

Date: December 21, 2001

Federal Communications Commission

Via: Electronic Filing

Attention: Authorization & Evaluation Division

Applicant: Vertex Standard Co., Ltd.

Equipment: VX-3200U FCC ID: K66VX-3200U

FCC Rules: 90, 90.210, 95.29

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

Filing fees are attached.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

sincerely yours,

Morton Flom, P. Eng.

enclosure(s)
cc: Applicant
MF/cvr

# LIST OF EXHIBITS (FCC CERTIFICATION (TRANSMITTERS) - REVISED 9/28/98)

APPLICANT: Vertex Standard Co., Ltd.

FCC ID: K66VX-3200U

#### BY APPLICANT:

| 1. | LETTER OF AUTHORIZATION                                                                                                                           | Х                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2. | IDENTIFICATION DRAWINGS, 2.1033(c)(11)  x LABEL x LOCATION OF LABEL x COMPLIANCE STATEMENT x LOCATION OF COMPLIANCE STATEMENT                     |                            |
| 3. | PHOTOGRAPHS, 2.1033(c)(12)                                                                                                                        | Х                          |
| 4. | DOCUMENTATION: 2.1033(c) (3) USER MANUAL (9) TUNE UP INFO (10) SCHEMATIC DIAGRAM (10) CIRCUIT DESCRIPTION BLOCK DIAGRAM PARTS LIST ACTIVE DEVICES | X<br>X<br>X<br>X<br>X<br>X |
| 5. | PART 90.203(e) & (g) ATTESTATION                                                                                                                  | Х                          |
| 6. | MPE Report                                                                                                                                        | x                          |

#### BY M.F.A. INC.

- A. TESTIMONIAL & STATEMENT OF CERTIFICATION
- B. STATEMENT OF QUALIFICATIONS

M. Flom Associates, Inc. - Global Compliance Center 3356 North San Marcos Place, Suite 107, Chandler, Arizona 85225-7176 www.mflom.com general@mflom.com (480) 926-3100, FAX: 926-3598

#### TRANSMITTER CERTIFICATION

of

FCC ID: K66VX-3200U MODEL: VX-3200U

to

#### FEDERAL COMMUNICATIONS COMMISSION

Rule Part(s) 90, 90.210, 95.29

DATE OF REPORT: December 21, 2001

#### ON THE BEHALF OF THE APPLICANT:

Vertex Standard Co., Ltd.

AT THE REQUEST OF:

P.O. UPS 12/12/01

Vertex Standard USA Inc.

17210 Edwards Rd. Cerritos, CA 90703

Attention of:

Mikio Maruya, Executive Vice President (800) 255-9237; FAX: (800) 477-9237 (562) 404-2700, x280; FAX: -1210

m.maruya@vxstdusa.com

SUPERVISED BY:

Morton Flom, P. Eng.

#### THE APPLICANT HAS BEEN CAUTIONED AS TO THE FOLLOWING:

#### 15.21 INFORMATION TO USER.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

#### 15.27(a) SPECIAL ACCESSORIES.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

### TABLE OF CONTENTS

| RULE          | DESCRIPTION                                        | PAGE |
|---------------|----------------------------------------------------|------|
|               |                                                    |      |
|               | Test Report                                        | 1    |
| 2.1033(c)     | General Information Required                       | 2    |
| 2.1033(c)(14) | Rule Summary                                       | 5    |
|               | Standard Test Conditions and Engineering Practices | s 6  |
| 2.1046(a)     | Carrier Output Power (Conducted)                   | 7    |
| 2.1046(a)     | ERP Carrier Power (Radiated)                       | 9    |
| 2.1051        | Unwanted Emissions (Transmitter Conducted)         | 10   |
| 2.1053(a)     | Field Strength of Spurious Radiation               | 14   |
| 2.1049(c)(1)  | Emission Masks (Occupied Bandwidth)                | 18   |
| 90.214        | Transient Frequency Behavior                       | 25   |
| 2.1047(a)     | Audio Low Pass Filter (Voice Input)                | 31   |
| 2.1047(a)     | Audio Frequency Response                           | 34   |
| 2.1047(b)     | Modulation Limiting                                | 36   |
| 2.1055(a)(1)  | Frequency Stability (Temperature Variation)        | 39   |
| 2.1055(b)(1)  | Frequency Stability (Voltage Variation)            | 42   |
| 2.202(g)      | Necessary Bandwidth and Emission Bandwidth         | 43   |

PAGE NO. 1 of 43.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a) TEST REPORT

b) Laboratory: M. Flom Associates, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85225

c) Report Number: d01c0052

d) Client: Vertex Standard USA Inc.

17210 Edwards Rd. Cerritos, CA 90703

e) Identification: VX-3200U

FCC ID: K66VX-3200U

EUT Description: UHF FM Mobile Transceiver

f) EUT Condition: Not required unless specified in individual

tests.

g) Report Date: December 21, 2001 EUT Received: December 12, 2001

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

1) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

Morton Flom, P. Eng.

n) Results: The results presented in this report relate

only to the item tested.

o) Reproduction: This report must not be reproduced, except in

full, without written permission from this

laboratory.

PAGE NO. 2 of 43.

#### LIST OF GENERAL INFORMATION REQUIRED FOR CERTIFICATION

IN ACCORDANCE WITH FCC RULES AND REGULATIONS, VOLUME II, PART 2 AND TO

90, 90.210, 95.29

Sub-part 2.1033

(c)(1): NAME AND ADDRESS OF APPLICANT:

Vertex Standard Co., Ltd. 4-8-8 Nakameguro, Meguro-Ku Tokyo 153-8644 Japan

MANUFACTURER:

Applicant

(c)(2): FCC ID: K66VX-3200U

MODEL NO: VX-3200U

(c)(3): INSTRUCTION MANUAL(S):

PLEASE SEE ATTACHED EXHIBITS

(c)(4): TYPE OF EMISSION: 16K0F3E, 11K0F3E

(c)(5): FREQUENCY RANGE, MHz: 450 to 490

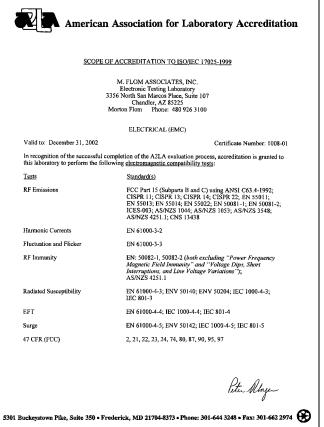
(c)(6): POWER RATING, Watts: 10 to 45

Switchable x Variable N/A

FCC GRANT NOTE: BF - The output power is

continuously variable from the value listed in this entry to 20%-25% of the

value listed.


(c)(7): MAXIMUM POWER RATING, Watts: 500

DUT RESULTS: Passes x Fails \_\_\_\_

3 of 43.

M. Flom Associates, Inc. is accredited by the American Association for Laboratory Association (A2LA) as shown in the scope below.





"This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this report have been determined in accordance with the laboratory's terms of accreditation unless stated otherwise in the report."

Should this report contain any data for tests for which we are not accredited, or which have been undertaken by a subcontractor that is not A2LA accredited, such data would not covered by this laboratory's A2LA accreditation.

PAGE NO. 4 of 43.

#### Subpart 2.1033 (continued)

(c)(8): VOLTAGES & CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE, INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

COLLECTOR CURRENT, A = per manual COLLECTOR VOLTAGE, Vdc = per manual SUPPLY VOLTAGE, Vdc = 13.8

(c)(9): TUNE-UP PROCEDURE:

PLEASE SEE ATTACHED EXHIBITS

(c)(10): CIRCUIT DIAGRAM/CIRCUIT DESCRIPTION:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

PLEASE SEE ATTACHED EXHIBITS

(c)(11): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS

(c)(12): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS

(c)(13): DIGITAL MODULATION DESCRIPTION:

\_\_\_\_ ATTACHED EXHIBITS \_x\_ N/A

(c)(14): TEST AND MEASUREMENT DATA:

FOLLOWS

<u>PAGE NO.</u> 5 of 43.

Sub-part

2.1033(c)(14): TEST AND MEASUREMENT DATA

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

| 21 - Domestic Public Fixed Radio Services<br>22 - Public Mobile Services |   |
|--------------------------------------------------------------------------|---|
| 22 Subpart H - Cellular Radiotelephone Service                           |   |
| 22.901(d) - Alternative technologies and auxiliary services              | s |
| 23 - International Fixed Public Radiocommunication services              |   |
| 24 - Personal Communications Services                                    | _ |
| 74 Subpart H - Low Power Auxiliary Stations                              |   |
| 80 - Stations in the Maritime Services                                   |   |
| 80 Subpart E - General Technical Standards                               |   |
| 80 Subpart F - Equipment Authorization for Compulsory Ships              | g |
| 80 Subpart K - Private Coast Stations and Marine Utility                 |   |
| Stations                                                                 |   |
| 80 Subpart S - Compulsory Radiotelephone Installations for               |   |
| Small Passenger Boats                                                    |   |
| 80 Subpart T - Radiotelephone Installation Required for                  |   |
| Vessels on the Great Lakes                                               |   |
| 80 Subpart U - Radiotelephone Installations Required by the              | e |
| Bridge-to-Bridge Act                                                     |   |
| 80 Subpart V - Emergency Position Indicating Radiobeacons                |   |
| (EPIRB'S)                                                                |   |
| 80 Subpart W - Global Maritime Distress and Safety System                |   |
| (GMDSS)                                                                  |   |
| 80 Subpart X - Voluntary Radio Installations                             |   |
| 87 - Aviation Services                                                   |   |
| <u>x</u> 90 - Private Land Mobile Radio Services                         |   |
| 94 - Private Operational-Fixed Microwave Service                         |   |
| x 95 Subpart A - General Mobile Radio Service (GMRS)                     |   |
| 95 Subpart C - Radio Control (R/C) Radio Service                         |   |
| 95 Subpart D - Citizens Band (CB) Radio Service                          |   |
| 95 Subpart E - Family Radio Service                                      |   |
| 95 Subpart F - Interactive Video and Data Service (IVDS)                 |   |
| 97 - Amateur Radio Service                                               |   |
| 101 - Fixed Microwave Services                                           |   |

PAGE NO. 6 of 43.

# STANDARD TEST CONDITIONS and ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992/2000 Draft, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of  $10^{\circ}$  to  $40^{\circ}$ C ( $50^{\circ}$  to  $104^{\circ}$ F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

PAGE NO. 7 of 43.

NAME OF TEST: Carrier Output Power (Conducted)

SPECIFICATION: 47 CFR 2.1046(a)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.1

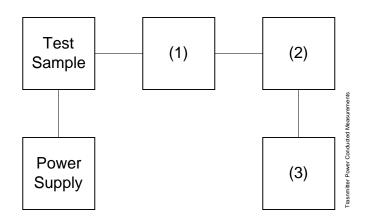
TEST EQUIPMENT: As per attached page

#### MEASUREMENT PROCEDURE

- 1. The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an R. F. Power Meter.
- 2. Measurement accuracy is ±3%.

## MEASUREMENT RESULTS (Worst case)

FREQUENCY OF CARRIER, MHz = 470.1, 449.9, 490.1


| POWER SETTING | R. F. POWER, WATTS |
|---------------|--------------------|
|               |                    |
| Low           | 10                 |
|               |                    |
| High          | 45                 |

PERFORMED BY:

PAGE NO. 8 of 43.

#### TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R. F. POWER OUTPUT TEST 2: FREQUENCY STABILITY



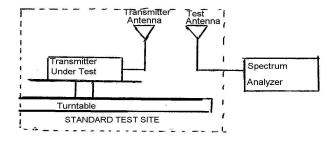
Asset Description s/n (as applicable)

#### (1) COAXIAL ATTENUATOR i00122 Narda 766-10 7802 i00123 Narda 766-10 7802A i00069 Bird 8329 (30 dB) 1006 i00113 Sierra 661A-3D 1059

#### (2) POWER METERS i00014 HP 435A 1733A05836 i00039 HP 436A 2709A26776 i00020 HP 8901A POWER MODE 2105A01087

## (3) FREQUENCY COUNTER i00042 HP 5383A 1628A00959 i00019 HP 5334B 2704A00347 i00020 HP 8901A FREQUENCY MODE 2105A01087

PAGE NO. 9 of 43.


NAME OF TEST: ERP Carrier Power (Radiated)

SPECIFICATION: TIA/EIA 603A (Substitution Method)

<u>2.2.17.1 Definition:</u> The average radiated power of a licensed device is the equivalent power required, when delivered to a half-wave dipole or horn antenna, to produce at a distant point the same average received power as produced by the licensed device.

#### 2.2.17.2 Method of Measurement:

a) Connect the equipment as illustrated. Place the transmitter to be tested on the turntable in the standard test site.



- b) Raise and lower the test antenna from 1m to 6 m with the transmitter facing the antenna and record the highest received signal in dB as LVL.
- c) Repeat step b) for seven additional readings at 45° interval positions of the turntable.
- d) Replace the transmitter under test with a half-wave or horn vertically polarized antenna. The center of the antenna should be at the same location as the transmitter under test. Connect the antenna to a signal generator with a known output power and record the path loss in dB or LOSS.
- e) Calculate the average radiated output power from the readings in step c) and d) by the following:

average radiated power =  $10 \log_{10} \Sigma 10(LVL - LOSS)/10 (dBm)$ 

|      |            | RESULTS    |             |            |
|------|------------|------------|-------------|------------|
|      | 449.90 MHZ | 470.1  MHz | 490.1 MHz   | Path Loss, |
|      | LVL, dbm   | LVL, dbm   | LVL, dbm    | db         |
| 0 °  | 47.3       | 47.1       | 46.8        | 0.3        |
| 45°  | 45.0       | 44.9       | 45.0        | 0.3        |
| 90°  | 46.1       | 45.8       | 45.7        | 0.3        |
| 135° | 43.9       | 43.8       | 42.9        | 0.3        |
| 180° | 46.4       | 46.2       | 46.4        | 0.3        |
| 225° | 46.7       | 46.6       | 46.5        | 0.3        |
| 270° | 45.5       | 45.6       | 45.3        | 0.3        |
| 315° | 43.9       | 45.1       | 45.0        | 0.3        |
|      | 4.4.0      |            | <b>50</b> 4 | 100 1      |

 449.90 MHZ
 470.1 MHz
 490.1 MHz

 Av. Radiated Power:
 45.9 dbm
 45.75 dbm

PAGE NO. 10 of 43.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)

SPECIFICATION: 47 CFR 2.1051

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.13

TEST EQUIPMENT: As per attached page

#### MEASUREMENT PROCEDURE

1. The emissions were measured for the worst case as follows:

(a): within a band of frequencies defined by the carrier frequency plus and minus one channel.

(b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.

2. The magnitude of spurious emissions that are attenuated more than 20 dB below the permissible value need not be specified.

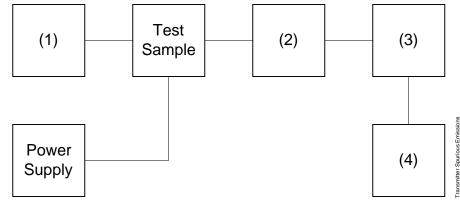
3. MEASUREMENT RESULTS: ATTACHED FOR WORST CASE

FREQUENCY OF CARRIER, MHz = 470.1, 449.9, 490.1

SPECTRUM SEARCHED, GHz = 0 to 10 x  $F_C$ 

MAXIMUM RESPONSE, Hz = 2510

ALL OTHER EMISSIONS = ≥ 20 dB BELOW LIMIT


PERFORMED BY: Doug Noble, B.A.S. E.E.T.

11 of 43.

#### TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)

TEST B. OUT-OF-BAND SPURIOUS



Asset Description s/n (as applicable)

| (1) | AUDIO | OSC | CILLATOR/GENERATOR |
|-----|-------|-----|--------------------|
| 2   | 00010 | TTD | 201D               |

| $_{ m HP}$ | 204D  | 1105A04683                      |
|------------|-------|---------------------------------|
| ΗP         | 8903A | 2216A01753                      |
| ΗP         | 3312A | 1432A11250                      |
|            | HP    | HP 204D<br>HP 8903A<br>HP 3312A |

## (2) COAXIAL ATTENUATOR

| i00122 | Narda 766-10      | 7802  |
|--------|-------------------|-------|
| i00123 | Narda 766-10      | 7802A |
| i00069 | Bird 8329 (30 dB) | 1006  |
| i00113 | Sierra 661A-3D    | 1059  |

#### (3) FILTERS; NOTCH, HP, LP, BP

| i00126 | Eagle TNF-1 | <br>100-250 |
|--------|-------------|-------------|
| i00125 | Eagle TNF-1 | 50-60       |
| i00124 | Eagle TNF-1 | 250-850     |

## (4) SPECTRUM ANALYZER

| 01 1011 | 011 111111111111111 |
|---------|---------------------|
| i00048  | HP 8566B            |
| i00029  | HP 8563E            |

<u>PAGE NO.</u> 12 of 43.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)

Low Power

LIMIT(S), dBc

GBCE002: 2001-DEC-14, 13:28, FRI

| TUNED<br>MHz | EMISSION<br>MHz | LEVEL<br>dBm | LEVEL<br>dBc | LEVEL<br>uW | MARGIN<br>dB |
|--------------|-----------------|--------------|--------------|-------------|--------------|
|              |                 |              | 50.0         |             |              |
| 449.900      | 899.802000      | -39.9        | -79.9        | 0           | -19.9        |
| 470.100      | 939.874000      | -42.3        | -82.3        | 0           | -22.3        |
| 490.100      | 980.131000      | -42.1        | -82.1        | 0           | -22.1        |
| 449.900      | 1349.724000     | -42.7        | -82.7        | 0           | -22.7        |
| 470.100      | 1409.845000     | -43.1        | -83.1        | 0           | -23.1        |
| 490.100      | 1470.543000     | -42.8        | -82.8        | 0           | -22.8        |
| 449.900      | 1799.610000     | -41.5        | -81.5        | 0           | -21.5        |
| 470.100      | 1880.694000     | -40.5        | -80.5        | 0           | -20.5        |
| 490.100      | 1960.565000     | -41.7        | -81.7        | 0           | -21.7        |
| 449.900      | 2249.811000     | -40.3        | -80.3        | 0           | -20.3        |
| 470.100      | 2350.955000     | -41.6        | -81.6        | 0           | -21.6        |
| 490.100      | 2450.984000     | -41.3        | -81.3        | 0           | -21.3        |
| 449.900      | 2699.234000     | -43.5        | -83.5        | 0           | -23.5        |
| 470.100      | 2820.996000     | -43.5        | -83.5        | 0           | -23.5        |
| 490.100      | 2941.047000     | -43.5        | -83.5        | 0           | -23.5        |
| 449.900      | 3149.214000     | -44.3        | -84.3        | 0           | -24.3        |
| 470.100      | 3290.488000     | -42.9        | -82.9        | 0           | -22.9        |
| 490.100      | 3430.524000     | -44.0        | -84.0        | 0           | -24.0        |
| 449.900      | 3598.995000     | -43.4        | -83.4        | 0           | -23.4        |
| 470.100      | 3760.987000     | -44.2        | -84.2        | 0           | -24.2        |
| 490.100      | 3920.345000     | -43.5        | -83.5        | 0           | -23.5        |
| 449.900      | 4048.899000     | -43.6        | -83.6        | 0           | -23.6        |
| 470.100      | 4230.408000     | -43.9        | -83.9        | 0           | -23.9        |
| 490.100      | 4410.956000     | -43.6        | -83.6        | 0           | -23.6        |
| 449.900      | 4498.672000     | -44.1        | -84.1        | 0           | -24.1        |
| 470.100      | 4700.938000     | -43.9        | -83.9        | 0           | -23.9        |
| 490.100      | 4900.667000     | -43.9        | -83.9        | 0           | -23.9        |
| 449.900      | 4948.893000     | -44.0        | -84.0        | 0           | -24.0        |
| 470.100      | 5171.112000     | -44.1        | -84.1        | 0           | -24.1        |
| 490.100      | 5390.822000     | -43.6        | -83.6        | 0           | -23.6        |
| 449.900      | 5398.478000     | -43.5        | -83.5        | 0           | -23.5        |
| 470.100      | 5641.443000     | -44.3        | -84.3        | 0           | -24.3        |
| 449.900      | 5849.072000     | -37.8        | -77.8        | 0           | -17.8        |
| 490.100      | 5880.714000     | -37.9        | -77.9        | 0           | -17.9        |
| 470.100      | 6111.517000     | -37.7        | -77.7        | 0           | -17.7        |
| 449.900      | 6298.534000     | -37.4        | -77.4        | 0           | -17.4        |
| 490.100      | 6370.966000     | -37.9        | -77.9        | 0           | -17.9        |
| 470.100      | 6581.293000     | -38.2        | -78.2        | 0           | -18.2        |
| 449.900      | 6748.542000     | -38.1        | -78.1        | 0           | -18.1        |
| 490.100      | 6861.354000     | -38.6        | -78.6        | Ō           | -18.6        |
| 470.100      | 7051.232000     | -36.4        | -76.4        | Ō           | -16.4        |
| 490.100      | 7351.449000     | -37.8        | -77.8        | Ö           | -17.8        |
|              |                 |              |              | ,           |              |

PERFORMED BY:

<u>PAGE NO.</u> 13 of 43.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)

High Power

LIMIT(S), dBc

GBCE001: 2001-DEC-14, 13:23, FRI

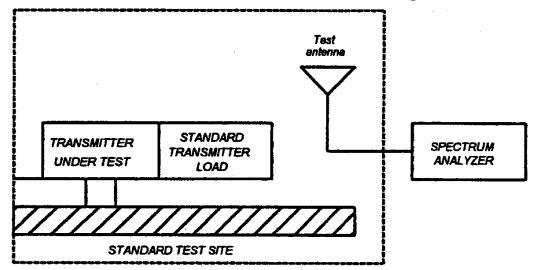
| 470.100       940.507000       -33.1       -79.6       0       -1         490.100       980.395000       -32.7       -79.2       1       -1         449.900       1349.350000       -32.8       -79.3       1       -1         470.100       1410.089000       -33.3       -79.8       0       -1         490.100       1470.011000       -32.4       -78.9       1       -1         449.900       1799.279000       -31.5       -78.0       1       -1         490.100       1880.244000       -32.4       -78.9       1       -1         490.100       1960.899000       -29.8       -76.3       1       -1         490.100       1960.899000       -31.9       -78.4       1       -1         490.100       2350.769000       -30.0       -76.5       1       -1         490.100       2450.367000       -30.9       -77.4       1       -1         449.900       2699.071000       -32.4       -78.9       1       -1         449.900       2699.071000       -33.0       -79.5       1       -1         490.100       2940.129000       -34.5       -81.0       0       -1                                                                                                           | TUNED<br>MHz | EMISSION<br>MHz | LEVEL<br>dBm | LEVEL<br>dBc | LEVEL<br>uW | MARGIN<br>dB  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|--------------|--------------|-------------|---------------|
| 470.100       940.507000       -33.1       -79.6       0       -1         490.100       980.395000       -32.7       -79.2       1       -1         449.900       1349.350000       -32.8       -79.3       1       -1         470.100       1410.089000       -33.3       -79.8       0       -1         490.100       1470.011000       -32.4       -78.9       1       -1         449.900       1799.279000       -31.5       -78.0       1       -1         490.100       1880.244000       -32.4       -78.9       1       -1         490.100       1960.899000       -29.8       -76.3       1       -1         490.100       1960.899000       -31.9       -78.4       1       -1         470.100       2350.769000       -30.0       -76.5       1       -1         449.900       2699.071000       -32.4       -78.9       1       -1         449.900       2699.071000       -32.4       -78.9       1       -1         449.900       2699.071000       -32.4       -78.9       1       -1         490.100       2940.129000       -34.5       -81.0       0       -1                                                                                                           | 449.900      | 899.841000      | -33.6        | -80.1        | 0           | -13.6         |
| 490.100       980.395000       -32.7       -79.2       1       -1         449.900       1349.350000       -32.8       -79.3       1       -1         470.100       1410.089000       -33.3       -79.8       0       -1         490.100       1470.011000       -32.4       -78.9       1       -1         449.900       1799.279000       -31.5       -78.0       1       -1         470.100       1880.244000       -32.4       -78.9       1       -1         490.100       1960.899000       -29.8       -76.3       1       -1         490.100       1960.899000       -31.9       -78.4       1       -1         490.100       2350.769000       -30.0       -76.5       1       -1         490.100       2450.367000       -30.9       -77.4       1       -1         490.100       2450.367000       -30.9       -77.4       1       -1         490.100       2820.969000       -33.0       -79.5       1       -1         470.100       2820.969000       -33.0       -79.5       1       -1         490.100       3494.145000       -35.2       -81.7       0       -1                                                                                                          |              |                 |              |              |             | -13.1         |
| 449.900       1349.350000       -32.8       -79.3       1       -1.         470.100       1410.089000       -33.3       -79.8       0       -1.         490.100       1470.011000       -32.4       -78.9       1       -1.         449.900       1799.279000       -31.5       -78.0       1       -1.         470.100       1880.244000       -32.4       -78.9       1       -1.         490.100       1960.899000       -29.8       -76.3       1       -1.         490.100       249.435000       -31.9       -78.4       1       -1.         470.100       2350.769000       -30.0       -76.5       1       -1.         490.100       2450.367000       -30.9       -77.4       1       -1.         490.100       2450.367000       -30.9       -77.4       1       -1.         490.100       2820.969000       -33.0       -79.5       1       -1.         490.100       2940.129000       -34.5       -81.0       0       -1.         490.100       349.145000       -35.2       -81.7       0       -1.         490.100       3430.731000       -34.4       -80.9       0       <                                                                                               |              |                 |              |              |             | -12.7         |
| 470.100       1410.089000       -33.3       -79.8       0       -1.         490.100       1470.011000       -32.4       -78.9       1       -1.         449.900       1799.279000       -31.5       -78.0       1       -1.         470.100       1880.244000       -32.4       -78.9       1       -1.         490.100       1960.899000       -29.8       -76.3       1       -1.         449.900       2249.435000       -31.9       -78.4       1       -1.         490.100       2350.769000       -30.0       -76.5       1       -1.         490.100       2450.367000       -30.9       -77.4       1       -1.         490.100       2699.071000       -32.4       -78.9       1       -1.         440.900       2699.071000       -32.4       -78.9       1       -1.         470.100       2820.969000       -33.0       -79.5       1       -1.         449.900       3149.145000       -35.2       -81.0       0       -1.         449.900       3149.145000       -35.2       -81.7       0       -1.         470.100       3291.028000       -33.3       -79.8       0                                                                                                     |              |                 |              |              |             | -12.8         |
| 449.900       1799.279000       -31.5       -78.0       1       -1         470.100       1880.244000       -32.4       -78.9       1       -1         490.100       1960.899000       -29.8       -76.3       1       -1         449.900       2249.435000       -31.9       -78.4       1       -1         470.100       2350.769000       -30.0       -76.5       1       -1         490.100       2450.367000       -30.9       -77.4       1       -1         449.900       2699.071000       -32.4       -78.9       1       -1         449.900       2699.071000       -34.5       -81.0       0       -1         490.100       2820.969000       -33.0       -79.5       1       -1         490.100       2940.129000       -34.5       -81.0       0       -1         490.100       3291.028000       -33.3       -79.8       0       -1         470.100       3291.028000       -33.3       -79.8       0       -1         490.100       3430.731000       -34.4       -80.9       0       -1         490.100       3761.027000       -33.7       -80.2       0       -1                                                                                                         |              |                 |              |              |             | -13.3         |
| 470.100       1880.244000       -32.4       -78.9       1       -1.1         490.100       1960.899000       -29.8       -76.3       1          449.900       2249.435000       -31.9       -78.4       1       -1.1         470.100       2350.769000       -30.0       -76.5       1       -1.1         490.100       2450.367000       -30.9       -77.4       1       -1.1         449.900       2699.071000       -32.4       -78.9       1       -1.1         470.100       2820.969000       -33.0       -79.5       1       -1.1         470.100       2820.969000       -34.5       -81.0       0       -1.1         470.100       2940.129000       -34.5       -81.0       0       -1.1         470.100       3291.028000       -35.2       -81.7       0       -1.1         470.100       3430.731000       -34.4       -80.9       0       -1.1         470.100       3761.027000       -33.7       -80.2       0       -1.1         470.100       3761.027000       -34.2       -80.7       0       -1.1         470.100       3761.027000       -34.2       -80.7 <td< td=""><td>490.100</td><td>1470.011000</td><td>-32.4</td><td>-78.9</td><td></td><td>-12.4</td></td<> | 490.100      | 1470.011000     | -32.4        | -78.9        |             | -12.4         |
| 490.100       1960.899000       -29.8       -76.3       1       -1         449.900       2249.435000       -31.9       -78.4       1       -1         470.100       2350.769000       -30.0       -76.5       1       -1         490.100       2450.367000       -30.9       -77.4       1       -1         449.900       2699.071000       -32.4       -78.9       1       -1         470.100       2820.969000       -33.0       -79.5       1       -1         490.100       2940.129000       -34.5       -81.0       0       -1         499.900       3149.145000       -35.2       -81.7       0       -1         499.900       3149.145000       -35.2       -81.7       0       -1         490.100       3291.028000       -33.3       -79.8       0       -1         490.100       3450.731000       -34.4       -80.9       0       -1         470.100       3761.027000       -33.7       -80.2       0       -1         470.100       3920.719000       -34.4       -80.9       0       -1         470.100       4290.461000       -34.2       -80.7       0       -1                                                                                                         |              |                 |              |              |             | -11.5         |
| 449.900       2249.435000       -31.9       -78.4       1       -1         470.100       2350.769000       -30.0       -76.5       1       -1         490.100       2450.367000       -30.9       -77.4       1       -1         449.900       2699.071000       -32.4       -78.9       1       -1         470.100       2820.969000       -33.0       -79.5       1       -1         490.100       2940.129000       -34.5       -81.0       0       -1         449.900       3149.145000       -35.2       -81.7       0       -1         470.100       3291.028000       -33.3       -79.8       0       -1         490.100       3430.731000       -34.4       -80.9       0       -1         470.100       3599.300000       -33.7       -80.2       0       -1         470.100       3761.027000       -33.7       -80.2       0       -1         490.100       3920.719000       -34.4       -80.9       0       -1         49.900       4049.595000       -33.7       -80.2       0       -1         490.100       4230.461000       -34.2       -80.7       0       -1                                                                                                          | 470.100      | 1880.244000     | -32.4        |              |             | -12.4         |
| 470.100       2350.769000       -30.0       -76.5       1       -1         490.100       2450.367000       -30.9       -77.4       1       -1         449.900       2699.071000       -32.4       -78.9       1       -1         470.100       2820.969000       -33.0       -79.5       1       -1         490.100       2940.129000       -34.5       -81.0       0       -1         490.100       3149.145000       -35.2       -81.7       0       -1         470.100       3291.028000       -33.3       -79.8       0       -1         490.100       3430.731000       -34.4       -80.9       0       -1         490.100       3761.027000       -33.7       -80.2       0       -1         490.100       3920.719000       -34.4       -80.9       0       -1         490.100       3920.719000       -34.4       -80.9       0       -1         490.100       429.595000       -33.7       -80.2       0       -1         490.100       4290.461000       -34.2       -80.7       0       -1         499.900       4499.321000       -34.3       -80.8       0       -1                                                                                                          | 490.100      | 1960.899000     | -29.8        | -76.3        |             | -9.8          |
| 490.100       2450.367000       -30.9       -77.4       1       -1         449.900       2699.071000       -32.4       -78.9       1       -1         470.100       2820.969000       -33.0       -79.5       1       -1         490.100       2940.129000       -34.5       -81.0       0       -1         449.900       3149.145000       -35.2       -81.7       0       -1         470.100       3291.028000       -33.3       -79.8       0       -1         490.100       3430.731000       -34.4       -80.9       0       -1         490.100       34599.300000       -34.2       -80.7       0       -1         490.100       3761.027000       -33.7       -80.2       0       -1         490.100       3920.719000       -34.4       -80.9       0       -1         499.100       4049.595000       -33.7       -80.2       0       -1         490.100       4230.461000       -34.2       -80.7       0       -1         499.100       4499.321000       -34.3       -80.8       0       -1         490.100       4949.077000       -33.3       -79.8       0       -1                                                                                                        | 449.900      | 2249.435000     |              |              |             | -11.9         |
| 449.900       2699.071000       -32.4       -78.9       1       -1         470.100       2820.969000       -33.0       -79.5       1       -1         490.100       2940.129000       -34.5       -81.0       0       -1         449.900       3149.145000       -35.2       -81.7       0       -1         470.100       3291.028000       -33.3       -79.8       0       -1         490.100       3430.731000       -34.4       -80.9       0       -1         499.100       3599.300000       -34.2       -80.7       0       -1         490.100       3761.027000       -33.7       -80.2       0       -1         490.100       3920.719000       -34.4       -80.9       0       -1         490.100       3920.719000       -34.4       -80.9       0       -1         499.100       4049.595000       -33.7       -80.2       0       -1         490.100       4230.461000       -34.2       -80.7       0       -1         490.100       4499.321000       -34.3       -80.8       0       -1         490.100       4949.077000       -33.3       -79.8       0       -1                                                                                                         |              |                 |              |              |             | -10.0         |
| 470.100       2820.969000       -33.0       -79.5       1       -1.         490.100       2940.129000       -34.5       -81.0       0       -1.         449.900       3149.145000       -35.2       -81.7       0       -1.         470.100       3291.028000       -33.3       -79.8       0       -1.         490.100       3430.731000       -34.4       -80.9       0       -1.         449.900       3599.300000       -34.2       -80.7       0       -1.         470.100       3761.027000       -33.7       -80.2       0       -1.         490.100       3920.719000       -34.4       -80.9       0       -1.         490.100       3920.719000       -34.4       -80.9       0       -1.         490.100       4049.595000       -33.7       -80.2       0       -1.         490.100       4230.461000       -34.2       -80.7       0       -1.         499.100       4499.321000       -34.3       -80.8       0       -1.         499.900       4995.321000       -33.1       -79.6       0       -1.         499.100       4949.077000       -33.3       -79.8       0                                                                                                     |              |                 |              |              |             | -10.9         |
| 490.100       2940.129000       -34.5       -81.0       0       -1         449.900       3149.145000       -35.2       -81.7       0       -1         470.100       3291.028000       -33.3       -79.8       0       -1         490.100       3430.731000       -34.4       -80.9       0       -1         449.900       3599.300000       -34.2       -80.7       0       -1         470.100       3761.027000       -33.7       -80.2       0       -1         490.100       3920.719000       -34.4       -80.9       0       -1         490.100       3920.719000       -34.4       -80.9       0       -1         490.100       4049.595000       -33.7       -80.2       0       -1         490.100       4230.461000       -34.2       -80.7       0       -1         490.100       4499.321000       -34.3       -80.8       0       -1         449.900       4499.321000       -34.3       -80.8       0       -1         490.100       4901.436000       -33.1       -79.6       0       -1         499.900       4949.077000       -33.3       -79.8       0       -1                                                                                                         |              |                 |              |              | 1           | -12.4         |
| 449.900       3149.145000       -35.2       -81.7       0       -1.         470.100       3291.028000       -33.3       -79.8       0       -1.         490.100       3430.731000       -34.4       -80.9       0       -1.         449.900       3599.300000       -34.2       -80.7       0       -1.         470.100       3761.027000       -33.7       -80.2       0       -1.         490.100       3920.719000       -34.4       -80.9       0       -1.         449.900       4049.595000       -33.7       -80.2       0       -1.         470.100       4230.461000       -34.2       -80.7       0       -1.         490.100       4410.463000       -33.9       -80.4       0       -1.         449.900       4499.321000       -34.3       -80.8       0       -1.         470.100       4700.100       4901.436000       -33.1       -79.6       0       -1.         449.900       4949.077000       -33.3       -79.8       0       -1.         490.100       5391.106000       -34.2       -80.7       0       -1.         499.900       5399.070000       -32.8       -79.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-13.0</td>                             |              |                 |              |              |             | -13.0         |
| 470.100       3291.028000       -33.3       -79.8       0       -1         490.100       3430.731000       -34.4       -80.9       0       -1         449.900       3599.300000       -34.2       -80.7       0       -1         470.100       3761.027000       -33.7       -80.2       0       -1         490.100       3920.719000       -34.4       -80.9       0       -1         449.900       4049.595000       -33.7       -80.2       0       -1         470.100       4230.461000       -34.2       -80.7       0       -1         490.100       4410.463000       -33.9       -80.4       0       -1         449.900       4499.321000       -34.3       -80.8       0       -1         470.100       4700.995000       -33.9       -80.4       0       -1         490.100       4941.436000       -33.1       -79.6       0       -1         490.100       5391.106000       -34.2       -80.7       0       -1         490.100       5391.106000       -32.8       -79.3       1       -1         499.900       5399.070000       -32.8       -79.3       1       -1                                                                                                         |              |                 |              |              |             | -14.5         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -15.2         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -13.3         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -14.4         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -14.2         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -13.7         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -14.4 $-13.7$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -13.7         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -13.9         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -13.9         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -13.9         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -13.1         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |              |              |             | -13.3         |
| 490.100     5391.106000     -33.2     -79.7     0     -1       449.900     5399.070000     -32.8     -79.3     1     -1       470.100     5640.947000     -33.0     -79.5     1     -1       449.900     5848.298000     -28.3     -74.8     1     -3       490.100     5881.006000     -28.0     -74.5     2     -3       470.100     6111.786000     -28.0     -74.5     2     -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                 |              |              |             | -14.2         |
| 449.900     5399.070000     -32.8     -79.3     1     -1:       470.100     5640.947000     -33.0     -79.5     1     -1:       449.900     5848.298000     -28.3     -74.8     1     -3       490.100     5881.006000     -28.0     -74.5     2     -3       470.100     6111.786000     -28.0     -74.5     2     -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                 |              |              |             | -13.2         |
| 470.100     5640.947000     -33.0     -79.5     1     -1:       449.900     5848.298000     -28.3     -74.8     1     -3:       490.100     5881.006000     -28.0     -74.5     2     -3:       470.100     6111.786000     -28.0     -74.5     2     -3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                 |              |              |             | -12.8         |
| 449.900     5848.298000     -28.3     -74.8     1     -3       490.100     5881.006000     -28.0     -74.5     2     -3       470.100     6111.786000     -28.0     -74.5     2     -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 470.100      | 5640.947000     |              |              |             | -13.0         |
| 490.100 5881.006000 -28.0 -74.5 2 -8<br>470.100 6111.786000 -28.0 -74.5 2 -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                 |              |              |             | -8.3          |
| 470.100 6111.786000 -28.0 -74.5 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                 |              |              |             | -8.0          |
| 449.900 6298.310000 -27.0 -73.5 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 470.100      | 6111.786000     | -28.0        | -74.5        | 2           | -8.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 449.900      |                 | -27.0        |              | 2           | -7.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 490.100      | 6371.507000     | -28.1        | -74.6        |             | -8.1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                 |              | -74.8        |             | -8.3          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 449.900      |                 |              |              |             | -7.5          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 6860.953000     |              |              | 2           | -7.7          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                 |              |              | 2           | -8.1          |
| 490.100 7351.398000 -27.2 -73.7 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 490.100      | 7351.398000     | -27.2        | -73.7        | 2           | -7.2          |

PERFORMED BY:

PAGE NO. 14 of 43.

NAME OF TEST: Field Strength of Spurious Radiation

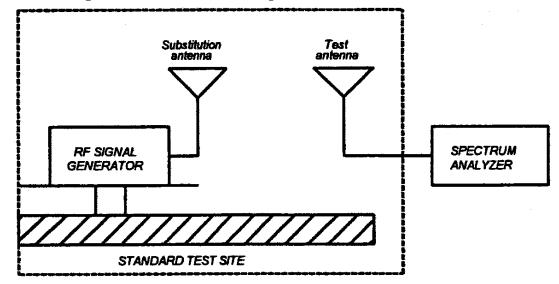
SPECIFICATION: 47 CFR 2.1053(a)


GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 1.2.12

#### MEASUREMENT PROCEDURE

1.2.12.1 Definition: Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

#### 1.2.12.2 Method of Measurement


- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
  - 1) Resolution Bandwidth ≤3 kHz.
  - 2) Video Bandwidth ≥10 kHz
  - 3) Sweep Speed ≤2000 Hz/second
  - 4) Detector Mode = Positive Peak
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load which is placed on the turntable. The RF cable to this load should be of minimum length.



PAGE NO. 15 of 43.

NAME OF TEST: Field Strength of Spurious Radiation (Cont.)

- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to  $\pm$  the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.



- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- I) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.

PAGE NO. 16 of 43.

NAME OF TEST: Field Strength of Spurious Radiation (Cont.)

- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB =
 10log<sub>10</sub>(TX power in watts/0.001) - the levels in step 1)

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

#### Test Equipment: Asset Description s/n Cycle Last Cal Per ANSI C63.4-1992/2000 Draft, 10.1.4 (as applicable) TRANSDUCER i00088 EMCO 3109-B 25MHz-300MHz 2336 12 mo. Sep-01 i00065 EMCO 3301-B Active Monopole 2635 12 mo. Sep-01 i00089 Aprel 2001 200MHz-1GHz 001500 12 mo. Sep-01 i00103 EMCO 3115 1GHz-18GHz 9208-3925 12 mo. Sep-01 AMPLIFIER i00028 HP 8449A 2749A00121 12 mo. Mar-01 SPECTRUM ANALYZER 3213A00104 12 mo. i00029 HP 8563E Aug-01 3625A00357 12 mo. May-01 i00033 HP 85462A i00048 HP 8566B 2511AD1467 6 mo. Nov-01 MICROPHONE, ANTENNA PORT, AND CABELING Yes/No Cable Length Meters Microphone Antenna Port Terminated Yes/No \_\_\_\_ Load \_\_\_ Antenna Gain \_\_\_\_ All Ports Terminated by Load Peripheral

<u>PAGE NO.</u> 17 of 43.

NAME OF TEST: Field Strength of Spurious Radiation

LIMIT'S), dBc: -(50+10xLOG(P)) = -67 ( 45 Watts )

-(50+10xLOG(P)) = -60 ( 10 Watts )

High Power

| <br>Ingii I Owei |               |       |       |   |
|------------------|---------------|-------|-------|---|
| FREQUENCY        | FREQUENCY     | ERP,  | ERP,  | _ |
| TUNED, MHz       | EMISSION, MHz | dBm   | dBc   |   |
|                  |               |       |       |   |
| 449.9000         | 1349.7000     | -34.5 | -81.0 |   |
| 470.1000         | 1410.3000     | -33.2 | -79.7 |   |
| 470.1000         | 1880.4000     | -37.7 | -84.2 |   |
| 470.1000         | 2350.5000     | -38.0 | -84.5 |   |
| 490.1000         | 2450.5000     | -30.6 | -77.1 |   |
| 470.1000         | 2820.6000     | -39.4 | -85.9 |   |
| 490.1000         | 2940.6000     | -33.7 | -80.2 |   |
| 449.9000         | 3149.3000     | -33.9 | -80.4 |   |
| 490.1000         | 3430.7000     | -36.3 | -82.8 |   |
| 449.9000         | 3599.2000     | -23.9 | -70.4 |   |
| 470.1000         | 3760.8000     | -23.8 | -70.3 |   |
| 490.1000         | 3920.8000     | -24.0 | -70,5 |   |
|                  |               |       |       |   |

APPLICANT SUPPLIED DATA

PAGE NO. 18 of 43.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

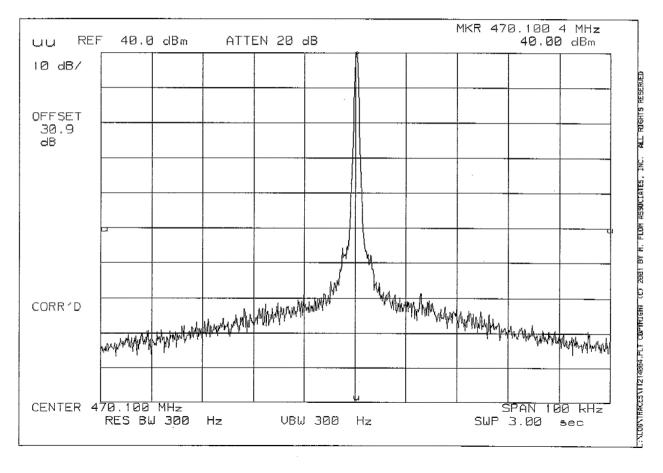
SPECIFICATION: 47 CFR 2.1049(c)(1)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

TEST EQUIPMENT: As per previous page

#### MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
- 2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for  $\pm 2.5/\pm 1.25$  kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- 3. For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED


19 of 43.

NAME OF TEST:

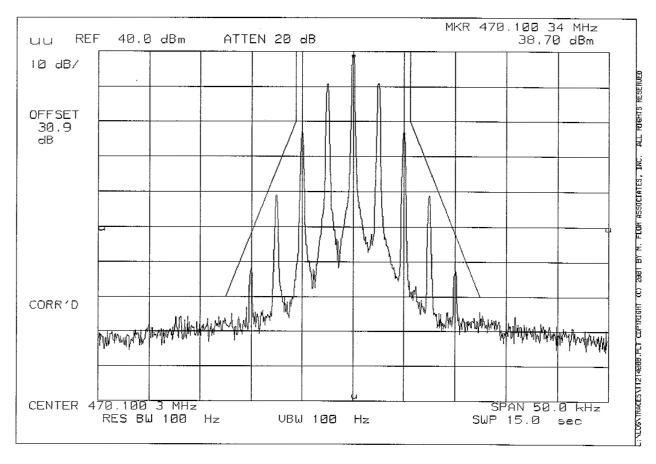
Emission Masks (Occupied Bandwidth)

SPECTRUM ANALYZER PRESENTATION VERTEXSTANDARD, VX-3200U 2001-DEC-14, 13:10, FRI

POWER: LOW MODULATION: NONE



PERFORMED BY:


20 of 43.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

SPECTRUM ANALYZER PRESENTATION VERTEXSTANDARD, VX-3200U 2001-DEC-14, 13:19, FRI

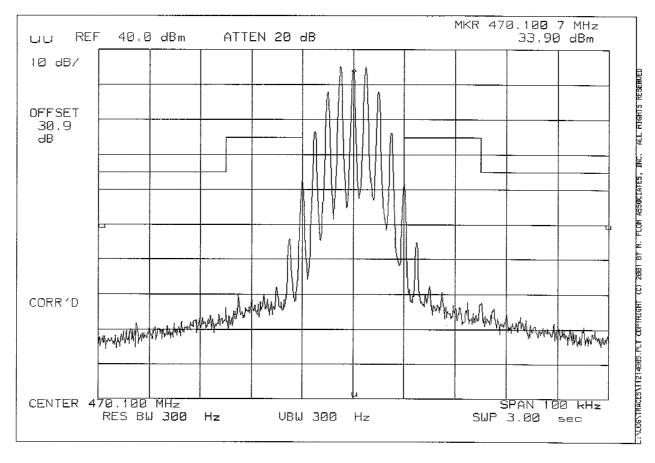
POWER:

MODULATION: VOICE: 2500 Hz SINE WAVE MASK: D, VHF/UHF 12.5kHz BW



21 of 43.

NAME OF TEST:


Emission Masks (Occupied Bandwidth)

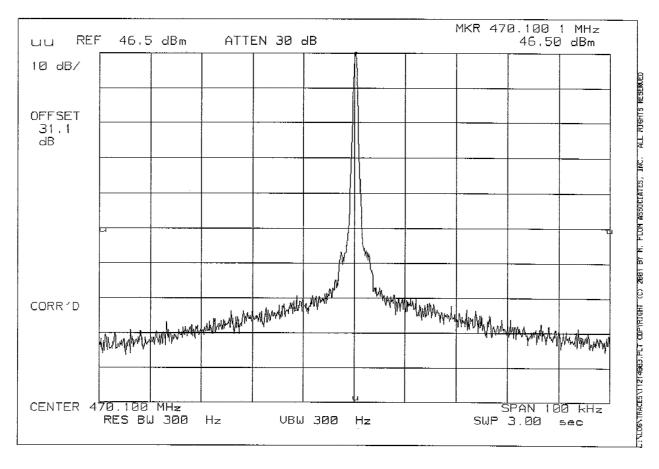
SPECTRUM ANALYZER PRESENTATION VERTEXSTANDARD, VX-3200U 2001-DEC-14, 13:13, FRI

POWER:

LOW

MODULATION: VOICE: 2500 Hz SINE WAVE MASK: B, VHF/UHF 25kHz, w/LPF




22 of 43.

NAME OF TEST:

Emission Masks (Occupied Bandwidth)

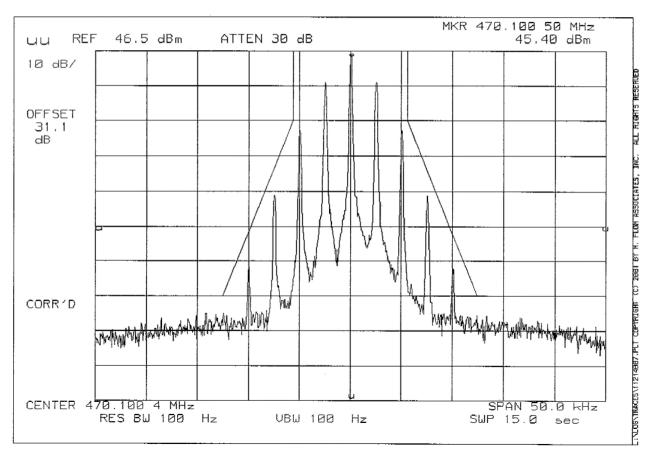
SPECTRUM ANALYZER PRESENTATION VERTEXSTANDARD, VX-3200U 2001-DEC-14, 13:07, FRI

POWER: HIGH MODULATION: NONE



PERFORMED BY:

23 of 43.


NAME OF TEST: Emission Masks (Occupied Bandwidth)

SPECTRUM ANALYZER PRESENTATION VERTEXSTANDARD, VX-3200U 2001-DEC-14, 13:18, FRI

POWER:

HIGH

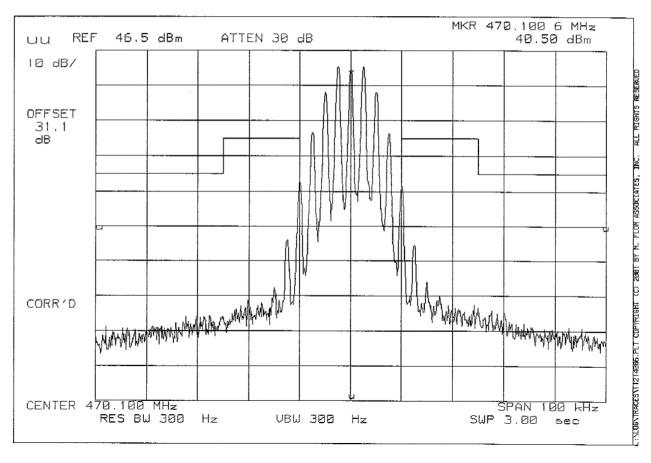
MODULATION: VOICE: 2500 Hz SINE WAVE MASK: D, VHF/UHF 12.5kHz BW



PERFORMED BY:

24 of 43.

NAME OF TEST:


Emission Masks (Occupied Bandwidth)

SPECTRUM ANALYZER PRESENTATION VERTEXSTANDARD, VX-3200U 2001-DEC-14, 13:15, FRI

POWER:

HIGH

MODULATION: VOICE: 2500 Hz SINE WAVE MASK: B, VHF/UHF 25kHz, W/LPF



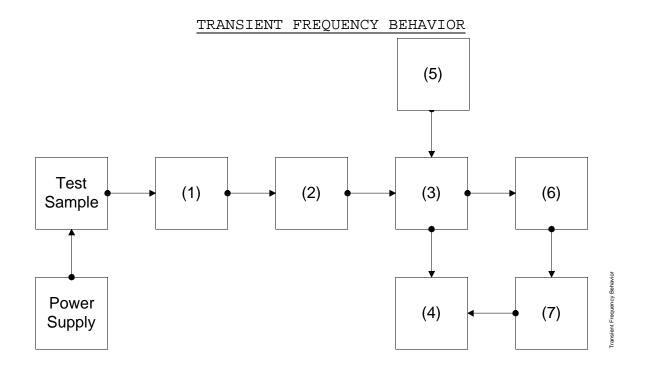
PAGE NO. 25 of 43.

NAME OF TEST: Transient Frequency Behavior

SPECIFICATION: 47 CFR 90.214

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.19

TEST EQUIPMENT: As per attached page


#### MEASUREMENT PROCEDURE

- 1. The EUT was setup as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a guide.
- 2. The transmitter was turned on.
- 3. Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was  $40~\mathrm{dB}$  below the maximum input level of the test receiver. This level was recorded as step f.
- 4. The transmitter was turned off.
- 5. An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for  $\underline{\text{step } f}$ , as measured at the output of the combiner. This level was then fixed for the remainder of the test and is recorded at  $\underline{\text{step } h}$ .
- 6. The oscilloscope was setup using TIA/EIA-603 steps j and k as a quide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).
- 7. The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as step 1.
- 8. The <u>carrier on-time</u> as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The <u>carrier off-time</u> as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.

LEVELS MEASURED:

PERFORMED BY:

#### 26 of 43.



Asset Description s/n (as applicable)

| (1)                     | ATTENUA        | TOR (Removed after 1st                 | step)      |  |  |  |
|-------------------------|----------------|----------------------------------------|------------|--|--|--|
|                         | i00112         | Philco 30 dB                           | 989        |  |  |  |
| (2)                     | (2) ATTENUATOR |                                        |            |  |  |  |
|                         | i00112         | Philco 30 dB                           | 989        |  |  |  |
|                         | i00172         | Bird 30 dB                             | 989        |  |  |  |
|                         | i00122         | Narda 10 dB                            | 7802       |  |  |  |
|                         | i00123         | Narda 10 dB                            | 7802A      |  |  |  |
|                         | i00110         | Kay Variable                           | 145-387    |  |  |  |
| (3)                     | COMBINE        | R                                      |            |  |  |  |
|                         | i00154         | $\overline{}$ 4 x 25 $\Omega$ COMBINER | 154        |  |  |  |
| (4)                     | CRYSTAL        | DETECTOR                               |            |  |  |  |
|                         | i00159         | HP 8470B                               | 1822A10054 |  |  |  |
| (5) RF SIGNAL GENERATOR |                |                                        |            |  |  |  |
|                         | i00018         | HP 8656A                               | 2228A03472 |  |  |  |
|                         | i00031         | HP 8656A                               | 2402A06180 |  |  |  |
|                         | i00067         | HP 8920A                               | 3345U01242 |  |  |  |
| (6)                     | MODULA         | TION ANALYZER                          |            |  |  |  |
|                         | i00020         | HP 8901A                               | 2105A01087 |  |  |  |
| (7)                     | SCOPE          |                                        |            |  |  |  |
|                         | i00030         | HP 54502A                              | 2927A00209 |  |  |  |

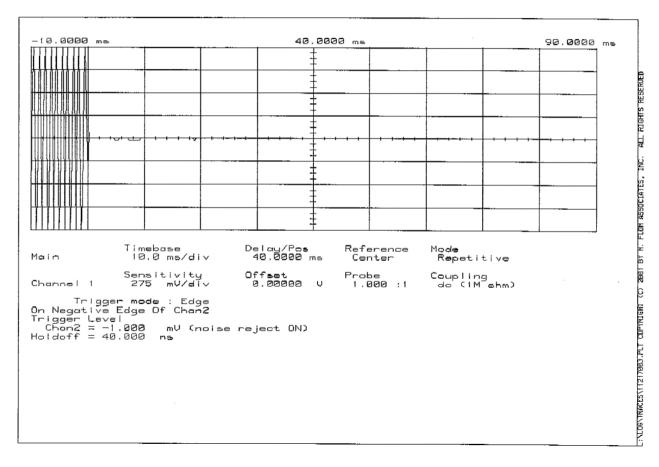
PAGE NO.

27 of 43.

NAME OF TEST:

Transient Frequency Behavior

OSCILLOSCOPE PRESENTATION VERTEXSTANDARD, VX-3200U 2001-DEC-17, 10:23, MON


POWER:

HIGH

MODULATION: Ref Gen=12.5 kHz Deviation

REMARK:

CARRIER ON TIME



PERFORMED BY:

PAGE NO.

28 of 43.

NAME OF TEST:

Transient Frequency Behavior

OSCILLOSCOPE PRESENTATION VERTEXSTANDARD, VX-3200U 2001-DEC-17, 10:24, MON

POWER:

HIGH

MODULATION: Ref Gen=12.5 kHz Deviation

REMARK: CARRIER OFF TIME



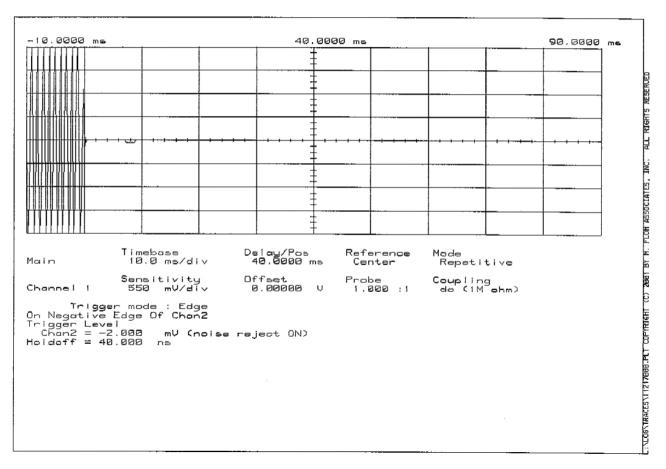
PERFORMED BY:

PAGE NO.

29 of 43.

NAME OF TEST:

Transient Frequency Behavior


OSCILLOSCOPE PRESENTATION VERTEXSTANDARD, VX-3200U 2001-DEC-17, 10:19, MON

POWER:

HIGH

MODULATION: Ref Gen=25 kHz Deviation

REMARK: CARRIER ON TIME



PERFORMED BY:

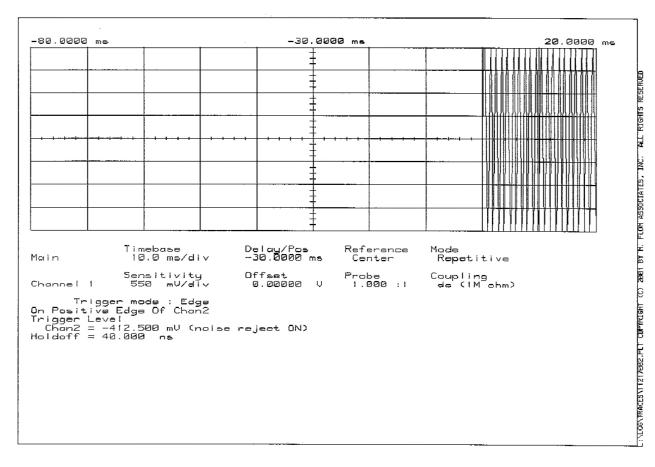
PAGE NO.

30 of 43.

NAME OF TEST:

Transient Frequency Behavior

OSCILLOSCOPE PRESENTATION VERTEXSTANDARD, VX-3200U 2001-DEC-17, 10:21, MON


POWER:

HIGH

MODULATION: Ref Gen=25 kHz Deviation

REMARK:

CARRIER OFF TIME



PERFORMED BY:

PAGE NO. 31 of 43.

NAME OF TEST: Audio Low Pass Filter (Voice Input)

SPECIFICATION: 47 CFR 2.1047(a)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.15

TEST EQUIPMENT: As per attached page

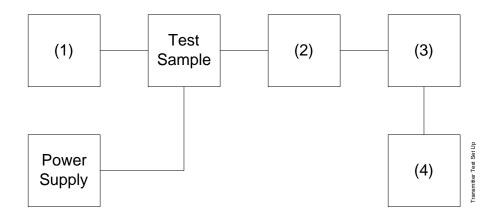
#### MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
- 2. The audio output was connected at the output to the modulated stage.
- 3. MEASUREMENT RESULTS: ATTACHED

PAGE NO.

32 of 43.

### TRANSMITTER TEST SET-UP


TEST A. MODULATION CAPABILITY/DISTORTION

TEST B. AUDIO FREQUENCY RESPONSE

TEST C. HUM AND NOISE LEVEL

TEST D. RESPONSE OF LOW PASS FILTER

TEST E. MODULATION LIMITING



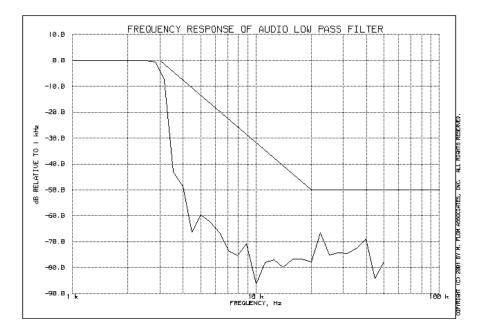
1105A04683

2216A01753

US36002064

Asset Description s/n (as applicable)

(1) Audio Oscillator i00010 HP 204D i00017 HP 8903A i00118 HP 33120A


(2) COAXIAL ATTENUATOR i00122 NARDA 766-10 7802 i00123 NARDA 766-10 7802A i00113 SIERRA 661A-3D 1059 i00069 BIRD 8329 (30 dB) 10066

(3) <u>MODULATION ANALYZER</u> i00020 HP 8901A 2105A01087

(4) <u>AUDIO ANALYZER</u> i00017 <u>HP 8903A</u> 2216A01753 PAGE NO. 33 of 43.

NAME OF TEST: Audio Low Pass Filter (Voice Input)

STATE: g011c0140 14 Dec, 2001, 09:58



PERFORMED BY:

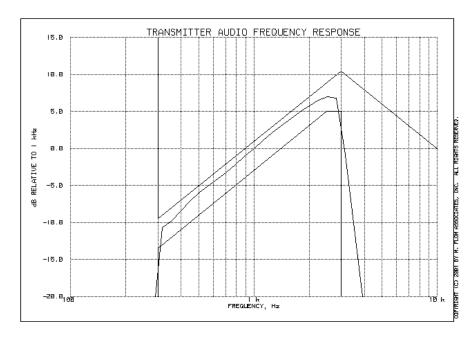
PAGE NO. 34 of 43.

NAME OF TEST: Audio Frequency Response

SPECIFICATION: 47 CFR 2.1047(a)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.6

TEST EQUIPMENT: As per previous page


### MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up as shown on the following page.
- 2. The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- 3. The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- 4. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to 50 kHz.
- 5. The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
- 6. MEASUREMENT RESULTS: ATTACHED

PAGE NO. 35 of 43.

NAME OF TEST: Audio Frequency Response

STATE: g01c0139 14 Dec 2001, 09:51



Frequency of Maximum Audio Response, Hz = 2510

# Additional points:

| FREQUENCY, Hz | LEVEL, dB |
|---------------|-----------|
| 3000          | -35.9     |
| 5000          | -35.7     |

PERFORMED BY:

PAGE NO. 36 of 43.

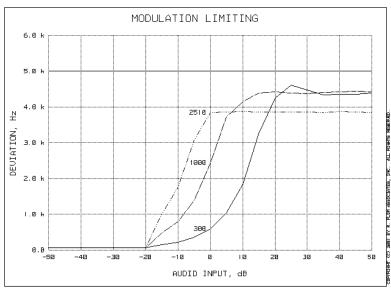
NAME OF TEST: Modulation Limiting

SPECIFICATION: 47 CFR 2.1047(b)

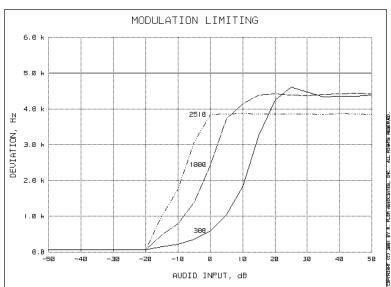
GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.3

TEST EQUIPMENT: As per previous page

### MEASUREMENT PROCEDURE


- 1. The signal generator was connected to the input of the EUT as for "Frequency Response of the Modulating Circuit."
- 2. The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- 3. The input level was varied from 30% modulation (±1.5 kHz deviation) to at least 20 dB higher than the saturation point.
- 4. Measurements were performed for both negative and positive modulation and the respective results were recorded.
- 5. MEASUREMENT RESULTS: ATTACHED

PAGE NO. 37 of 43.


NAME OF TEST: Modulation Limiting

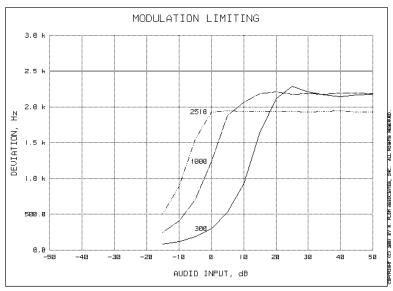
STATE: g01c0143: 2001-Dec-14, 10:21

Positive Peaks:

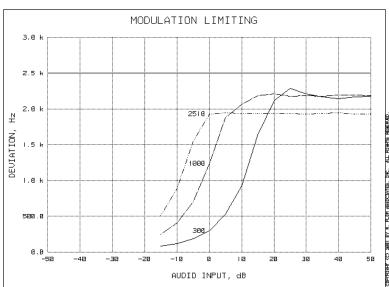


Negative Peaks:




PERFORMED BY:

PAGE NO. 38 of 43.


NAME OF TEST: Modulation Limiting

STATE: g01c0144: 2001-Dec-14, 10:30

Positive Peaks:



Negative Peaks:



PERFORMED BY:

PAGE NO. 39 of 43.

NAME OF TEST: Frequency Stability (Temperature Variation)

SPECIFICATION: 47 CFR 2.1055(a)(1)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST CONDITIONS: As Indicated

TEST EQUIPMENT: As per previous page

### MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up as shown on the following page.
- 2. With all power removed, the temperature was decreased to  $-30^{\circ}\text{C}$  and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- 3. With power OFF, the temperature was raised in  $10^{\circ}\text{C}$  steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- 4. The temperature tests were performed for the worst case.
- 5. MEASUREMENT RESULTS: ATTACHED

PAGE NO.

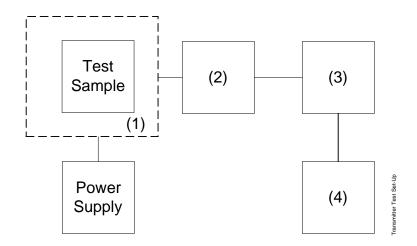
40 of 43.

### TRANSMITTER TEST SET-UP

TEST A. OPERATIONAL STABILITY

TEST B. CARRIER FREQUENCY STABILITY

TEST C. OPERATIONAL PERFORMANCE STABILITY


TEST D. HUMIDITY

TEST E. VIBRATION

TEST F. ENVIRONMENTAL TEMPERATURE

TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION

TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION



Asset Description (as applicable)

s/n

(1) TEMPERATURE, HUMIDITY, VIBRATION i00027 Tenney Temp. Chamber 9083-765-234

i00 Weber Humidity Chamber

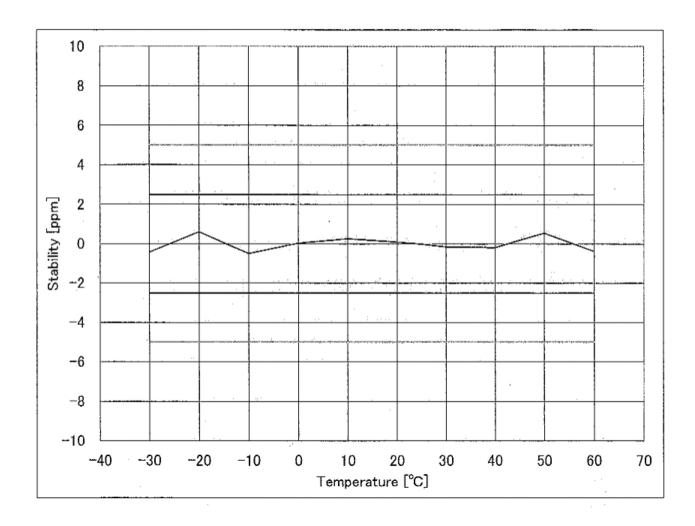
i00 L.A.B. RVH 18-100

### (2) COAXIAL ATTENUATOR

| $i0\overline{0122}$ | NARDA 766-10      | 7802  |
|---------------------|-------------------|-------|
| i00123              | NARDA 766-10      | 7802A |
| i00113              | SIERRA 661A-3D    | 1059  |
| i00069              | BIRD 8329 (30 dB) | 10066 |

### (3) R.F. POWER

| $i0\overline{0014}$ | HP | 435A POWER  | METER  | 1733A05839 |
|---------------------|----|-------------|--------|------------|
| i00039              | ΗP | 436A POWER  | METER  | 2709A26776 |
| i00020              | ΗP | 8901A POWER | R MODE | 2105A01087 |


#### (4) FREOUENCY COUNTER

| , ~ -  | _  |       |            |
|--------|----|-------|------------|
| i00042 | HP | 5383A | 1628A00959 |
| i00019 | ΗP | 5334B | 2704A00347 |
| i00020 | ΗP | 8901A | 2105A01087 |

PAGE NO.

41 of 43.

NAME OF TEST: Frequency Stability (Temperature Variation)



APPLICANT SUPPLIED DATA

PAGE NO. 42 of 43.

NAME OF TEST: Frequency Stability (Voltage Variation)

SPECIFICATION: 47 CFR 2.1055(d)(1)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

TEST EQUIPMENT: As per previous page

### MEASUREMENT PROCEDURE

- 1. The EUT was placed in a temperature chamber at  $25\pm5\,^{\circ}\text{C}$  and connected as for "Frequency Stability Temperature Variation" test.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

RESULTS: Frequency Stability (Voltage Variation)

LIMIT, ppm = 2.5 LIMIT, Hz = 1175

| % of STV | Voltage | Frequency, MHz | Change, Hz | Change, ppm |
|----------|---------|----------------|------------|-------------|
| 85       | 11.73   | 470.100126     | 126        | 0.27        |
| 100      | 13.80   | 470.100126     | 126        | 0.27        |
| 115      | 15.87   | 470.100126     | 126        | 0.27        |

APPLICANT SUPPLIED DATA

PAGE NO. 43 of 43.

NAME OF TEST: Necessary Bandwidth and Emission Bandwidth

SPECIFICATION: 47 CFR 2.202(g)

MODULATION = 16K0F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz = 3 MAXIMUM DEVIATION (D), kHz = 5 = 1

MODULATION = 11K0F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz = 3
MAXIMUM DEVIATION (D), kHz = 2.5
CONSTANT FACTOR (K) = 1 CONSTANT FACTOR (K)

NECESSARY BANDWIDTH  $(B_N)$ , kHz = (2xM) + (2xDxK)= 11.0

PERFORMED BY:

Doug Noble, B.A.S. E.E.T.

END OF TEST REPORT

## TESTIMONIAL AND STATEMENT OF CERTIFICATION

## THIS IS TO CERTIFY THAT:

- 1. THAT the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. THAT the technical data supplied with the application was taken under my direction and supervision.
- THAT the data was obtained on representative units, randomly selected.
- 4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

CERTIFYING ENGINEER:

Morton Flom, P. Eng.