

KDB 865664 D01 SAR Measurement 100MHz to 6GHz FCC 47 CFR part 2 (2.1093)

SAR EVALUATION REPORT

For

Multi-purpose Precision Locator with Bluetooth Radio

Model Name/Number: RD8200SG **Contains FCC ID: K68-CLASSIC Contains FCC ID: SQGBL652**

REPORT NUMBER UL-SAR-RP14876167JD27A V3.0 **ISSUE DATE: 20 NOV 2023**

Prepared for

RADIODETECTION LIMITED RADIODETECTION LTD, **WESTERN DRIVE, BRISTOL BS14 0AF UNITED KINGDOM**

Prepared by

UL INTERNATIONAL (UK) LTD UNIT 1-4 HORIZON, WADE ROAD, KINGSLAND BUSINESS PARK, BASINGSTOKE, HAMPSHIRE, RG24 8AH, UK

> TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

REVISION HISTORY

Ver.	Issue Date	Revisions	Revised By
1.0	10 Nov 2023	Initial Issue	
2.0	16 Nov 2023	Updated in accordance with certification team feedback	Masood khan
3.0	20 NOV 2023	Updated in accordance with certification team feedback	Masood khan

TABLE OF CONTENTS

1. Attestation of Test Results	4
2. Test Specification, Methods and Procedures 2.1. Test Specification 2.2. Methods and Procedures Reference Documentation 2.3. Definition of Measurement Equipment	5 5 5 5 5
3. Facilities and Accreditation	6
4. SAR Measurement System & Test Equipment	7 7 8 10
5.1. Uncertainty – Freq. 300MHz - 3 GHz Head & Body Configuration 10	
6. Equipment Under Test (EUT) 6.1. Description of Equipment Under Test (EUT) 6.2. Wireless Technologies 6.3. Nominal and Maximum Output power:	14 14 15 16
7. RF Exposure Conditions (Test Configurations)	17 17 18
8. Conducted output power measurements	19 19
9. Measurements, Examinations and Derived Result 9.1. Specific Absorption Rate - Test Results 9.2. SAR Measurement Variability	20 20 21
10. Highest Standalone SAR and Simultaneous Transmission	22 22 23
11. Appendixes	24
11.1. Photos and Ports Location11.2. System Check Plots11.3. SAR Distribution Plots11.4. Calibration Certificate for Dipole	24 41 42 45
11.5. Tissues-Equivalent Media Recipes 11.6. Dielectric Property Measurements & System Check	46 47

1. Attestation of Test Results

Applicant Name:	Radiodetection I	Radiodetection Limited					
Model Name/Number:	RD8200SG	RD8200SG					
Test Device is	A representative	A representative test sample					
Device category	Portable	Portable					
Date Tested	17 October 2023	to 19 October	2023				
ICNIRP Guidelines Limits for SAR Exposure Characteristics	General Population/Localised SAR (Extremity) – 10g-SAR limit 4.0 W/kg						
The highest	RF Exposure	Conditions	Equipment Class				
reported SAR values for Localized SAR	·	T	Licensed	DTS	U-NII	DSS	
	Standalone	Extremity	N/A	N/A	N/A	0.30 W/kg	
	Simultaneous Transmission Extremity		N/A	N/A	N/A	N/A	
Applicable Standards	FCC 47 CFR part 2 (2.1093) FCC KDB publication						
Test Results	Pass						

UL International (UK) Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL International (UK) Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties are in accordance with the above standard and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample(s), under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL International (UK) Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL International (UK) Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by UKAS. This report is written to support regulatory compliance of the applicable standards stated above.

Issued By:	Prepared By:		
M. Masce			
Naseer Mirza Operations Leader	Muhammad Kunnumal Laboratory Engineer		

2.Test Specification, Methods and Procedures

2.1.Test Specification

Reference:	KDB Publication Number: 865664 D01 SAR Measurement 100 MHz to 6 GHz
Title:	SAR Measurement Requirements for 100 MHz to 6 GHz
Introduction:	The SAR Measurement procedures for 100MHz to 6GHz are described in this document. Field probes, tissue dielectric properties, SAR scans, measurement accuracy and variability of the measured results are discussed. The field probe and SAR scan requirements are derived from criteria considered in standard IEC/IEEE 62209-1528:2020. The wireless product and technology specific procedures in applicable KDB publications are required to be used unless further guidance has been approved by the FCC.
Purpose of Test:	To determine if the Equipment Under Test complies with the Specific Absorption Rate for general population/uncontrolled exposure limit of 1.6 W/kg as specified in FCC 47 CFR part 2 (2.1093).

2.2.Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

IEC/IEEE 62209-1528: 2020

Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices.

FCC KDB Publication:

KDB 248227 D01 802.11 Wi-Fi SAR v02r02

KDB 447498 D03 Supplement C Cross-Reference v01

KDB 447498 D04 Interim General RF Exposure Guidance v01

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04

KDB 865664 D02 RF Exposure Reporting v01r02

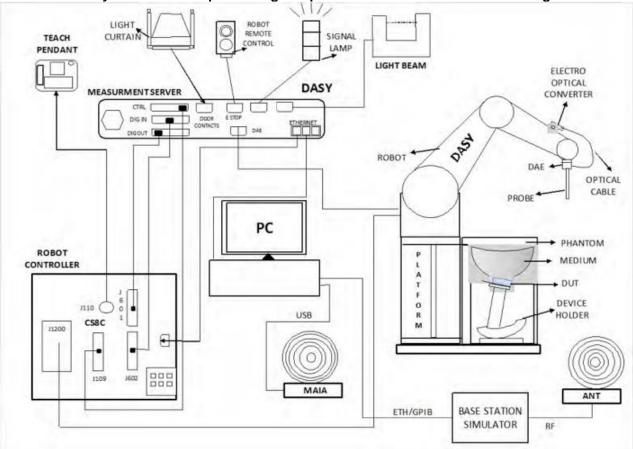
2.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Section 4.3 contains a list of the test equipment used.

3. Facilities and Accreditation

The measurement facilities used to collect data are located at

Horizon Unit 1-4, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, UK	Facility Type		
SAR Lab 67	Controlled Environment Chamber		


UL International (UK) Ltd is accredited by UKAS (United Kingdom Accreditation Service, Accredited to ISO/IEC 17025:2017), Laboratory UKAS Code 5772.

Issue Date: 20 Nov 2023

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY test systems used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 with DASY software installed.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 7 of 51

4.2.SAR Measurement Procedure

4.2.1.Normal SAR Measurement Procedure

The following procedure shall be performed for each of the test conditions

- Measure the local SAR at a test point within 8 mm of the phantom inner surface that is closest to the DUT.
- b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grid spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3 GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. The maximum variation of the sensor-phantom surface distance shall be \pm 1 mm for frequencies below 3 GHz and \pm 0,5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5°. If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed.
- c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W /kg 1 g limit, or 1,26 W/kg for 2 W /kg, 10 g limit).
- d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c) (zoom For frequencies at or below 3 GHz, the following procedure shall be applied: The horizontal grid step shall be 8 mm or less. The grid step in the vertical direction shall be 5 mm or less if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell (M1 and M2) shall be 4 mm or less and the spacing between farther points shall increase by a factor of 1,5 or less. The minimum size of the zoom scan volume shall be 30 mm by 30 mm by 30 mm

For frequencies above 3 GHz, the minimum size of the zoom scan volume may be reduced to 22 mm by 22 mm. The horizontal grid step shall be (24/f[GHz]) mm or less. If uniform spacing in the vertical direction is used, the grid step in the vertical direction shall be (10/(f[GHz] - 1)) mm or less. If variable spacing is used in the vertical direction, the maximum spacing between the two measured points closest to the phantom shell shall be (12/f[GHz]) mm or less and the spacing between further points shall increase by a factor of 1,5 or less. For other parameters, see Zoom Scan Parameters table.

When the highest 1 g or 10 g cube is touching the boundary of a zoom-scan volume, the entire zoom scan shall be repeated with the new centre located at the maximum psSAR location indicated by the preceding zoom scan measurement. If the zoom scan measured as defined above complies with both of the following criteria, or if the peak spatial-average SAR is below 0,1 W/kg, no additional measurements are needed:

- 1) the smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x and y directions (Δx , Δy). This shall be checked for the measured zoom scan plane conformal to the phantom at the distance zM1. The minimum distance shall be recorded in the SAR test report;
- 2) the ratio of the SAR at the second measured point (M2) to the SAR at the closest measured point (M1) at the *x-y* location of the measured maximum SAR value shall be at least 30 %. This ratio (in %) shall be recorded in the SAR test report.

If one or both of the above criteria are not met, the zoom scan measurement shall be repeated using a finer resolution while keeping the other zoom scan parameters compatible with Zoom Scan Parameters table. New horizontal and vertical grid steps shall be determined from the measured SAR distribution so that the above criteria are met. Compliance with the above two criteria shall be demonstrated for the new measured zoom scan. The size of the higher resolution zoom scan and other parameters of Zoom Scan Parameters table shall apply. The closest point to the phantom shell shall be 2 mm or less for graded grids and the grading factor shall be 1,5 or less.

Page 8 of 51

Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved if the distance between the phantom surface and physical tip of the probe is larger than the probe tip diameter. Other methods may utilize correction procedures to compensate for boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe normal to the flat phantom surface shall be less than 5°.

Zoom Scan Parameters

Parameter	DUT transmit frequency being tested			
	f≤3 GHz	3 GHz < f ≤ 6 GHz		
Maximum distance between the closest measured points and the phantom surface (z _{M1} in Figure 14 and Table 2, in mm)	5	δ ln(2)/2 ^a		
Maximum angle between the probe axis and the flat phantom surface normal (α in Figure 14)	5°	5°		
Maximum spacing between measured points in the x- and y-directions (Δx and Δy , in mm)	8	24/f ^{b,c}		
For uniform grids:	5	10/(f - 1)		
Maximum spacing between measured points in the direction normal to the phantom shell $(\Delta z_1$ in Figure 14, in mm)				
For graded grids:	4	12/f		
Maximum spacing between the two closest measured points in the direction normal to the phantom shell (Δz_1 in Figure 14, in mm)				
For graded grids:	1,5	1,5		
Maximum incremental increase in the spacing between measured points in the direction normal to the phantom shell ($R_z = \Delta z_2/\Delta z_1$ in Figure 14)				
Minimum edge length of the zoom scan volume in the x- and y-directions (L_z in 7.2.5.3, in mm)	30	22		
Minimum edge length of the zoom scan volume in the direction normal to the phantom shell $(L_h \text{ in } 7.2.5.3, \text{ in mm})$	30	22		
Tolerance in the probe angle	1°	1°		
		-		

- $^{\rm a}$ $_{\rm \mathcal{S}}$ is the penetration depth for a plane-wave incident normally on a planar half-space.
- b This is the maximum spacing allowed, which may not work for all circumstances.
- f is the frequency in GHz.
- e) Use post processing (e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.
- f) The local SAR should be measured at the same location as in Step a). SAR drift is assessed and reported in the uncertainty budget.

In the event that the evaluation of measurement drift exceeds the 5 % tolerance, it is required that SAR be reassessed following guidelines contained within this standard.

If the drift is larger than 5 %, then the measurement drift shall be considered a bias, not an uncertainty. A correction shall be applied to the measured SAR value. It is not necessary to record the drift in the uncertainty budget (i.e. ui = 0%). The uncertainty budget reported in a measurement report should correspond to the highest SAR value reported (after correction, if applicable). Alternatively, the uncertainty budget reported should cover all measurements, i.e., it should report a conservative value.

4.3. Test Equipment

Measuring equipment used to perform the tests is documented in this report and has been calibrated in accordance with UKAS' recommendations and is traceable to recognized national standards.

UL Asset No.	Instrument Name	Manufacturer	Туре	Serial No.	Date Last Calibrated	Cal. Interval (Months)
168969	E-Field Probe	SPEAG	EX3DV4	7497	17 Mar 2023	12
235306	Data Acquisition Equipment	SPEAG	DAE4ip	1793	03 Apr 2023	12
179511	Phantom	SPEAG	ELI V8	2100	Cal. as part of system	-
234730	Dipole Antenna	SPEAG	D2450V2	1097	02 Feb 2023	12
207451	POWERSOURCE1	SPEAG	SE UMS 160 CA	4248	06 Nov 2022	12
234947	Body Handset Positioner	SPEAG	MD4HACV5	None	Cal. not required	=
234953	Head Handset Positioner	SPEAG	MD4HHTV5	None	Cal. not required	=
234931	Measurement Server	SPEAG	-	10103	Cal. not required	=
234956	Phantom Support Structure	SPEAG	Phantom Table	-	Cal. not required	=
234927	Robot Arm	Staubli	TX2 60L	F/22/0042993/A/001	Cal. not required	=
234935	Robot Power Supply	SPEAG	CS9C	F/22/0042993/C001	Cal. not required	=
241319	MAIA	SPEAG	ů.	1643	Cal. not required	=
230884	Power Sensor	Rohde & Schwarz	NRP-18T	102994	16 Jan 2023	12
174120	Thermometer (Fluid)	Testo	Testo 720	3327513	27 Mar 2023	12
199469	Thermometer (Fluid)	Testo	Testo 720	3465036	06 Apr 2023	12
147741	Vector Network Analyser	Rohde & Schwarz	ZND 132.5170K92	100151	15 Feb 2023	12
PRE0145189	DAK 3.5 Fluid Probe	SPEAG	SM DAK 040 CA	1089	Cal. before use	=
212960	Digital Camera	Sony	DSC-HX400V	3245687	Cal. not required	=
PRE0195838	RF Coax Cable	Taoglas	CAB.721		Cal. not required	=
PRE0195840	RF Coax Cable	Taoglas	CAB.721		Cal. not required	=
PRE0136931	RF Coax Cable	-	70530/4PE	-	Cal. not required	-
PRE0140096	RF Coax Cable	Huber+Suhner	ST18/SMAm/Nm/36	-	Cal. not required	-

4.3.1. SAR System Specifications

4.3.1. SAR System Specifications Robot System					
Positioner:	Ctäubli Unimation Corn Debat Madal, TV9 COI				
	Stäubli Unimation Corp. Robot Model: TX2-60L				
Repeatability:	±0.030 mm				
No. of Axis:	6				
Serial Number(s):	F/22/0042993/A/001				
Reach:	920 mm				
Payload:	2.0 kg				
Control Unit:	CS9C				
Programming Language:	V+				
Data Acquisition Electronic (DAE) System					
Serial Number:	DAE4 SN: 1793				
PC Controller	LID Filts Devil 200				
PC:	HP EliteDesk800				
Operating System:	Windows 10				
Data Card:	DASY Measurement Servers				
Data Controller	Cinnal Analitina model to A/D				
Features:	Signal Amplifier, multiplexer, A/D converted and control logic.				
Software:	cDASY8 Software				
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock.				
PC Interface Card					
Function:	24 bit (64 MHz) DSP for real time processing Link to DAE4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot.				
Phantom					
Phantom:	ELI Phantom				
Shell Material:	Fibreglass				
Thickness:	2.0 ±0.2 mm				
E-Field Probe					
Model:	EX3DV4				
Serial No:	7497				
Construction:	Triangular core				
Frequency:	10 MHz to > 6 GHz				
Linearity:	±0.2 dB (30 MHz to 6 GHz)				
Probe Length (mm):	337				
Probe Diameter (mm):	10				
Tip Length (mm):	9				
Tip Diameter (mm):	2.5				
Sensor X Offset (mm):	1				
Sensor Y Offset (mm):	1				
Sensor Z Offset (mm):	1				
Const. E Onot (min).					

5. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Uncertainty- Freq. 300 MHz - 3 GHz Head & Body Configuration 10g	95%	±25.33%

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

REPORT NO: UL-SAR-RP14876167JD27A V3.0

5.1.Uncertainty - Freq. 300MHz - 3 GHz Head & Body Configuration 10g

Type	Source of uncertainty	+	Value	Probability	Divisor	C _{i (10g)}	Standard Uncertainty		υ _i or
Type		Value	Value	Distribution	DIVISOR	OI (10g)	+ u (%)	- u (%)	Veff
В	Probe calibration	12.000	12.000	normal (k=2)	2.0000	1.0000	6.000	6.000	∞
В	Probe calibration drift	1.700	1.700	Rectangular	1.7321	1.0000	0.981	0.981	∞
В	Probe Linearity and Detection Limits	4.700	4.700	Rectangular	1.7321	1.0000	2.714	2.714	∞
В	Broadband Signal	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Isotropy	7.600	7.600	Rectangular	1.7321	1.0000	4.388	4.388	∞
В	Data Acquisition	0.300	0.300	normal (k=1)	1.0000	1.0000	0.300	0.300	∞
В	RF Ambient conditions	0.260	0.260	normal (k=1)	1.0000	1.0000	0.260	0.260	8
В	Probe Positioning	0.700	0.700	normal (k=1)	1.0000	0.1400	0.098	0.098	∞
В	Data Processing Errors	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Uncertainty in SAR correction for deviations in permittivity and conductivity	1.900	1.900	normal (k=1)	1.0000	0.8400	1.596	1.596	8
В	Liquid Conductivity (measured value)	5.288	5.288	normal (k=2)	2.0000	0.0000	0.000	0.000	∞
В	Liquid Permittivity (measured value)	2.500	2.500	normal (k=2)	2.0000	0.0000	0.000	0.000	8
В	Liquid Conductivity (temperature uncertainty)	1.430	1.430	Rectangular	1.7321	0.7100	0.586	0.586	∞
В	Liquid Permittivity (temperature uncertainty)	0.310	0.310	Rectangular	1.7321	0.7100	0.127	0.127	8
Α	Phantom Shell Permittivity	14.000	14.000	Rectangular	1.7321	0.2500	2.021	2.021	8
Α	Distance DUT - TSL	2.000	2.000	normal (k=1)	1.0000	2.0000	4.000	4.000	∞
В	Test Sample Positioning	4.240	4.240	normal (k=1)	1.0000	1.0000	4.240	4.240	25
В	Device Holder uncertainty	6.090	6.090	normal (k=1)	1.0000	1.0000	6.090	6.090	5
В	DUT Modulation	2.400	2.400	Rectangular	1.7321	1.0000	1.386	1.386	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
	Combined standard uncertainty			t-distribution			12.66	12.66	90
	Expanded uncertainty			k = 2			25.33	25.33	90

Issue Date: 20 Nov 2023

6. Equipment Under Test (EUT)

6.1. Description of Equipment Under Test (EUT)

	Conducted Sample(s)	10/82SG-US-991011				
Serial Number:	Radiated Sample(s)	10/82SG-US-991027				
Hardware Version Number:	P2					
Software Version Number:	N/A					
Firmware Version Number:	4000					
Country of Manufacture:	United Kingdom					
Date of Receipt:	17 October 2023					
DUT Description:	The DUT is a multi-purpose precision locator used for locating the position or path of buried pipes and cables, detecting insulation faults and creating survey records. It supports Bluetooth (Version 2.0 + EDR) and Bluetooth LE using pre-certified module FCC ID: SQGBL652					
Operating Configurations	Hand-held					
Device dimension	Overall (Length x Width x Depth):					
	687 mm x 350 mm x 137 mm					
Battery Type						
	☐ Extended (large capacity)					

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode		Duty Cycle
Bluetooth	2.4 GHz	☐ Core Spec. 2.0 ☐ Core Spec. 4.0 ☐ Core Spec. 4.1 ☐ Core Spec. 4.2 ☐ Core Spec. 5.0	☐ Basic Rate (BDR) ☐ Enhanced Data Rate (EDR) ☐ Low Energy (BLE) ☐ High Data Rate (HDR)	 ☐ 77% (DH5, 720Kb/s) ☐ 77% (2-DH5/3-DH5, 2Mbps and 3Mbps) ☐ 60.5% (255 Bytes, 1Mbps) ☐ (4-DH5/8-DH5, 4Mbps and 8Mbps)

Note: BT LE is exempt from SAR testing (See Report section 7.2)

Bluetooth								
Band	Band Description							
	Frequency Range: 2402 - 2480 MHz							
Bluetooth	Mode	Channel Number	Channel Description	Frequency (MHz)				
		0	Low	2402.0				
	EDR Mode	39	Middle	2441.0				
		78	High	2480.0				

Additional Information Related to Testing:

Antenna Type:	Internal integral
Antenna Lengths:	As specified in Appendix 11.1

Number of Antennas:	Antenna Type	Antenna Description	Туре
Antennas.	WPAN	Bluetooth 2.4GHz	2 fixed (Internal)

Report. No.: 3.0

6.3.Nominal and Maximum Output power:

RF Air interface Mode	Channel Nos.	(dBm)
Bluetooth 2.4 GHz EDR	All	16.00

Note(s)

The nominal and maximum average source based rated powers declared and supplied by manufacturer are shown in the above table.

7. RF Exposure Conditions (Test Configurations)

7.1. Configuration Consideration

Technology Port	Configuration	DUT-to-User Separation	Position	Antenna-to- Edge Separation (mm)	Evaluation Considered
			Back	< 50	Yes
			Edge 1 (Top Edge)	< 50	Yes
Bluetooth 2.4 (Ant 1)	Extremity	0mm	Edge 2 (Right Edge)	> 50	No
,			Edge 3 (Bottom Edge)	< 50	Yes
			Edge 4 (Left Edge)	< 50	Yes

Technology Port	Configuration	DUT-to-User Separation	Position	Antenna-to- Edge Separation (mm)	Evaluation Considered
			Back	> 50	No
			Edge 1 (Top Edge)	< 50	Yes
Bluetooth 2.4 (Ant 2)	Extremity	0mm	Edge 2 (Right Edge)	< 50	Yes
			Edge 3 (Bottom Edge)	< 50	Yes
			Edge 4 (Left Edge)	> 50	No

Notes

- 1. The Antenna to edge separation distances are indicated in the 'Antenna Schematics' located in Section 11.1 of this report.
- 2. Prior to the SAR testing, KDB inquiry was raised with FCC for test approach/plan, all the configuration and position to be evaluated were agreed.

Page 17 of 51

7.2. SAR Test Exclusion Consideration

Francisco Pand	Configuration(s)	
Frequency Band	Extremity/Limbs	
Bluetooth 2.4GHz	No	

Note:

- As per KDB 4474898 D04, the frequency bands with rated power including upper tolerance, which qualify for Standalone Test Exclusion, are as per the above table.
- 2. The details for the Maximum Rated Power and tolerance(s) can be found in section 6.
- 3. BT LE operation is exempt from SAR test as per Module FCC ID: SQGBL652 certification

8.Conducted output power measurements

8.1.RF Output Average Power Measurement: Bluetooth 2.4 GHz

Channel Number	Frequency (MHz)	Avg Power (dBm)	Operating Mode
0	2402.0	14.60	EDB
39	2441.0	15.00	EDR (GFSK)
78	2480.0	15.00	(GFSK)

9. Measurements, Examinations and Derived Result

9.1. Specific Absorption Rate - Test Results

Test Approach

The SAR test is evaluated on each mode / configuration (Configuration: Head, Body-worn and extremity) on the channel measuring the highest average output power, in each frequency band (i.e.: DTS)

In the cases where the different channel bandwidth modes have the same highest measured average power, the largest channel bandwidth configuration has been selected.

9.1.1. Bluetooth Body 10g - BT Ant 1

Max Reported SAR = 0.30 (W/kg)

					Power	(dBm)	_	R Results //kg)		
Mode	Dist. (mm)	EUT Position	Channel Number	Freq (MHz)	Tune Up Limit	Meas.	Meas. SAR Level	Reported SAR	Notes	Plot No.
GFSK	0	Тор	39	2441	16.00	15.00	0.13	0.16	-	-
GFSK	0	Bottom	39	2441	16.00	15.00	0.01	0.00	-	-
GFSK	0	Left	39	2441	16.00	15.00	0.17	0.21	-	-
GFSK	0	Back	39	2441	16.00	15.00	0.01	0.02	-	-
GFSK	0	Left	0	2402	16.00	14.60	0.22	0.30	-	001
GFSK	0	Left	78	2480	16.00	15.00	0.13	0.17	-	-

9.1.2.Bluetooth Body 10g - BT Ant 2 Max Reported SAR = 0.13 (W/kg)

					Power	(dBm)	_	R Results //kg)		
Mode	Dist. (mm)	EUT Position	Channel Number	Freq (MHz)	Tune Up Limit	Meas.	Meas. SAR Level	Reported SAR	Notes	Plot No.
GFSK	0	Тор	39	2441	16.00	15.00	0.06	0.07	-	
GFSK	0	Bottom	39	2441	16.00	15.00	0.04	0.05	-	ı
GFSK	0	Right	39	2441	16.00	15.00	0.08	0.10	-	
GFSK	0	Right	0	2402	16.00	14.60	0.10	0.13	-	002
GFSK	0	Right	78	2480	16.00	15.00	0.07	0.09	-	-

9.2.SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

10g-SAR (Extremity)

- 1) Repeated measurement is not required when the original highest measured SAR is < 2.0 W/Kg; steps 2) through 4) do not apply.
- 2) When the original highest measured 10g-SAR is ≥ 2.00 W/Kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 3.625 W/kg (~ 10% from the 10g-SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 3.75 W/Kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: Since the 10g measured SAR for none of the runs was > 2.0 W/Kg, repeat measurements were not performed on Extremity.

Page 21 of 51

10. Highest Standalone SAR and Simultaneous Transmission

10.1.Highest Standalone Reported SAR

Individual Transmitter Evaluation per Band:

Exposure Configuration	Technology Band	Reported 10g - SAR (W/Kg)	Equipment Class	Highest Reported 10g -SAR (W/Kg)
EXTREMITY (Separation Distance 0mm)	Bluetooth (EDR)	0.30	DSS	0.30

10.2.Simultaneous Transmission analysis

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the <u>reported</u> standalone SAR of each applicable simultaneous transmitting antenna. The worst-case simultaneous transmission analysis is considered for the following cases:

Note: No simultaneous transmission analysis is evaluated as this feature is not supported between all Bluetooth transmitters