Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report No.: CHTEW20030067 Report Verification:

Project No....: SHT1909084904EW

FCC ID.....: K6630673X3D

IC..... 511B-30673X3D

Applicant's name.....: YAESU MUSEN CO., LTD.

Tennozu Parkside Building 2-5-8 Higashi-Shinagawa, Address:

Shinagawa-ku, Tokyo 140-0002 Japan

Manufacturer....: VTech (Dongguan) Communications Limited

Xia Ling Bei Management Zone, Liaobu, Dongguan, Guangdong, Address....:

China

25 Watt VHF/FM Marine Transceiver Test item description:

Trade Mark: STANDARD HORIZON

Model/Type reference: GX2400GPS

Listed Model(s)....:

Standard: IEC 62238: 2003-03

Date of receipt of test sample.....: Feb.18, 2020

Date of testing.....: Feb.18, 2020- Mar.12, 2020

Date of issue....: Mar.13, 2020

Result: **PASS**

Compiled by

(position+printed name+signature) .: File administrator Echo Wei

Supervised by

(position+printed name+signature) .: Project Engineer Xiaodong Zhao Echo Wei Xiaodong Zheo

Approved by

(position+printed name+signature) .: RF Manager Hans Hu

Testing Laboratory Name.....: Shenzhen Huatongwei International Inspection Co., Ltd

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Address:

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW20030067 Page: 2 of 53 Issued: 2020-03-13

Contents

<u>1.</u>	<u>1551 51</u>	ANDARDS AND REPORT VERSION	4
1.1.	Test Stand	dards	4
1.2.	Report ve	rsion information	4
	•		
<u>2.</u>	TEST DE	ESCRIPTION	5
			
<u>3.</u>	SUMMAI	RY	7
0.4	Oliant Infa		-
3.1. 3.2.	Client Info		7 7
3.2. 3.3.		escription ecification Description	7
3.4.		aboratory Information	8
J. 4 .	resuling Lo		0
<u>4.</u>	TEST CO	NFIGURATION	9
4.1.	Marine VH	IF channel list	9
4.2.	Test frequ		10
4.3.	Test mode		10
4.4.		nit used in test configuration and system	10
4.5.		ental conditions	11
4.6.		nent uncertainty	12
4.7.	Equipmen	ts Used during the Test	13
<u>5.</u>	TEST C	ONDITIONS AND RESULTS	14
5.1.		ental Requirement	14
	5.1.1.	Vibration test	14
	5.1.2.	Dry heat	14
	5.1.3.	Damp heat	15
	5.1.4.	Low temperature	15
5.2.		er Requirement	16
	5.2.1. 5.2.2.	Frequency error	16
	-	Carrier Power (Conducted)	17
	5.2.3.	Frequency Deviation	18
	5.2.4. 5.2.5.	Sensitivity of the modulator, including microphone	20 21
	5.2.5. 5.2.6.	Audio frequency response	22
	5.2.0. 5.2.7.	Audio frequency harmonic distortion of the emission Adjacent Channel Power	23
	5.2.8.	Conducted spurious emissions conveyed to the antenna	24
	5.2.9.	Transient frequency behaviour of the transmitter	25
	5.2.10.	Residual modulation of the transmitter	26
	5.2.11.	Frequency error (demodulated DSC signal)	27
	5.2.12.	Modulation index for DSC	28
	5.2.13.	Modulation rate for DSC	29
	5.2.14.	Testing of generated call sequences	30
5.3.		or Radiotelephone Requirement	31
-	5.3.1.	Harmonic distortion and rated audio frequency output power	31
	5.3.2.	Audio frequency response	32
	5.3.3.	Maximum Usable Sensitivity	33
	5.3.4.	Co-channel rejection	34
	5.3.5.	Adjacent channel selectivity	35
	5.3.6.	Spurious Response Rejection	36
	5.3.7.	Intermodulation response	37
	5.3.8.	Blocking or Desensitization	38

Rep	ort No.:	CHTEW20030067	Page:	3 of 53	Issued:	2020-03-13
	5.3.9. 5.3.10. 5.3.11. 5.3.12. 5.3.13.	Squelch operation Squelch hysteresi	nd hum level n s			39 40 41 42 43
5.4.		er for DSC decoder Rec				44
	5.4.1.	Maximum usable				44
	5.4.2.	Co-channel reject	ion			45
	5.4.3.	Adjacent channel	selectivity			46
	5.4.4.	Spurious respons	e and blocking	j immunity		47
	5.4.5.	Intermodulation re	esponse			48
	5.4.6.	Dynamic range	•			49
	5.4.7.	Spurious emission	าร			50
	5.4.8.	Verification of cor	rect decoding	of various types	of DSC calls	51
	5.4.9.	Reaction to VTS a	and AIS chann	el management	DSC transmissions	52
	5.4.10.	Simultaneous rec	eption	-		53
<u>6.</u>	APPE	NDIX REPORT				53

Report No.: CHTEW20030067 Page: 4 of 53 Issued: 2020-03-13

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>IEC 62238:2003-03:</u> Maritime navigation and radiocommunication equipment and systems –VHF radiotelephone equipment incorporating Class "D" Digital Selective Calling (DSC) – Methods of testing and required test results

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2020-03-13	Original

Report No.: CHTEW20030067 Page: 5 of 53 Issued: 2020-03-13

2. TEST DESCRIPTION

	Environmental	Requirement		
Test	Test item		Result	Test Engineer
Vibrati	Sub-clause 7.4	Pass	Gaosheng Pan	
	Dry heat	Sub-clause 7.5	Pass	Gaosheng Pan
Temperature tests	Damp heat	Sub-clause 7.5	Pass	Gaosheng Pan
	Low temperature	Sub-clause 7.5	Pass	Gaosheng Pan
	Transmitter F	Requirement		
Test	item	Standards requirement (IEC62238)	Result	Test Engineer
Frequency error		Sub-clause 8.1	Pass	Gaosheng Pan
Carrier power		Sub-clause 8.2	Pass	Gaosheng Pan
Frequency deviation		Sub-clause 8.3	Pass	Gaosheng Pan
Sensitivity of the modulator	, including microphone	Sub-clause 8.4	Pass	Gaosheng Pan
Audio frequency response		Sub-clause 8.5	Pass	Gaosheng Pan
Audio frequency harmonic	distortion of the emission	Sub-clause 8.6	Pass	Gaosheng Pan
Adjacent channel power		Sub-clause 8.7	Pass	Gaosheng Pan
Conducted spurious emissi antenna	ons conveyed to the	Sub-clause 8.8	Pass	Gaosheng Pan
Transient frequency behavi	our of the transmitter	Sub-clause 8.9	Pass	Gaosheng Pan
Residual modulation of the	transmitter	Sub-clause 8.10	Pass	Gaosheng Pan
Frequency error (DSC signa	Sub-clause 8.11	Pass	Gaosheng Pan	
Modulation index for DSC		Sub-clause 8.12	Pass	Gaosheng Pan
Modulation rate for DSC		Sub-clause 8.13	Pass	Gaosheng Pan
Testing of generated call se	equences	Sub-clause 8.14	Pass	Gaosheng Pan
	Receiver for Radiotele	ephone Requirement		
Test	item	Standards requirement (IEC62238)	Result	Test Engineer
Harmonic distortion and rate power	ed audio frequency output	Sub-clause 9.1	Pass	Gaosheng Pan
Audio frequency response		Sub-clause 9.2	Pass	Gaosheng Pan
Maximum usable sensitivity	, 	Sub-clause 9.3	Pass	Gaosheng Pan
Co-channel rejection		Sub-clause 9.4	Pass	Gaosheng Pan
Adjacent channel selectivity	1	Sub-clause 9.5	Pass	Gaosheng Pan
Spurious response rejection		Sub-clause 9.6	Pass	Gaosheng Pan
Intermodulation response		Sub-clause 9.7	Pass	Gaosheng Pan
Blocking or desensitization		Sub-clause 9.8	Pass	Gaosheng Pan
Spurious emissions		Sub-clause 9.9	Pass	Gaosheng Pan
Receiver residual noise level		Sub-clause 9.10	Pass	Gaosheng Pan
Squelch operation		Sub-clause 9.11	Pass	Gaosheng Pan
Squelch hysteresis		Sub-clause 9.12	Pass	Gaosheng Pan
Multiple watch characteristic	C	Sub-clause 9.13	Pass	Gaosheng Pan

Report No.: CHTEW20030067 Page: 6 of 53 Issued: 2020-03-13

Receiver for DSC decoder Requirement						
Test item	Standards requirement (IEC62238)	Result	Test Engineer			
Maximum usable sensitivity	Sub-clause 10.1	Pass	Gaosheng Pan			
Co-channel rejection	Sub-clause 10.2	Pass	Gaosheng Pan			
Adjacent channel selectivity	Sub-clause 10.3	Pass	Gaosheng Pan			
Spurious response and blocking immunity	Sub-clause 10.4	Pass	Gaosheng Pan			
Intermodulation response	Sub-clause 10.5	Pass	Gaosheng Pan			
Dynamic range	Sub-clause 10.6	Pass	Gaosheng Pan			
Spurious emissions	Sub-clause 10.7	Pass	Gaosheng Pan			
Verification of correct decoding of various types of DSC calls	Sub-clause 10.8	Pass	Gaosheng Pan			
Reaction to VTS and AIS channel management DSC transmissions	Sub-clause 10.9	Pass	Gaosheng Pan			
Simultaneous reception	Sub-clause 10.10	Pass	Gaosheng Pan			

Report No.: CHTEW20030067 Page: 7 of 53 Issued: 2020-03-13

3. **SUMMARY**

3.1. Client Information

Applicant:	YAESU MUSEN CO., LTD.
Address:	Tennozu Parkside Building 2-5-8 Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-0002 Japan
Manufacturer:	VTech (Dongguan) Communications Limited
Address:	Xia Ling Bei Management Zone, Liaobu, Dongguan, Guangdong, China

3.2. Product Description

Name of EUT:	25 Watt VHF/FM Marine Transceiver
Trade mark:	STANDARD HORIZON
Model/Type reference:	GX2400GPS
Listed mode(s):	-
Power supply:	DC 13.8V
Test sample No.:	9A000001
Hardware version:	9A00
Software version:	9A00

3.3. Radio Specification Description

Operation Fraguency Benga	TX: 156.025MHz to 161.600MHz						
Operation Frequency Range:	RX: 156.050MHz to 162.025MH						
Rated Output Power:	⊠ High Power: 25W	(43.98dBm)		1W (30.00dBm)			
Modulation Type:	Analog Voice:	FM					
	Digital Data(DSC):	FSK					
Channel Separation:	Analog Voice:	25kHz					
	Digital Data(DSC):	25kHz					
Emission Designator:	Analog Voice:	16K0G3E					
	Digital Data(DSC):	16K0G2B					
Antenna Type:	External						

Report No.: CHTEW20030067 Page: 8 of 53 Issued: 2020-03-13

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.				
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China				
	Туре	Accreditation Number			
	CNAS	L1225			
Qualifications	A2LA	3902.01			
	FCC	762235			
	Canada	5377A			

Report No.: CHTEW20030067 Page: 9 of 53 Issued: 2020-03-13

4. TEST CONFIGURATION

4.1. Marine VHF channel list

Channel	Frequenc	y (MHz)	Channel	Frequen	cy (MHz)
Channel	Transmit	Receive	Channel	Transmit	Receive
1	156.05	160.65	60	156.025	160.625
2	156.1	160.7	61	156.075	160.675
3	156.15	160.75	62	156.125	160.725
4	156.2	160.8	63	156.175	160.775
5	156.25	160.85	64	156.225	160.825
6	156.3	156.3	65	156.275	160.875
7	156.35	160.95	66	156.325	160.925
8	156.4	156.4	67	156.375	156.375
9	156.45	156.45	68	156.425	156.425
10	156.5	156.5	69	156.475	156.475
11	156.55	156.55	70	156.525	156.525
12	156.6	156.6	71	156.575	156.575
13	156.65	156.65	72	156.625	156.625
14	156.7	156.7	73	156.675	156.675
15	156.75	156.75	74	156.725	156.725
16	156.8	156.8	75	156.775	156.775
17	156.85	156.85	76	156.825	156.825
18	156.9	161.5	77	156.875	156.875
19	156.95	161.55	78	156.925	161.525
20	157	161.6	79	156.975	161.575
21	157.05	161.65	80	157.025	161.625
22	157.1	161.7	81	157.075	161.675
23	157.15	161.75	82	157.125	161.725
24	157.2	161.8	83	157.175	161.775
25	157.25	161.85	84	157.225	161.825
26	157.3	161.9	85	157.275	161.875
27	157.35	161.95	86	157.325	161.925
28	157.4	162	87	157.375	157.375
			88	157.425	157.425

Report No.: CHTEW20030067 Page: 10 of 53 Issued: 2020-03-13

4.2. Test frequency list

According to section 6.7

Channel Congretion	Test Channel	Channel number	Frequency (MHz)			
Channel Separation	rest Channel	Channel number	Transmit	Receive		
	CH _M	CH16	156.800	156.800		
25kHz	CHL	CH60	156.025	160.625		
	CH _H	CH88	157.425	157.425		
DSC function	CH _{M1}	CH70	156.525	156.525		

4.3. Test mode

Test mode	Transmitting	Dogoiving	Power level		Test c	hannel
	Transmitting	Receiving	High	Low	CH16	CH70
TX-AWH	~		√		√	
TX-AWL	√			√	√	
TX-DSC	√		√			√
RX-AW		√			√	
RX-DSC		√				√

 $[\]sqrt{\ }$: is operation mode.

4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Wheth	Whether support unit is used?						
✓	No						
Item	Equipement	Trade Name	Model No.	Other specification			
1							
2							

Report No.: CHTEW20030067 Page: 11 of 53 Issued: 2020-03-13

4.5. Environmental conditions

	Temperature	15 °C to 35 °C	15 °C to 35 °C				
	Relative humidity	20 % to 75 %.					
Normal Conditon	Voltage	☐ Battery power source	Where the equipment is designed to operate from a battery, the normal test voltage shall be the nominal voltage of the battery (12 V, 24 V, etc.)				
		☐ Other power sources the normal test voltage shall be that declared by the equipment provider					
	Temperature	⊠ -15 °C to +55 °C					
Extreme Conditon	Voltage	☐ Battery power source	Where the equipment is designed to operate from a battery, the extreme test voltages shall be 1,3 times and 0,9 times the nominal voltage of the battery (12 V, 24 V, etc.).				
	-	☑ Other power sources	the extreme test voltages shall be that declared by the equipment manufacturer				
Normal Conditon		V _N =nominal Voltage	DC 13.80V				
		T _N =normal Temperature	20 °C				
Fritzens Condition		V _L =lower Voltage	DC 11.00V				
		T _L =lower Temperature	-15 °C				

Note:

Extreme Conditon

Unless otherwise stated the extreme tests conditions means that the Equipment Under Test (EUT) shall be tested

DC 16.50V

55 °C

V_H=higher Voltage

T_H=higher Temperature

at the upper temperature (T_H) and at the upper limit of the supply voltage (V_H) applied simultaneously, and at the low temperature (T_L) and the lower limit of the supply voltage (V_L) applied simultaneously.

Report No.: CHTEW20030067 Page: 12 of 53 Issued: 2020-03-13

4.6. Measurement uncertainty

Test Items	Measurement Uncertainty
RF frequency	15Hz for <1GHz
IN Trequency	70Hz for >1GHz
RF power	0.51dB
Maximum frequency deviation:	2.6 %
within 300 Hz to 6 kHz of modulation frequency	2.0 /6
Deviation limitation	3.5 %
Adjacent channel power	0.72dB
Conducted spurious emission	0.51dB
Audio output power	0.25 dB
Amplitude characteristics of receiver limiter	1.20 dB
Sensitivity at 20 dB SINAD	2.60 dB
Two-signal measurement	2.80 dB
Three-signal measurement	2.20 dB
Radiated emission	2.66dB for <1GHz
Radiated emission	3.44dB for >1GHz
Transmitter transient time	6.8 %
Transmitter transient frequency	75 Hz
Receiver desensitization (duplex operation)	0.25 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW20030067 Page: 13 of 53 Issued: 2020-03-13

4.7. Equipments Used during the Test

•	TS8613 Test system						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2019/10/26	2020/10/25
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2019/10/26	2020/10/25
•	RF Communication Test Set	HP	HTWE0038	8920A	3813A10206	2019/10/26	2020/10/25
•	Digital intercom communication tester	Aeroflex	HTWE0255	3920B	1001682041	2019/10/26	2020/10/25
•	Signal Generator	R&S	HTWE0191	SML02	100507	2019/10/26	2020/10/25
•	RF Control Unit	Tonscend	HTWE0294	JS0806-2	N/A	N/A	N/A
•	Filter-VHF	Microwave	HTWE0309	N26460M1	498702	N/A	N/A
0	Filter-UHF	Microwave	HTWE0311	N25155M2	498704	N/A	N/A
•	Power Divider	Microwave	HTWE0043	OPD1040-N-4	N/A	2019/05/24	2020/05/23
•	Attenuator	JFW	HTWE0292	50FH-030- 100	N/A	2019/05/18	2020/05/17
•	Attenuator	JFW	HTWE0293	50-A-MFN-20	0322	2019/05/18	2020/05/17
•	Test software	HTW	N/A	Radio ATE	N/A	N/A	N/A

•	Auxiliary Equipment						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2019/10/23	2020/10/22
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A

Report No.: CHTEW20030067 Page: 14 of 53 Issued: 2020-03-13

5. TEST CONDITIONS AND RESULTS

5.1. Environmental Requirement

5.1.1. Vibration test

TEST RESULTS:

Complies

Please refer to the below test data:

Vibration Frequency (Hz)	Test channel	Operation mode	Test item	Measured data	Limit	Result
		TX-AWH	Frequency Error (kHz)	0.083	±1.5	Pass
CH _M	CH _M		Carrier power (dBm)	43.21	37.78~43.98	Pass
2.5~100		RX-AW	Maximum usable sensitivity 【SINAD (dB)】	30.74	≥20	Pass
	CH _{M1}	RX-DSC	DSC receiver (error ratio)	0.001	≤10 ⁻²	Pass

5.1.2. Dry heat

TEST RESULTS:

Complies

Please refer to the below test data:

Temperature (°C)	Test channel	Operation mode	Test item	Measured data	Limit	Result
CH _M		TX-AWH	Frequency Error (kHz)	0.065	±1.5	Pass
	I A-AVVIII	Carrier power (dBm)	43.15	37.78~43.98	Pass	
55	RX-AW		Maximum usable sensitivity 【SINAD (dB)】	30.15	≥20	Pass
	CH _{M1}	RX-DSC	DSC receiver (error ratio)	0.003	≤10 ⁻²	Pass

Report No.: CHTEW20030067 Page: 15 of 53 Issued: 2020-03-13

5.1.3. Damp heat

TEST RESULTS: Complies

Please refer to the below test data:

Test conditions	Test channel	Operation mode	Test item	Measured data	Limit	Result
	TV 414/1		Frequency Error (kHz)	0.119	±1.5	Pass
Temperature 40°C	CH _M	TX-AWH	Carrier power (dBm)	43.17	37.78~43.98	Pass
Humidity 93%		RX-AW	Maximum usable sensitivity 【SINAD (dB)】	29.85	≥20	Pass
	CH _{M1}	RX-DSC	DSC receiver (error ratio)	0.006	≤10 ⁻²	Pass

5.1.4. Low temperature

TEST RESULTS: Complies

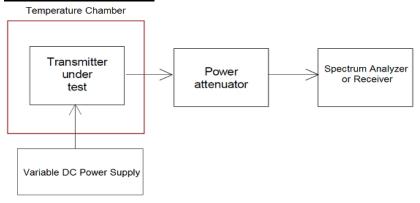
Please refer to the below test data:

Temperature (°C)	Test channel	Operation mode	Test item	Measured data	Limit	Result
		TX-AWH	Frequency Error (kHz)	0.048	±1.5	Pass
45	CH _M		Carrier power (dBm)	43.26	37.78~43.98	Pass
-15		RX-AW	Maximum usable sensitivity 【SINAD (dB)】	29.07	≥20	Pass
	CH _{M1}	RX-DSC	DSC receiver (error ratio)	0.004	≤10 ⁻²	Pass

Report No.: CHTEW20030067 Page: 16 of 53 Issued: 2020-03-13

5.2. Transmitter Requirement

5.2.1. Frequency error


The frequency error is the difference between the measured carrier frequency and its nominal value.

LIMIT

IEC 62238 Sub-clause 8.1.3

The frequency error shall be within \pm 1,5 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.1.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

TEST DATA

Please refer to appendix A on the appendix report

Report No.: CHTEW20030067 Page: 17 of 53 Issued: 2020-03-13

5.2.2. Carrier Power (Conducted)

The carrier power is the mean power delivered to the artificial antenna during one radio frequency cycle in the absence of modulation. The rated output power is the carrier power declared by the manufacturer.

LIMIT

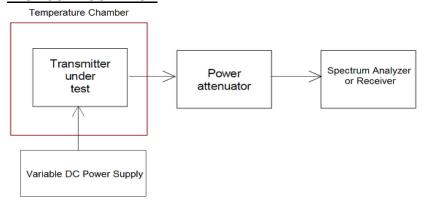
IEC 62238 Sub-clause 8.2.3

Normal test conditions:

The rated output power of the equipment shall be between 6 W and 25 W.

With the output power switch set at maximum, the carrier power shall be within ±1,5 dB of the rated output power under normal test conditions. The output power shall never however exceed 25 W.

With the output power switch set at minimum the carrier power shall remain between 0,1 W and 1 W.


The maximum continuous transmission time shall be between 5 min and 6 min.

Extreme test conditions:

With the output power switch set at maximum, the carrier power shall remain between 6 W and 25 W and be within +2 dB, -3 dB of the rated output power under extreme conditions. The output power shall never however exceed 25 W.

With the output power switch set at minimum the carrier power shall remain between 0,1 W and 1 W. The maximum continuous transmission time shall be between 5 min and 6 min.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- Please refer to IEC 62238 Sub-clause 8.2.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

TEST DATA

Please refer to appendix B on the appendix report

Report No.: CHTEW20030067 Page: 18 of 53 Issued: 2020-03-13

5.2.3. Frequency Deviation

For the purpose of the present document, the frequency deviation is the difference between the instantaneous frequency of the modulated radio frequency signal and the carrier frequency.

LIMIT

IEC 62238 Sub-clause 8.3.2

Maximum permissible frequency deviation:

The maximum frequency deviation shall be ±5 kHz.

IEC 62238 Sub-clause 8.3.3

For modulation frequencies between 3 kHz and 6 kHz the frequency deviation shall not exceed the frequency deviation with a modulation frequency of 3 kHz. For a modulation frequency of 6 kHz, the frequency deviation shall not exceed ±1,5 kHz, as shown in Figure 1.

For modulation frequencies between 6 kHz and 25 kHz, the frequency deviation shall not exceed that given by a linear response of frequency deviation (in dB) against modulation frequency, starting at the point where the modulation frequency is 6 kHz and the frequency deviation is ±1,5 kHz and inclined at 14 dB/octave, with the frequency deviation diminishing as the modulation frequency increases, as shown in Figure 1 as far as practicable.

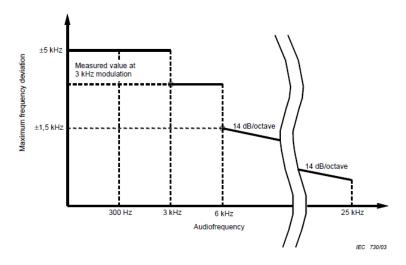
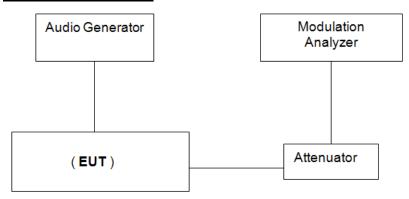



Figure 1 - Frequency deviation

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.3.2,8.3.3 for the measurement method.

TEST CONFIGURATION

Report No.: CHTEW20030067 Page: 19 of 53 Issued: 2020-03-13

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

TEST DATA

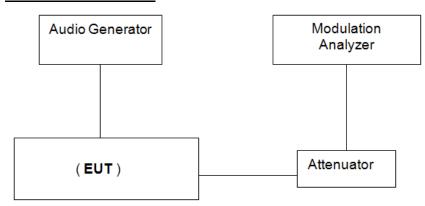
Please refer to appendix C on the appendix report

Report No.: CHTEW20030067 Page: 20 of 53 Issued: 2020-03-13

5.2.4. Sensitivity of the modulator, including microphone

This characteristic expresses the capability of the transmitter to produce sufficient modulation when an audio frequency signal corresponding to the normal mean speech level is applied to the microphone.

LIMIT


IEC 62238 Sub-clause 8.4.3

The resulting frequency deviation shall be between $\pm 2,5$ kHz and ± 4.5 kHz.

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.4.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

TEST DATA

Please refer to appendix D on the appendix report

Report No.: CHTEW20030067 Page: 21 of 53 Issued: 2020-03-13

5.2.5. Audio frequency response

The audio frequency response is the frequency deviation of the transmitter as a function of the modulating frequency.

LIMIT

IEC 62238 Sub-clause 8.5.3

The audio frequency response shall be within +1 dB and -3 dB of a 6 dB/octave line passing through the reference point (see figure 2).

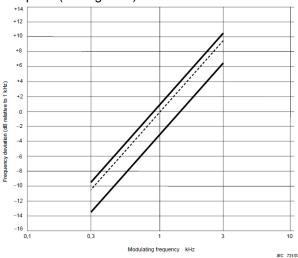
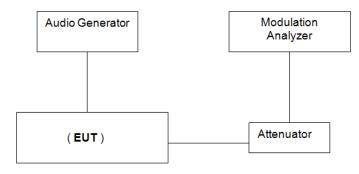



Figure 2 – Audiofrequency response

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.5.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

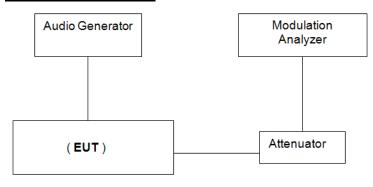
TEST RESULTS

TEST DATA

Please refer to appendix E on the appendix report

Report No.: CHTEW20030067 Page: 22 of 53 Issued: 2020-03-13

5.2.6. Audio frequency harmonic distortion of the emission


The harmonic distortion of the emission modulated by an audio frequency signal is defined as the ratio, expressed as a percentage, of the root mean square (rms) voltage of all the harmonic components of the fundamental modulation frequency to the total rms voltage of the modulation signal after linear demodulation

LIMIT

IEC 62238 Sub-clause 8.6.3

The harmonic distortion shall not exceed 10%.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2.Please refer to IEC 62238 Sub-clause 8.6.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

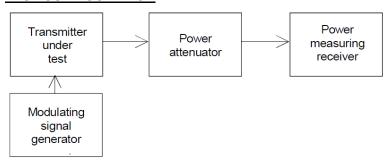
TEST DATA

Please refer to appendix F on the appendix report

Report No.: CHTEW20030067 Page: 23 of 53 Issued: 2020-03-13

5.2.7. Adjacent Channel Power

The adjacent channel power is that part of the total power output of a transmitter under defined conditions of modulation, which falls within a specified passband centred on the nominal frequency of either of the adjacent channels. This power is the sum of the mean power produced by the modulation, hum and noise of the transmitter.


LIMIT

IEC 62238 Sub-clause 8.7.3

The adjacent channel power shall not exceed a value of:

70 dB below the carrier power of the transmitter without any need to be below 0,2 µW.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2.Please refer to IEC 62238 Sub-clause 8.7.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

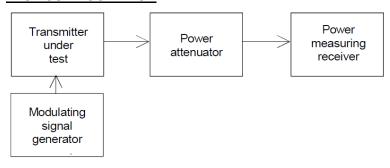
TEST RESULTS

TEST DATA

Please refer to appendix G on the appendix report

Report No.: CHTEW20030067 Page: 24 of 53 Issued: 2020-03-13

5.2.8. Conducted spurious emissions conveyed to the antenna


Conducted spurious emissions are emissions on a frequency or frequencies which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions.

LIMIT

IEC 62238 Sub-clause 8.8.3

The power of any conducted spurious emission on any discrete frequency shall not exceed 0,25µW(-36dBm).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.8.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

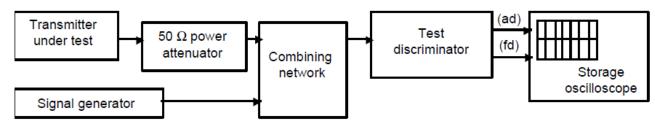
TEST DATA

Please refer to appendix H on the appendix report

Report No.: CHTEW20030067 Page: 25 of 53 Issued: 2020-03-13

5.2.9. Transient frequency behaviour of the transmitter

The residual modulation of the transmitter is the ratio, in decibels, of the demodulated radiofrequency signal in the absence of wanted modulation, to the modulated radiofrequency signal produced when the normal test modulation is applied.


.

LIMIT

IEC 62238 Sub-clause 8.9.3

During the periods of time t1 and t3 the frequency difference shall not exceed ± 25 kHz. The frequency difference, after the end of t_2 , shall be within the limit of the frequency error of $\pm 1,5$ kHz. During the period of time t2 the frequency difference shall not exceed $\pm 12,5$ kHz. Before the start of t_3 the frequency difference shall be within the limit of the frequency error of $\pm 1,5$ kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.9.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

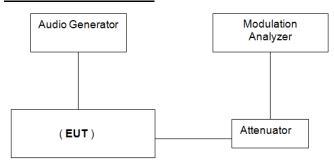
TEST RESULTS

TEST DATA

Please refer to appendix I on the appendix report

Report No.: CHTEW20030067 Page: 26 of 53 Issued: 2020-03-13

5.2.10. Residual modulation of the transmitter


The residual modulation of the transmitter is the ratio, in dB, of the demodulated RF signal in the absence of wanted modulation, to the demodulated RF signal produced when the normal test modulation is applied.

<u>LIMIT</u>

IEC 62238 Sub-clause 8.10.3

The residual modulation shall not exceed -40 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.10.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

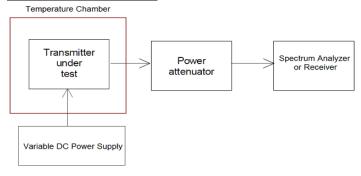
TEST RESULTS

TEST DATA

Please refer to appendix J on the appendix report

Report No.: CHTEW20030067 Page: 27 of 53 Issued: 2020-03-13

5.2.11. Frequency error (demodulated DSC signal)


The frequency error for the B- and the Y-state is the difference between the measured frequency from the demodulator and the nominal values.

LIMIT

IEC 62238 Sub-clause 8.11.3

The measured frequency from the demodulator at any time for the B-state shall be within 2 100 Hz \pm 10 Hz and for the Y-state within 1 300 Hz \pm 10 Hz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.11.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

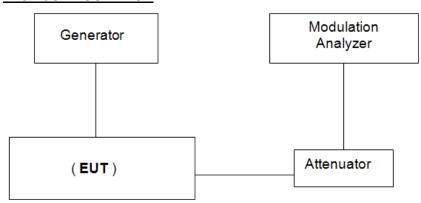
TEST RESULTS

TEST DATA

Please refer to appendix K on the appendix report

Report No.: CHTEW20030067 Page: 28 of 53 Issued: 2020-03-13

5.2.12. Modulation index for DSC


This test measures the modulation index in the B and Y states.

LIMIT

IEC 62238 Sub-clause 8.12.3

The modulation index shall be 2.0 ± 10 %.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2.Please refer to IEC 62238 Sub-clause 8.12.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

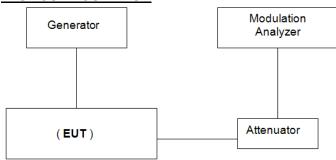
TEST RESULTS

TEST DATA

Please refer to appendix L on the appendix report

Report No.: CHTEW20030067 Page: 29 of 53 Issued: 2020-03-13

5.2.13. Modulation rate for DSC


The modulation rate is the bit stream speed measured in bit/s.

<u>LIMIT</u>

IEC 62238 Sub-clause 8.13.3

The frequency shall be 600 Hz \pm 30 \times 10⁻⁶ corresponding to a modulation rate of 1 200 baud.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.13.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

TEST DATA

Please refer to appendix M on the appendix report

Report No.: CHTEW20030067 Page: 30 of 53 Issued: 2020-03-13

5.2.14. Testing of generated call sequences

Generated call sequences are call which comply with the requirements of ITU-R. Recommendation M.493-15.

Requirement

IEC 62238 Sub-clause 8.14.3

The requirements of ITU-R Recommendation M.493-15 regarding message composition and content shall be met.

The generated calls shall be analyzed with the calibrated apparatus for correct configuration of the signal format, including time diversity. It shall be verified that, after transmission of a DSC call, the transmitter re-tunes to the original channel. However, in the case of a distress call, the transmitter shall tune to channel 16 and automatically select the maximum power. The telecommands used and the channels tested for switching shall be stated in the test report.

TEOT MODE.							
Please reference to the section 4.3							
TEST RESULTS							
□ Passed	☐ Not Applicable						

TEST DATA

TEST MODE:

Please refer to appendix N on the appendix report

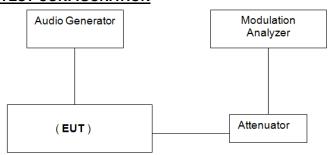
Report No.: CHTEW20030067 Page: 31 of 53 Issued: 2020-03-13

5.3. Receiver for Radiotelephone Requirement

5.3.1. Harmonic distortion and rated audio frequency output power

The harmonic distortion at the receiver output is defined as the ratio, expressed as a percentage, of the total rms voltage of all the harmonic components of the modulation audio frequency to the total rms voltage of the signal delivered by the receiver.

The rated audio frequency output power is the value stated by the manufacturer to be the maximum power available at the output, for which all the requirements of the present document are met.


LIMIT

IEC 62238 Sub-clause 9.1.3

- 2 W in a loudspeaker;
- 1 mW in the handset earphone.

The harmonic distortion shall not exceed 10 %.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: Image:
- 2. Please refer to IEC 62238 Sub-clause 9.1.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

TEST DATA

Please refer to appendix O on the appendix report

Report No.: CHTEW20030067 Page: 32 of 53 Issued: 2020-03-13

5.3.2. Audio frequency response

The audio frequency response is the variation in the receiver's audio frequency output level as a function of the modulating frequency of a received radio frequency signal modulated with constant deviation.

LIMIT

IEC 62238 Sub-clause 9.2.3

The audio frequency response shall not deviate by more than +1 dB or -3 dB from a characteristic giving the output level as a function of the audio frequency, decreasing by 6 dB per octave and passing through the measured point at 1 kHz (figure 5).

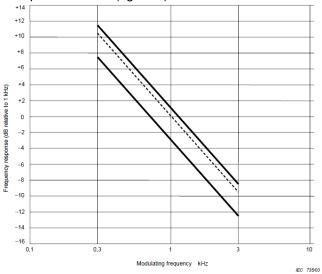
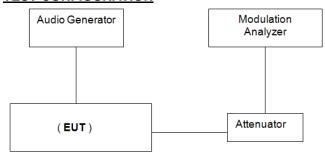



Figure 5 – Receiver audiofrequency response

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2.Please refer to IEC 62238 Sub-clause 9.2.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

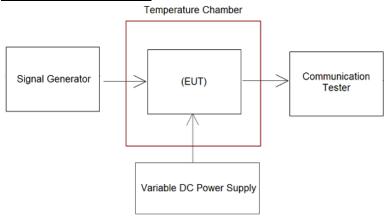
TEST DATA

Please refer to appendix P on the appendix report

Report No.: CHTEW20030067 Page: 33 of 53 Issued: 2020-03-13

5.3.3. Maximum Usable Sensitivity

The maximum usable sensitivity of the receiver is the minimum level of the signal (emf) at the nominal frequency of the receiver which, when applied to the receiver input with normal test modulation (clause 6.4), will produce:


- in all cases, an audio frequency output power of at least 50 % of the rated output power (clause 9.1); and
- a SINAD ratio of 20 dB, measured at the receiver output through a psophometric telephone filtering network such as described in ITU-T Recommendation O.41 [6].

LIMIT

IEC 62238 Sub-clause 9.3.3

The maximum usable sensitivity for either 25 kHz or 12,5 kHz channels shall not exceed +6 dB μ V (emf) under normal test conditions and +12 dB μ V (emf) under extreme test conditions.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2.Please refer to IEC 62238 Sub-clause 9.3.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

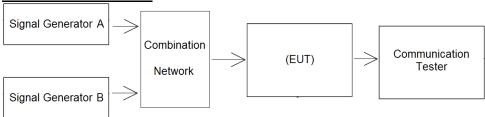
TEST RESULTS

TEST DATA

Please refer to appendix Q on the appendix report

Report No.: CHTEW20030067 Page: 34 of 53 Issued: 2020-03-13

5.3.4. Co-channel rejection


The co-channel rejection is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal, both signals being at the nominal frequency of the receiver.

LIMIT

IEC 62238 Sub-clause 9.4.3

The co-channel rejection ratio, at any frequency of the unwanted signal within the specified range, shall be between: -10 dB and 0 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.4.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

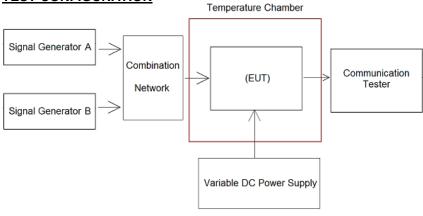
TEST RESULTS

TEST DATA

Please refer to appendix R on the appendix report

Report No.: CHTEW20030067 Page: 35 of 53 Issued: 2020-03-13

5.3.5. Adjacent channel selectivity


The adjacent channel selectivity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal which differs in frequency from the wanted signal by the nominal channel spacing.

LIMIT

IEC 62238 Sub-clause 9.5.3

The adjacent channel selectivity shall be not less than 70 dB under normal test conditions and not less than 60 dB under extreme test conditions.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.5.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

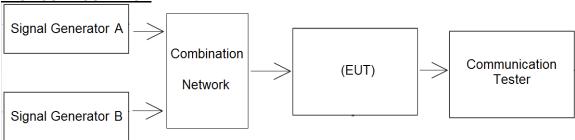
TEST RESULTS

TEST DATA

Please refer to appendix S on the appendix report

Report No.: CHTEW20030067 Page: 36 of 53 Issued: 2020-03-13

5.3.6. Spurious Response Rejection


The spurious response rejection is a measure of the capability of the receiver to discriminate between the wanted modulated signal at the nominal frequency and an unwanted signal at any other frequency at which a response is obtained.

LIMIT

IEC 62238 Sub-clause 9.6.3

At any frequency separated from the nominal frequency of the receiver by more than 25 kHz, the spurious response rejection ratio shall be not less than 70 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.6.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

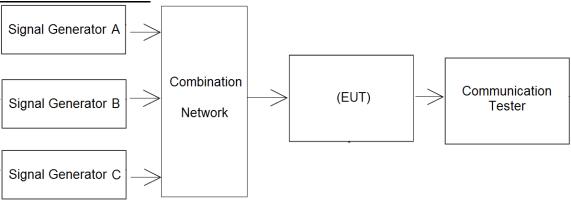
TEST RESULTS

TEST DATA

Please refer to appendix T on the appendix report

Report No.: CHTEW20030067 Page: 37 of 53 Issued: 2020-03-13

5.3.7. Intermodulation response


The intermodulation response is a measure of the capability of a receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of two or more unwanted signals with a specific frequency relationship to the wanted signal frequency.

LIMIT

IEC 62238 Sub-clause 9.7.3

The intermodulation response ratio shall not be less than 68 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.7.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

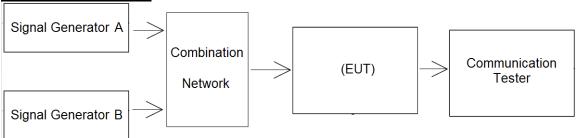
TEST RESULTS

TEST DATA

Please refer to appendix U on the appendix report

Report No.: CHTEW20030067 Page: 38 of 53 Issued: 2020-03-13

5.3.8. Blocking or Desensitization


Blocking is a change (generally a reduction) in the wanted output power of the receiver or a reduction of the SINAD ratio due to an unwanted signal on another frequency.

LIMIT

IEC 62238 Sub-clause 9.8.3

The blocking level for any frequency within the specified ranges, shall be not less than 90 dB μ V (emf), except at frequencies on which spurious responses are found.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2.Please refer to IEC 62238 Sub-clause 9.8.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

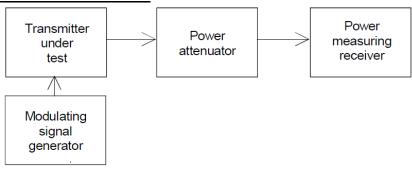
TEST RESULTS

TEST DATA

Please refer to appendix V on the appendix report

Report No.: CHTEW20030067 Page: 39 of 53 Issued: 2020-03-13

5.3.9. Conducted spurious emissions


Conducted spurious emissions from the receiver are components at any frequency, present at the receiver input port.

LIMIT

IEC 62238 Sub-clause 9.9.3

The power of any spurious radiation shall not exceed 2 nw(-57dBm) at any frequency in the range between 9 kHz and 2 GHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.9.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

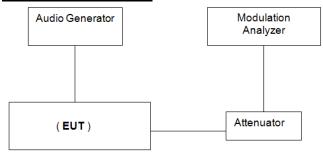
TEST RESULTS

TEST DATA

Please refer to appendix W on the appendix report

Report No.: CHTEW20030067 Page: 40 of 53 Issued: 2020-03-13

5.3.10. Receiver noise and hum level


The receiver noise and hum level is defined as the ratio, in dB, of the audio frequency power of the noise and hum resulting from spurious effects of the power supply system or from other causes, to the audio frequency power produced by a high frequency signal of average level, modulated by the normal test modulation and applied to the receiver input.

LIMIT

IEC 62238 Sub-clause 9.10.3

The receiver noise and hum level shall not exceed -40 dB, relative to the modulated signal.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.10.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

TEST DATA

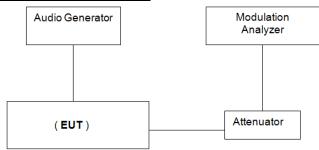
Please refer to appendix X on the appendix report

Report No.: CHTEW20030067 Page: 41 of 53 Issued: 2020-03-13

5.3.11. Squelch operation

The purpose of the squelch facility is to mute the receiver audio output signal when the level of the signal at the receiver input is less than a given value.

LIMIT


IEC 62238 Sub-clause 9.11.3

Under the conditions specified in a) clause 9.11.2, the audio frequency output power shall not exceed -40 dB relative to the rated output power.

Under the conditions specified in b) clause 9.11.2, the input level shall not exceed +6 dB μ V (emf) and the SINAD ratio shall be at least 20 dB.

Under the conditions specified in c) clause 9.11.2, the input signal shall not exceed +6 dBµV (emf) when the control is set at maximum.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.11.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

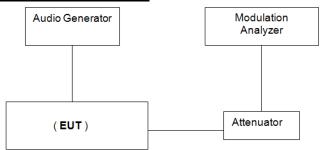
TEST RESULTS

TEST DATA

Please refer to appendix Y on the appendix report

Report No.: CHTEW20030067 Page: 42 of 53 Issued: 2020-03-13

5.3.12. Squelch hysteresis


Squelch hysteresis is the difference in dB between the receiver input signal levels at which the squelch opens and closes.

LIMIT

IEC 62238 Sub-clause 9.12.3

The squelch hysteresis shall be between 3 dB and 6 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.12.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

TEST DATA

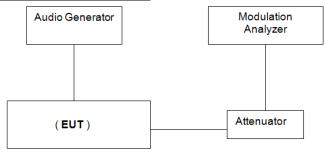
Please refer to appendix Z on the appendix report

Report No.: CHTEW20030067 Page: 43 of 53 Issued: 2020-03-13

5.3.13. Multiple watch characteristic

The scanning period is the time between the start of two successive samples of the priority channel in the absence of a signal on that channel.

LIMIT


IEC 62238 Sub-clause 9.13.3

The scanning period shall not exceed 2 s.

The dwell time on the priority channel shall not exceed 150 ms.

The dwell time on the additional channel shall be between 850 ms and 2 s as indicated by the time of the gap between two output bursts.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.13.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

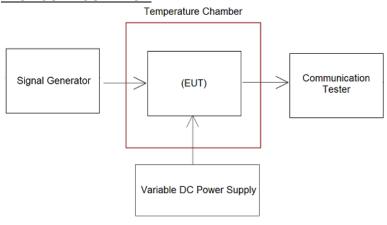
TEST DATA

Please refer to appendix AA on the appendix report

Report No.: CHTEW20030067 Page: 44 of 53 Issued: 2020-03-13

5.4. Receiver for DSC decoder Requirement

5.4.1. Maximum usable sensitivity


The maximum usable sensitivity of the receiver is the minimum level of the signal (e.m.f.) at the nominal frequency of the receiver which when applied to the receiver input with a test modulation will produce a bit error ratio of 10⁻²

LIMIT

IEC 62238 Sub-clause 10.1.3

The bit error ratio shall be equal to or less than 10⁻².

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 10.1.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

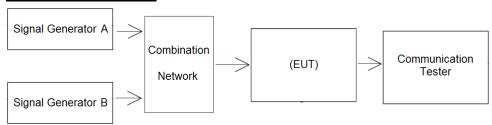
TEST RESULTS

TEST DATA

Please refer to appendix AB on the appendix report

Report No.: CHTEW20030067 Page: 45 of 53 Issued: 2020-03-13

5.4.2. Co-channel rejection


The co-channel rejection is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal, both signals being at the nominal frequency of the receiver.

LIMIT

IEC 62238 Sub-clause 10.2.3

The bit error ratio shall be equal to or less than 10⁻².

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 10.2.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

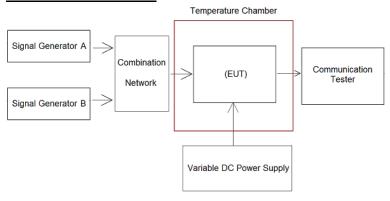
TEST RESULTS

TEST DATA

Please refer to appendix AC on the appendix report

Report No.: CHTEW20030067 Page: 46 of 53 Issued: 2020-03-13

5.4.3. Adjacent channel selectivity


The adjacent channel selectivity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal which differs in frequency from the wanted signal by 25 kHz.

LIMIT

IEC 62238 Sub-clause 10.3.3

The bit error ratio shall be equal to or less than 10⁻².

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC61138 Sub-clause 10.3.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

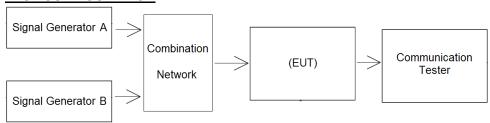
TEST RESULTS

TEST DATA

Please refer to appendix AD on the appendix report

Report No.: CHTEW20030067 Page: 47 of 53 Issued: 2020-03-13

5.4.4. Spurious response and blocking immunity


The spurious response and blocking immunity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal with frequencies outside the pass band of the receiver.

LIMIT

IEC 62238 Sub-clause 10.4.3

The bit error ratio shall be equal to or less than 10⁻².

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 10.4.2 for the measurement method

TEST MODE:

Please reference to the section 4.3

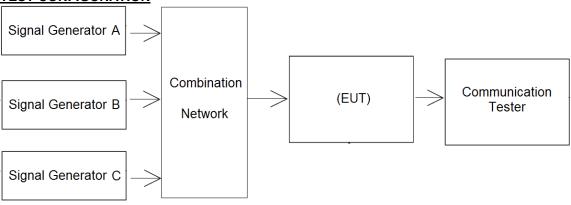
TEST RESULTS

TEST DATA

Please refer to appendix AE on the appendix report

Report No.: CHTEW20030067 Page: 48 of 53 Issued: 2020-03-13

5.4.5. Intermodulation response


The intermodulation response is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of two or more unwanted signals with a specific frequency relationship to the wanted signal frequency.

LIMIT

IEC 62238 Sub-clause 10.5.3

The bit error ratio shall be equal to or less than 10⁻².

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 10.5.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

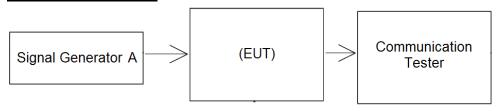
TEST RESULTS

TEST DATA

Please refer to appendix AF on the appendix report

CHTEW20030067 49 of 53 Issued: 2020-03-13 Report No.: Page:

5.4.6. Dynamic range


The dynamic range of the equipment is the range from the minimum to the maximum level of a radio frequency input signal at which the bit error ratio in the output of the decoder does not exceed a specified value.

Limit

IEC 62238 Sub-clause 10.6.3

The bit error ratio shall be equal to or less than 10⁻².

TEST CONFIGURATION

TEST PROCEDURE

- The test conditions.
 Normal condition ☐ Extreme conditions
- 2. Please refer to IEC 62238 Sub-clause 10.6.2 for the measurement method

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

 □ Passed ■ Not Applicable

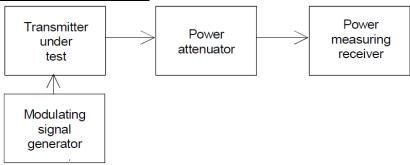
TEST DATA

Please refer to appendix AG on the appendix report

Report No.: CHTEW20030067 Page: 50 of 53 Issued: 2020-03-13

5.4.7. Spurious emissions

Spurious emissions from the receiver are components at any frequency, present at the receiver input port.


The level of spurious emissions shall be measured as the power level at the antenna.

Limit

IEC 62238 Sub-clause 10.7.3

The power of any spurious emission shall not exceed 2 nW at any frequency in the range between 9 kHz and 2 GHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 10.7.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

TEST DATA

Please refer to appendix AH on the appendix report

Report No.: CHTEW20030067 Page: 51 of 53 Issued: 2020-03-13

5.4.8. Verification of correct decoding of various types of DSC calls

DSC call sequences are calls that comply with ITU-R Recommendation M.493-14.

Requirement

The requirements of ITU-R Recommendation M.493-14 regarding message composition and content shall be met.

The decoded call sequences at the output of the receiver shall be examined for correct technical format, including error-check characters.

When receiver measurements are made by use of a printer or a computer, a check shall be made to ensure accordance between printer output and display indication.

It shall be verified that the equipment is capable of switching to a channel identified in the DSC call.

TEST MODE:	
-------------------	--

Please reference to the section 4.3

TEST RESULTS	
⊠ Passed	

☐ Not Applicable

TEST DATA

Please refer to appendix AI on the appendix report

Report No.: CHTEW20030067 Page: 52 of 53 Issued: 2020-03-13

5.4.9. Reaction to VTS and AIS channel management DSC transmissions

VTS and AIS channel management DSC transmissions are any DSC transmissions that are in accordance with Recommendation ITU-R M.825 or M.1371.

Requirement

TEST MODE:

The equipment shall not sound an alarm, display a message (an accurate, imformative display is permissible but not required), transmit a response or suggest a transmitted response, lock up, or require operator intervention.

Please reference to the section	4.3

TEST RESULTS

☐ Passed ☐ Not Applicable

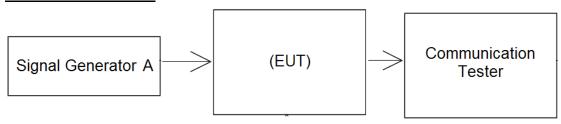
TEST DATA

Please refer to appendix AJ on the appendix report

Report No.: CHTEW20030067 Page: 53 of 53 Issued: 2020-03-13

5.4.10. Simultaneous reception

Simultaneous reception is the ability of the unit to correctly receive DSC traffic and radiotelephony traffic at the same time.


Limit

IEC 62238 Sub-clause 10.10.3

For radiotelephony operation the SINAD ratio shall be no less than 20 dB in the presence of the DSC test signal.

The bit error ratio shall be equal to or less than 10⁻².

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 10.10.2 for the measurement method.

TEST MODE:

Please reference to the section 4.3

TEST RESULTS

TEST DATA

Please refer to appendix AK on the appendix report

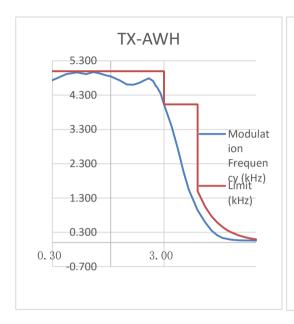
6. APPENDIX REPORT

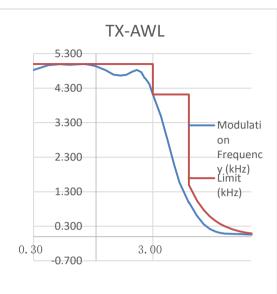
Appendix A: Frequency Error

Operation Mode	Test co	nditions	Frequency Error (kHz)	Limit (kHz)	Result	
Г	Temperature	Voltage	CH _M	(,		
TX-AWH	T_N	V_N	0.025	±1.5	PASS	
TX-AWH	T_L	V_L	0.067	±1.5	PASS	
TX-AWH	T _H	V_{H}	0.047	±1.5	PASS	
TX-AWL	T_N	V_N	0.084	±1.5	PASS	
TX-AWL	T _L	V_L	0.127	±1.5	PASS	
TX-AWL	T _H	V_{H}	0.112	±1.5	PASS	

Appendix B: Carrier power

Operation Mode	Temperat ure	Voltage	Test Channel	Measured power (dBm)	Rated power(W)	Difference (dB)	Limit (dB)	Result
TX-AWH	T_N	V_N	CH _L	43.77	25.00	-0.21	±1.5	PASS
TX-AWH	T_N	V_N	CH _M	43.82	25.00	-0.16	±1.5	PASS
TX-AWH	T_N	V_N	CH _H	43.57	25.00	-0.41	±1.5	PASS
TX-AWH	T_L	V_L	CH _M	43.19	25.00	-0.79	-3 ~ +2	PASS
TX-AWH	T _H	V_{H}	CH _M	43.12	25.00	-0.86	-3 ~ +2	PASS
TX-AWL	T_N	V_N	CH _L	29.07	1.00	-0.93	±1.5	PASS
TX-AWL	T_N	V_N	CH _M	29.14	1.00	-0.86	±1.5	PASS
TX-AWL	T_N	V_N	CH _H	29.11	1.00	-0.89	±1.5	PASS
TX-AWL	T_L	V_L	CH _M	29.17	1.00	-0.83	-3 ~ +2	PASS
TX-AWL	T _H	V_{H}	CH _M	29.02	1.00	-0.98	-3 ~ +2	PASS


Appendix C: Frequency Deviation

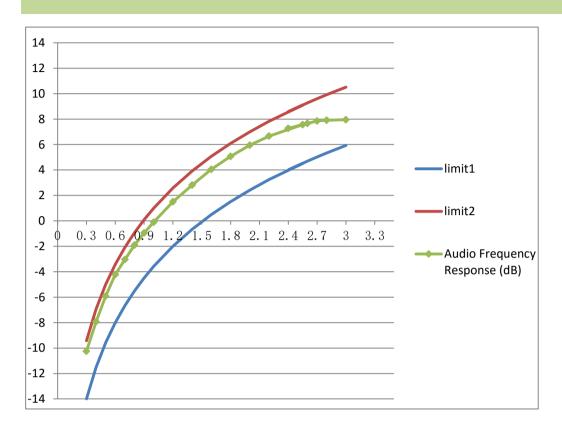

Modulation Frequency (kHz)	Frequency Deviation (kHz) TX-AWH	Limit (kHz)	Result	Modulation Frequency (kHz)	Frequency Deviation (kHz) TX-AWL	Limit (kHz)	Result
0.30	4.736	5.00	PASS	0.30	4.826	5.00	PASS
0.40	4.912	5.00	PASS	0.40	4.966	5.00	PASS
0.50	4.965	5.00	PASS	0.50	4.995	5.00	PASS
0.60	4.913	5.00	PASS	0.60	4.975	5.00	PASS
0.70	4.973	5.00	PASS	0.70	4.991	5.00	PASS
0.80	4.931	5.00	PASS	0.80	4.998	5.00	PASS
0.90	4.882	5.00	PASS	0.90	4.970	5.00	PASS
1.00	4.850	5.00	PASS	1.00	4.932	5.00	PASS
1.20	4.732	5.00	PASS	1.20	4.821	5.00	PASS
1.40	4.612	5.00	PASS	1.40	4.693	5.00	PASS
1.60	4.606	5.00	PASS	1.60	4.665	5.00	PASS
1.80	4.655	5.00	PASS	1.80	4.689	5.00	PASS
2.00	4.734	5.00	PASS	2.00	4.771	5.00	PASS
2.20	4.791	5.00	PASS	2.20	4.826	5.00	PASS
2.40	4.711	5.00	PASS	2.40	4.761	5.00	PASS
2.55	4.555	5.00	PASS	2.55	4.596	5.00	PASS
2.60	4.529	5.00	PASS	2.60	4.576	5.00	PASS
2.80	4.351	5.00	PASS	2.80	4.419	5.00	PASS
3.00	4.031	5.00	PASS	3.00	4.119	5.00	PASS
3.00	4.031	4.03	PASS	3.00	4.119	4.12	PASS
3.50	3.402	4.03	PASS	3.50	3.497	4.12	PASS
4.00	2.729	4.03	PASS	4.00	2.779	4.12	PASS
4.50	2.052	4.03	PASS	4.50	2.102	4.12	PASS
5.00	1.542	4.03	PASS	5.00	1.571	4.12	PASS
6.00	0.942	4.03	PASS	6.00	0.977	4.12	PASS
6.00	0.942	1.50	PASS	6.00	0.997	1.50	PASS
7.00	0.593	1.05	PASS	7.00	0.606	1.05	PASS
8.00	0.349	0.77	PASS	8.00	0.359	0.77	PASS
9.00	0.212	0.58	PASS	9.00	0.223	0.58	PASS
10.00	0.135	0.46	PASS	10.00	0.150	0.46	PASS
11.00	0.107	0.37	PASS	11.00	0.107	0.37	PASS
12.00	0.083	0.30	PASS	12.00	0.089	0.30	PASS
14.00	0.067	0.21	PASS	14.00	0.078	0.21	PASS
16.00	0.061	0.15	PASS	16.00	0.076	0.15	PASS
18.00	0.059	0.12	PASS	18.00	0.066	0.12	PASS
20.00	0.055	0.09	PASS	20.00	0.059	0.09	PASS
22.00	0.057	0.07	PASS	22.00	0.053	0.07	PASS
24.00	0.052	0.06	PASS	24.00	0.050	0.06	PASS
25.00	0.047	0.05	PASS	25.00	0.045	0.05	PASS

Appendix C: Frequency Deviation

TEST PLOT RESULT

Appendix D: Sensitivity of the modulaotr, including microphone

Operation Mode	Test Channel	Modulated Frequency (kHz)	Measured (kHz)	Limit(kHz)	Result
TX-AWH	CH _M	1.0	2.7	±2.5∼ ±4.5	PASS
TX-AWH	CH _M	0.3	2.8	±2.5~ ±4.5	PASS
TX-AWH	CH _M	0.5	2.8	±2.5~ ±4.5	PASS


Appendix E: Audio frequency response

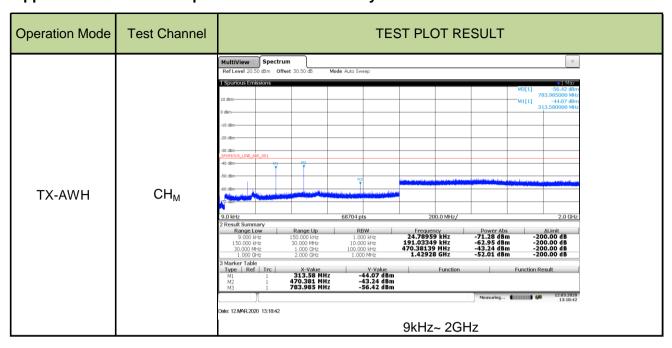
Frequency (KHz)	Frequency Deviation (KHz) TX-AWH CH _M	1KHz Reference Deviation (KHz)	Audio Frequency Response (dB)
0.3	0.31	1.00	-10.25
0.4	0.40	1.00	-7.94
0.5	0.51	1.00	-5.92
0.6	0.62	1.00	-4.22
0.7	0.70	1.00	-3.04
0.8	0.80	1.00	-1.91
0.9	0.90	1.00	-0.95
1	0.99	1.00	-0.10
1.2	1.19	1.00	1.50
1.4	1.38	1.00	2.81
1.6	1.59	1.00	4.05
1.8	1.79	1.00	5.07
2	1.98	1.00	5.95
2.2	2.15	1.00	6.66
2.55	2.39	1.00	7.56
2.4	2.31	1.00	7.27
2.6	2.42	1.00	7.66
2.7	2.47	1.00	7.85
2.8	2.49	1.00	7.91
3	2.50	1.00	7.95

Appendix E: Audio frequency response

TEST PLOT RESULT

Appendix F: Audio frequency harmonic distortion of the emission

Operation Mode	Temperature (°C)	Voltage (V)	Modulated Frequency (kHz)	Test Channel	Measured (%)	Limit (%)	Result
			0.3	CH _M	4.7	≤10	PASS
TX-AWH	TX-AWH T _N	V_N	0.5	CH _M	2.6	≤10	PASS
			1.0	CH _M	1.3	≤10	PASS
			0.3	CH _M	4.6	≤10	PASS
TX-AWL T _N	V_N	0.5	CH _M	2.7	≤10	PASS	
			1.0	CH _M	1.4	≤10	PASS



Appendix G: Adjacent Channel Power

Operation Mode	Test Channel	Test Channel	Measurement Power (dBc)	Limit (dB)	Result
TX-AWH	CH _M	Lower adjacent	-70.97	≤-70	PASS
TX-AWH	CH _M	Upper adjacent	-71.05	≤-70	PASS

Appendix H: Conducted spurious emissions conveyed to the antenna

Appendix I:Transient frequency behaviour of the transmitter

Operation		Test	TEST PLOT RESULT
Mode	Type	Channel	TEST PLOT RESULT
TX-AWH	FM	СНм	Multiview Spectrum
TX-AWH	FM	СНм	MultiView Spectrum

Appendix J: Residual modulation of the transmitter

Operation Mode	Test Channel	Measured (dB)	Limit(dB)	Result
TX-AWH	CH _M	-41.02	≤-40	PASS

Appendix K: Frequency error (demodulated DSC signal)

Operation Mode	Test conditions		Frequency Error	Limit (Hz)	Result
	Temperature	Voltage	(Hz)	LIIIII (112)	Nesuit
TX-B	T_N	V_N	2099.61	2100± 10	PASS
TX-B	T_L	V_{L}	2099.53	2100± 10	PASS
TX-B	T _H	V_{H}	2099.37	2100± 10	PASS
TX-Y	T_N	V_N	1299.71	1300± 10	PASS
TX-Y	T _L	V_L	1299.59	1300± 10	PASS
TX-Y	T _H	V_{H}	1299.64	1300± 10	PASS

Appendix L: Modulation index for DSC

Operation Mode	Test Channel	Modulation index	Limit	Result
TX-B	CH _{M1}	1.91	2.0± 10%	PASS
TX-Y	CH _{M1}	1.89	2.0± 10%	PASS

Appendix M: Modulation rate for DSC

Operation Mode	Test Channel	Modulation rate (Hz)	Limit	Result
TX-(B+Y)	CH _{M1}	599.999	600Hz ± 30 ppm	PASS

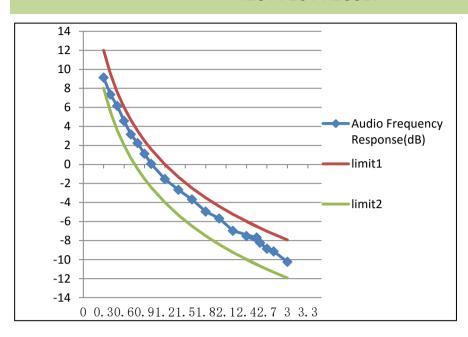
Appendix N: Testing of generated call sequences

Call Sent	Received without error	Telecommand 1	Telecommand 2
Distress	Yes	100	126
All Ships Urgency	Yes	100	126
All Ships Safety	Yes	100	126
Individual Routine	Yes	100	126
Group Routine	Yes	100	126

Appendix O: Harmonic distortion and rated audio frequency output power

Harmonic distortion								
Operation Mode	Temperat ure (°C)	Voltage (V)	Signals Llevel (dBµV)	Modulate d Frequenc y (kHz)	Test Frequenc y	Measured (%)	Limit (%)	Result
RX-AW T _N		$T_N \qquad V_N$	60	0.3	CH _M	2.5	≤10	PASS
				0.5	СНм	1.6	≤10	PASS
	т.,			1.0	СНм	7.8	≤10	PASS
	¹ N	٧N		0.3	СНм	2.4	≤10	PASS
			100	0.5	СНм	1.7	≤10	PASS PASS
				1.0	СНм	7.6	≤10	PASS

rated audio frequency output power					
TestChannel Measured (W) Limit (W) Result					
CH _M 2.280 ≥2 PASS					


Appendix P:Audio frequency response

RX-AW:CH _M					
Frequency (kHz)	Output Level(V)	Reference Level at 1kHz (V)	Audio Frequency Response(dB)		
0.3	1.0927	0.3824	9.12		
0.4	0.8903	0.3824	7.34		
0.5	0.7763	0.3824	6.15		
0.6	0.6472	0.3824	4.57		
0.7	0.5496	0.3824	3.15		
0.8	0.4949	0.3824	2.24		
0.9	0.4350	0.3824	1.12		
1	0.3846	0.3824	0.05		
1.2	0.3203	0.3824	-1.54		
1.4	0.2809	0.3824	-2.68		
1.6	0.2500	0.3824	-3.69		
1.8	0.2160	0.3824	-4.96		
2	0.1988	0.3824	-5.68		
2.2	0.1712	0.3824	-6.98		
2.55	0.1578	0.3824	-7.69		
2.4	0.1605	0.3824	-7.54		
2.6	0.1479	0.3824	-8.25		
2.7	0.1379	0.3824	-8.86		
2.8	0.1334	0.3824	-9.15		
3	0.1176	0.3824	-10.24		

Appendix P:Audio frequency response

TEST PLOT RESULT

Appendix Q: Maximum Usable Sensitivity(Conducted)

Operation Mode	Temperature	Voltage	Test Channel	Measured (dBμV)	Limit (dBµV)	Result
RX-AW	T_N	V_N	CH _M	-7.4	≤+6.0	PASS
RX-AW	T_L	V_L	CH _M	-6.6	≤+12.0	PASS
RX-AW	T _H	V _H	CH _M	-7.0	≤+12.0	PASS

Appendix R: Co-Channel Rejection

Operation Mode	Test Channel	Measurement Offset (kHz)	SG B – SG A (dB)	Limit (dB)	Result
RX-AW	CH _M	-3	-7.8	-10~0	PASS
RX-AW	CH _M	0	-8.1	-10~0	PASS
RX-AW	CH _M	3	-8.0	-10~0	PASS

Appendix S: Adjacent Channel Selectivity

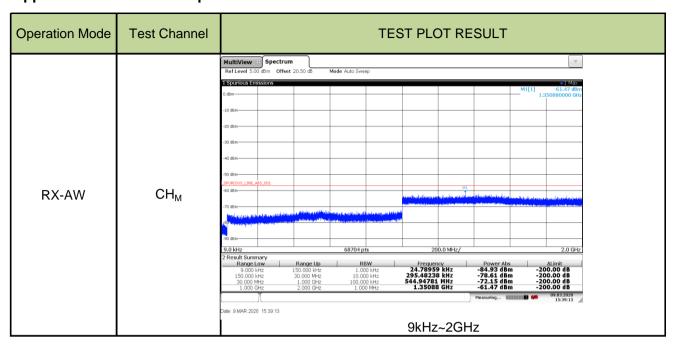
Operation	Test Cond	dition	Test	Measurement	SGB-SGA	Limit	Result
Mode	Temperature	Voltage	Channel	Position	(dB)	(dB)	
RX-AW	T_N	V_N	CH _M	Lower adjacent	73.1	≥70	PASS
RX-AW	T_N	V_N	CH _M	Upper adjacent	73.4	≥70	PASS
RX-AW	T_L	V_L	CH _M	Lower adjacent	71.5	≥60	PASS
RX-AW	T_L	V_L	CH _M	Upper adjacent	71.7	≥60	PASS
RX-AW	T _H	V_{H}	СНм	Lower adjacent	71.4	≥60	PASS
RX-AW	T _H	V_{H}	CH _M	Upper adjacent	71.5	≥60	PASS

Appendix T: Suprious Response Rejection

Operation Mode	Test Channel	Detect Frequency (MHz)	SG B – SG A (dB)	Limit (dB)	Result
RX-AW	CH _M	166.790	79.4	≥70	PASS
RX-AW	CH _M	206.750	79.9	≥70	PASS
RX-AW	CH _M	256.700	104.6	≥70	PASS
RX-AW	CH _M	266.690	104.1	≥70	PASS

Appendix U: Intermodulation Response

Operation	Test Channel	Measurement Offset (kHz)		SG B/C – SG	Limit(dB)	Result
Mode	Tool Gridinion	SG B	SG C	A (dB)	2(32)	rtoodit
RX-AW	CH _M	-50	-100	69.9	≥68	PASS
RX-AW	CH _M	-25	-50	69.4	≥68	PASS
RX-AW	CH _M	25	50	69.3	≥68	PASS
RX-AW	CH _M	50	100	70.2	≥68	PASS



Appendix V: Blocking or Desensitization

Operation Mode	Test Channel	Measurement Offset (MHz)	SG B – SG A (dB)	Limit (dB)	Result
RX-AW	CH _M	-10	104.4	≥90	PASS
RX-AW	CH _M	-5	104.1	≥90	PASS
RX-AW	CH _M	-2	96.7	≥90	PASS
RX-AW	CH _M	-1	91.8	≥90	PASS
RX-AW	CH _M	1	91.4	≥90	PASS
RX-AW	CH _M	2	96.6	≥90	PASS
RX-AW	CH _M	5	99.0	≥90	PASS
RX-AW	CH _M	10	104.1	≥90	PASS

Appendix W: Conducted Spurious radiations

Appendix X: Receiver noise and hum level

Operation Mode	Test Channel	Measured (dB)	Limit (dB)	Result
RX-AW	CH _M	-41.56	≤-40	PASS

Appendix Y:Squelch operation

Under the conditions specified in a)

RX-AW					
Test Measured (dB) Limit (dB) Result					
CH _M	-42.40	≤-40	PASS		

Under the conditions specified in b)

RX-AW					
Test Measured (dBμV) Limit (dBμV) Result					
CH _M	4.10	≤+6.0	PASS		

RX-AW					
Test Channel	Measured SINAD (dB)	Limit (dBµV)	Result		
CH _M	22.50	≥20	PASS		

Under the conditions specified in c)

RX-AW					
Test Channel	Measured (dBμV)	Limit (dBµV)	Result		
CH _M	4.9	≤+6.0	PASS		

Appendix Z:Squelch hysteresis

RX-AW					
Test Channel	Measured (dB)	Limit (dB)	Result		
CH _M	4.20	3∼6	PASS		

Appendix AA:Multiple watch characteristic

Scanning Period:

Operation	Operation Test Condition		Test			
Mode	Temperature (°C)	Voltage (V)	Channel	Measured(s)	Limit (s)	Result
	T _N	V_N	CH _M	1.13	≤2	PASS
RX-AW	TL	V_L	CH _M	1.14	≤2	PASS
	T _H	V_{H}	CH _M	1.13	≤2	PASS

Dwell Time:

Operation	Test Con	dition	Test	st		
Mode	Temperature (°C)	Voltage (V)	Channel	Measured(ms)	Limit (ms)	Result
	T _N	V_N	СН _М	100	150	PASS
RX-AW	T∟	V_L	CH _M	100	150	PASS
	T _H	V _H	CH _M	100	150	PASS

Dwell time on the additional channel:

Operation	Test Condition		Test		Limit (s)	D 1
Mode	Temperature (°C)	Voltage (V)	Channel	I Measured(s) I		Result
	T _N	V_N	CH _M	1.25	0.85~2	PASS
RX-AW	T _L	V_{L}	CH _M	1.29	0.85~2	PASS
	T _H	V_{H}	CH _M	1.27	0.85~2	PASS

Appendix AB: Maximum Usable Sensitivity

Operation Mode	Temperature	Voltage	Test Channel	Measured (error ratio)	Limit (error ratio)	Result
RX-DSC	T_N	V_N	CH _{M1}	0.004	≤10 ⁻²	PASS
RX-DSC	T_L	V_L	CH _{M1}	0.006	≤10 ⁻²	PASS
RX-DSC	T _H	V_{H}	CH _{M1}	0.006	≤10 ⁻²	PASS

Appendix AC: Co-Channel Rejection

Operation Mode	Test Channel	Measurement Offset (kHz)	Measured (error ratio)	Limit (error ratio)	Result
RX-DSC	CH _{M1}	-3	0.003	≤10 ⁻²	PASS
RX-DSC	CH _{M1}	0	0.005	≤10 ⁻²	PASS
RX-DSC	CH _{M1}	3	0.006	≤10 ⁻²	PASS

Appendix AD: Adjacent channel selectivity

Operation	Test Cond	dition	Test	Measurement	Measured	Limit	Result
Mode	Temperature	Voltage	Channel	Position	(error ratio)	(error ratio)	rtoouit
RX-DSC	T_N	V_N	CH _{M1}	Lower adjacent	0.005	≤10 ⁻²	PASS
RX-DSC	T_N	V_N	CH _{M1}	Upper adjacent	0.006	≤10 ⁻²	PASS
RX-DSC	T_L	V_L	CH _{M1}	Lower adjacent	0.006	≤10 ⁻²	PASS
RX-DSC	T_L	V_L	CH _{M1}	Upper adjacent	0.007	≤10 ⁻²	PASS
RX-DSC	T _H	V_{H}	CH _{M1}	Lower adjacent	0.007	≤10 ⁻²	PASS
RX-DSC	T _H	V_{H}	CH _{M1}	Upper adjacent	0.006	≤10 ⁻²	PASS

Appendix AE: Spurious response and blocking immunity

Spurious response:

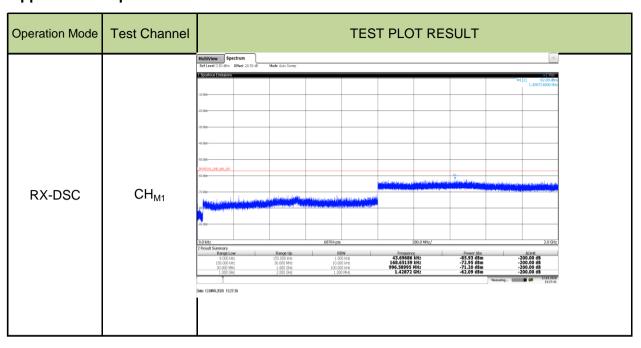
Operation Mode	Test Channel	Spurious Frequency (MHz)	Measured (error ratio)	Limit (error ratio)	Result
		166.515	0.004		PASS
RX-DSC	СН	206.475	0.006	2	
KX-D3C	-DSC CH _{M1}	256.425	0.005	$\leq 10^{-2}$	
		266.415	0.006		

Blocking immunity:

Operation Mode	Test Channel	Measurement Offset (MHz)	Measured (error ratio)	Limit (error ratio)	Result	
		-10	0.004			
		-5	0.005		PASS	
		-2	0.006	2		
RX-DSC	CH _{M1}	-1	0.006			
RX-DSC	KX-D3C CI I _M 1	OT IMI	1	0.007	$\leq 10^{-2}$	17.00
		2	0.006			
		5				
		10	0.003			

Appendix AF: Intermodulation response

Operation Test		Measurement Offset (kHz)		Measured	Limit	Result
Mode	Channel	SG B	SG C	(error ratio)	(error ratio)	Result
RX-DSC	CH _{M1}	-50	-100	0.007	≤10 ⁻²	PASS
IXX-D3C	OT IM1	50	100	0.006	≤10 ⁻²	PASS



Appendix AG: Dynamic range

Operation	Test	Measured	Limit	Result
Mode	Channel	(error ratio)	(error ratio)	
RX-DSC	CH _{M1}	0.006	≤10 ⁻²	PASS

Appendix AH: spurious emissions

Appendix AI: Verification of correct decoding of various types of DSC calls

Call Sent	Received (Y or N)	Telecommand 1	Telecommand 2
Distress	Y	100	126
All Ships Distress Ack	Y	110	126
All Ships Distress Relay	Υ	112	126
All Ships Urgency	Υ	110	126
All Ships Safety	Y	100	126
Individual Urgency	Y	100	126
Individual Safety	Υ	100	126
Individual Routine	Υ	100	126
Group Routine	Y	100	126

Function Check	Result
Confirm that the decoded call sequences at the output of the receiver have been examined for correct technical format, including error check characteristics.	Yes
Errors found:	No
Confirm that the checks have been made to ensure accordance between printer output and display	Yes
Errors found:	No
It has been verified that the equipment is capable of switching to a channel identified in the DSC call:	Yes

Appendix AJ: Reaction to VTS and AIS channel management DSC transmissions

Function Check	Received (Y or N)	
Not sound an alarm	Υ	
Not display a message(An accurate informative display is permissible but not required)	Y	
Not transmit a response	Υ	
Not suggest a transmitted response	Υ	
Not lock up	Υ	
Not require operator intervention	Υ	

Appendix AK: Simultaneous reception

Operation Mode	Test Channel	Measured SINAD(dB)	Limit (dB)	Result
RX-AW	CH _M	22.37	≥20	PASS

Operation	Test	Measured	Limit	Result
Mode	Channel	(error ratio)	((error ratio))	
RX-DSC	CH _{M1}	0.007	≤10 ⁻²	PASS

----End of Report----