
1.1. DAE4 Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client :

ruixiang

Certificate No: 24J02Z000006

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 634

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

February 22, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID # Cal Date(Calibrated by, Certificate No.)

Scheduled Calibration

Process Calibrator 753

1971018

12-Jun-23 (CTTL, No.J23X05436)

Jun-24

Calibrated by:

Name

Function

i diletto

Signature

Reviewed by:

Lin Jun

SAR Test Engineer

SAR Test Engineer

Approved by:

Qi Dianyuan

Yu Zongying

SAR Project Leader

Issued: February 26, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 24J02Z000006

Page 1 of 3

E-mail: emf@caict.ac.cn

Glossary:

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: 24J02Z000006

http://www.caict.ac.cn

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu V$, full range = -100...+300 m Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec -100...+300 mV

Calibration Factors	х	Y	Z
High Range	404.068 ± 0.15% (k=2)	403.984 ± 0.15% (k=2)	403.859 ± 0.15% (k=2)
Low Range	3.96155 ± 0.7% (k=2)	3.99309 ± 0.7% (k=2)	3.97421 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	328.5° ± 1 °
---	--------------

Certificate No: 24J02Z000006

1.2. Probe Calibration Certificate-7624

INNOWAVE

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn

E-mail: emf@caict.ac.cn

CALIBRATION CNAS L0570

Client

Certificate No: J23Z60222

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN: 7624

Calibration Procedure(s)

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

September 06, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Name

Primary Standards	ID# Cal	Date(Calibrated by, Certificate No.) Scheduled	Calibration
Power Meter NRP2	101919	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101547	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101548	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20dB	19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 3846	31-May-23(SPEAG, No.EX-3846_May23)	May-24
DAE4	SN 549	24-Jan-23(SPEAG, No.DAE4-549_Jan23)	Jan-24
DAE4	SN 1744	30-Aug-22(SPEAG, No.DAE4-1744_Aug22)	Aug-23
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-23(CTTL, No.J23X05434)	Jun-24
Network Analyzer E5071C	MY46110673	10-Jan-23(CTTL, No.J23X00104)	Jan-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator	BT0267	11-May-23(CTTL, No.J23X04062)	May-25
OCP DAK-3.5	SN 1040	18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan2	

Calibrated by:

Function Yu Zongying SAR Test Engineer

Reviewed by: Approved by:

Lin Hao SAR Test Engineer Qi Dianyuan

SAR Project Leader

Issued: September 12, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60222

Page 1 of 9

Glossary:

tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z diode compression point DCP

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Φ rotation around probe axis Polarization Φ

θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i Polarization θ

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:J23Z60222

Page 2 of 9

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7624

Basic Calibration Parameters

Sensor X	Sensor Y	Sensor Z	Unc (k=2)
0.57	0.59	0.58	±10.0%
112.6	113 4		10.070
	0.57	0.57 0.59	0.57 0.59 0.58

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	CW	X	0.0	0.0	1.0	0.00	200.3	±4.7%
		Υ	0.0	0.0	1.0		212.4	/
		Z	0.0	0.0	1.0		202.8	1

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7624

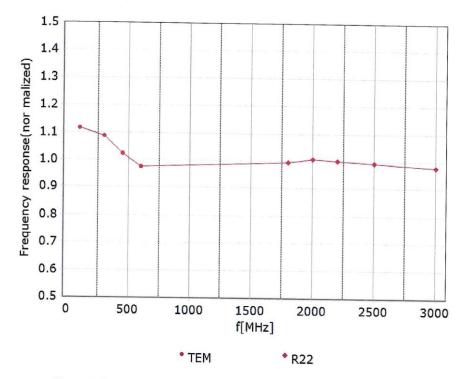
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.58	10.58	10.58	0.20	1.06	±12.7%
835	41.5	0.90	10.19	10.19	10.19	0.19	1.20	
1750	40.1	1.37	8.66	8.66	8.66	0.13	1.13	±12.7%
1900	40.0	1.40	8.35	8.35	8.35	0.33	0.91	±12.7%
2100	39.8	1.49	8.27	8.27	8.27	0.33	1.08	±12.7%
2300	39.5	1.67	8.13	8.13	8.13	0.58	0.67	±12.7%
2450	39.2	1.80	7.85	7.85	7.85	0.63	0.66	±12.7%
2600	39.0	1.96	7.66	7.66	7.66	0.65	0.66	±12.7%
3500	37.9	2.91	7.20	7.20	7.20	0.34	1.00	
3700	37.7	3.12	7.00	7.00	7.00	0.36	1.07	±13.9%
3900	37.5	3.32	6.85	6.85	6.85	0.30	1.50	±13.9%
4100	37.2	3.53	6.78	6.78	6.78	0.30	1.35	±13.9%
4200	37.1	3.63	6.68	6.68	6.68	0.30	1.45	±13.9%
4400	36.9	3.84	6.61	6.61	6.61	0.30	1.45	±13.9%
4600	36.7	4.04	6.47	6.47	6.47	0.40	1.30	±13.9%
4800	36.4	4.25	6.37	6.37	6.37	0.40	1.40	±13.9%
4950	36.3	4.40	6.08	6.08	6.08	0.40	1.40	±13.9%
5250	35.9	4.71	5.55	5.55	5.55	0.40	1.50	2
5600	35.5	5.07	4.96	4.96	4.96	0.35	1.70	±13.9%
5750	35.4	5.22	4.98	4.98	4.98	0.35	1.80	±13.9%

 $^{^{\}rm C}$ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Certificate No:J23Z60222

Page 4 of 9


F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

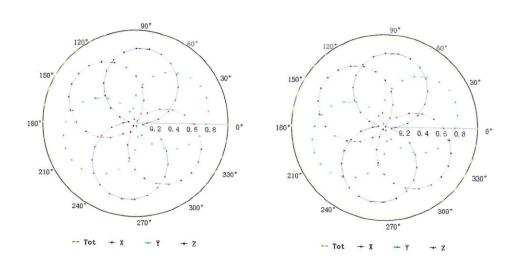
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

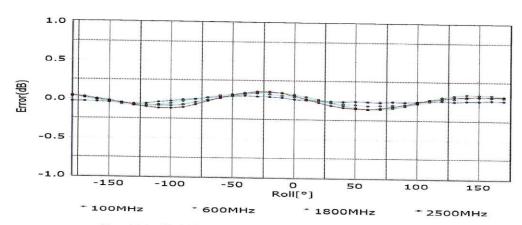
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:J23Z60222

Page 5 of 9



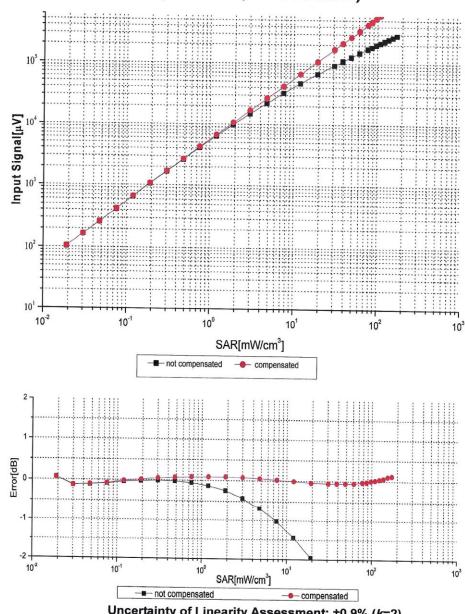


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 1.2\%$ (k=2)


Certificate No:J23Z60222

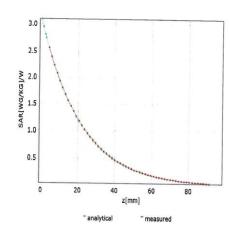
Page 6 of 9

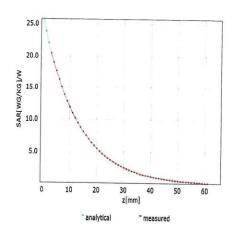
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

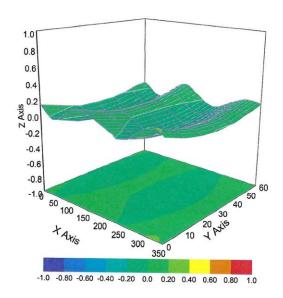
Certificate No:J23Z60222

Page 7 of 9





Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

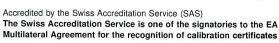
Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:J23Z60222

Page 8 of 9

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7624


Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	151.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

1.3. Probe Calibration Certificate-7494

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Client

HTW

Shenzhen

Certificate No.

EX-7494_Oct23

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7494

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

October 24, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	05-Oct-23 (OCP-DAK3.5-1249_Oct23)	Oct-24
OCP DAK-12	SN: 1016	05-Oct-23 (OCP-DAK12-1016_Oct23)	Oct-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

Name

Function

Signature

Calibrated by

Jeton Kastrati

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: October 26, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7494_Oct23

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S C

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DCP

tissue simulating liquid NORMx,y,z ConvF

sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

Polarization ϑ

 φ rotation around probe axis

 ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., ϑ = 0 is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \,\mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800 \,\mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- · Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-7494_Oct23 Page 2 of 9 EX3DV4 - SN:7494 October 24, 2023

Parameters of Probe: EX3DV4 - SN:7494

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm (μV/(V/m) ²) ^A	0.40	0.47	0.39	±10.1%
DCP (mV) B	96.8	98.4	99.9	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	$^{ m B}$ dB $\sqrt{\mu V}$	С	dΒ	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	Х	0.00	0.00	1.00	0.00	141.5	±3.8%	±4.7%
		Υ	0.00	0.00	1.00		132.2		
		Z	0.00	0.00	1.00		144.7		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 5).

A The uncertainties of Norm X, 1,2 do not allect the E - illect annual name is a cost age 5).

B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4 - SN:7494 October 24, 2023

Parameters of Probe: EX3DV4 - SN:7494

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	21.7°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-7494_Oct23

EX3DV4 - SN:7494 October 24, 2023

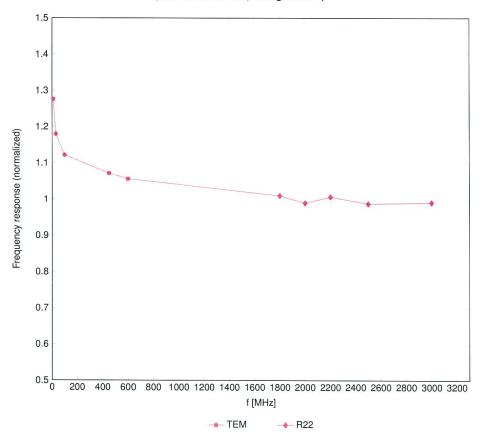
Parameters of Probe: EX3DV4 - SN:7494

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
150	52.3	0.76	13.40	13.40	13.40	0.00	1.00	±13.3%
450	43.5	0.87	11.69	11.69	11.69	0.16	1.30	±13.3%

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by the set than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

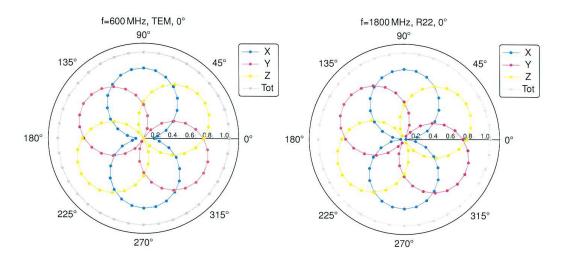

Certificate No: EX-7494_Oct23 Page 5 of 9

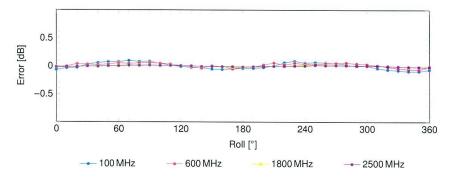
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4 - SN:7494 October 24, 2023

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide:R22)


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

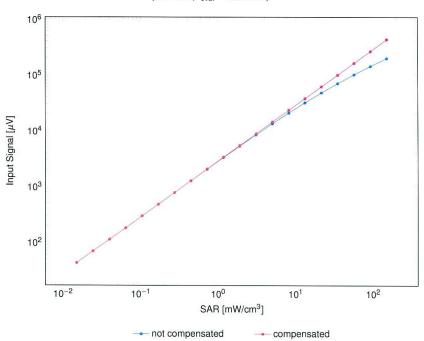

Certificate No: EX-7494_Oct23 Page 6 of 9

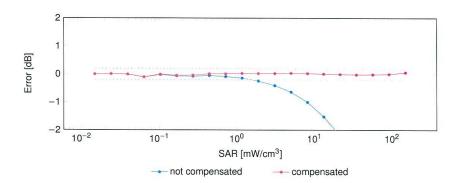
EX3DV4 - SN:7494

October 24, 2023

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

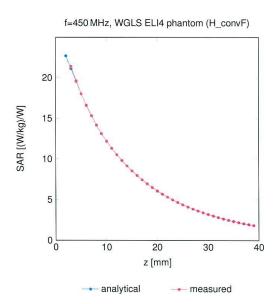

Certificate No: EX-7494_Oct23


Page 7 of 9

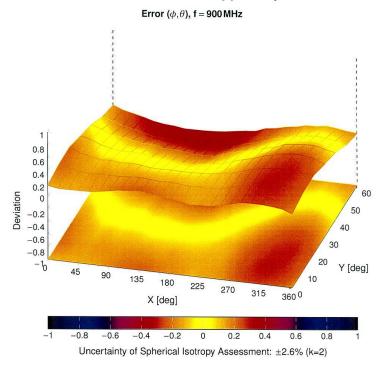
EX3DV4 - SN:7494 October 24, 2023

Dynamic Range f(SAR_{head})

(TEM cell, $f_{eval} = 1900\,\text{MHz})$


Uncertainty of Linearity Assessment: ±0.6% (k=2)

Certificate No: EX-7494_Oct23


Page 8 of 9

EX3DV4 - SN:7494 October 24, 2023

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: EX-7494_Oct23 Page 9 of 9

Appendix E: DAE and Probe Calibration Certificate								