

Page 1 of106

# **TEST REPORT**

| Product Name           | : | IP Camera                        |
|------------------------|---|----------------------------------|
| Brand Mark             | : | MIDLAND                          |
| Model No.              | : | IP TRUCK CAMERA PRO              |
| FCC ID                 | : | K6M-IPC                          |
| Report Number          | : | BLA-EMC-202206-A2102             |
| Date of Sample Receipt | : | 2022/6/7                         |
| Date of Test           | : | 2022/6/7 to 2022/6/22            |
| Date of Issue          | : | 2022/6/22                        |
| Test Standard          | : | 47 CFR Part 15, Subpart C 15.247 |
| Test Result            | : | Pass                             |

Prepared for:

# Midland Europe srl

# Via R. Sevardi, 7 42124 Reggio Emilia Italy

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: (hatlie Approved by: Bhe Thong







#### **REPORT REVISE RECORD**

| Version No. Date |  | Description |  |
|------------------|--|-------------|--|
| 00 2022/6/22     |  | Original    |  |



# TABLE OF CONTENTS

| 1  | ٦    | TEST SUMMARY                                        | 5  |
|----|------|-----------------------------------------------------|----|
| 2  | (    | GENERAL INFORMATION                                 | 6  |
| 3  | (    | GENERAL DESCRIPTION OF E.U.T.                       | 6  |
| 4  | ٦    | TEST ENVIRONMENT                                    | 7  |
| 5  | -    | TEST MODE                                           |    |
|    |      | MEASUREMENT UNCERTAINTY                             |    |
| 6  | ľ    | DESCRIPTION OF SUPPORT UNIT                         |    |
| 7  |      |                                                     |    |
| 8  | L    | LABORATORY LOCATION                                 | 8  |
| 9  |      | TEST INSTRUMENTS LIST                               |    |
| 10 | F    | POWER SPECTRUM DENSITY                              | 12 |
|    | 10.1 | 1 LIMITS                                            | 12 |
|    | 10.2 |                                                     |    |
|    | 10.3 |                                                     |    |
| 11 |      | CONDUCTED PEAK OUTPUT POWER                         | 13 |
| •• |      |                                                     |    |
|    | 11.1 |                                                     |    |
|    | 11.2 |                                                     |    |
|    | 11.3 | 3 TEST DATA                                         |    |
| 12 | (    | CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ) | 15 |
|    | 12.2 | 1 LIMITS                                            | 15 |
|    | 12.2 | 2 BLOCK DIAGRAM OF TEST SETUP                       | 15 |
|    | 12.3 | 3 PROCEDURE                                         | 16 |
|    | 12.4 | 4 TEST DATA                                         |    |
| 13 |      | ANTENNA REQUIREMENT                                 | 19 |
|    | 13.2 | 1 CONCLUSION                                        | 10 |
|    | -    |                                                     |    |
| 14 | F    | RADIATED SPURIOUS EMISSIONS                         | 20 |
|    | 14.: | 1 LIMITS                                            | 20 |
|    | 14.2 | 2 BLOCK DIAGRAM OF TEST SETUP                       | 21 |
|    | 14.3 | 3 PROCEDURE                                         | 22 |
|    | 14.4 | 4 TEST DATA                                         | 23 |



| 15  | RAD   | IATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS | 31  |
|-----|-------|----------------------------------------------------|-----|
| 1   | 5.1   | LIMITS                                             | 31  |
| 1   | 5.2   | BLOCK DIAGRAM OF TEST SETUP                        | 32  |
| 1   | 5.3   | PROCEDURE                                          | 33  |
| 1   | 5.4   | TEST DATA                                          | 34  |
| 16  | CON   | IDUCTED SPURIOUS EMISSIONS                         | 50  |
| 1   | 6.1   | LIMITS                                             | 50  |
| 1   | 6.2   | BLOCK DIAGRAM OF TEST SETUP                        |     |
| 1   | 6.3   | TEST DATA                                          |     |
| 17  | CON   | IDUCTED BAND EDGES MEASUREMENT                     | 52  |
| 1   | 7.1   | LIMITS                                             |     |
| 1   | 7.2   | BLOCK DIAGRAM OF TEST SETUP                        | 52  |
| 1   | 7.3   | TEST DATA                                          |     |
| 18  | ΜΙΝΙ  | MUM 6DB BANDWIDTH                                  | 54  |
| 1   | 8.1   | LIMITS                                             | 54  |
| 1   | 8.2   | BLOCK DIAGRAM OF TEST SETUP                        |     |
| 1   | 8.3   | TEST DATA                                          |     |
| 19  | APP   | ENDIX                                              | 55  |
| APF | PENDI | X A: PHOTOGRAPHS OF TEST SETUP                     | 105 |



# 1 TEST SUMMARY

| Test item                                                    | Test Requirement                    | Test Method                                                   | Class/Severity                                           | Result |
|--------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|--------|
| Power Spectrum<br>Density                                    | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10<br>(2013) Section<br>11.10.2                      | 47 CFR Part 15, Subpart C<br>15.247(e)                   | Pass   |
| Conducted Peak<br>Output Power                               | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10<br>(2013) Section<br>7.8.5 & Section<br>11.9.1    | 47 CFR Part 15, Subpart C<br>15.247(b)(1) & 15.247(b)(3) | Pass   |
| Conducted<br>Emissions at AC<br>Power Line<br>(150kHz-30MHz) | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10<br>(2013) Section<br>6.2                          | 47 CFR Part 15, Subpart C<br>15.207                      | Pass   |
| Antenna<br>Requirement                                       | 47 CFR Part 15,<br>Subpart C 15.247 | N/A                                                           | 47 CFR Part 15, Subpart C<br>15.203 & 15.247(c)          | Pass   |
| Radiated Spurious<br>Emissions                               | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10<br>(2013) Section<br>6.4,6.5,6.6                  | 47 CFR Part 15, Subpart C<br>15.209 & 15.247(d)          | Pass   |
| Radiated Emissions<br>which fall in the<br>restricted bands  | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10<br>(2013) Section<br>6.10.5                       | 47 CFR Part 15, Subpart C<br>15.209 & 15.247(d)          | Pass   |
| Conducted Spurious<br>Emissions                              | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10<br>(2013) Section<br>7.8.6 & Section<br>11.11     | 47 CFR Part 15, Subpart C<br>15.247(d)                   | Pass   |
| Conducted Band<br>Edges Measurement                          | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10<br>(2013) Section<br>7.8.8 & Section<br>11.13.3.2 | 47 CFR Part 15, Subpart C<br>15.247(d)                   | Pass   |
| Minimum 6dB<br>Bandwidth                                     | 47 CFR Part 15,<br>Subpart C 15.247 | ANSI C63.10<br>(2013) Section<br>11.8.1                       | 47 CFR Part 15, Subpart C<br>15.247a(2)                  | Pass   |
|                                                              |                                     |                                                               |                                                          |        |



# 2 GENERAL INFORMATION

| Applicant      | Midland Europe srl                          |  |  |
|----------------|---------------------------------------------|--|--|
| Address        | Via R. Sevardi, 7 42124 Reggio Emilia Italy |  |  |
| Manufacturer   | Midland Europe srl                          |  |  |
| Address        | Via R. Sevardi, 7 42124 Reggio Emilia Italy |  |  |
| Factory        | Midland Europe srl                          |  |  |
| Address        | Via R. Sevardi, 7 42124 Reggio Emilia Italy |  |  |
| Product Name   | IP Camera                                   |  |  |
| Test Model No. | IP TRUCK CAMERA PRO                         |  |  |

# **3 GENERAL DESCRIPTION OF E.U.T.**

| Hardware Version                                                                                 | 676-A0-A                                                                   |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Software Version                                                                                 | V1.6.2_20211224                                                            |
| Operation Frequency:                                                                             | 802.11b/g/n(HT20): 2412MHz to 2462MHz<br>802.11n(HT40): 2422MHz to 2452MHz |
| Modulation Type: 802.11b: DSSŚ (CCK, DQPSK, DBPSK)<br>802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK) |                                                                            |
| Channel Spacing:                                                                                 | 5MHz                                                                       |
| Number of Channels:                                                                              | 802.11b/g/n(HT20):11<br>802.11n(HT40):7                                    |
| Antenna Type:                                                                                    | External antenna                                                           |
| Antenna Gain:                                                                                    | 5dB(Provided by the applicant)                                             |



# 4 TEST ENVIRONMENT

| Environment | Temperature | Voltage |
|-------------|-------------|---------|
|-------------|-------------|---------|

# 5 TEST MODE

| TEST MODE                                                                                             | TEST MODE DESCRIPTION                                                                          |  |  |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| Transmitting                                                                                          | Keep the EUT in continuously transmitting mode with modulation. (The duty cycle is             |  |  |  |
| mode                                                                                                  | greater than 98%)                                                                              |  |  |  |
| Remark: 802.11                                                                                        | Remark: 802.11b/g/n(HT20) and 802.11n(HT40) all have been tested, During the radiated spurious |  |  |  |
| emission test, 802.11b/11g/11nH20/11nH40 modulations all have been tested, only worse case 802.11b is |                                                                                                |  |  |  |
| reported.                                                                                             |                                                                                                |  |  |  |

# **6 MEASUREMENT UNCERTAINTY**

| Parameter                                         | Expanded Uncertainty (Confidence of 95%) |  |  |
|---------------------------------------------------|------------------------------------------|--|--|
| Radiated Emission(9kHz-30MHz)                     | ±4.34dB                                  |  |  |
| Radiated Emission(30Mz-1000MHz)                   | ±4.24dB                                  |  |  |
| Radiated Emission(1GHz-18GHz)                     | ±4.68dB                                  |  |  |
| AC Power Line Conducted<br>Emission(150kHz-30MHz) | ±3.45dB                                  |  |  |

-



# 7 DESCRIPTION OF SUPPORT UNIT

| Device Type | Manufacturer | Model Name | Serial No. | Remark |
|-------------|--------------|------------|------------|--------|
| PC          | HASEE        | K610D      | N/A        | N/A    |

# 8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.



# 9 TEST INSTRUMENTS LIST

| Test Equipment Of Power Spectrum Density |              |        |            |           |           |
|------------------------------------------|--------------|--------|------------|-----------|-----------|
| Equipment                                | Manufacturer | Model  | S/N        | Cal.Date  | Cal.Due   |
| Spectrum                                 | R&S          | FSP40  | 100817     | 24/9/2021 | 23/9/2022 |
| Spectrum                                 | Agilent      | N9020A | MY49100060 | 24/9/2021 | 23/9/2022 |
| Signal Generator                         | Agilent      | N5182A | MY49060650 | 24/9/2021 | 23/9/2022 |
| Signal Generator                         | Agilent      | E8257D | MY44320250 | 24/9/2021 | 23/9/2022 |

| Test Equipment Of Conducted Peak Output Power |              |        |            |           |           |
|-----------------------------------------------|--------------|--------|------------|-----------|-----------|
| Equipment                                     | Manufacturer | Model  | S/N        | Cal.Date  | Cal.Due   |
| Spectrum                                      | R&S          | FSP40  | 100817     | 24/9/2021 | 23/9/2022 |
| Spectrum                                      | Agilent      | N9020A | MY49100060 | 24/9/2021 | 23/9/2022 |
| Signal Generator                              | Agilent      | N5182A | MY49060650 | 24/9/2021 | 23/9/2022 |
| Signal Generator                              | Agilent      | E8257D | MY44320250 | 24/9/2021 | 23/9/2022 |

| Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz) |              |         |               |            |            |
|-----------------------------------------------------------------------|--------------|---------|---------------|------------|------------|
| Equipment                                                             | Manufacturer | Model   | S/N           | Cal.Date   | Cal.Due    |
| Shield room                                                           | SKET         | 833     | N/A           | 25/11/2020 | 24/11/2023 |
| Receiver                                                              | R&S          | ESPI3   | 101082        | 24/9/2021  | 23/9/2022  |
| LISN                                                                  | R&S          | ENV216  | 3560.6550.15  | 24/9/2021  | 23/9/2022  |
| LISN                                                                  | AT           | AT166-2 | AKK1806000003 | 26/9/2021  | 25/9/2022  |
| EMI software                                                          | EZ           | EZ-EMC  | N/A           | N/A        | N/A        |

| Test Equipment Of Antenna Requirement |                                                   |  |  |  |
|---------------------------------------|---------------------------------------------------|--|--|--|
| Equipment                             | Equipment Manufacturer Model S/N Cal.Date Cal.Due |  |  |  |



| Test Equipment Of Radiated Spurious Emissions |              |              |                  |            |           |
|-----------------------------------------------|--------------|--------------|------------------|------------|-----------|
| Equipment                                     | Manufacturer | Model        | S/N              | Cal.Date   | Cal.Due   |
| Chamber                                       | SKET         | 966          | N/A              | 10/11/2020 | 9/11/2023 |
| Spectrum                                      | R&S          | FSP40        | 100817           | 24/9/2021  | 23/9/2022 |
| Receiver                                      | R&S          | ESR7         | 101199           | 24/9/2021  | 23/9/2022 |
| broadband<br>Antenna                          | Schwarzbeck  | VULB9168     | 00836<br>P:00227 | 26/9/2020  | 25/9/2022 |
| Horn Antenna                                  | Schwarzbeck  | 9120D        | 01892<br>P:00331 | 26/9/2020  | 25/9/2022 |
| Amplifier                                     | SKET         | LNPA-0118-45 | N/A              | 24/9/2021  | 23/9/2022 |
| EMI software                                  | EZ           | EZ-EMC       | N/A              | N/A        | N/A       |
| Loop antenna                                  | SCHNARZBECK  | FMZB1519B    | 00102            | 26/9/2020  | 25/9/2022 |
|                                               |              |              |                  | ·          |           |

| Test Equipment Of Radiated Emissions which fall in the restricted bands |              |              |                  |            |           |
|-------------------------------------------------------------------------|--------------|--------------|------------------|------------|-----------|
| Equipment                                                               | Manufacturer | Model        | S/N              | Cal.Date   | Cal.Due   |
| Chamber                                                                 | SKET         | 966          | N/A              | 10/11/2020 | 9/11/2023 |
| Spectrum                                                                | R&S          | FSP40        | 100817           | 24/9/2021  | 23/9/2022 |
| Receiver                                                                | R&S          | ESR7         | 101199           | 24/9/2021  | 23/9/2022 |
| broadband<br>Antenna                                                    | Schwarzbeck  | VULB9168     | 00836<br>P:00227 | 26/9/2020  | 25/9/2022 |
| Horn Antenna                                                            | Schwarzbeck  | 9120D        | 01892<br>P:00331 | 26/9/2020  | 25/9/2022 |
| Amplifier                                                               | SKET         | LNPA-0118-45 | N/A              | 24/9/2021  | 23/9/2022 |
| EMI software                                                            | EZ           | EZ-EMC       | N/A              | N/A        | N/A       |
| Loop antenna                                                            | SCHNARZBECK  | FMZB1519B    | 00102            | 26/9/2020  | 25/9/2022 |

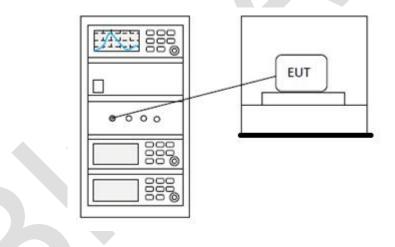


| Test Equipment Of Conducted Spurious Emissions |              |        |            |           |           |
|------------------------------------------------|--------------|--------|------------|-----------|-----------|
| Equipment                                      | Manufacturer | Model  | S/N        | Cal.Date  | Cal.Due   |
| Spectrum                                       | R&S          | FSP40  | 100817     | 24/9/2021 | 23/9/2022 |
| Spectrum                                       | Agilent      | N9020A | MY49100060 | 24/9/2021 | 23/9/2022 |
| Signal Generator                               | Agilent      | N5182A | MY49060650 | 24/9/2021 | 23/9/2022 |
| Signal Generator                               | Agilent      | E8257D | MY44320250 | 24/9/2021 | 23/9/2022 |
|                                                |              |        |            |           |           |

| Test Equipment Of Conducted Band Edges Measurement |              |        |            |           |           |
|----------------------------------------------------|--------------|--------|------------|-----------|-----------|
| Equipment                                          | Manufacturer | Model  | S/N        | Cal.Date  | Cal.Due   |
| Spectrum                                           | R&S          | FSP40  | 100817     | 24/9/2021 | 23/9/2022 |
| Spectrum                                           | Agilent      | N9020A | MY49100060 | 24/9/2021 | 23/9/2022 |
| Signal Generator                                   | Agilent      | N5182A | MY49060650 | 24/9/2021 | 23/9/2022 |
| Signal Generator                                   | Agilent      | E8257D | MY44320250 | 24/9/2021 | 23/9/2022 |
|                                                    |              |        |            |           | 1         |

| Test Equipment Of Minimum 6dB Bandwidth |              |        |            |           |           |
|-----------------------------------------|--------------|--------|------------|-----------|-----------|
| Equipment                               | Manufacturer | Model  | S/N        | Cal.Date  | Cal.Due   |
| Spectrum                                | R&S          | FSP40  | 100817     | 24/9/2021 | 23/9/2022 |
| Spectrum                                | Agilent      | N9020A | MY49100060 | 24/9/2021 | 23/9/2022 |
| Signal Generator                        | Agilent      | N5182A | MY49060650 | 24/9/2021 | 23/9/2022 |
| Signal Generator                        | Agilent      | E8257D | MY44320250 | 24/9/2021 | 23/9/2022 |




# **10 POWER SPECTRUM DENSITY**

| Test Standard          | 47 CFR Part 15, Subpart C 15.247   |  |  |  |
|------------------------|------------------------------------|--|--|--|
| Test Method            | ANSI C63.10 (2013) Section 11.10.2 |  |  |  |
| Test Mode (Pre-Scan)   | ТХ                                 |  |  |  |
| Test Mode (Final Test) | ТХ                                 |  |  |  |
| Tester                 | Charlie                            |  |  |  |
| Temperature            | <b>25</b> ℃                        |  |  |  |
| Humidity               | 60%                                |  |  |  |

#### 10.1 LIMITS

**Limit:**  $\leq$ 8dBm in any 3 kHz band during any time interval of continuous transmission

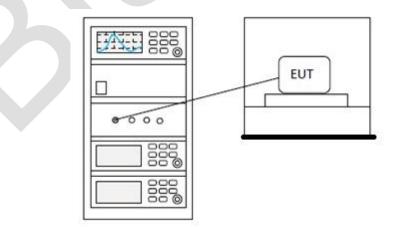
## 10.2 BLOCK DIAGRAM OF TEST SETUP



10.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details




# 11 CONDUCTED PEAK OUTPUT POWER

| Test Standard          | 47 CFR Part 15, Subpart C 15.247                  |  |  |  |
|------------------------|---------------------------------------------------|--|--|--|
| Test Method            | ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1 |  |  |  |
| Test Mode (Pre-Scan)   | ТХ                                                |  |  |  |
| Test Mode (Final Test) | ТХ                                                |  |  |  |
| Tester                 | Charlie                                           |  |  |  |
| Temperature            | <b>25</b> ℃                                       |  |  |  |
| Humidity               | 60%                                               |  |  |  |

#### 11.1 LIMITS

| Frequency range(MHz) | Output power of the intentional radiator(watt) |  |  |  |
|----------------------|------------------------------------------------|--|--|--|
|                      | 1 for $\geq$ 50 hopping channels               |  |  |  |
| 902-928              | 0.25 for $25 \le$ hopping channels $< 50$      |  |  |  |
|                      | 1 for digital modulation                       |  |  |  |
|                      | 1 for ≥75 non-overlapping hopping channels     |  |  |  |
| 2400-2483.5          | 0.125 for all other frequency hopping systems  |  |  |  |
|                      | 1 for digital modulation                       |  |  |  |
| 5725 5950            | 1 for frequency hopping systems and digital    |  |  |  |
| 5725-5850            | modulation                                     |  |  |  |

# 11.2 BLOCK DIAGRAM OF TEST SETUP





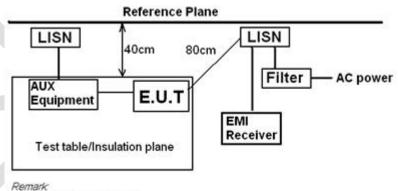
Report No.: BLA-EMC-202206-A2102 Page 14 of 106

## 11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details



# 12 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


| Test Standard          | 47 CFR Part 15, Subpart C 15.247 |  |  |  |
|------------------------|----------------------------------|--|--|--|
| Test Method            | ANSI C63.10 (2013) Section 6.2   |  |  |  |
| Test Mode (Pre-Scan)   | ТХ                               |  |  |  |
| Test Mode (Final Test) | ТХ                               |  |  |  |
| Tester                 | Charlie                          |  |  |  |
| Temperature            | <b>25</b> ℃                      |  |  |  |
| Humidity               | 60%                              |  |  |  |

#### 12.1 LIMITS

| Conducted limit(dBµV) |                               |  |  |  |  |  |
|-----------------------|-------------------------------|--|--|--|--|--|
| Quasi-peak            | Average                       |  |  |  |  |  |
| 66 to 56*             | 56 to 46*                     |  |  |  |  |  |
| 56                    | 46                            |  |  |  |  |  |
| 60                    | 50                            |  |  |  |  |  |
|                       | Quasi-peak<br>66 to 56*<br>56 |  |  |  |  |  |

\*Decreases with the logarithm of the frequency.

# 12.2 BLOCK DIAGRAM OF TEST SETUP



Remains E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m

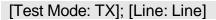


#### 12.3 PROCEDURE

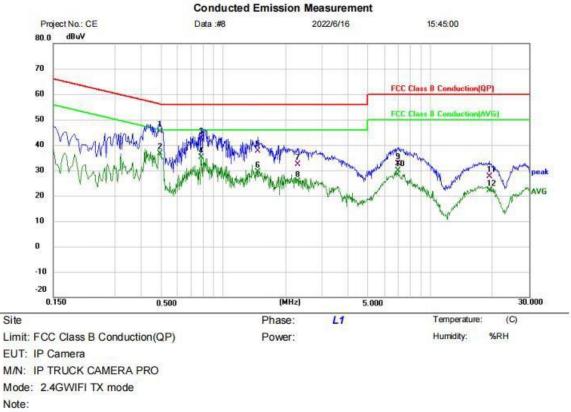
1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Remark: LISN=Read Level+ Cable Loss+ LISN Factor



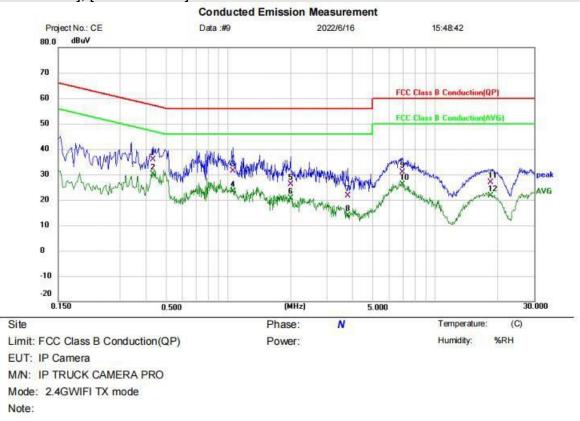
# 12.4 TEST DATA



AC120V 60Hz



| No. | Mk.      | Freq.                 | Reading<br>Level             | Correct<br>Factor | Measure-<br>ment | Limit | Over   |                   |         |
|-----|----------|-----------------------|------------------------------|-------------------|------------------|-------|--------|-------------------|---------|
| _   |          | MHz                   | dBuV                         | dB                | dBuV             | dBuV  | dB     | Detector          | Comment |
| 1   |          | 0.4940                | 35.58                        | 9.87              | 45.45            | 56.10 | -10.65 | QP                |         |
| 2   | *        | 0.4940                | 26.67                        | 9.87              | 36.54            | 46.10 | -9.56  | AVG               |         |
| 3   | <u> </u> | 0.7820                | 32.82                        | 9.89              | 42.71            | 56.00 | -13.29 | QP                |         |
| 4   |          | 0.7820                | 25.20                        | 9.89              | 35.09            | 46.00 | -10.91 | AVG               |         |
| 5   |          | 1.4660                | 27.81                        | 9.93              | 37.74            | 56.00 | -18.26 | QP                |         |
| 6   |          | 1.4660                | 19.56                        | 9.93              | 29.49            | 46.00 | -16.51 | AVG               |         |
| 7   |          | 2.2900                | 22.33                        | 9.95              | 32.28            | 56.00 | -23.72 | QP                |         |
| 8   |          | 2.2900                | 15.75                        | 9.95              | 25.70            | 46.00 | -20.30 | AVG               |         |
| 9   | 6        | 6.9620                | 22.56                        | 10.09             | 32.65            | 60.00 | -27.35 | QP                |         |
| 10  |          | 6.9620                | 19.69                        | 10.09             | 29.78            | 50.00 | -20.22 | AVG               |         |
| 11  |          | 19.2420               | 17.33                        | 10.42             | 27.75            | 60.00 | -32.25 | QP                |         |
| 12  | (        | 19.2420               | 11.74                        | 10.42             | 22.16            | 50.00 | -27.84 | AVG               |         |
|     |          | 1000 Cen 715 5 557 22 | and the second states of the | 100000            |                  |       |        | 500 500 500 FC 10 |         |


\*:Maximum data x:Over limit !:over margin

(Reference Only



## [Test Mode: TX]; [Line: Neutral]

AC120V 60Hz



| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
| _   |     | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |
| 1   |     | 0.4300  | 26.11            | 9.78              | 35.89            | 57.25 | -21.36 | QP       |         |
| 2   | *   | 0.4300  | 20.40            | 9.78              | 30.18            | 47.25 | -17.07 | AVG      |         |
| 3   |     | 1.0500  | 21.59            | 9.84              | 31.43            | 56.00 | -24.57 | QP       |         |
| 4   |     | 1.0500  | 13.54            | 9.84              | 23.38            | 46.00 | -22.62 | AVG      |         |
| 5   |     | 1.9980  | 16.22            | 9.86              | 26.08            | 56.00 | -29.92 | QP       |         |
| 6   |     | 1.9980  | 10.71            | 9.86              | 20.57            | 46.00 | -25.43 | AVG      |         |
| 7   |     | 3.7940  | 11.61            | 9.90              | 21.51            | 56.00 | -34.49 | QP       |         |
| 8   |     | 3.7940  | 3.91             | 9.90              | 13.81            | 46.00 | -32.19 | AVG      |         |
| 9   |     | 6.9460  | 20.74            | 10.02             | 30.76            | 60.00 | -29.24 | QP       |         |
| 10  |     | 6.9460  | 16.01            | 10.02             | 26.03            | 50.00 | -23.97 | AVG      |         |
| 11  |     | 18.5780 | 16.36            | 10.40             | 26.76            | 60.00 | -33.24 | QP       |         |
| 12  |     | 18.5780 | 11.18            | 10.40             | 21.58            | 50.00 | -28.42 | AVG      |         |

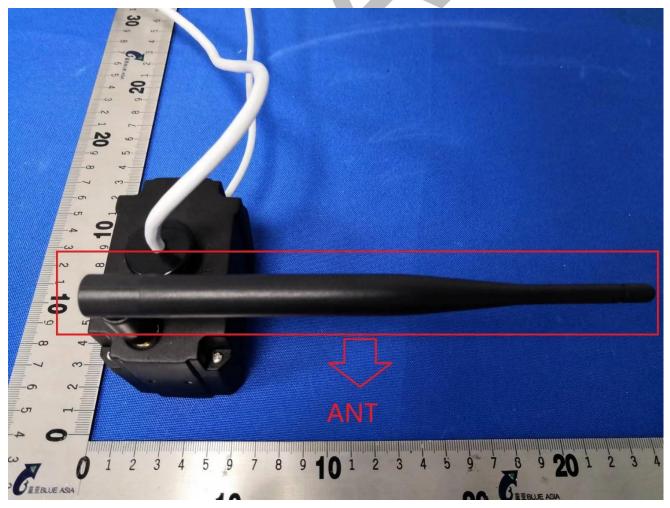
\*:Maximum data x:Over limit !:over margin

(Reference Only



# 13 ANTENNA REQUIREMENT

| Test Standard | 47 CFR Part 15, Subpart C 15.247 |
|---------------|----------------------------------|
| Test Method   | N/A                              |


#### 13.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

# EUT Antenna:

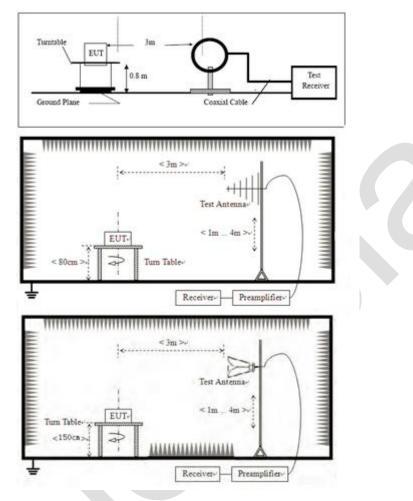
The antenna is an External antenna with reversed polarity unique antenna port. The antenna's best-case gain is 5dBi





| Test Standard          | 47 CFR Part 15, Subpart C 15.247       |
|------------------------|----------------------------------------|
| Test Method            | ANSI C63.10 (2013) Section 6.4,6.5,6.6 |
| Test Mode (Pre-Scan)   | ТХ                                     |
| Test Mode (Final Test) | ТХ                                     |
| Tester                 | Charlie                                |
| Temperature            | 25°C                                   |
| Humidity               | 60%                                    |

# **14 RADIATED SPURIOUS EMISSIONS**


#### 14.1 LIMITS

| Frequency(MHz) | Field<br>strength(microvolts/meter) | Measurement<br>distance(meters) |
|----------------|-------------------------------------|---------------------------------|
| 0.009-0.490    | 2400/F(kHz)                         | 300                             |
| 0.490-1.705    | 24000/F(kHz)                        | 30                              |
| 1.705-30.0     | 30                                  | 30                              |
| 30-88          | 100                                 | 3                               |
| 88-216         | 150                                 | 3                               |
| 216-960        | 200                                 | 3                               |
| Above 960      | 500                                 | 3                               |

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.



#### 14.2 BLOCK DIAGRAM OF TEST SETUP





#### 14.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

#### Remark:

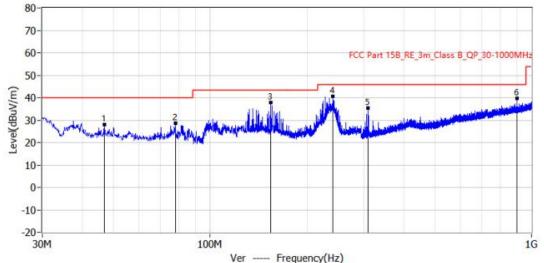
1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

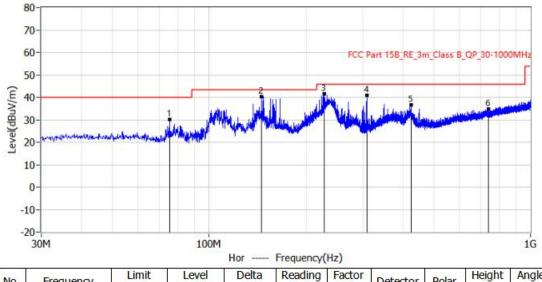



# 14.4 TEST DATA

[TestMode: TX]; [Polarity: Vertical]

-----

| Test Lab: BlueAsia EMC Lab (RE #1) | Project: BLA-EMC-202206-A21    |  |  |  |  |
|------------------------------------|--------------------------------|--|--|--|--|
| EUT: IP Camera                     | Test Engineer: York            |  |  |  |  |
| M/N: IP TRUCK CAMERA PRO           | Temperature:                   |  |  |  |  |
| S/N:                               | Humidity:                      |  |  |  |  |
| Test Mode: 2.4Gwifi TX mode        | Test Voltage:                  |  |  |  |  |
| Note:                              | Test Data: 2022-06-16 19:59:23 |  |  |  |  |

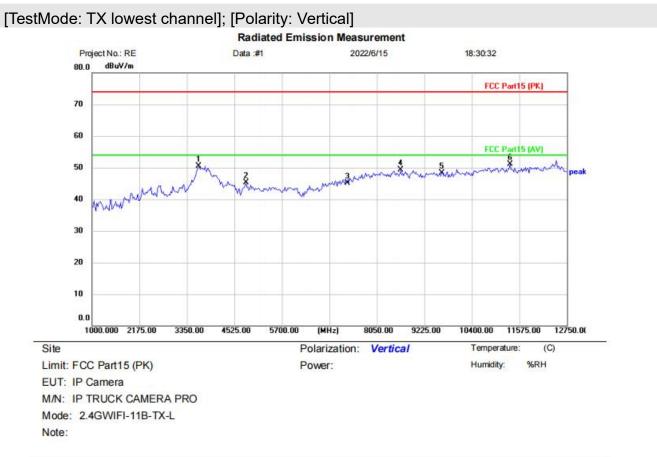



| No. | Frequency  | Limit<br>dBuV/m | Level<br>dBuV/m | Delta<br>dB | Reading<br>dBuV | Factor<br>dB/m | Detector | Polar | Height<br>cm | Angle<br>deg |
|-----|------------|-----------------|-----------------|-------------|-----------------|----------------|----------|-------|--------------|--------------|
| 1*  | 46.733MHz  | 40.0            | 28.0            | -12.0       | 4.1             | 23.9           | QP       | Ver   | 100.0        | 341.0        |
| 2*  | 77.773MHz  | 40.0            | 28.6            | -11.4       | 8.5             | 20.1           | QP       | Ver   | 100.0        | 332.0        |
| 3*  | 153.918MHz | 43.5            | 37.8            | -5.7        | 14.4            | 23.4           | QP       | Ver   | 100.0        | 347.0        |
| 4*  | 240.854MHz | 46.0            | 40.7            | -5.3        | 17.9            | 22.8           | QP       | Ver   | 100.0        | 344.0        |
| 5*  | 309.966MHz | 46.0            | 35.4            | -10.6       | 11.0            | 24.4           | QP       | Ver   | 100.0        | 84.0         |
| 6*  | 900.454MHz | 46.0            | 39.8            | -6.2        | 4.8             | 35.0           | QP       | Ver   | 100.0        | 131.0        |



# [TestMode: TX]; [Polarity: Horizontal]

| Test Lab: BlueAsia EMC Lab (RE #1) | Project: BLA-EMC-202206-A21    |  |
|------------------------------------|--------------------------------|--|
| EUT: IP Camera                     | Test Engineer: York            |  |
| M/N: IP TRUCK CAMERA PRO           | Temperature:                   |  |
| S/N:                               | Humidity:                      |  |
| Test Mode: 2.4Gwifi TX mode        | Test Voltage:                  |  |
| Note:                              | Test Data: 2022-06-16 20:01:40 |  |

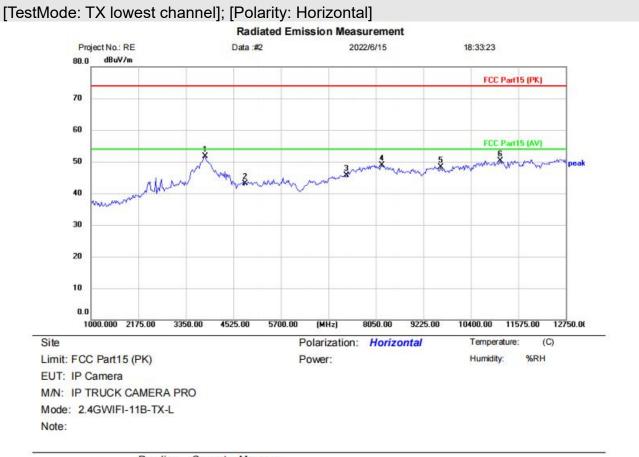



| No. | Frequency  | Limit<br>dBuV/m | Level<br>dBuV/m | Delta<br>dB | Reading<br>dBuV | Factor<br>dB/m | Detector | Polar | Height<br>cm | Angle<br>deg |
|-----|------------|-----------------|-----------------|-------------|-----------------|----------------|----------|-------|--------------|--------------|
| 1*  | 75.105MHz  | 40.0            | 30.2            | -9.8        | 9.6             | 20.6           | QP       | Hor   | 100.0        | 276.0        |
| 2*  | 145.430MHz | 43.5            | 40.4            | -3.1        | 16.8            | 23.6           | QP       | Hor   | 100.0        | 12.0         |
| 3*  | 227.880MHz | 46.0            | 41.5            | -4.5        | 19.3            | 22.2           | QP       | Hor   | 100.0        | 307.0        |
| 4*  | 309.603MHz | 46.0            | 40.8            | -5.2        | 16.4            | 24.4           | QP       | Hor   | 100.0        | 0.0          |
| 5*  | 425.033MHz | 46.0            | 36.6            | -9.4        | 9.0             | 27.6           | QP       | Hor   | 100.0        | 86.0         |
| 6*  | 740.404MHz | 46.0            | 34.9            | -11.1       | 2.0             | 32.9           | QP       | Hor   | 100.0        | 150.0        |



Remark: During the test, pre-scan the 802.11b/g/n mode, and found the 802.11b mode which it is worse case.

#### Above 1GHz




| No. | Mk. | Freq.     | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|-----|-----|-----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|     |     | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 3632.000  | 42.79            | 7.77              | 50.56            | 74.00  | -23.44 | peak     |         |  |
| 2   |     | 4807.000  | 41.50            | 3.71              | 45.21            | 74.00  | -28.79 | peak     |         |  |
| 3   |     | 7326.000  | 38.74            | 6.44              | 45.18            | 74.00  | -28.82 | peak     |         |  |
| 4   |     | 8637.500  | 41.33            | 7.94              | 49.27            | 74.00  | -24.73 | peak     |         |  |
| 5   |     | 9648.000  | 38.92            | 9.37              | 48.29            | 74.00  | -25.71 | peak     |         |  |
| 6   | *   | 11340.000 | 39.19            | 11.85             | 51.04            | 74.00  | -22.96 | peak     |         |  |

\*:Maximum data x:Over limit !:over margin

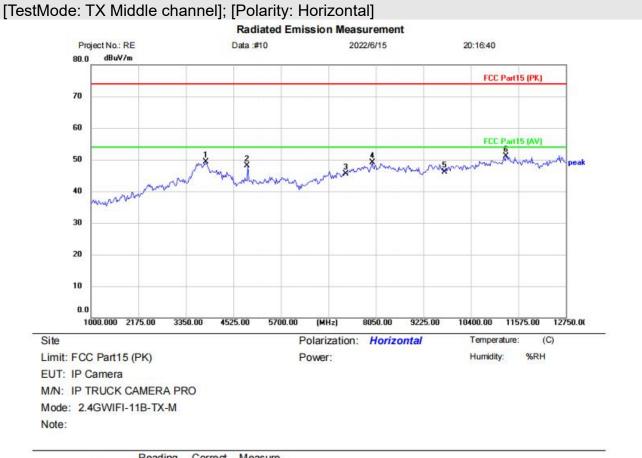
(Reference Only





| No. | Mk. | Freq.     | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|-----|-----------|------------------|-------------------|------------------|--------|--------|----------|---------|
| _   | _   | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   | *   | 3820.000  | 44.39            | 7.41              | 51.80            | 74.00  | -22.20 | peak     |         |
| 2   |     | 4824.000  | 39.40            | 3.62              | 43.02            | 74.00  | -30.98 | peak     |         |
| 3   |     | 7326.000  | 39.22            | 6.44              | 45.66            | 74.00  | -28.34 | peak     |         |
| 4   |     | 8191.000  | 40.61            | 8.20              | 48.81            | 74.00  | -25.19 | peak     |         |
| 5   |     | 9648.000  | 39.00            | 9.37              | 48.37            | 74.00  | -25.63 | peak     |         |
| 6   | 1   | 11128.500 | 38.36            | 12.02             | 50.38            | 74.00  | -23.62 | peak     |         |

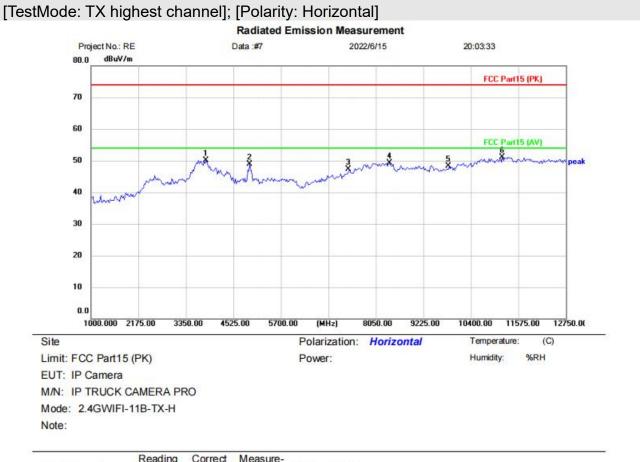
(Reference Only






| No. | Mk. | Freq.     | Level | Factor | ment   | Limit  | Over   |          |         |  |
|-----|-----|-----------|-------|--------|--------|--------|--------|----------|---------|--|
| _   |     | MHz       | dBuV  | dB/m   | dBuV/m | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 3702.500  | 42.75 | 7.72   | 50.47  | 74.00  | -23.53 | peak     |         |  |
| 2   |     | 4807.000  | 44.17 | 3.71   | 47.88  | 74.00  | -26.12 | peak     |         |  |
| 3   |     | 7311.000  | 38.15 | 6.37   | 44.52  | 74.00  | -29.48 | peak     |         |  |
| 4   |     | 8449.500  | 40.08 | 8.20   | 48.28  | 74.00  | -25.72 | peak     |         |  |
| 5   |     | 9748.000  | 37.04 | 9.59   | 46.63  | 74.00  | -27.37 | peak     |         |  |
| 6   | *   | 11340.000 | 38.69 | 11.85  | 50.54  | 74.00  | -23.46 | peak     |         |  |

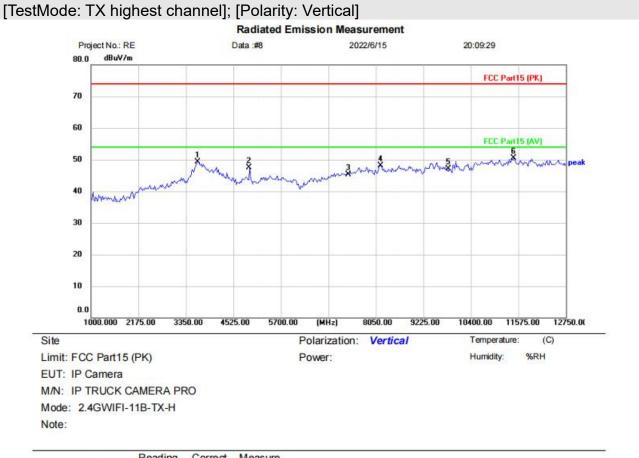
(Reference Only






| No. | Mk. | Freq.     | Level | Factor | ment   | Limit  | Over   |          |         |  |
|-----|-----|-----------|-------|--------|--------|--------|--------|----------|---------|--|
| _   |     | MHz       | dBuV  | dB/m   | dBuV/m | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 3843.500  | 42.09 | 7.12   | 49.21  | 74.00  | -24.79 | peak     |         |  |
| 2   |     | 4874.000  | 44.71 | 3.39   | 48.10  | 74.00  | -25.90 | peak     |         |  |
| 3   |     | 7311.000  | 39.14 | 6.37   | 45.51  | 74.00  | -28.49 | peak     |         |  |
| 4   |     | 7956.000  | 41.28 | 7.89   | 49.17  | 74.00  | -24.83 | peak     |         |  |
| 5   |     | 9748.000  | 36.59 | 9.59   | 46.18  | 74.00  | -27.82 | peak     |         |  |
| 6   | *   | 11269.500 | 39.19 | 11.94  | 51.13  | 74.00  | -22.87 | peak     |         |  |

(Reference Only






| No. | Mk. | Freq.     | Level | Factor | ment   | Limit  | Over   |          |         |  |
|-----|-----|-----------|-------|--------|--------|--------|--------|----------|---------|--|
| _   |     | MHz       | dBuV  | dB/m   | dBuV/m | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 3843.500  | 42.97 | 7.12   | 50.09  | 74.00  | -23.91 | peak     |         |  |
| 2   |     | 4924.500  | 45.48 | 3.47   | 48.95  | 74.00  | -25.05 | peak     |         |  |
| 3   |     | 7386.000  | 40.67 | 6.68   | 47.35  | 74.00  | -26.65 | peak     |         |  |
| 4   |     | 8379.000  | 40.98 | 8.27   | 49.25  | 74.00  | -24.75 | peak     |         |  |
| 5   |     | 9848.000  | 38.48 | 9.88   | 48.36  | 74.00  | -25.64 | peak     |         |  |
| 6   | *   | 11175.500 | 39.05 | 12.03  | 51.08  | 74.00  | -22.92 | peak     |         |  |

(Reference Only





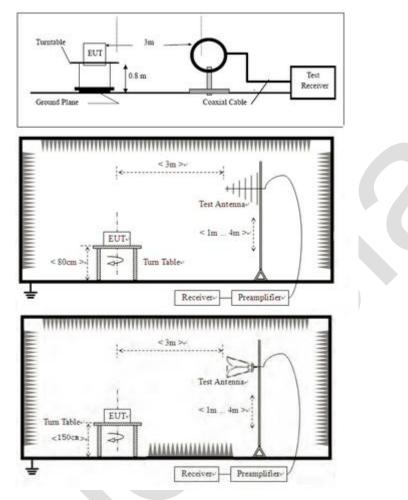
| No. | Mk. | Freq.     | Level | Factor | ment   | Limit  | Over   |          |         |  |
|-----|-----|-----------|-------|--------|--------|--------|--------|----------|---------|--|
| _   |     | MHz       | dBuV  | dB/m   | dBuV/m | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 3632.000  | 41.50 | 7.77   | 49.27  | 74.00  | -24.73 | peak     |         |  |
| 2   |     | 4924.000  | 43.98 | 3.46   | 47.44  | 74.00  | -26.56 | peak     |         |  |
| 3   |     | 7386.000  | 38.64 | 6.68   | 45.32  | 74.00  | -28.68 | peak     |         |  |
| 4   |     | 8167.500  | 40.02 | 8.17   | 48.19  | 74.00  | -25.81 | peak     |         |  |
| 5   |     | 9848.000  | 37.24 | 9.88   | 47.12  | 74.00  | -26.88 | peak     |         |  |
| 6   | *   | 11457.500 | 38.70 | 11.84  | 50.54  | 74.00  | -23.46 | peak     |         |  |

(Reference Only



# 15 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

| Test Standard          | 47 CFR Part 15, Subpart C 15.247  |
|------------------------|-----------------------------------|
| Test Method            | ANSI C63.10 (2013) Section 6.10.5 |
| Test Mode (Pre-Scan)   | ТХ                                |
| Test Mode (Final Test) | ТХ                                |
| Tester                 | Charlie                           |
| Temperature            | 25°C                              |
| Humidity               | 60%                               |


#### 15.1 LIMITS

| Frequency(MHz) | Field<br>strength(microvolts/meter) | Measurement<br>distance(meters) |
|----------------|-------------------------------------|---------------------------------|
| 0.009-0.490    | 2400/F(kHz)                         | 300                             |
| 0.490-1.705    | 24000/F(kHz)                        | 30                              |
| 1.705-30.0     | 30                                  | 30                              |
| 30-88          | 100                                 | 3                               |
| 88-216         | 150                                 | 3                               |
| 216-960        | 200                                 | 3                               |
| Above 960      | 500                                 | 3                               |

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.



#### 15.2 BLOCK DIAGRAM OF TEST SETUP





#### 15.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

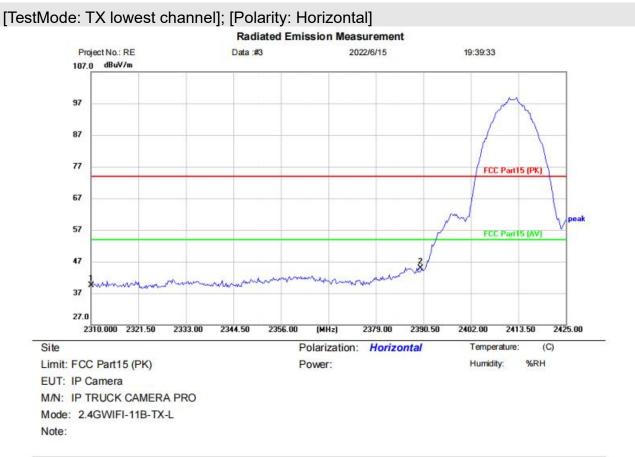
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

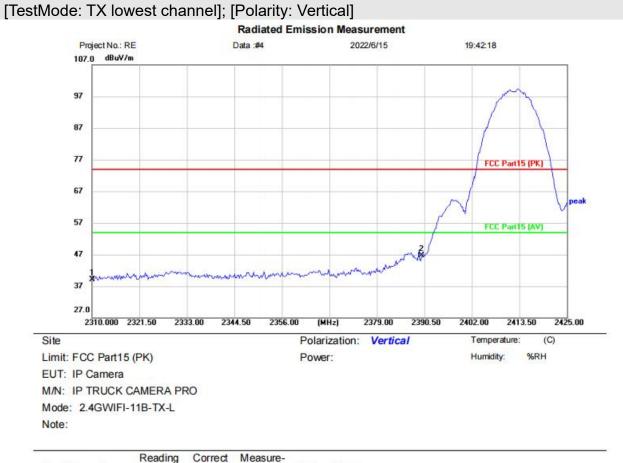
Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



## 15.4 TEST DATA

#### 802.11b



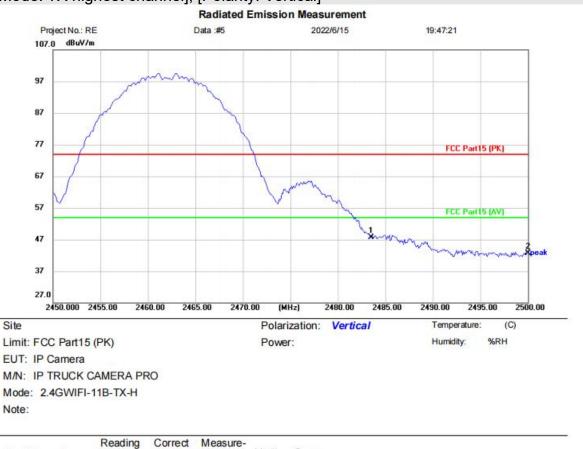

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
| _   |     | MHz      | MHz dBuV         | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 2310.000 | 43.38            | -3.93             | 39.45            | 74.00  | -34.55 | peak     |         |  |
| 2   | *   | 2390.000 | 48.46            | -3.58             | 44.88            | 74.00  | -29.12 | peak     |         |  |

\*:Maximum data x:Over limit !:over margin

(Reference Only

#### **Test Result:**






| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment |        | Over   |          |         |  |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 2310.000 | 43.12            | -3.93             | 39.19            | 74.00  | -34.81 | peak     |         |  |
| 2   | *   | 2390.000 | 50.31            | -3.58             | 46.73            | 74.00  | -27.27 | peak     |         |  |

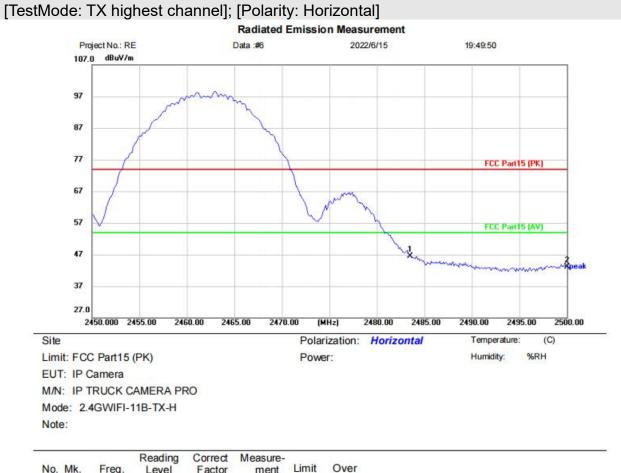
(Reference Only

**Test Result:** 





# [TestMode: TX highest channel]; [Polarity: Vertical]


| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|     |     | MHz      | MHz dBuV         | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   | *   | 2483.500 | 50.84            | -3.14             | 47.70            | 74.00  | -26.30 | peak     |         |  |
| 2   |     | 2500.000 | 45.70            | -3.08             | 42.62            | 74.00  | -31.38 | peak     |         |  |

\*:Maximum data x:Over limit !:over margin

(Reference Only

**Test Result:** 



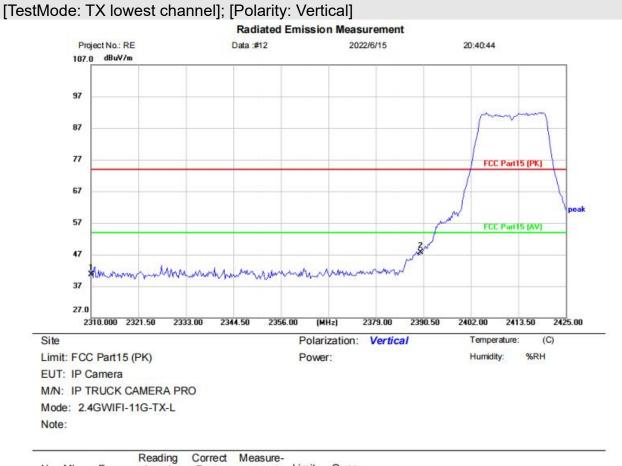


| 11  |       |                  |                   |                  |        |      |          |         |  |
|-----|-------|------------------|-------------------|------------------|--------|------|----------|---------|--|
| Mk. | Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment |        | Over |          |         |  |
|     | MHz   | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB   | Detector | Comment |  |

|   | _ | MHz      | dBuV  | dB/m  | dBuV/m | dBuV/m | dB     | Detector | Comment |  |
|---|---|----------|-------|-------|--------|--------|--------|----------|---------|--|
| 1 | * | 2483.500 | 49.70 | -3.14 | 46.56  | 74.00  | -27.44 | peak     |         |  |
| 2 |   | 2500.000 | 46.24 | -3.08 | 43.16  | 74.00  | -30.84 | peak     |         |  |



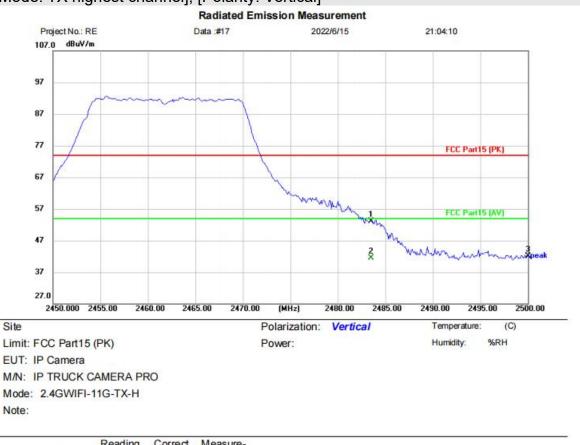
# 802.11g




| No. | Mk. | Freq.    | Level | Factor | ment   |        | Over   |          |         |  |
|-----|-----|----------|-------|--------|--------|--------|--------|----------|---------|--|
| _   |     | MHz      | dBuV  | dB/m   | dBuV/m | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 2310.000 | 43.68 | -3.93  | 39.75  | 74.00  | -34.25 | peak     |         |  |
| 2   | *   | 2390.000 | 51.55 | -3.58  | 47.97  | 74.00  | -26.03 | peak     |         |  |

\*:Maximum data x:Over limit !:over margin

(Reference Only






| No. | Mk. | Freq.    | Level | Factor | ment   |        | Over   |          |         |  |
|-----|-----|----------|-------|--------|--------|--------|--------|----------|---------|--|
|     |     | MHz      | dBuV  | dB/m   | dBuV/m | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 2310.000 | 44.60 | -3.93  | 40.67  | 74.00  | -33.33 | peak     |         |  |
| 2   | *   | 2390.000 | 51.23 | -3.58  | 47.65  | 74.00  | -26.35 | peak     |         |  |

(Reference Only





# [TestMode: TX highest channel]; [Polarity: Vertical]

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment |        | Over   |          |         |  |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
| _   |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 2483.500 | 56.31            | -3.14             | 53.17            | 74.00  | -20.83 | peak     |         |  |
| 2   | *   | 2483.500 | 44.73            | -3.14             | 41.59            | 54.00  | -12.41 | AVG      |         |  |
| 3   |     | 2500.000 | 45.10            | -3.08             | 42.02            | 74.00  | -31.98 | peak     |         |  |
|     |     |          |                  |                   |                  |        |        |          |         |  |

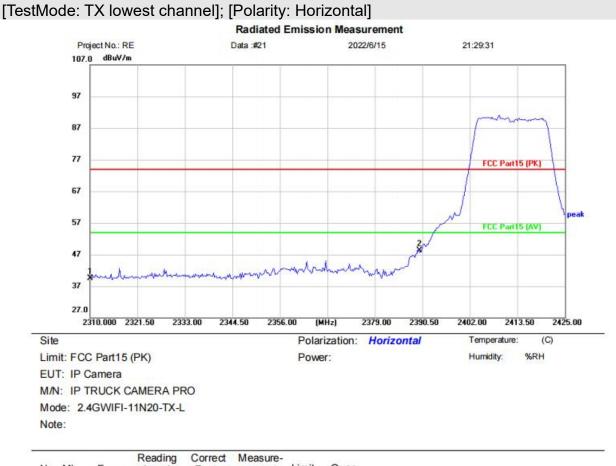
\*:Maximum data x:Over limit !:over margin

**Test Result:** 





# [TestMode: TX highest channel]; [Polarity: Horizontal]

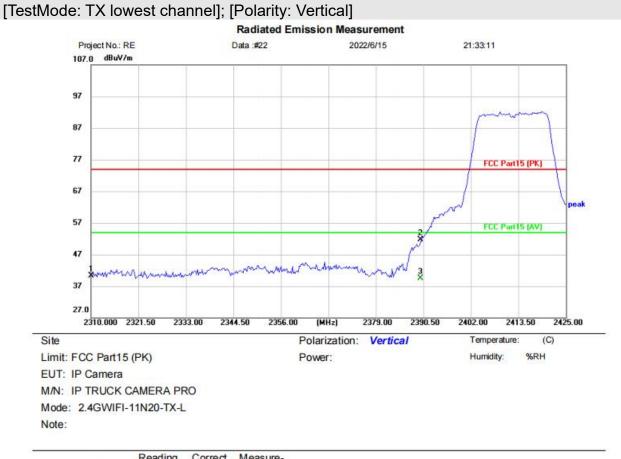

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
| _   | _   | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   | *   | 2483.500 | 52.79            | -3.14             | 49.65            | 74.00  | -24.35 | peak     |         |  |
| 2   |     | 2500.000 | <b>44.08</b>     | -3.08             | 41.00            | 74.00  | -33.00 | peak     |         |  |

\*:Maximum data x:Over limit !:over margin

Test Result:



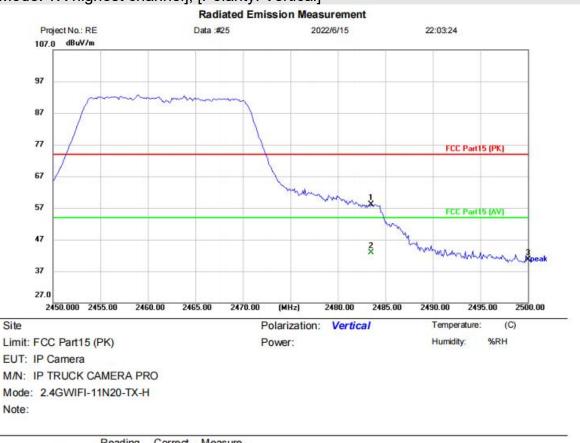
## 802.11n20




| No. | Mk. | Freq.    | Level | Factor | ment   |        | Over   |          |         |  |
|-----|-----|----------|-------|--------|--------|--------|--------|----------|---------|--|
| _   |     | MHz      | dBuV  | dB/m   | dBuV/m | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 2310.000 | 43.49 | -3.93  | 39.56  | 74.00  | -34.44 | peak     |         |  |
| 2   | *   | 2390.000 | 51.92 | -3.58  | 48.34  | 74.00  | -25.66 | peak     |         |  |

\*:Maximum data x:Over limit !:over margin

(Reference Only



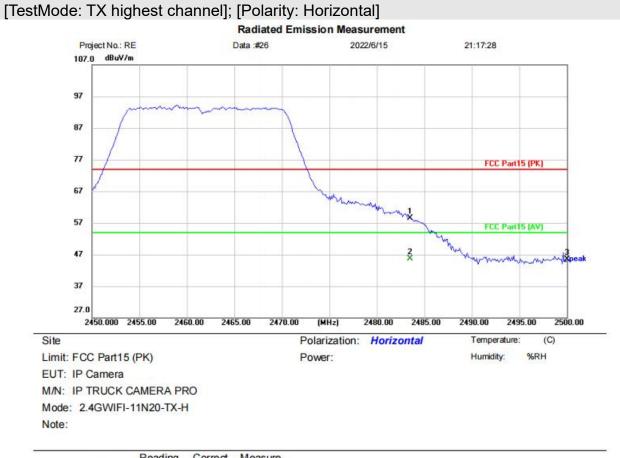



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment |        | Over   |          |         |  |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 2310.000 | 44.17            | -3.93             | 40.24            | 74.00  | -33.76 | peak     |         |  |
| 2   |     | 2390.000 | 55.38            | -3.58             | 51.80            | 74.00  | -22.20 | peak     |         |  |
| 3   | *   | 2390.000 | 43.14            | -3.58             | 39.56            | 54.00  | -14.44 | AVG      |         |  |

(Reference Only



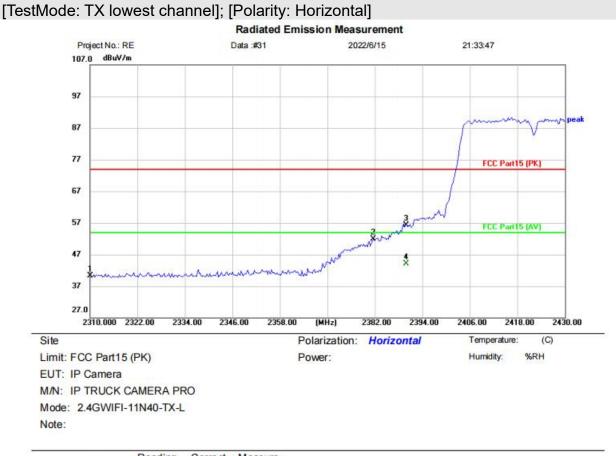



# [TestMode: TX highest channel]; [Polarity: Vertical]

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 2483.500 | 61.22            | -3.14             | 58.08            | 74.00  | -15.92 | peak     |         |  |
| 2   | *   | 2483.500 | 46.13            | -3.14             | 42.99            | 54.00  | -11.01 | AVG      |         |  |
| 3   |     | 2500.000 | 43.78            | -3.08             | 40.70            | 74.00  | -33.30 | peak     |         |  |

\*:Maximum data x:Over limit !:over margin

**Test Result:** 

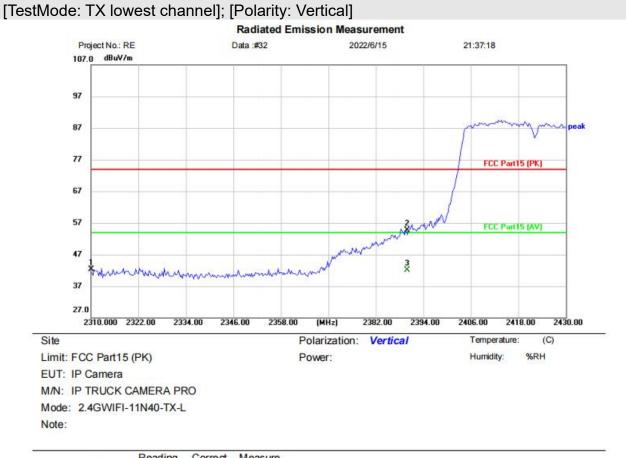





| Mk. | Freq.    | Level                         | Factor                                         | Measure-<br>ment                                              | Limit                                                                            | Over                                                                                                |                                                                                                                     |                                                                                                                                       |                                                                                                                                               |
|-----|----------|-------------------------------|------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|     | MHz      | dBuV                          | dB/m                                           | dBuV/m                                                        | dBuV/m                                                                           | dB                                                                                                  | Detector                                                                                                            | Comment                                                                                                                               |                                                                                                                                               |
|     | 2483.500 | 61.55                         | -3.14                                          | 58.41                                                         | 74.00                                                                            | -15.59                                                                                              | peak                                                                                                                |                                                                                                                                       |                                                                                                                                               |
| *   | 2483.500 | 48.83                         | -3.14                                          | 45.69                                                         | 54.00                                                                            | -8.31                                                                                               | AVG                                                                                                                 |                                                                                                                                       |                                                                                                                                               |
|     | 2500.000 | 48.57                         | -3.08                                          | 45.49                                                         | 74.00                                                                            | -28.51                                                                                              | peak                                                                                                                |                                                                                                                                       |                                                                                                                                               |
|     |          | MHz<br>2483.500<br>* 2483.500 | MHz dBuV<br>2483.500 61.55<br>* 2483.500 48.83 | MHz dBuV dB/m   2483.500 61.55 -3.14   * 2483.500 48.83 -3.14 | MHz dBuV dB/m dBuV/m   2483.500 61.55 -3.14 58.41   * 2483.500 48.83 -3.14 45.69 | MHz dBuV dB/m dBuV/m dBuV/m   2483.500 61.55 -3.14 58.41 74.00   * 2483.500 48.83 -3.14 45.69 54.00 | MHz dBuV dB/m dBuV/m dBuV/m dB   2483.500 61.55 -3.14 58.41 74.00 -15.59   * 2483.500 48.83 -3.14 45.69 54.00 -8.31 | MHz dBuV dB/m dBuV/m dBuV/m dB Detector   2483.500 61.55 -3.14 58.41 74.00 -15.59 peak   * 2483.500 48.83 -3.14 45.69 54.00 -8.31 AVG | MHz dBuV dB/m dBuV/m dBuV/m dB Detector Comment   2483.500 61.55 -3.14 58.41 74.00 -15.59 peak   * 2483.500 48.83 -3.14 45.69 54.00 -8.31 AVG |



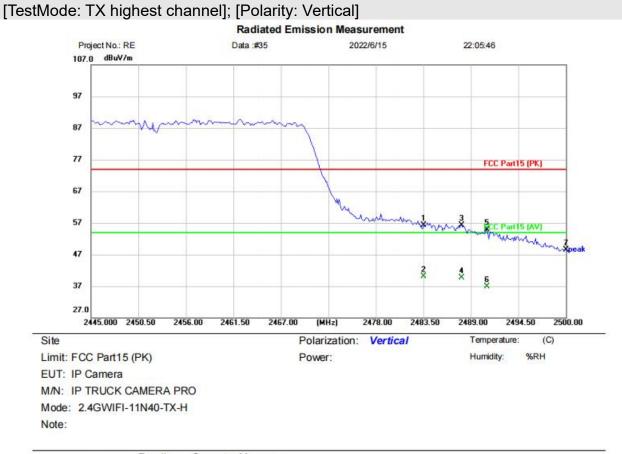
### 802.11n40




| No. M | k. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|-------|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|       | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1     | 2310.000 | 44.30            | -3.93             | 40.37            | 74.00  | -33.63 | peak     |         |  |
| 2     | 2381.520 | 55.47            | -3.63             | 51.84            | 74.00  | -22.16 | peak     |         |  |
| 3     | 2390.000 | 59.98            | -3.58             | 56.40            | 74.00  | -17.60 | peak     |         |  |
| 4 *   | 2390.000 | 47.70            | -3.58             | 44.12            | 54.00  | -9.88  | AVG      |         |  |

\*:Maximum data x:Over limit !:over margin

**Test Result:** 






| No. Mk. | Freq.    | Level | Factor | ment   | Limit  | Over   |          |         |  |
|---------|----------|-------|--------|--------|--------|--------|----------|---------|--|
|         | MHz      | dBuV  | dB/m   | dBuV/m | dBuV/m | dB     | Detector | Comment |  |
| 1       | 2310.000 | 46.14 | -3.93  | 42.21  | 74.00  | -31.79 | peak     |         |  |
| 2       | 2390.000 | 58.23 | -3.58  | 54.65  | 74.00  | -19.35 | peak     |         |  |
| 3 *     | 2390.000 | 45.73 | -3.58  | 42.15  | 54.00  | -11.85 | AVG      |         |  |

**Test Result:** 





| Mk. | Freq.    | Reading<br>Level                                                                          | Correct<br>Factor                                                                                                                                                    | Measure-<br>ment                                                                                                                                                                   | Limit                                                                                                                                                                                                                              | Over                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                           |
|-----|----------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | MHz      | dBuV                                                                                      | dB/m                                                                                                                                                                 | dBuV/m                                                                                                                                                                             | dBuV/m                                                                                                                                                                                                                             | dB                                                                                                                                                                                                                                                                                  | Detector                                                                                                                                                                                                                                                                                                                                 | Comment                                                                                                                                                                                                                                                                                                                                                                   |
|     | 2483.500 | 59.45                                                                                     | -3.14                                                                                                                                                                | 56.31                                                                                                                                                                              | 74.00                                                                                                                                                                                                                              | -17.69                                                                                                                                                                                                                                                                              | peak                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |
| *   | 2483.500 | 43.33                                                                                     | -3.14                                                                                                                                                                | 40.19                                                                                                                                                                              | 54.00                                                                                                                                                                                                                              | - <mark>13.81</mark>                                                                                                                                                                                                                                                                | AVG                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|     | 2487.900 | 59.54                                                                                     | -3.14                                                                                                                                                                | 56.40                                                                                                                                                                              | 74.00                                                                                                                                                                                                                              | -17.60                                                                                                                                                                                                                                                                              | peak                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |
|     | 2487.900 | 42.89                                                                                     | -3.14                                                                                                                                                                | 39.75                                                                                                                                                                              | 54.00                                                                                                                                                                                                                              | - <mark>14.25</mark>                                                                                                                                                                                                                                                                | AVG                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|     | 2490.870 | 58.10                                                                                     | -3.11                                                                                                                                                                | 54.99                                                                                                                                                                              | 74.00                                                                                                                                                                                                                              | -19.01                                                                                                                                                                                                                                                                              | peak                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |
|     | 2490.870 | 40.00                                                                                     | -3.11                                                                                                                                                                | 36.89                                                                                                                                                                              | 54.00                                                                                                                                                                                                                              | -17.11                                                                                                                                                                                                                                                                              | AVG                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|     | 2500.000 | 51.52                                                                                     | -3.08                                                                                                                                                                | 48.44                                                                                                                                                                              | 74.00                                                                                                                                                                                                                              | -25.56                                                                                                                                                                                                                                                                              | peak                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |
|     | Mk.      | MHz<br>2483.500<br>* 2483.500<br>2487.900<br>2487.900<br>2487.900<br>2490.870<br>2490.870 | Mk. Freq. Level   MHz dBuV   2483.500 59.45   * 2483.500 43.33   2487.900 59.54   2487.900 59.54   2487.900 59.54   2487.900 42.89   2490.870 58.10   2490.870 40.00 | Mk. Freq. Level Factor   MHz dBuV dB/m   2483.500 59.45 -3.14   * 2483.500 43.33 -3.14   2487.900 59.54 -3.14   2487.900 42.89 -3.14   2490.870 58.10 -3.11   2490.870 40.00 -3.11 | Mk. Freq. Level Factor ment   MHz dBuV dB/m dBuV/m   2483.500 59.45 -3.14 56.31   * 2483.500 43.33 -3.14 40.19   2487.900 59.54 -3.14 56.40   2487.900 42.89 -3.14 39.75   2490.870 58.10 -3.11 54.99   2490.870 40.00 -3.11 36.89 | Mk. Freq. Level Factor ment Limit   MHz dBuV dB/m dBuV/m dBuV/m   2483.500 59.45 -3.14 56.31 74.00   * 2483.500 43.33 -3.14 40.19 54.00   2487.900 59.54 -3.14 56.40 74.00   2487.900 42.89 -3.14 39.75 54.00   2480.870 58.10 -3.11 54.99 74.00   2490.870 40.00 -3.11 36.89 54.00 | Mk. Freq. Level Factor ment Limit Over   MHz dBuV dB/m dBuV/m dBuV/m dB dB   2483.500 59.45 -3.14 56.31 74.00 -17.69   * 2483.500 43.33 -3.14 40.19 54.00 -13.81   2487.900 59.54 -3.14 56.40 74.00 -17.60   2487.900 42.89 -3.14 39.75 54.00 -14.25   2490.870 58.10 -3.11 54.99 74.00 -19.01   2490.870 40.00 -3.11 36.89 54.00 -17.11 | Mk. Freq. Level Factor ment Limit Over   MHz dBuV dB/m dBuV/m dBuV/m dB Detector   2483.500 59.45 -3.14 56.31 74.00 -17.69 peak   * 2483.500 43.33 -3.14 40.19 54.00 -13.81 AVG   2487.900 59.54 -3.14 56.40 74.00 -17.60 peak   2487.900 42.89 -3.14 39.75 54.00 -14.25 AVG   2490.870 58.10 -3.11 54.99 74.00 -19.01 peak   2490.870 40.00 -3.11 36.89 54.00 -17.11 AVG |

(Reference Only

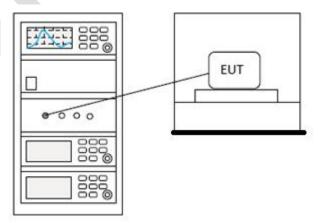




| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | Comment |  |
| 1   |     | 2483.500 | 58.65            | -3.14             | 55.51            | 74.00  | -18.49 | peak     |         |  |
| 2   | *   | 2483.500 | 45.30            | -3.14             | 42.16            | 54.00  | -11.84 | AVG      |         |  |
| 3   |     | 2486.910 | 59.06            | -3.14             | 55.92            | 74.00  | -18.08 | peak     |         |  |
| 4   |     | 2486.910 | 44.82            | -3.14             | 41.68            | 54.00  | -12.32 | AVG      |         |  |
| 5   |     | 2491.530 | 56.81            | -3.11             | 53.70            | 74.00  | -20.30 | peak     |         |  |
| 6   |     | 2491.530 | 42.56            | -3.11             | 39.45            | 54.00  | -14.55 | AVG      |         |  |
| 7   |     | 2500.000 | 53.23            | -3.08             | 50.15            | 74.00  | -23.85 | peak     |         |  |

(Reference Only




## **16 CONDUCTED SPURIOUS EMISSIONS**

| Test Standard          | 47 CFR Part 15, Subpart C 15.247                 |  |  |  |  |
|------------------------|--------------------------------------------------|--|--|--|--|
| Test Method            | ANSI C63.10 (2013) Section 7.8.6 & Section 11.11 |  |  |  |  |
| Test Mode (Pre-Scan)   | ТХ                                               |  |  |  |  |
| Test Mode (Final Test) | ТХ                                               |  |  |  |  |
| Tester                 | Charlie                                          |  |  |  |  |
| Temperature            | 25°C                                             |  |  |  |  |
| Humidity               | 60%                                              |  |  |  |  |

### 16.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

## 16.2 BLOCK DIAGRAM OF TEST SETUP



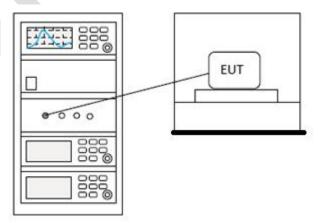


Report No.: BLA-EMC-202206-A2102 Page 51 of 106

### 16.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details




| Test Standard          | 47 CFR Part 15, Subpart C 15.247                     |  |  |  |  |
|------------------------|------------------------------------------------------|--|--|--|--|
| Test Method            | ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2 |  |  |  |  |
| Test Mode (Pre-Scan)   | ТХ                                                   |  |  |  |  |
| Test Mode (Final Test) | ТХ                                                   |  |  |  |  |
| Tester                 | Charlie                                              |  |  |  |  |
| Temperature            | 25°C                                                 |  |  |  |  |
| Humidity               | 60%                                                  |  |  |  |  |

# 17 CONDUCTED BAND EDGES MEASUREMENT

#### 17.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

## 17.2 BLOCK DIAGRAM OF TEST SETUP



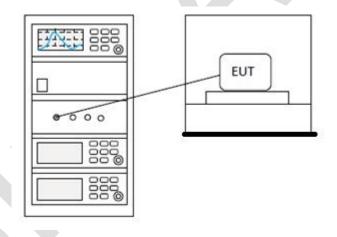


Report No.: BLA-EMC-202206-A2102 Page 53 of 106

### 17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details




### 18 MINIMUM 6DB BANDWIDTH

| Test Standard          | 47 CFR Part 15, Subpart C 15.247  |
|------------------------|-----------------------------------|
| Test Method            | ANSI C63.10 (2013) Section 11.8.1 |
| Test Mode (Pre-Scan)   | ТХ                                |
| Test Mode (Final Test) | ТХ                                |
| Tester                 | Charlie                           |
| Temperature            | <b>25</b> ℃                       |
| Humidity               | 60%                               |

#### 18.1 LIMITS

Limit:  $\geq 500 \text{ kHz}$ 

### 18.2 BLOCK DIAGRAM OF TEST SETUP



18.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details




# **19 APPENDIX**

## Appendix1

#### **Maximum Conducted Output Power**

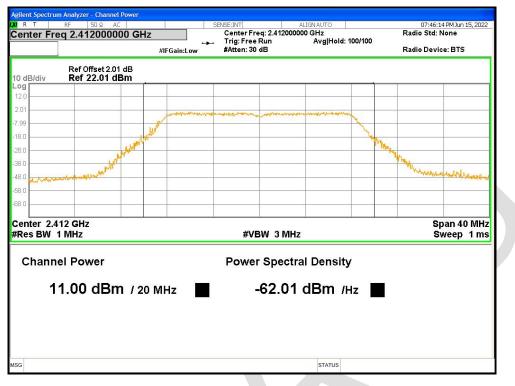
| Condition | Mode | Frequency (MHz) | Antenna | Conducted Power (dBm) | Limit (dBm) | Verdict |
|-----------|------|-----------------|---------|-----------------------|-------------|---------|
| NVNT      | b    | 2412            | Ant1    | 14.34                 | 30          | Pass    |
| NVNT      | b    | 2437            | Ant1    | 14.379                | 30          | Pass    |
| NVNT      | b    | 2462            | Ant1    | 14.394                | 30          | Pass    |
| NVNT      | g    | 2412            | Ant1    | 11.002                | 30          | Pass    |
| NVNT      | g    | 2437            | Ant1    | 12.111                | 30          | Pass    |
| NVNT      | g    | 2462            | Ant1    | 12.142                | 30          | Pass    |
| NVNT      | n20  | 2412            | Ant1    | 11.436                | 30          | Pass    |
| NVNT      | n20  | 2437            | Ant1    | 12.128                | 30          | Pass    |
| NVNT      | n20  | 2462            | Ant1    | 11.945                | 30          | Pass    |
| NVNT      | n40  | 2422            | Ant1    | 11.739                | 30          | Pass    |
| NVNT      | n40  | 2437            | Ant1    | 11.907                | 30          | Pass    |
| NVNT      | n40  | 2452            | Ant1    | 11.766                | 30          | Pass    |

### Power NVNT b 2412MHz Ant1

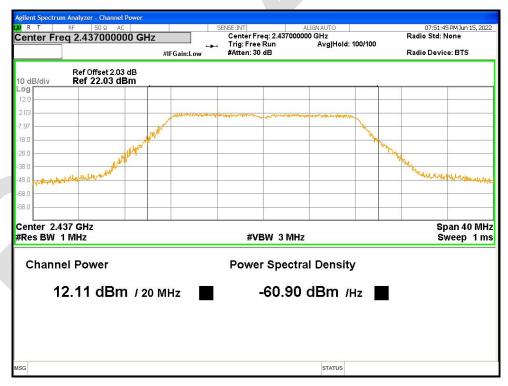


### Power NVNT b 2437MHz Ant1



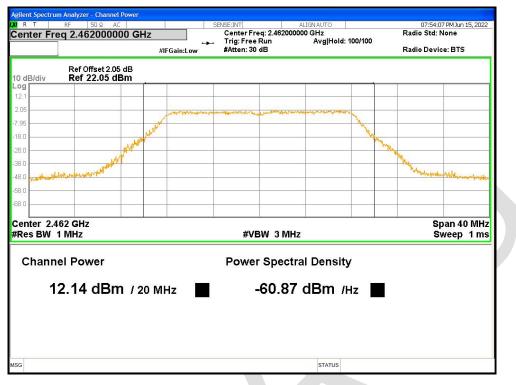



# Power NVNT b 2462MHz Ant1




### Power NVNT g 2412MHz Ant1



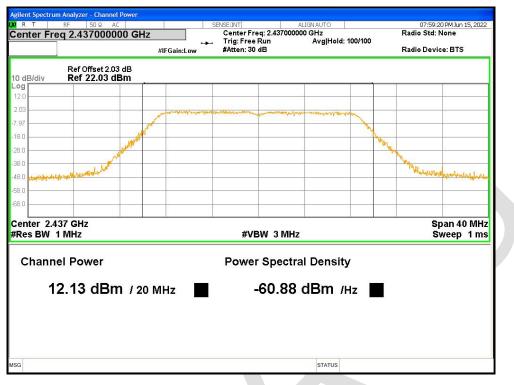



# Power NVNT g 2437MHz Ant1

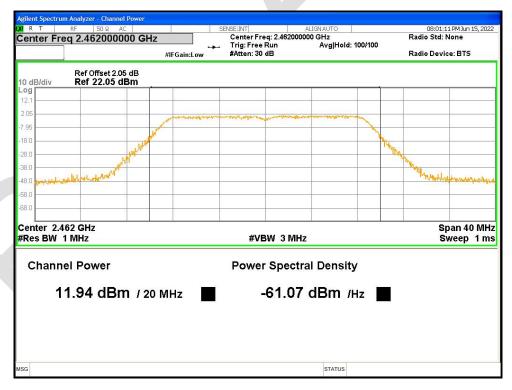



### Power NVNT g 2462MHz Ant1



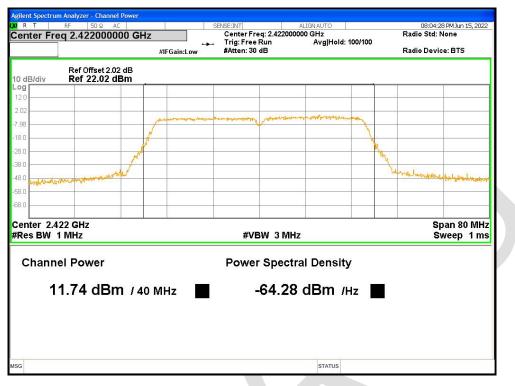



# Power NVNT n20 2412MHz Ant1

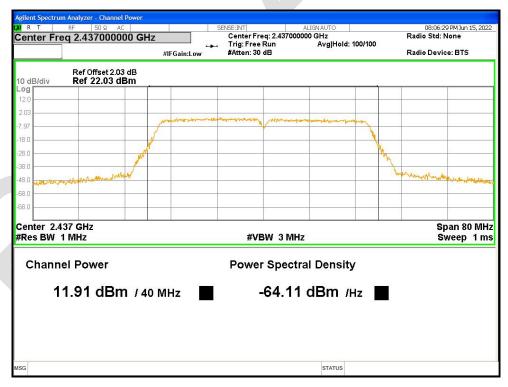



### Power NVNT n20 2437MHz Ant1






# Power NVNT n20 2462MHz Ant1




### Power NVNT n40 2422MHz Ant1





# Power NVNT n40 2437MHz Ant1



### Power NVNT n40 2452MHz Ant1