permittivity (meas.)	5.0%	Rectangular	$\sqrt{3}$	0.6	1.7	8
Combined standard uncertainty		RSS			13.5	88.7
Expanded uncertainty (Coverage factor = 2)		Normal (k=2)			27	

Table 5. Uncertainty Budget of DASY

11. SAR Test Results Summary

11.1 FRS Face SAR _ 15 mm Spacing

Ambient:

Temperature (°C): 22 ± 2 Relative HUMIDITY (%): 40-70

Liquid:

Mixture Type : HSL450 Liquid Temperature ($^{\circ}$) : 22

Depth of liquid (cm):

Measurement:

Crest Factor: 1 Probe S/N: 1530

Eroguon	·C\/				SAR _{1g} [[mW/g]		AI	
Frequen	icy	Modulation	Battery	Accessory	Duty	Cycle	Power Drift	Amb. Temp	Remark
MHz	Ch.				100%	50%	21	10p	
467.5625	8	FM	Ni-MH	N/A	0.620	0.310	-0.119	21.8	
467.5625	8	FM	Alkaline	N/A	0.610	0.305	-0.040	21.7	
467.5625	8	FM	Ni-MH	N/A	0.393	0.197	-0.031	21.0	USB Cable
467.5625	8	FM	Ni-MH	N/A	0.390	0.195	-0.038	21.0	AC Adapter
467.6375	11	FM	Ni-MH	N/A	0.493	0.247	-0.027	21.8	
467.7125	14	FM	Ni-MH	N/A	0.582	0.291	-0.039	21.6	
Std. C95.1-2005 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population							6 W/kg (m iged over		

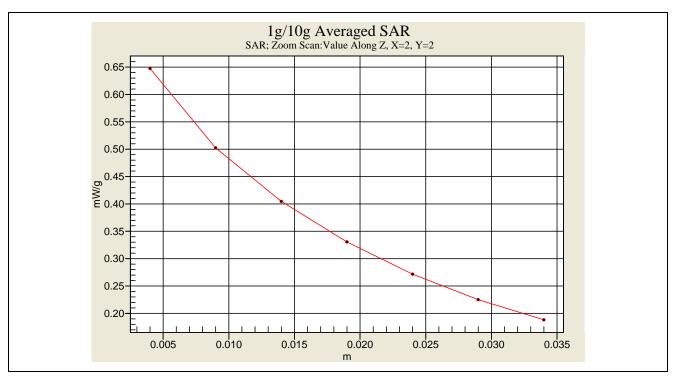
SAR values are scaled for the power drift

Frequency			SAR _{1g} [[mW/g]	power drift	+ power drift	SAR _{1g} [mW/g] (include +power drift)		
		Battery	Duty	Duty Cycle		10^(dB/10)	Duty	Cycle	
MHz	Ch.		100%	50%			100%	50%	
467.5625	8	Ni-MH	0.620	0.310	-0.119	1.028	0.637	0.319	
467.5625	8	Alkaline	0.610	0.305	-0.040	1.009	0.616	0.308	
467.5625	8	Ni-MH	0.393	0.197	-0.031	1.007	0.396	0.198	
467.5625	8	Ni-MH	0.390	0.195	-0.038	1.009	0.393	0.197	
467.6375	11	Ni-MH	0.493	0.247	-0.027	1.006	0.496	0.248	
467.7125	14	Ni-MH	0.582	0.291	-0.039	1.009	0.587	0.294	

SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$


Where Px is the unknown power (i.e. the power at the highest drift)

Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Z-axis Plot of SAR Measurement

FRS Face SAR -15 mm Spacing $_$ CH8 $_$ Ni-MH (2009.01.19)

11.2 GMRS Face SAR _ 15mm Spacing

Ambient:

Temperature (°C): 22 ± 2 Relative HUMIDITY (%): 40-70

Liquid:

Mixture Type : HSL450 Liquid Temperature ($^{\circ}$) : 22

Depth of liquid (cm):

Measurement:

Crest Factor: 1 Probe S/N: 1530

Frequency		Modulation	Battery	Accessory	SAR _{1g} [mW/g] Duty Cycle		Power Drift	Amb. Temp	Remark
462.5500	15	FM	Ni-MH	N/A	2.260	1.130	-0.035	21.9	
462.5500	15	FM	Alkaline	N/A	1.860	0.930	-0.040	22.9	
462.5500	15	FM	Ni-MH	N/A	1.980	0.990	-0.043	21.9	USB Cable
462.5500	15	FM	Ni-MH	N/A	1.850	0.925	-0.043	22.8	AC Adapter
462.6375	4	FM	Ni-MH	N/A	2.160	1.080	-0.036	21.0	
462.6875	6	FM	Ni-MH	N/A	2.030	1.015	-0.018	21.9	
462.7250	22	FM	Ni-MH	N/A	2.150	1.075	-0.053	21.0	
467.7250	30	FM	Ni-MH	N/A	2.100	1.050	-0.040	21.0	
Std. C95.1-2005 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population					1.6 W/kg (mW/g) Averaged over 1 gram				

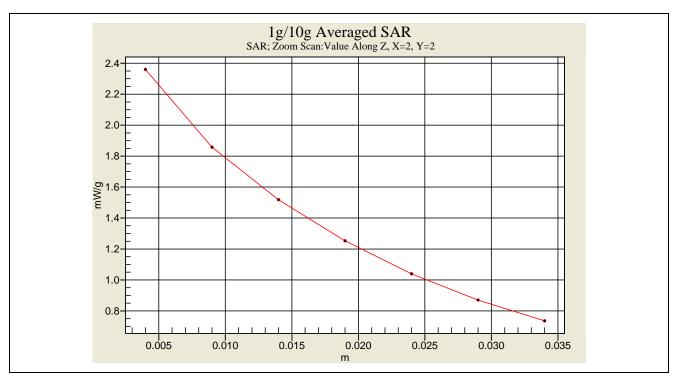
◆ SAR values are scaled for the power drift

Frequency		Battery	SAR _{1g} [mW/g] Duty Cycle		power drift (dB)	+ power drift	SAR _{1g} [mW/g] (include +power drift)	
						10^(dB/10)	Duty Cycle	
MHz	Ch.		100%	50%			100%	50%
462.5500	15	Ni-MH	2.260	1.130	-0.035	1.008	2.278	1.139
462.5500	15	Alkaline	1.860	0.930	-0.040	1.009	1.877	0.939
462.5500	15	Ni-MH	1.980	0.990	-0.043	1.010	2.000	1.000
462.5500	15	Ni-MH	1.850	0.925	-0.043	1.010	1.868	0.934
462.6375	4	Ni-MH	2.160	1.080	-0.036	1.008	2.178	1.089
462.6875	6	Ni-MH	2.030	1.015	-0.018	1.004	2.038	1.019
462.7250	22	Ni-MH	2.150	1.075	-0.053	1.012	2.176	1.088
467.7250	30	Ni-MH	2.100	1.050	-0.040	1.009	2.119	1.060

SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$


Where Px is the unknown power (i.e. the power at the highest drift)

Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Z-axis Plot of SAR Measurement

GMRS Face SAR - 15 mm Spacing $_$ CH15 $_$ Ni-MH (2009.01.20)

11.3 FRS Body SAR with Headset _ 15 mm Spacing

Ambient:

Temperature ($^{\circ}$): 22 ± 2 Relative HUMIDITY ($^{\circ}$): 40-70

Liquid:

Mixture Type : MSL450 Liquid Temperature ($^{\circ}$) : 22

Depth of liquid (cm):

Measurement:

Crest Factor: 1 Probe S/N: 1530

				SAR _{1g} [mW/g]	_		
. у	Modulation	Battery	Duty Cycle				Remark	
Ch.			.,	100%	50%	Dine	Tomp	
8	FM	Ni-MH	Headset	0.550	0.275	-0.021	22.1	
8	FM	Alkaline	Headset	0.829	0.415	-0.044	22.1	
11	FM	Ni-MH	Headset	0.389	0.195	-0.031	22.1	
14	FM	Ni-MH	Headset	0.409	0.205	-0.027	22.1	
•	8 8 11	Modulation Ch. 8 FM 8 FM 11 FM	Ch. 8 FM Ni-MH 8 FM Alkaline 11 FM Ni-MH	Ch. 8 FM Ni-MH Headset 8 FM Alkaline Headset 11 FM Ni-MH Headset	Modulation Battery Accesso ry Duty 6h. 100% 100% 8 FM Ni-MH Headset 0.550 8 FM Alkaline Headset 0.829 11 FM Ni-MH Headset 0.389	Ch. Battery Ty Duty Cycle 100% 50% 8 FM Ni-MH Headset 0.550 0.275 8 FM Alkaline Headset 0.829 0.415 11 FM Ni-MH Headset 0.389 0.195	Modulation Battery Accesso ry Duty Cycle Power Drift 8 FM Ni-MH Headset 0.550 0.275 -0.021 8 FM Alkaline Headset 0.829 0.415 -0.044 11 FM Ni-MH Headset 0.389 0.195 -0.031	Modulation Battery Accesso ry Duty Cycle Power Drift Amb. Temp 8 FM Ni-MH Headset 0.550 0.275 -0.021 22.1 8 FM Alkaline Headset 0.829 0.415 -0.044 22.1 11 FM Ni-MH Headset 0.389 0.195 -0.031 22.1

Std. C95.1-2005 - Safety Limit Spatial Peak

Uncontrolled Exposure/General Population

1.6 W/kg (mW/g) Averaged over 1 gram

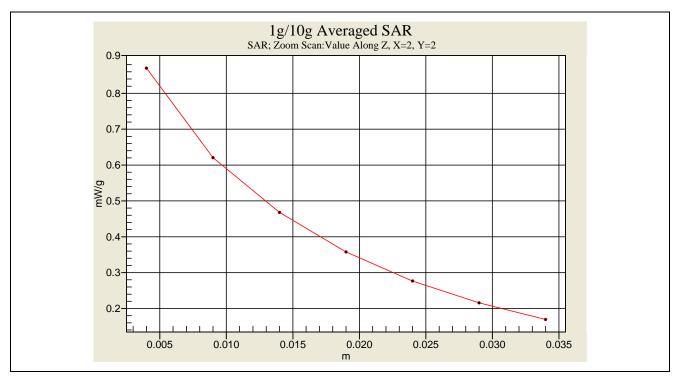
♦ SAR values are scaled for the power drift

Frequen	Frequency		SAR _{1g} [mW/g]		power drift	+ power drift	SAR _{1g} [mW/g] (include +power drift)							
		Battery	Duty Cycle								(dB)	10^(dB/10)	Duty	Cycle
MHz	Ch.		100%	50%			100%	50%						
467.5625	8	Ni-MH	0.550	0.275	-0.021	1.005	0.553	0.276						
467.5625	8	Alkaline	0.829	0.415	-0.044	1.010	0.837	0.419						
467.6375	11	Ni-MH	0.389	0.195	-0.031	1.007	0.392	0.196						
467.7125	14	Ni-MH	0.409	0.205	-0.027	1.006	0.412	0.206						

SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$


Where Px is the unknown power (i.e. the power at the highest drift)

Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Z-axis Plot of SAR Measurement

FRS Body SAR -15 mm Spacing _ CH8_ ALKALINE (2009.01.19)

GMRS Body SAR with Headset _15 mm Spacing

Ambient:

Temperature ($^{\circ}$): Relative HUMIDITY (%): 22 ± 2 40-70

Liquid:

Mixture Type: MSL450 Liquid Temperature (°C) : 22

> Depth of liquid (cm): 15

Measurement:

Crest Factor: Probe S/N: 1530 1

Eroguen	.01/		Battery Accesso	SAR _{1g}	[mW/g]	_			
Frequen	icy	Modulation		Accesso ry	Duty Cycle		Power Drift	Amb. Temp	Remark
MHz	Ch.			' ' '	100%	50%	D.I.I.	Temp	
462.5500	15	FM	Ni-MH	Headset	2.190	1.095	-0.029	22.1	
462.5500	15	FM	Alkaline	Headset	2.200	1.100	-0.130	22.1	
462.6375	4	FM	Ni-MH	Headset	2.080	1.040	-0.004	22.1	
462.6875	6	FM	Ni-MH	Headset	2.130	1.065	-0.131	22.1	
462.7250	22	FM	Ni-MH	Headset	2.080	1.040	-0.016	22.1	
467.7250	30	FM	Ni-MH	Headset	1.780	0.890	-0.011	22.1	
Std. C95.1-2005 - Safety Limit Spatial Peak						6 W/kg (m			

Uncontrolled Exposure/General Population

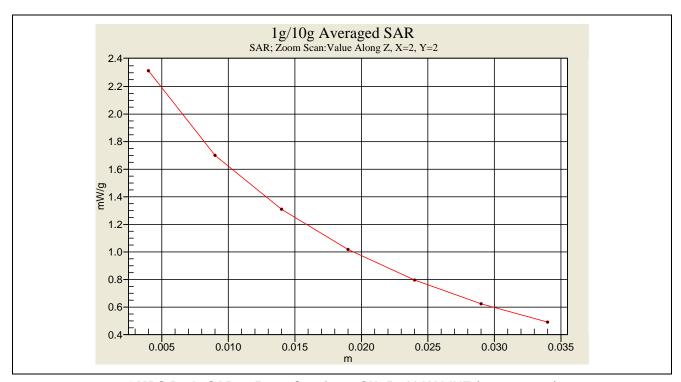
SAR values are scaled for the power drift

Frequen	_	_	SAR _{1g} [mW/g]		power drift (dB)	+ power drift	SAR₁g[mW/g] (include +power drift)	
		Battery	Duty Cycle			10^(dB/10)	Duty Cycle	
MHz	Ch.		100%	50%			100%	50%
462.5500	15	Ni-MH	2.190	1.095	-0.029	1.007	2.205	1.102
462.5500	15	Alkaline	2.200	1.100	-0.130	1.030	2.267	1.133
462.6375	4	Ni-MH	2.080	1.040	-0.004	1.001	2.082	1.041
462.6875	6	Ni-MH	2.130	1.065	-0.131	1.031	2.195	1.098
462.7250	22	Ni-MH	2.080	1.040	-0.016	1.004	2.088	1.044
467.7250	30	Ni-MH	1.780	0.890	-0.011	1.003	1.785	0.892

SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$


Px is the unknown power (i.e. the power at the highest drift)

Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Z-axis Plot of SAR Measurement

GMRS Body SAR - 15 mm Spacing _ CH15_ ALKALINE (2009.01.20)

11.5 FRS Body SAR with Headset & Belt Clip

Ambient:

Temperature ($^{\circ}$): 22 ± 3 Relative HUMIDITY ($^{\circ}$): 40-70

Liquid:

Mixture Type : MSL450 Liquid Temperature ($^{\circ}$) : 22

Depth of liquid (cm):

Measurement:

Crest Factor: 1 Probe S/N: 1530

Frequen	·C\/				SAR _{1g}	[mW/g]	_		
riequeii	Cy	Modulation	Battery	Accessory	Duty Cycle		Power Drift	Amb. Temp	Remark
MHz	Ch.				100%	50%	5	Tomp	
467.5625	8	FM	Ni-MH	Headset & Belt Clip	0.421	0.211	-0.024	22.1	
467.5625	8	FM	Alkaline	Headset & Belt Clip	0.420	0.210	-0.062	22.1	
467.6375	11	FM	Ni-MH	Headset & Belt Clip	0.334	0.167	-0.026	22.1	
467.7125	14	FM	Ni-MH	Headset & Belt Clip	0.409	0.205	-0.038	22.1	
Std. C95.1-2005 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population						6 W/kg (m iged over			

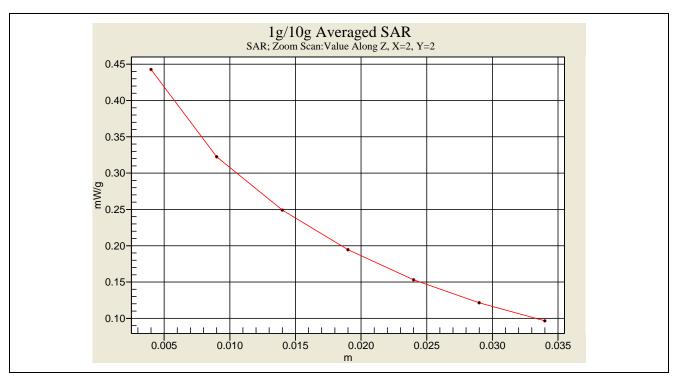
◆ SAR values are scaled for the power drift

Frequen			Battery		power drift	+ power drift	SAR _{1g} [mW/g] (include +power drift)	
		Battery	Duty Cycle		(dB)	10^(dB/10)	Duty Cycle	
MHz	Ch.		100%	50%			100%	50%
467.5625	8	Ni-MH	0.421	0.211	-0.024	1.006	0.423	0.212
467.5625	8	Alkaline	0.420	0.210	-0.062	1.014	0.426	0.213
467.6375	11	Ni-MH	0.334	0.167	-0.026	1.006	0.336	0.168
467.7125	14	Ni-MH	0.409	0.205	-0.038	1.009	0.413	0.206

SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$


Where Px is the unknown power (i.e. the power at the highest drift)

Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown)

Z-axis Plot of SAR Measurement

FRS Body SAR with Headset_Belt Clip _ CH8 _ ALKALINE (2009.01.19)

11.6 GMRS Body SAR with Headset_Belt Clip

Ambient:

Temperature (°C): 22 \pm 3 Relative HUMIDITY (%): 40-70

Liquid:

Mixture Type : MSL450 Liquid Temperature ($^{\circ}$) : 22

Depth of liquid (cm):

Measurement:

Crest Factor: 1 Probe S/N: 1530

Eroguon	·CV			SAR _{1g}	[mW/g]	_	Amb. Temp		
Frequen	Су	Modulation	Battery	Accessory	Duty Cycle			Power Drift	Remark
MHz	Ch.				100%	50%	5	Tomp	
462.5500	15	FM	Ni-MH	Headset & Belt Clip	1.350	0.675	-0.027	22.1	
462.6375	4	FM	Ni-MH	Headset & Belt Clip	1.280	0.640	0.141	22.1	
462.6875	6	FM	Ni-MH	Headset & Belt Clip	1.230	0.615	-0.023	22.1	
462.7250	22	FM	Ni-MH	Headset & Belt Clip	1.400	0.700	-0.021	22.1	
462.7250	22	FM	Alkaline	Headset & Belt Clip	1.640	0.820	-0.032	22.1	
467.7250	30	FM	Ni-MH	Headset & Belt Clip	1.390	0.695	-0.017	22.1	
Std. C95.1-2005 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population						6 W/kg (m iged over			

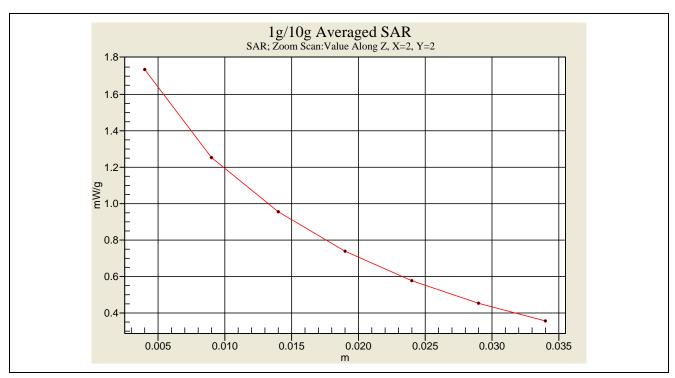
◆ SAR values are scaled for the power drift

Frequen	су		SAR _{1g} [mW/g] Pry Duty Cycle		power drift (dB)	+ power drift	SAR _{1g} [mW/g] (include +power drift)	
		Battery				10^(dB/10)	Duty Cycle	
MHz	Ch.		100%	50%			100%	50%
462.5500	15	Ni-MH	1.350	0.675	-0.027	1.006	1.358	0.679
462.6375	4	Ni-MH	1.280	0.640	0.141	1.033	1.322	0.661
462.6875	6	Ni-MH	1.230	0.615	-0.023	1.005	1.237	0.618
462.7250	22	Ni-MH	1.400	0.700	-0.021	1.005	1.407	0.703
462.7250	22	Alkaline	1.640	0.820	-0.032	1.007	1.652	0.826
467.7250	30	Ni-MH	1.390	0.695	-0.017	1.004	1.395	0.698

SAR is basically proportional to average transmit power and duty cycle

(i.e. $SAR = P \times T$ where P is the average transmit power and T is the transmit duty cycle).

 $SAR(unknown) = SAR(know) \times (PxTx/P(known) T(known))$


Where Px is the unknown power (i.e. the power at the highest drift)

Tx is the transmit duty cycle used at that unknown power.

If transmitter duty cycle is the same then it should be a relationship of Px/Pknown))

Z-axis Plot of SAR Measurement

GMRS Body SAR with Headset_Belt Clip _ CH22 _ ALKALINE (2009.01.20)

11.7 Setup Photo

Face Position

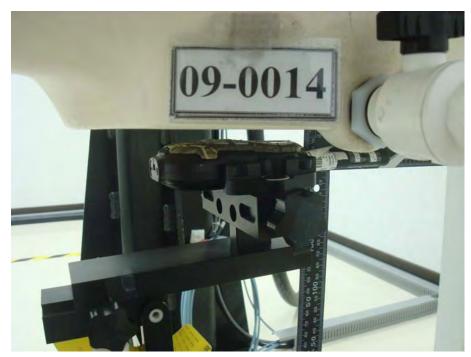
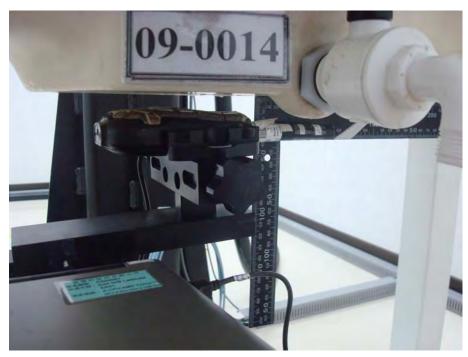
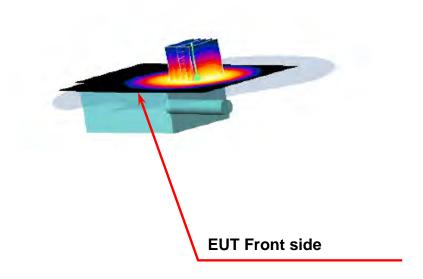


Figure 18.EUT Face to Phantom 15 mm spacing

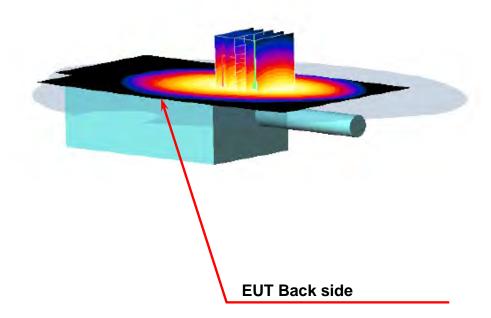
Face Position




Figure 19.EUT Face to Phantom 15 mm spacing (Charging by USB Cable via computer)

Face Position

Figure 20.EUT Face to Phantom 15 mm spacing (Charging by AC Adapter)



Body Position

Figure 21.EUT with Headset to Phantom 15 mm spacing

Body Position

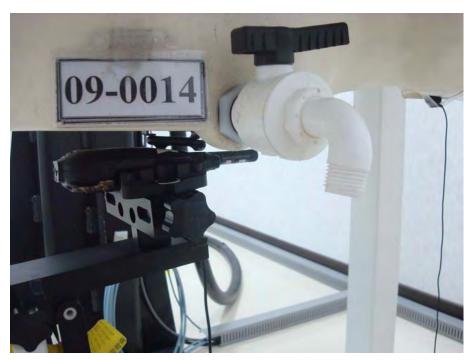
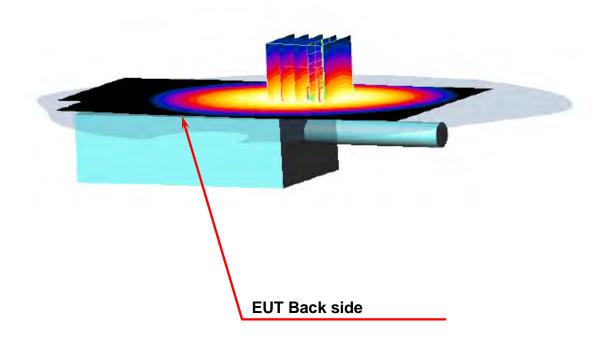



Figure 22.EUT with Headset & Belt clip

11.8 Std. C95.1-2005 RF Exposure Limit

Human Exposure	Population Uncontrolled Exposure (W/kg) or (mW/g)	Occupational Controlled Exposure (W/kg) or (mW/g)		
Spatial Peak SAR* (head)	1.60	8.00		
Spatial Peak SAR** (Whole Body)	0.08	0.40		
Spatial Peak SAR*** (Partial-Body)	1.60	8.00		
Spatial Peak SAR**** (Hands / Feet / Ankle / Wrist)	4.00	20.00		

Table 6. Safety Limits for Partial Body Exposure

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / **Controlled Environments**: are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

12. Conclusion

The SAR test values found for the portable mobile phone **Giant Electronics Ltd. Trade Mark : Motorola Model(s) : MR355** are below the maximum recommended level of 1.6 W/kg (mW/g).

13. References

- [1] Std. C95.1-2005, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Pokoviċ, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Poković, T. Schmid, and N. Kuster, "E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, *Dosimetric evaluation of mobile communications equipment with known precision*, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), *Human Exposure to Electromagnetic Fields High-frequency*: 10KHz-300GHz, Jan. 1995.

Appendix A - System Performance Check

See following Attached Pages for System Performance Check.

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/19 PM 10:10:46

System Performance Check at 450 MHz_20090119_Head

DUT: Dipole 450MHz; Type: D450V2; Serial: D450V2 SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.88 \text{ mho/m}$; $\varepsilon_r = 44.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

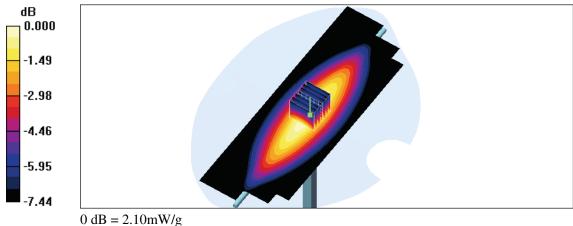
Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

System Performance Check at 450 MHz/Area Scan (61x201x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.15 mW/g

System Performance Check at 450 MHz/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.5 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 3.01 W/kg

SAR(1 g) = 1.97 mW/g; SAR(10 g) = 1.36 mW/g

Maximum value of SAR (measured) = 2.10 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 08:48:57

System Performance Check at 450 MHz_20090120_Body

DUT: Dipole 450MHz; Type: D450V2; Serial: D450V2 SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.94 \text{ mho/m}$; $\varepsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

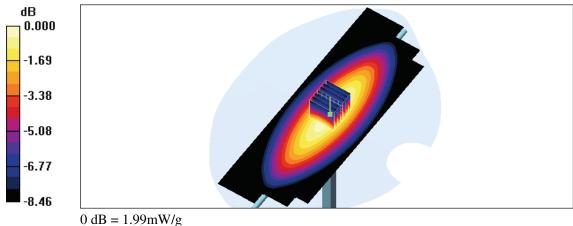
- Probe: ET3DV6 SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2008/2/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

System Performance Check at 450 MHz/Area Scan (61x201x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.98 mW/g

System Performance Check at 450 MHz/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 46.5 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 2.89 W/kg

SAR(1 g) = 1.86 mW/g; SAR(10 g) = 1.28 mW/g

Maximum value of SAR (measured) = 1.99 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/2/25 AM 12:09:34

System Performance Check at 450 MHz_20090225_Head

DUT: Dipole 450MHz; Type: D450V2; Serial: D450V2 SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.876 \text{ mho/m}$; $\varepsilon_r = 44.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

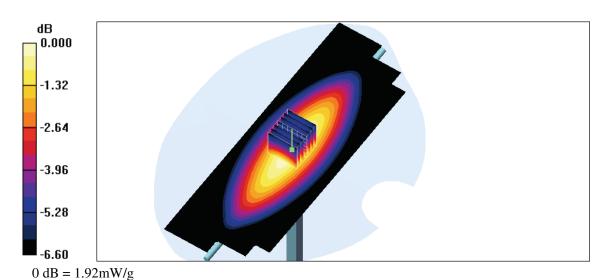
- Probe: ET3DV6 SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn393; Calibrated: 2008/8/25
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

System Performance Check at 450 MHz/Area Scan (61x201x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.91 mW/g

System Performance Check at 450 MHz/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 47.9 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 2.61 W/kg

SAR(1 g) = 1.83 mW/g; SAR(10 g) = 1.33 mW/g

Maximum value of SAR (measured) = 1.92 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/2/25 AM 12:50:36

System Performance Check at 450 MHz_20090225_Body

DUT: Dipole 450MHz; Type: D450V2; Serial: D450V2 SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.93 \text{ mho/m}$; $\varepsilon_r = 55.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

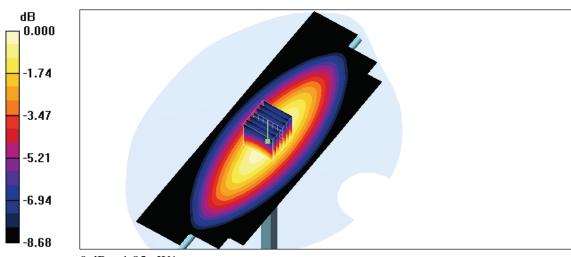
- Probe: ET3DV6 SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn393; Calibrated: 2008/8/25
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

System Performance Check at 450 MHz/Area Scan (61x201x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.86 mW/g

System Performance Check at 450 MHz/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 45.7 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 2.71 W/kg

SAR(1 g) = 1.75 mW/g; SAR(10 g) = 1.19 mW/g

Maximum value of SAR (measured) = 1.85 mW/g

0 dB = 1.85 mW/g

Appendix B - SAR Measurement Data

See following Attached Pages for SAR Measurement Data.

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/19 PM 10:52:19

Flat_FRS CH8_Brain_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

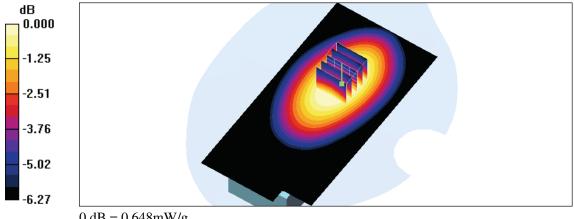
• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.737 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.7 V/m; Power Drift = -0.119 dB Peak SAR (extrapolated) = 0.822 W/kg

SAR(1 g) = 0.620 mW/g; SAR(10 g) = 0.474 mW/gMaximum value of SAR (measured) = 0.648 mW/g

0 dB = 0.648 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 12:10:50

Flat_FRS CH8_Brain_Alkaline_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

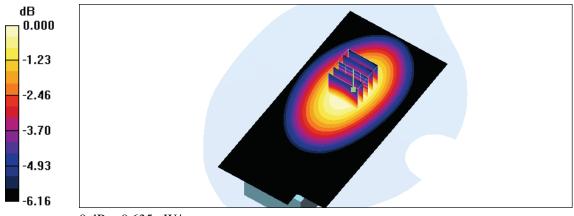
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.686 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.7 V/m; Power Drift = -0.040 dB Peak SAR (extrapolated) = 0.803 W/kg SAR(1 g) = 0.610 mW/g; SAR(10 g) = 0.471 mW/g Maximum value of SAR (measured) = 0.635 mW/g

0 dB = 0.635 mW/g

Appendix B 2/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 12:32:03

Flat_FRS CH8_Brain_Ni-MH_USB Cable_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

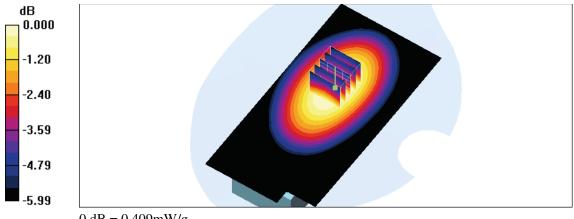
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.442 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.0 V/m; Power Drift = -0.031 dB Peak SAR (extrapolated) = 0.516 W/kg SAR(1 g) = 0.393 mW/g; SAR(10 g) = 0.305 mW/g Maximum value of SAR (measured) = 0.409 mW/g

0 dB = 0.409 mW/g

Appendix B 3/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 01:15:34

Flat_FRS CH8_Brain_Ni-MH_USB AC adaptor_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

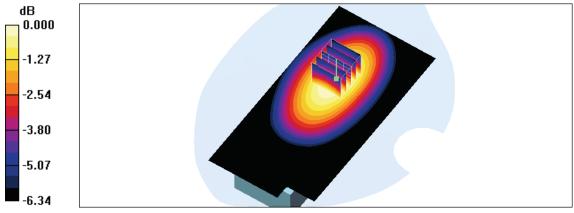
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.425 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.1 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 0.521 W/kg SAR(1 g) = 0.390 mW/g; SAR(10 g) = 0.298 mW/g Maximum value of SAR (measured) = 0.407 mW/g

0 dB = 0.407 mW/g

Test Laboratory: A Test Lab Techno Corp.

Date/Time: 2009/1/19 PM 11:11:48

Flat_FRS CH11_Brain_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.6375 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

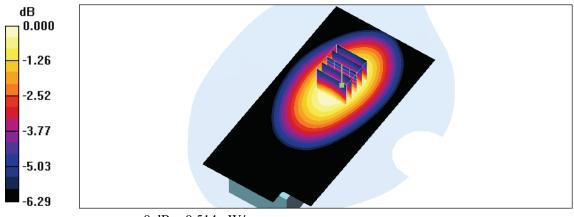
• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.564 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.4 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 0.655 W/kg SAR(1 g) = 0.493 mW/g; SAR(10 g) = 0.377 mW/g

Maximum value of SAR (measured) = 0.514 mW/g

0 dB = 0.514 mW/g

Appendix B

5/34

Test Laboratory: A Test Lab Techno Corp.

Date/Time: 2009/1/19 PM 11:50:27

Flat_FRS CH14_Brain_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.7125 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7125 MHz; $\sigma = 0.891 \text{ mho/m}$; $\varepsilon_r = 44.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

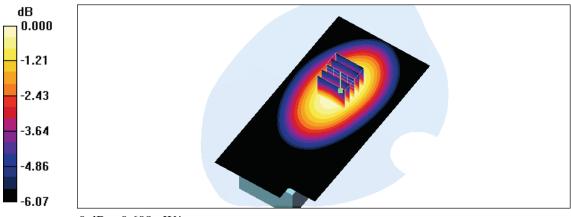
• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.654 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.4 V/m; Power Drift = -0.039 dB Peak SAR (extrapolated) = 0.766 W/kg SAR(1 g) = 0.582 mW/g; SAR(10 g) = 0.449 mW/g

Maximum value of SAR (measured) = 0.449 mW/gMaximum value of SAR (measured) = 0.608 mW/g

0 dB = 0.608 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 09:19:10

Flat_FRS CH8_Headset_muscle_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

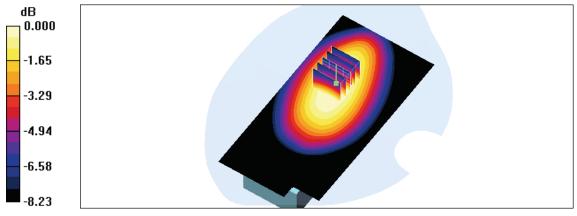
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.613 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.5 V/m; Power Drift = -0.021 dB Peak SAR (extrapolated) = 0.792 W/kg SAR(1 g) = 0.550 mW/g; SAR(10 g) = 0.400 mW/g Maximum value of SAR (measured) = 0.578 mW/g

0 dB = 0.578 mW/g

Appendix B 7/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 11:31:46

Flat_FRS CH8_Headset_muscle_Alkaline_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

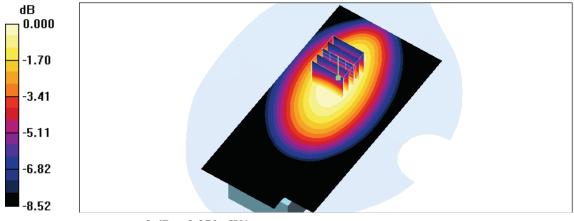
• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.932 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.0 V/m; Power Drift = -0.044 dB Peak SAR (extrapolated) = 1.21 W/kg SAR(1 g) = 0.829 mW/g; SAR(10 g) = 0.596 mW/g

Maximum value of SAR (measured) = 0.870 mW/g

0 dB = 0.870 mW/g

Appendix B 8/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 09:42:29

Flat_FRS CH11_Headset_muscle_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.6375 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

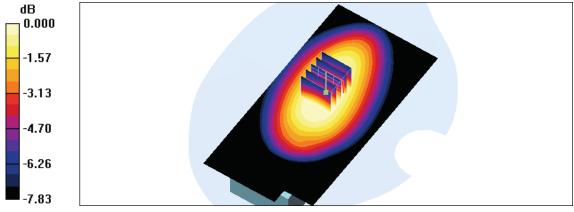
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.446 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.7 V/m; Power Drift = -0.031 dB Peak SAR (extrapolated) = 0.552 W/kg SAR(1 g) = 0.389 mW/g; SAR(10 g) = 0.287 mW/g Maximum value of SAR (measured) = 0.408 mW/g

9/34

0 dB = 0.408 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 12:27:46

Flat_FRS CH14_Headset_muscle_belt clip_Ni-MH

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.7125 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7125 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

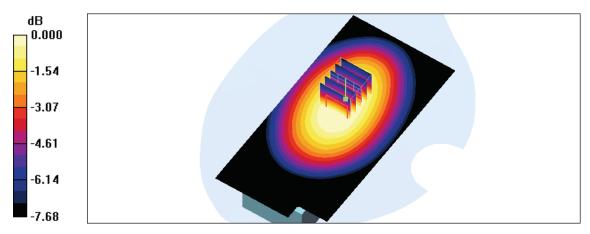
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.466 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.1 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 0.576 W/kg SAR(1 g) = 0.409 mW/g; SAR(10 g) = 0.305 mW/g Maximum value of SAR (measured) = 0.429 mW/g

0 dB = 0.429 mW/g

Appendix B 10/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 11:50:49

Flat_FRS CH8_Headset_muscle_belt clip_Ni-MH

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

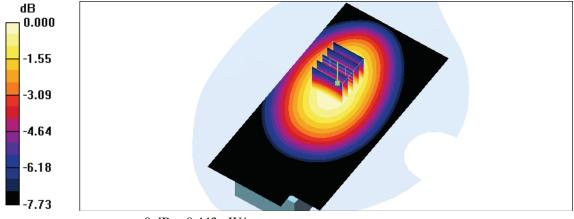
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.464 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.2 V/m; Power Drift = -0.024 dB Peak SAR (extrapolated) = 0.601 W/kg SAR(1 g) = 0.421 mW/g; SAR(10 g) = 0.308 mW/g Maximum value of SAR (measured) = 0.443 mW/g

0 dB = 0.443 mW/g

Appendix B 11/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 02:21:06

Flat_FRS CH8_Headset_muscle_belt clip_Alkaline

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.5625 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.5625 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

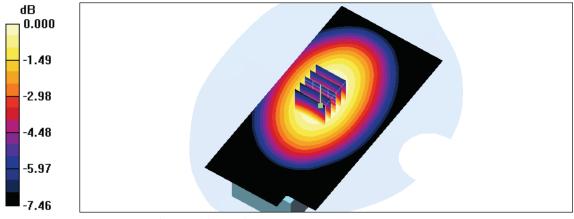
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.470 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.0 V/m; Power Drift = -0.062 dB Peak SAR (extrapolated) = 0.586 W/kg SAR(1 g) = 0.420 mW/g; SAR(10 g) = 0.314 mW/g Maximum value of SAR (measured) = 0.442 mW/g

0 dB = 0.442 mW/g

Appendix B 12/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 12:09:12

Flat_FRS CH11_Headset_muscle_belt clip_Ni-MH

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.6375 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

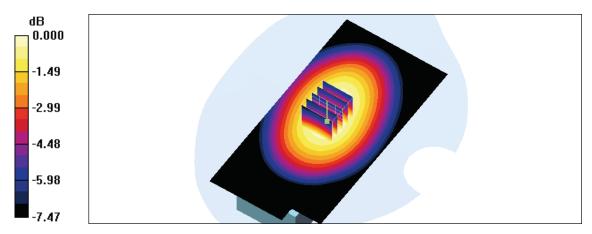
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.367 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.2 V/m; Power Drift = -0.026 dB Peak SAR (extrapolated) = 0.462 W/kg SAR(1 g) = 0.334 mW/g; SAR(10 g) = 0.251 mW/g Maximum value of SAR (measured) = 0.352 mW/g

13/34

0 dB = 0.352 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 12:27:46

Flat_FRS CH14_Headset_muscle_belt clip_Ni-MH

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: FRS; Frequency: 467.7125 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7125 MHz; $\sigma = 0.951 \text{ mho/m}$; $\varepsilon_r = 55.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

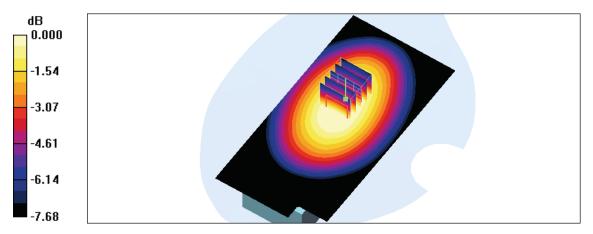
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.466 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.1 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 0.576 W/kg SAR(1 g) = 0.409 mW/g; SAR(10 g) = 0.305 mW/g Maximum value of SAR (measured) = 0.429 mW/g

14/34

0 dB = 0.429 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 01:37:03

Flat_GMRS CH15_Brain_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

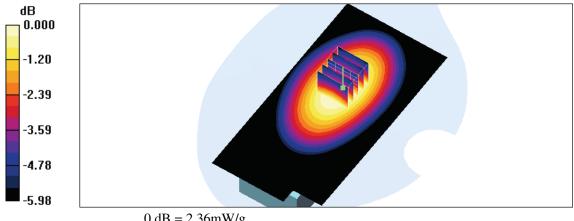
• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.53 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.6 V/m; Power Drift = -0.035 dB Peak SAR (extrapolated) = 2.94 W/kg

SAR(1 g) = 2.26 mW/g; SAR(10 g) = 1.76 mW/gMaximum value of SAR (measured) = 2.36 mW/g

0 dB = 2.36 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 02:35:32

Flat_GMRS CH15_Brain_Alkaline_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

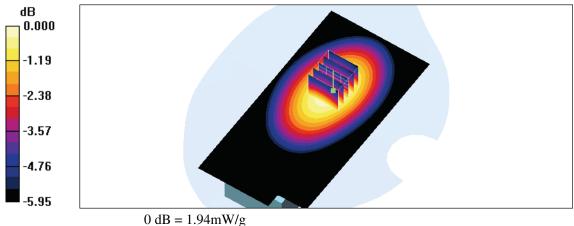
• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.96 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 48.0 V/m; Power Drift = -0.040 dB Peak SAR (extrapolated) = 2.41 W/kg

SAR(1 g) = 1.86 mW/g; SAR(10 g) = 1.45 mW/gMaximum value of SAR (measured) = 1.94 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 02:56:05

Flat_GMRS CH15_Brain_Ni-MH_USB Cable_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

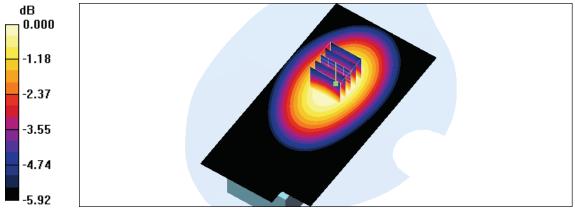
• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.23 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.4 V/m; Power Drift = -0.043 dB Peak SAR (extrapolated) = 2.56 W/kg

SAR(1 g) = 1.98 mW/g; SAR(10 g) = 1.55 mW/gMaximum value of SAR (measured) = 2.05 mW/g

0 dB = 2.05 mW/g

Appendix B 17/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 03:44:50

Flat_GMRS CH15_Brain_Ni-MH_USB AC adaptor_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

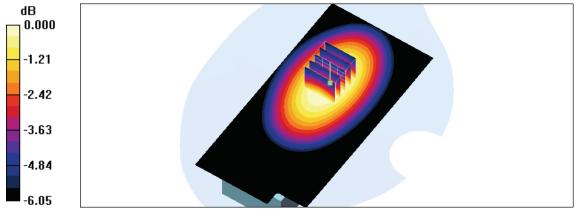
• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.10 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.9 V/m; Power Drift = -0.043 dB Peak SAR (extrapolated) = 2.42 W/kg

SAR(1 g) = 1.85 mW/g; SAR(10 g) = 1.44 mW/g Maximum value of SAR (measured) = 1.93 mW/g

18/34

0 dB = 1.93 mW/g

Appendix B

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 01:56:19

Flat_GMRS CH4_Brain_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6375 MHz; $\sigma = 0.888$ mho/m; $\varepsilon_r = 44.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

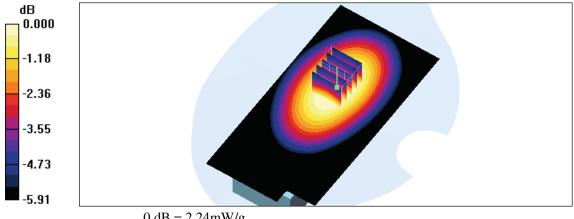
• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.45 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.6 V/m; Power Drift = -0.036 dB Peak SAR (extrapolated) = 2.80 W/kg

SAR(1 g) = 2.16 mW/g; SAR(10 g) = 1.68 mW/gMaximum value of SAR (measured) = 2.24 mW/g

0 dB = 2.24 mW/g

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/2/25 PM 05:21:38

Flat_GMRS CH6_Brain_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.6875 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6875 MHz; $\sigma = 0.884$ mho/m; $\varepsilon_r = 44.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

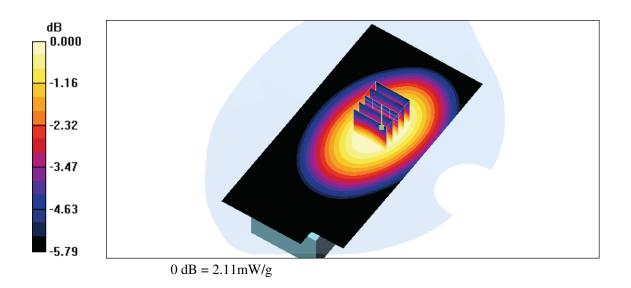
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn393; Calibrated: 2008/8/25

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.33 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.4 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 2.58 W/kg

SAR(1 g) = 2.03 mW/g; SAR(10 g) = 1.61 mW/gMaximum value of SAR (measured) = 2.11 mW/g

Appendix B 20/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 AM 02:15:43

Flat_GMRS CH22_Brain_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.888 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

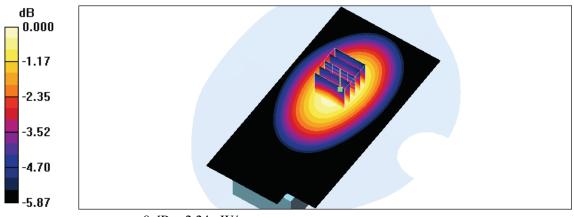
• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.30 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.5 V/m; Power Drift = -0.053 dB Peak SAR (extrapolated) = 2.81 W/kg

SAR(1 g) = 2.15 mW/g; SAR(10 g) = 1.68 mW/g Maximum value of SAR (measured) = 2.24 mW/g

0 dB = 2.24 mW/g

Appendix B 21/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/2/25 PM 05:42:27

Flat_GMRS CH30_Brain_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 467.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7250 MHz; $\sigma = 0.887 \text{ mho/m}$; $\varepsilon_r = 44$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.06, 7.06, 7.06); Calibrated: 2008/9/23

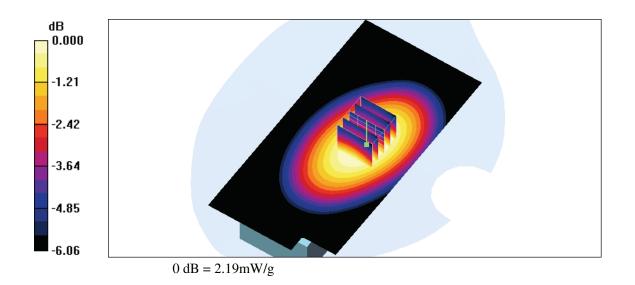
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn393; Calibrated: 2008/8/25

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.37 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.5 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 2.70 W/kg

SAR(1 g) = 2.1 mW/g; SAR(10 g) = 1.65 mW/gMaximum value of SAR (measured) = 2.19 mW/g

Appendix B 22/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 02:41:17

Flat_GMRS CH15_Headset_muscle_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

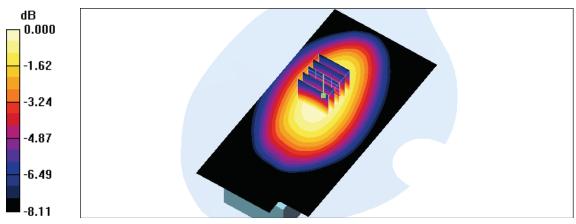
• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.36 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.0 V/m; Power Drift = -0.029 dB Peak SAR (extrapolated) = 3.15 W/kg

SAR(1 g) = 2.19 mW/g; SAR(10 g) = 1.6 mW/gMaximum value of SAR (measured) = 2.30 mW/g

0 dB = 2.30 mW/g

Appendix B 23/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 04:58:40

Flat_GMRS CH15_Headset_muscle_Alkaline_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

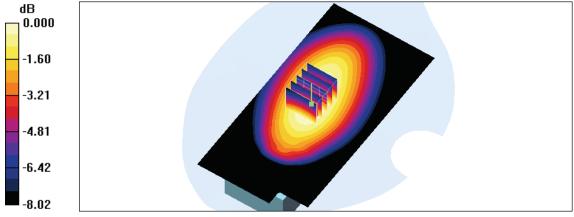
• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.38 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.1 V/m; Power Drift = -0.130 dB Peak SAR (extrapolated) = 3.09 W/kg SAR(1 g) = 2.2 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.31 mW/g

0 dB = 2.31 mW/g

Appendix B 24/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 03:00:06

Flat_GMRS CH4_Headset_muscle_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6375 MHz; $\sigma = 0.948$ mho/m; $\varepsilon_r = 56$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

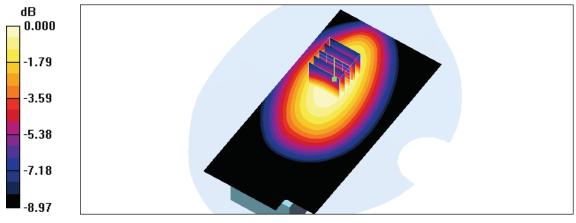
• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.35 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 47.1 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 3.07 W/kg

SAR(1 g) = 2.08 mW/g; SAR(10 g) = 1.48 mW/gMaximum value of SAR (measured) = 2.19 mW/g

0 dB = 2.19 mW/g

Appendix B 25/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/2/25 AM 01:38:03

Flat_GMRS CH6_Headset_muscle_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.6875 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6875 MHz; $\sigma = 0.936$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

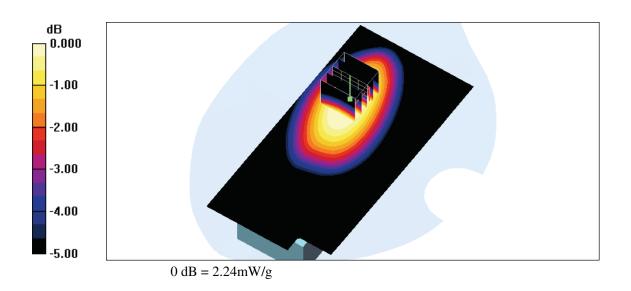
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn393; Calibrated: 2008/8/25

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.49 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 47.3 V/m; Power Drift = -0.131 dB

Peak SAR (extrapolated) = 3.11 W/kg

SAR(1 g) = 2.13 mW/g; SAR(10 g) = 1.52 mW/gMaximum value of SAR (measured) = 2.24 mW/g

Appendix B 26/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 03:19:57

Flat_GMRS CH22_Headset_muscle_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

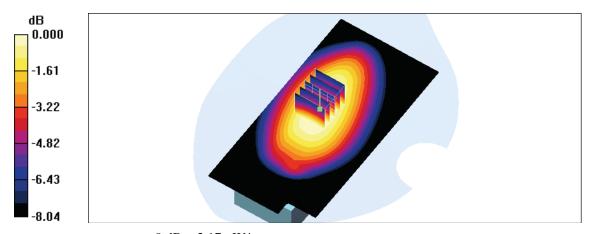
• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.25 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.6 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 2.98 W/kg

SAR(1 g) = 2.08 mW/g; SAR(10 g) = 1.52 mW/gMaximum value of SAR (measured) = 2.17 mW/g

0 dB = 2.17 mW/g

Appendix B 27/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/2/25 AM 11:56:22

Flat_GMRS CH30_Headset_muscle_Ni-MH_15mm

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 467.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7250 MHz; $\sigma = 0.938 \text{ mho/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

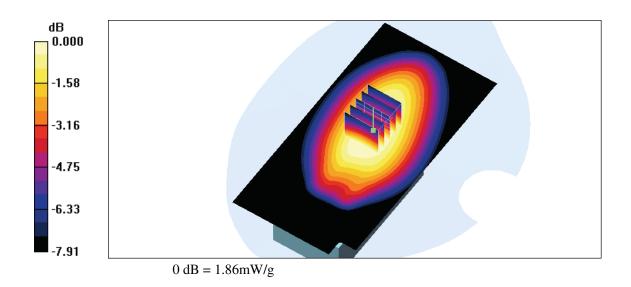
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn393; Calibrated: 2008/8/25

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.96 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 46.2 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 2.49 W/kg

SAR(1 g) = 1.78 mW/g; SAR(10 g) = 1.31 mW/g Maximum value of SAR (measured) = 1.86 mW/g

Appendix B 28/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 05:43:12

Flat_GMRS CH15_Headset_muscle_belt clip_Ni-MH

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.5500 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

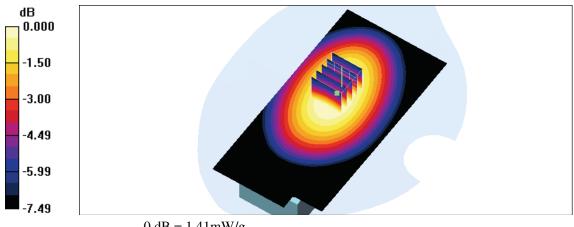
• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.48 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 41.5 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 1.35 mW/g; SAR(10 g) = 1 mW/gMaximum value of SAR (measured) = 1.41 mW/g

0 dB = 1.41 mW/g

Appendix B 29/34

Test Laboratory: A Test Lab Techno Corp.

Date/Time: 2009/1/20 PM 06:29:15

Flat_GMRS CH4_Headset_muscle_belt clip_Ni-MH

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.6375 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6375 MHz; $\sigma = 0.948$ mho/m; $\varepsilon_r = 56$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

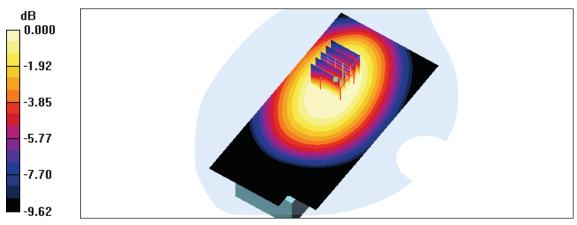
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.60 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 42.1 V/m; Power Drift = 0.141 dB

Peak SAR (extrapolated) = 1.81 W/kg

SAR(1 g) = 1.28 mW/g; SAR(10 g) = 0.946 mW/g Maximum value of SAR (measured) = 1.34 mW/g

0 dB = 1.34 mW/g

Appendix B 30/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/2/25 PM 01:43:49

Flat_GMRS CH6_Headset_muscle_belt clip_Ni-MH

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.6875 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.6875 MHz; $\sigma = 0.936$ mho/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

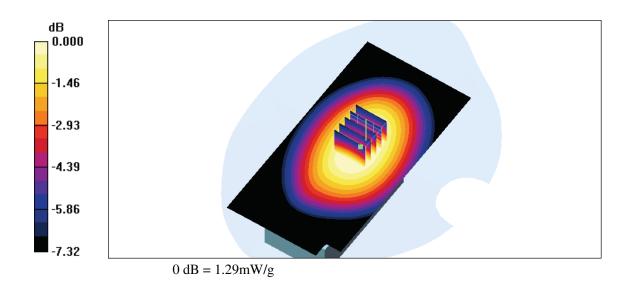
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn393; Calibrated: 2008/8/25

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.39 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.5 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.930 mW/g Maximum value of SAR (measured) = 1.29 mW/g

Appendix B 31/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 06:58:39

Flat_GMRS CH22_Headset_muscle_belt clip_Ni-MH

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

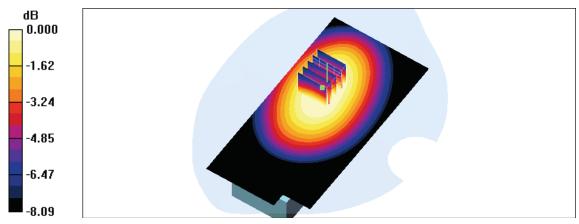
DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009


Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.55 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 42.6 V/m; Power Drift = -0.021 dB Peak SAR (extrapolated) = 1.98 W/kg SAR(1 g) = 1.4 mW/g; SAR(10 g) = 1.04 mW/g Maximum value of SAR (measured) = 1.45 mW/g

0 dB = 1.45 mW/g

Appendix B 32/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/1/20 PM 07:59:23

Flat_GMRS CH22_Headset_muscle_belt clip_Alkaline

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 462.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 462.7250 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

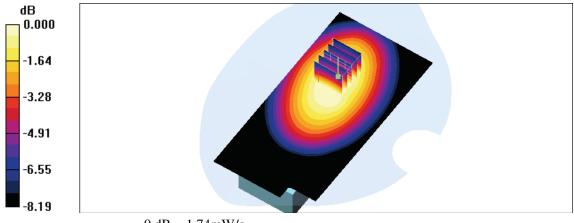
• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn541; Calibrated: 2008/2/21

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.84 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 46.3 V/m; Power Drift = -0.032 dB Peak SAR (extrapolated) = 2.35 W/kg

SAR(1 g) = 1.64 mW/g; SAR(10 g) = 1.2 mW/gMaximum value of SAR (measured) = 1.74 mW/g

0 dB = 1.74 mW/g

Appendix B 33/34

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2009/2/25 PM 04:36:57

Flat_GMRS CH30_Headset_muscle_belt clip_Ni-MH

DUT: MR355; Type: Two Way Radio with GMRS ,FRS and Weather Band Receiver; FCC ID: K7GMRCEE

Communication System: GMRS; Frequency: 467.7250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 467.7250 MHz; $\sigma = 0.938 \text{ mho/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ET3DV6 - SN1530; ConvF(7.41, 7.41, 7.41); Calibrated: 2008/9/23

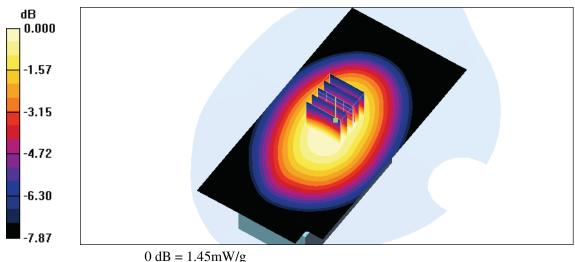
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn393; Calibrated: 2008/8/25

• Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Flat/Area Scan (71x141x1):


Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.52 mW/g

Flat/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.9 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 1.39 mW/g; SAR(10 g) = 1.03 mW/g Maximum value of SAR (measured) = 1.45 mW/g

0 015 1. 10 111 11 17

Appendix B 34/34

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D450V2 SN:1021 Calibration No.D450V2-1021_Mar08
- Dipole _ D450V2 SN:1021 Calibration No.D450V2-1021_Feb09
- Probe _ ET3DV6 SN:1530 Calibration No.ET3-1530_Sep08
- DAE _ DAE4 SN:541 Calibration No.DAE4-541_Feb08
- DAE _ DAE3 SN:393 Calibration No.DAE3-393_Aug08

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

ATL (Auden)

Certificate No: D450V2-1021_Mar08

CALIBRATION CERTIFICATE

Object D450V2 - SN: 1021

Calibration procedure(s) QA CAL-15.v5

Calibration Procedure for dipole validation kits below 800 MHz

Calibration date: March 19, 2008

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	08-Aug-07 (METAS, No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08
Reference Probe ET3DV6 (LF)	SN 1507	11-Jul-07 (SPEAG, No. ET3-1507_Jul07)	Jul-08
DAE4	SN 601	14-Mar-08 (SPEAG, No. DAE4-601_Mar08)	Mar-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	04-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	19-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct 08
	Name	Function	Signature
Calibrated by:	Marcel Fehr	Laboratory Technician	MAMILE
	Katja Pokovic	Technical Manager	

Issued: March 20, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Flat Phantom V4.4	Shell thickness: 6 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.1 ± 6 %	0.83 mho/m ± 6 %
Head TSL temperature during test	(22.4 ± 0.2) °C		-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.95 mW / g
SAR normalized	normalized to 1W	4.90 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	4.98 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.30 mW/g
SAR normalized	normalized to 1W	3.27 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	3.29 mW / g ± 17.6 % (k=2)

Certificate No: D450V2-1021_Mar08

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	0.92 mho/m ± 6 %
Body TSL temperature during test	(22.7 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	398 mW input power	1.88 mW/g
SAR normalized	normalized to 1W	4.72 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	4.67 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.26 mW / g
SAR normalized	normalized to 1W	3.17 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	3.13 mW / g ± 17.6 % (k=2)

Certificate No: D450V2-1021_Mar08

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.7 Ω - 5.3 jΩ	
Return Loss	- 22.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	53.4 Ω - 7.8 jΩ	
Return Loss	- 21.8 dB	

General Antenna Parameters and Design

	- Val
Electrical Delay (one direction)	1.352 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	February 04, 2004	

DASY4 Validation Report for Head TSL

Date/Time: 19.03.2008 11:46:19

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450;

Medium parameters used: f = 450 MHz; $\sigma = 0.83 \text{ mho/m}$; $\varepsilon_r = 43.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(6.61, 6.61, 6.61); Calibrated: 11.07.2007

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

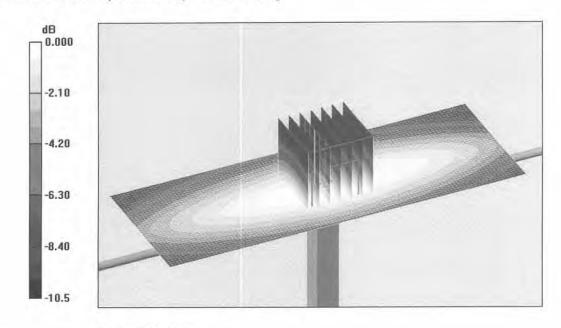
Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; ;

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=398mW/Area Scan (41x111x1):

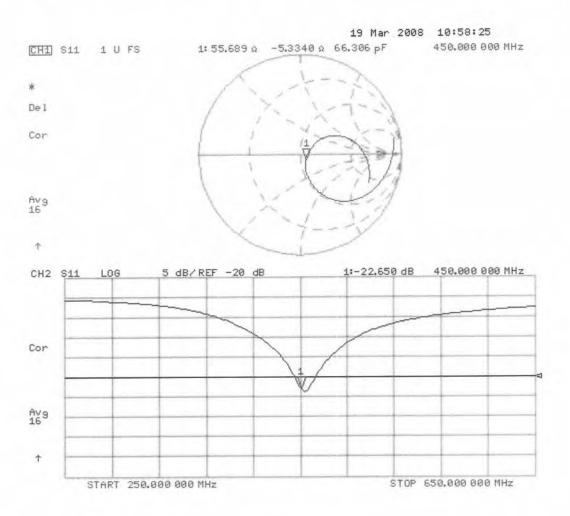
Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.07 mW/g


d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.1 V/m; Power Drift = -0.031 dB


Peak SAR (extrapolated) = 2.91 W/kg

SAR(1 g) = 1.95 mW/g; SAR(10 g) = 1.3 mW/g Maximum value of SAR (measured) = 2.09 mW/g

0 dB = 2.09 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 19.03.2008 16:35:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: MSL450:

Medium parameters used: f = 450 MHz; $\sigma = 0.92 \text{ mho/m}$; $\varepsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(7.18, 7.18, 7.18); Calibrated: 11.07.2007

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4;;

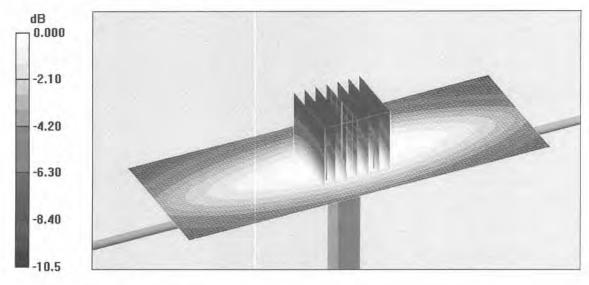
Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=398mW/Area Scan (41x111x1):

Measurement grid: dx=15mm, dy=15mm

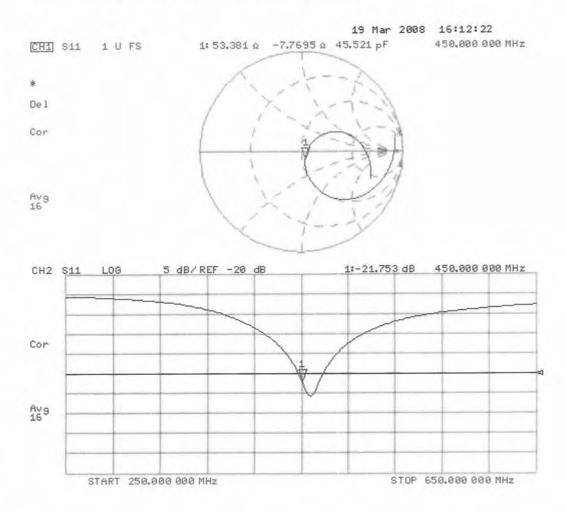
Maximum value of SAR (interpolated) = 1.98 mW/g

d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 48.2 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 2.84 W/kg


SAR(1 g) = 1.88 mW/g; SAR(10 g) = 1.26 mW/g

Maximum value of SAR (measured) = 2.01 mW/g

0 dB = 2.01 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

ATL (Auden)

Certificate No: D450V2-1021_Feb09

CALIBRATION CERTIFICATE

Object

D450V2 - SN: 1021

Calibration procedure(s)

QA CAL-15.v5

Calibration Procedure for dipole validation kits below 800 MHz

Calibration date:

February 02, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	01-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	01-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Jul-08 (No. 217-00865)	Jul-09
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Mar-09
Type-N mismatch combination	SN: 5047.2 / 06327	01-Jul-08 (No. 217-00867)	Jul-09
Reference Probe ET3DV6 (LF)	SN: 1507	27-Jun-08 (No. ET3-1507_Jun08)	Jun-09
DAE4	SN: 601	14-Mar-08 (No. DAE4-601_Mar08)	Mar-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	04-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Ar lla
Approved by:	Katja Pokovic	Technical Manager	.20 100

Issued: February 4, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D450V2-1021_Feb09

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Flat Phantom V4.4	Shell thickness: 6 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan Resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

the following parameters and calculations were	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.3 ± 6 %	0.83 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	1.90 mW / g
SAR normalized	normalized to 1W	4.77 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	4.96 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.27 mW / g
SAR normalized	normalized to 1W	3.19 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	3.30 mW / g ± 17.6 % (k=2)

Certificate No: D450V2-1021_Feb09

Orrection to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were a	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 6 %	0.89 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	398 mW input power	1.81 mW / g
SAR normalized	normalized to 1W	4.55 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	4.69 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.22 mW / g
SAR normalized	normalized to 1W	3.07 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	3.16 mW / g ± 17.6 % (k=2)

Certificate No: D450V2-1021_Feb09

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.2 Ω - 2.7 jΩ	
Return Loss	- 22.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	54.1 Ω - 8.1 jΩ	
Return Loss	- 21.2 dB	

General Antenna Parameters and Design

1.352 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	February 04, 2004	

DASY5 Validation Report for Head TSL

Date/Time: 02.02.2009 11:59:48

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.83$ mho/m; $\epsilon_r = 43.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(6.66, 6.66, 6.66); Calibrated: 27.06.2008

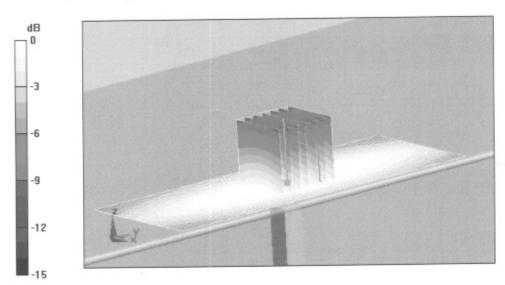
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial: 1002

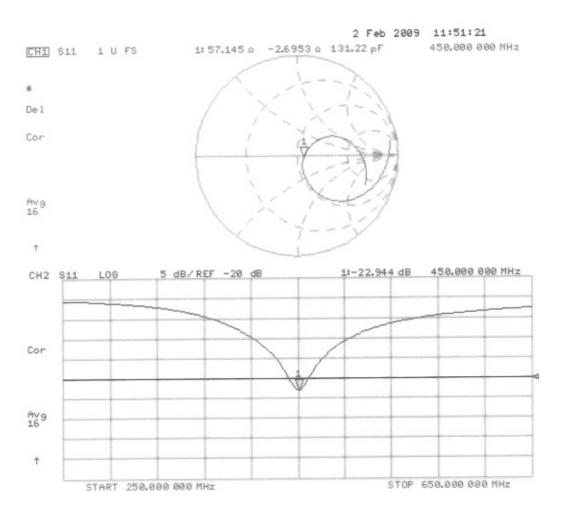
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

d=15mm, Pin=398mW/Area Scan (41x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.02 mW/g


d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.8 V/m; Power Drift = -0.033 dB

Peak SAR (extrapolated) = 2.83 W/kg


SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.27 mW/g

Maximum value of SAR (measured) = 2.04 mW/g

0 dB = 2.04 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 02.02.2009 13:32:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1021

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: MSL450

Medium parameters used: f = 450 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(7.22, 7.22, 7.22); Calibrated: 27.06.2008

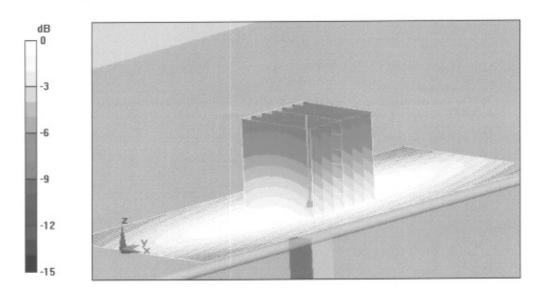
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial: 1002

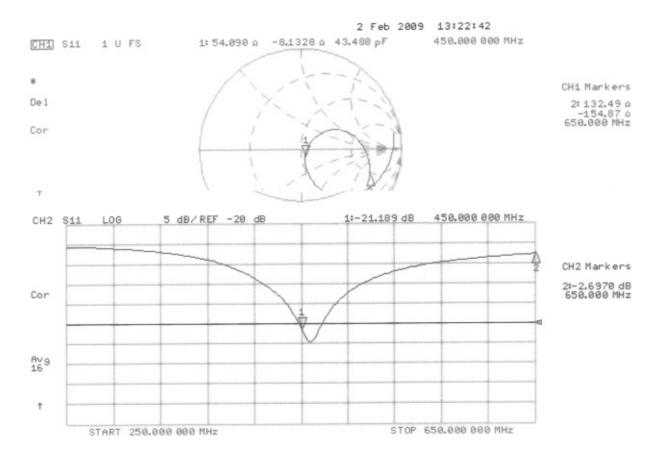
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

d=15mm, Pin=398mW/Area Scan (41x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.92 mW/g


d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 48.4 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 2.71 W/kg


SAR(1 g) = 1.81 mW/g; SAR(10 g) = 1.22 mW/g

Maximum value of SAR (measured) = 1.94 mW/g

0 dB = 1.94 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schwelzerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ATL (Auden)

Certificate No: ET3-1530 Sep08

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1530

Calibration procedure(s) QA CAL-01.v6, QA CAL-12.v5 and QA CAL-23.v3

Calibration procedure for dosimetric E-field probes

Calibration date: September 23, 2008

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	1-Jul-08 (No. 217-00865)	Jul-09
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	1-Jul-08 (No. 217-00866)	Jul-09
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013_Jan08)	Jan-09
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	2C-KJ
Approved by:	Fin Bomholt	R&D Director 7	Kentrolf-

Issued: September 24, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1530 Sep08

Probe ET3DV6

SN:1530

Manufactured: Ju

Last calibrated:

Recalibrated:

July 15, 2000

September 26, 2007

September 23, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1530

S	Sensitivity in Free Space ^A			Diode C	ompression	В
	NormX	1.44 ± 10.1%	$\mu V/(V/m)^2$	DCP X	96 mV	
	NormY	1.57 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	90 mV	
	NormZ	1.49 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	95 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

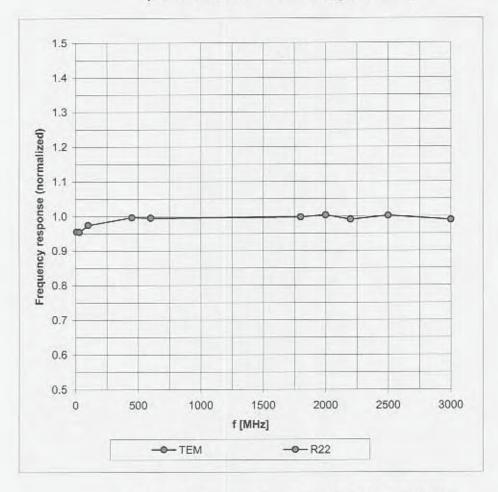
Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	11.3	6.8
SAR _{be} [%]	With Correction Algorithm	0.8	0.2

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.6	7.5
SAR _{be} [%]	With Correction Algorithm	0.9	0.2

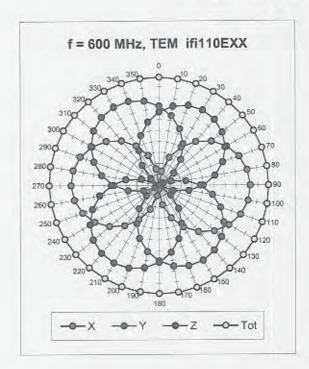
Sensor Offset

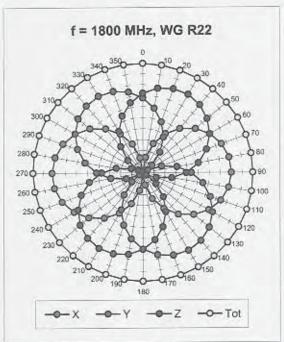
Probe Tip to Sensor Center 2.7 mm

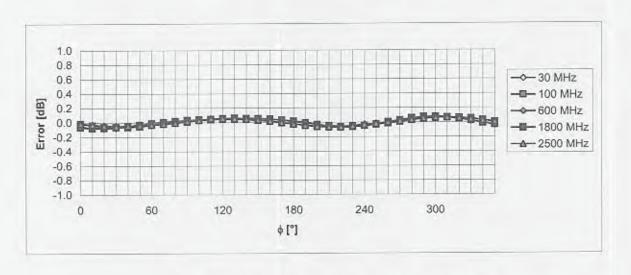

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

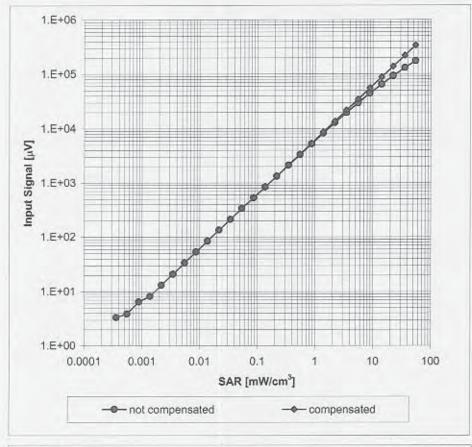

Frequency Response of E-Field

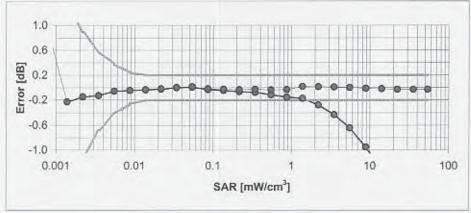

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

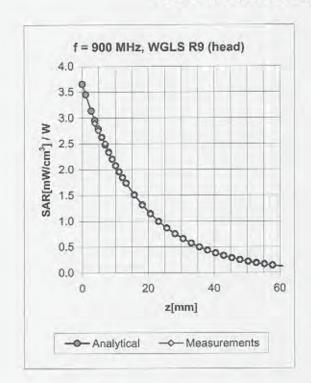
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

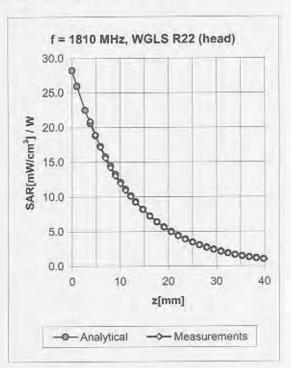




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

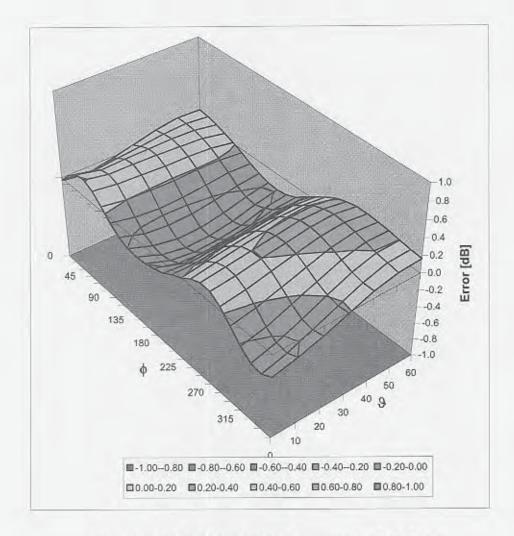
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
450	±50/±100	Head	43.5 ± 5%	0.87 ± 5%	0.38	1.92	7.06	± 13.3% (k=2)
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.70	2.13	6.44	± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.81	2.02	5.39	± 11.0% (k=2)
2000	±50/±100	Head	40.0 ± 5%	1.40 ± 5%	0.89	1.82	5.25	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.90	1.55	4.79	± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.31	1.94	7.41	± 13.3% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.63	2.04	6.24	± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.98	1.80	4.88	± 11.0% (k=2)
2000	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	1.00	1.76	4.68	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.95	1.65	4.11	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (¢, ୬), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ATL (Auden)

Certificate No: DAE4-541 Feb08

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BA - SN: 541

Calibration procedure(s) QA CAL-06.v12

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: February 21, 2008

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702	SN: 6295803	04-Oct-07 (Elcal AG, No: 6467)	Oct-08
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-07 (Elcal AG, No: 6465)	Oct-08
The second secon			
Secondary Standards	ID#	Check Date (in house)	Scheduled Check

Calibrated by:

Name Dominique Steffen Function Technician Signature

Approved by:

Fin Bomholt

R&D Director

. A Va.

Issued: February 21, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-541_Feb08

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

 $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1}\mu\mbox{V} \;, & \mbox{full range} = & \mbox{-100...+300 mV} \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \;, & \mbox{full range} = & \mbox{-1......+3mV} \end{array}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	404.553 ± 0.1% (k=2)	404.428 ± 0.1% (k=2)	404.184 ± 0.1% (k=2)
Low Range	3.97173 ± 0.7% (k=2)	3.93684 ± 0.7% (k=2)	3.96862 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	290 ° ± 1 °
---	-------------

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	200000	199999.9	0.00
Channel X + Input	20000	20002.87	0.01
Channel X - Input	20000	-19997.28	-0.01
Channel Y + Input	200000	199999.5	0.00
Channel Y + Input	20000	20001.43	0.01
Channel Y - Input	20000	-20004.21	0.02
Channel Z + Input	200000	200000	0.00
Channel Z + Input	20000	20003.17	0.02
Channel Z - Input	20000	-19998.79	-0.01

Low Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	2000	1999.9	0.00
Channel X + Input	200	199.79	-0.11
Channel X - Input	200	-200.09	0.05
Channel Y + Input	2000	2000.1	0.00
Channel Y + Input	200	198.90	-0.55
Channel Y - Input	200	-200.97	0.48
Channel Z + Input	2000	2000	0.00
Channel Z + Input	200	199.31	-0.34
Channel Z - Input	200	-201.36	0.68

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	11.16	10.95
	- 200	-9.91	-9.67
Channel Y	200	1.42	1.42
	- 200	-1.87	-2.26
Channel Z	200	0.58	0.99
	- 200	-1.95	-1.99

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		2.35	0.20
Channel Y	200	-0.03	-	4.55
Channel Z	200	-0.58	1.56	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15942	16726
Channel Y	15760	15821
Channel Z	15963	16142

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.11	-0.75	0.62	0.26
Channel Y	-0.69	-1.68	1.12	0.40
Channel Z	-0.80	-1.52	0.03	0.27

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	198.4
Channel Y	0.2000	202.1
Channel Z	0.2000	202.2

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9		
Supply (- Vcc)	-7.6		

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ATL (Auden)

Accreditation No.: SCS 108

Certificate No: DAE3-393 Aug08

CALI	DD/	MOLT	CEDT	TEICA	TE
CAL	DKA	VION	CERT	IFICA	

Object

DAE3 - SD 000 D03 AA - SN: 393

Calibration procedure(s)

QA CAL-06.v12

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

August 25, 2008

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702	SN: 6295803	04-Oct-07 (No: 6467)	Oct-08
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-07 (No: 6465)	Oct-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check

Calibrated by:

Name

Function

Signature

Dominique Steffen

Technician

Approved by:

Fin Bomholt

R&D Director

Issued: August 25, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-393_Aug08

Page 1 of 5

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =

 $6.1 \mu V$,

full range = -100...+300 mV

full range = -1.....+3mV

Low Range: 1LSB = 61nV, full range = -1......+3ii
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	403.922 ± 0.1% (k=2)	404.197 ± 0.1% (k=2)	404.112 ± 0.1% (k=2)
Low Range	3.99613 ± 0.7% (k=2)	3.96056 ± 0.7% (k=2)	3.96224 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	305 ° ± 1 °

Appendix

1. DC Voltage Linearity

High Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	200000	200000.5	0.00
Channel X	+ Input	20000	20006.70	0.03
Channel X	- Input	20000	-19995.73	-0.02
Channel Y	+ Input	200000	200000.1	0.00
Channel Y	+ Input	20000	20003.14	0.02
Channel Y	- Input	20000	-19996.72	-0.02
Channel Z	+ Input	200000	200000.1	0.00
Channel Z	+ Input	20000	20000.43	0.00
Channel Z	- Input	20000	-20009.12	0.05

Low Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	2000	2000	0.00
Channel X + Input	200	199.94	-0.03
Channel X - Input	200	-199.74	-0.13
Channel Y + Input	2000	2000	0.00
Channel Y + Input	200	199.41	-0.30
Channel Y - Input	200	-200.68	0.34
Channel Z + Input	2000	1999.9	0.00
Channel Z + Input	200	199.05	-0.47
Channel Z - Input	200	-201.02	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	12.56	11.64
	- 200	-10.20	-11.30
Channel Y	200	9.63	9.29
	- 200	-10.67	-11.08
Channel Z	200	4.03	3.82
	- 200	-5,44	-5.95

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	3.90	1.05
Channel Y	200	1.67		5.27
Channel Z	200	-0.69	1.48	

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16160	16805
Channel Y	16023	16373
Channel Z	16458	17457

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.40	-0.62	1.30	0.25
Channel Y	-0.40	-0.88	0.29	0.22
Channel Z	-0.18	-1.74	2.11	0.48

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	198.3
Channel Y	0.2000	198.2
Channel Z	0.2000	198.1

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9