

TEST REPORT

Report No:	CHTEW20030032	Report Verification:		
Project No:	SHT1909084902EW			
FCC ID	K6630673X3D			
Applicant's name:	YAESU MUSEN CO., LTD.			
Address:	Tennozu Parkside Building 2-5- ku, Tokyo 140-0002 Japan	8 Higashi-Shinagawa, Shinagawa-		
Manufacturer	VTech (Dongguan) Communica	tions Limited		
Address	Xia Ling Bei Management Zon China	e, Liaobu,Dongguan, Guangdong,		
Test item description	25 Watt VHF/FM Marine Trans	ceiver		
Trade Mark:	STANDARD HORIZON			
Model/Type reference:	GX2400GPS			
Listed Model(s)	· .			
Standard:	FCC CFR Title 47 Part 80			
Date of receipt of test sample	Feb.18, 2020			
Date of testing	Feb.18, 2020- Mar.05, 2020			
Date of issue:	Mar.06, 2020			
Result	PASS			
Compiled by (position+printed name+signature):	File administrator Echo Wei	Echo Wei		
Supervised by (position+printed name+signature):	Project Engineer Xiaodong Zha	Ccho Wei Xiaodong Zheo Harristy		
Approved by (position+printed name+signature):	RF Manager Hans Hu	Homsty		
Testing Laboratory Name:	: Shenzhen Huatongwei International Inspection Co., Ltd.			
Address:	1/F, Bldg 3, Hongfa Hi-tech Indu Gongming, Shenzhen, China	ustrial Park, Genyu Road, Tianliao,		

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Test Standards

Report No.:

<u>1.</u>

1.1.

<u>6.</u>

1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3. 3.4.	Radio Specification Description Testing Laboratory Information	5 6
3.4.	resting Laboratory mormation	0
<u>4.</u>	TEST CONFIGURATION	7
4.1.	Test frequency list	7
4.2.	EUT operation mode	8
4.3.	Support unit used in test configuration and system	8
4.4.	Testing environmental condition	9
4.5.	Measurement uncertainty	9
4.6.	Equipment Used during the Test	10
<u>5.</u>	TEST CONDITIONS AND RESULTS	12
5.1.	Conducted Carrier Output Power	12
5.2.	99% Occupied Bandwidth & 26dB Bandwidth	13
5.3.	Emission Mask	15
5.4.	Modulation Limit	16
5.5.	Audio Frequency Response	17
5.6.	Audio Low Pass Filter Response	19
5.7.	Frequency stability VS Temperature	20
5.8. 5.9.	Frequency stability VS Voltage Transmit Conducted Spurious Emission	22 24
5.9. 5.10.	Transmit Conducted Spurious Emission Transmitter Radiated Spurious Emission	24 25
5.10.	Transmitter Naulateu Spurious Emission	25

CHTEW20030032

Contents

TEST STANDARDS AND REPORT VERSION

APPENDIX REPORT

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- <u>FCC Rules Part 80:</u> Stations in The Maritime Services.
- FCC Rules Part 2: Frequency allocations and radio treaty matters; General rules and regulations
- <u>ANSI C63.26-2015</u>: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
- <u>ANSI/TIA-603-E(2016):</u> Land Mobile FM or PM Communications Equipment and Performance Standards
- <u>ANSI C63.4-2014</u>: American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2020-03-06	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result
5.1	Conducted Carrier Output Power	FCC Part 80.215 FCC Part 2.1046	PASS
5.2	99% Occupied Bandwidth&26dB bandwidth	FCC Part 80.205 FCC Part 2.1049	PASS
5.3	Modulation Limit	FCC Part 80.213 FCC Part 2.1047(b)	PASS
5.4	Audio Frequency Response	FCC Part 2.1047(a)	PASS
5.5	Audio Low Pass Filter Response	FCC Part 80.213 Part 2.1047(a)	PASS
5.6	Emission Mask	FCC Part 80.211(f) FCC Part 2.1049	PASS
5.7	Frequency Stability V.S. Temperature	FCC Part 80.209 Part 2.1055	PASS
5.8	Frequency Stability V.S. Voltage	FCC Part 80.209 Part 2.1055	PASS
5.9	Transmit Conducted Spurious Emission	FCC Part 80. 211(f)(3) FCC Part 2.1051	PASS
5.10	Transmitter Radiated Spurious Emission	FCC Part 80. 211(f)(3) FCC Part 2.1053	PASS

Note:

- The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Client Information

Applicant:	YAESU MUSEN CO., LTD.
Address:	Tennozu Parkside Building 2-5-8 Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-0002 Japan
Manufacturer:	VTech (Dongguan) Communications Limited
Address:	Xia Ling Bei Management Zone, Liaobu,Dongguan, Guangdong, China

3.2. Product Description

Main unit			
Name of EUT:	25 Watt VHF/FM Marine T	ransceiver	
Trade mark:	STANDARD HORIZON		
Model/Type reference:	GX2400GPS		
Listed mode(s):	-		
Power supply:	DC 13.8V		
Tost sample No :	Conducted sample No.:	9A000001	
Test sample No.: Radiated sample No.: 9A000002		9A000002	
Hardware version:	9A00		
Software version:	9A00		

3.3. Radio Specification Description

Support operation frequency Range:	TX: 156.025MHz to 161.600MHz RX: 156.050MHz to 162.025MHz	
Support type:	Analog	
Modulation type:	FM	
Channel Separation:	25kHz	
Emission Designator*1:	16K0G3E	
Rated power class:	High Power: 25W	Low Power: 1W
Antenna Type:	External	
Antenna Gain:	-	

Note:

(1) *¹ According to FCC Part 2.202 requirements, the Necessary Bandwidth is calculated as follows:

For FM Voice Modulation
 Channel Spacing = 25 KHz, D = 5 KHz max, K = 1, M = 3 KHz
 Bn = 2M + 2DK = 2*3 + 2*5*1 = 16 KHz
 Emission designation: 16K0G3E

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.			
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China			
Qualifications	Туре	Accreditation Number		
	CNAS	L1225		
	A2LA	3902.01		
	FCC	762235		
	Canada	5377A		

4. TEST CONFIGURATION

4.1. Test frequency list

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2.

Frequency range over which EUT operates	Number of frequencies	Location in frequency range of operatio	
1 MHz or less	1	Middle	
1 MHz to 10 MHz	2	1 near top and 1 near bottom	
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom	

Frequency Bands (MHz)	Test Channel	Test Frequency (MHz)		
		ТХ	RX	
156.025~162.025	CH _L (CH60)	156.025	160.625	
	CH _M (CH16)	156.800	156.800	
	CH _H (CH88)	157.425	157.425	

Note: The Product channel frequency table: USA Marine VHF Channels and Frequencies:

Channel	TX Frequency (MHz)	RX Frequency (MHz)	Channel	TX Frequency (MHz)	RX Frequency (MHz)
1	156.05	160.65	60	156.025	160.625
2	156.1	160.7	61	156.075	160.675
3	156.15	160.75	62	156.125	160.725
4	156.2	160.8	63	156.175	160.775
5	156.25	160.85	64	156.225	160.825
6	156.3	156.3	65	156.275	160.875
7	156.35	160.95	66	156.325	160.925
8	156.4	156.4	67	156.375	156.375
9	156.45	156.45	68	156.425	156.425
10	156.5	156.5	69	156.475	156.475
11	156.55	156.55	71	156.575	156.575
12	156.6	156.6	72	156.625	156.625
13	156.65	156.65	73	156.675	156.675
14	156.7	156.7	74	156.725	156.725
15	156.75	156.75	75	156.775	156.775
16	156.8	156.8	76	156.825	156.825
17	156.85	156.85	77	156.875	156.875
18	156.9	161.5	78	156.925	161.525
19	156.95	161.55	79	156.975	161.575
20	157	161.6	80	157.025	161.625
21	157.05	161.65	81	157.075	161.675
22	157.1	161.7	82	157.125	161.725
23	157.15	161.75	83	157.175	161.775
24	157.2	161.8	84	157.225	161.825
25	157.25	161.85	85	157.275	161.875
26	157.3	161.9	86	157.325	161.925
27	157.35	161.95	87	157.375	157.375
28	157.4	162	88	157.425	157.425

4.2. EUT operation mode

Test mode	Transmitting	Receiving	Power level		Analog Voice/FM
restmode	Transmitting	Receiving	High	Low	25kHz
TX-AWH	\checkmark		\checkmark		\checkmark
TX-AWL	\checkmark			\checkmark	\checkmark

 $\sqrt{}$: is operation mode.

Modulation Type	Description
UM	Un-modulation
AM2	Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
AM6	Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, then increase the level from the audio generator by 20 dB
AM5	Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation.

Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report.

Test item	Modulation Type	Test mode
Conducted Output Power	UM	TX-AWH, TX-AWL
99% Occupied Bandwidth & 26dB bandwidth	AM6	TX-AWH, TX-AWL
Emission Mask	AM5	TX-AWH, TX-AWL
Modulation Limit	AM6	TX-AWH
Audio Frequency Response	AM2	TX-AWH
Audio Low Pass Filter Response	AM2	TX-AWH
Frequency Stability VS Temperature	UM	TX-AWH, TX-AWL
Frequency Stability VS Voltage	UM	TX-AWH, TX-AWL
Transmit Conducted Spurious Emission	AM5	TX-AWH
Transmit Radiated Spurious Emission	AM5	TX-AWH

4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Wheth	Whether support unit is used?							
✓	No							
Item	Equipment	Trade Name	Model No.	Other specification				
1								
2								

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar
	Normal voltage:	DC 13.80V
Test voltage:	Extreme lower voltage:	DC 11.73V
	Extreme upper voltage:	DC 15.87V

4.4. Testing environmental condition

4.5. Measurement uncertainty

Test Item	Measurement Uncertainty
Frequency stability	25 Hz
Carrier output power (ERP)	2.20 dB
Occupied Bandwidth	35 Hz
Modulation Limiting	0.42 %
FM deviation	25 Hz
Audio level	0.62 dB
Radiated Spurious Emission 30~1000MHz	4.65 dB
Radiated Spurious Emission 1~18GHz	5.16 dB
AC power line Conducted Emission 9KHz-30MHz	3.39 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Page: 10 of 29

4.6. Equipment Used during the Test

•	TS8613 Test s	ystem					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2019/10/26	2020/10/25
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2019/10/26	2020/10/25
•	RF Communication Test Set	HP	HTWE0038	8920A	3813A10206	2019/10/26	2020/10/25
•	Digital intercom communication tester	Aeroflex	HTWE0255	3920B	1001682041	2019/10/26	2020/10/25
•	Signal Generator	R&S	HTWE0191	SML02	100507	2019/10/26	2020/10/25
•	RF Control Unit	Tonscend	HTWE0294	JS0806-2	N/A	N/A	N/A
•	Filter-VHF	Microwave	HTWE0309	N26460M1	498702	N/A	N/A
0	Filter-UHF	Microwave	HTWE0311	N25155M2	498704	N/A	N/A
0	Power Divider	Microwave	HTWE0043	OPD1040-N-4	N/A	2019/05/24	2020/05/23
•	Attenuator	JFW	HTWE0292	50FH-030-100	N/A	2019/05/18	2020/05/17
0	Attenuator	JFW	HTWE0293	50-A-MFN-20	0322	2019/05/18	2020/05/17
•	Test software	HTW	N/A	Radio ATE	N/A	N/A	N/A

•	Auxiliary Equipment							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2019/10/23	2020/10/22	
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A	

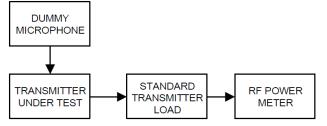
•	Radiated Spu	rious Emission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2019/10/26	2020/10/25
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2018/04/02	2021/04/01
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/11
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2018/04/04	2021/04/03
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2017/04/01	2020/03/31
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2019/11/14	2020/11/13
●	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2019/05/23	2020/05/22
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6m 3GHz RG Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2019/05/10	2020/05/09
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2019/05/10	2020/05/09
•	EMI Test Software	Audix	N/A	E3	N/A	N/A	N/A

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Carrier Output Power

<u>LIMIT</u>

FCC Part 80.215(e)


(e) Ship stations frequencies above 27500 kHz. The maximum power must not exceed the values listed below.

(1) Ship stations 156-162 MHz-25W

(g) The carrier power of ship station radiotelephone transmitters, except portable transmitters, operating in the 156-162MHz band must be at least 8 but not more than 25 watts.

(1) All transmitters and remote control units must be capable of reducing the carrier power to one watt or less

TEST CONFIGURATION

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Correct for all losses in the RF path
- (3) Measure the transmitter output power
- (4) If the power output is adjustable, measurements shall be made for the highest and lowest power levels.

TEST MODE

Please reference to the section 4.2

TEST RESULTS

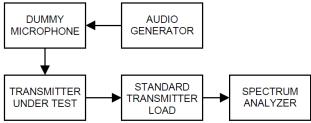
🛛 Passed

Not Applicable

TEST DATA

Please refer to appendix A on the appendix report

5.2. 99% Occupied Bandwidth & 26dB Bandwidth


<u>LIMIT</u>

FCC Part 80.205

(a) An emission designator shows the necessary bandwidth for each class of emission of a station except that in ship earth stations it shows the occupied or necessary bandwidth, whichever is greater. The following table gives the class of emission and corresponding emission designator and authorized bandwidth:

Class of emission	Emission designator	Authorized bandwidth (kHz)
A1A	160HA1A	0.4
A1B ¹	160HA1E	0.4
A1D ¹²	16K0A1D	20.0
A2A	2K66A2A	2.8
A2B ¹	2K66A2E	3 2.8
A2D ¹²	16K0A2D	20.0
A3E	6K00A3E	8.0
A3N ²	2K66A3N	2.8
A3X ³	3K20A3X	25.0
F1B ⁴	280HF1E	0.3
F1B ⁵	300HF1E	0.5
F1B ⁶	16KOF1E	3 20.0
F1C	2K80F10	3.0
F1D ¹²	16K0F1D	
F2B ⁶	16KOF2E	20.0
F2C ⁷	16KOF2C	
F2D ¹²	16K0F2D	20.0
F3C	2K80F3C	
F3C ⁷	16K0F30	
F3E ⁸	16KOF3E	
F3N ⁹	20MOF3N	
G1D ¹²	16K0G1D	
G2D ¹²	16K0G2D	
G3D ¹⁰	16KOG3D	
	16KOG3E	
G3E ⁸	16KOG3N	
G3N ^{3 13}		
H2A H2B ¹	1K40H2A 1K40H2E	
	2K80H3E	
H3E ¹¹ H3N	2K66H3N	
J2A	160HJ2A	
J2B ⁴	280HJ2E	
J2B ⁵	300HJ2E	
J2B	2K80J2E	
J2C	2K80J2C	
J2D ¹⁴	2K80J2D	
J3C	2K80J3C	
J3E ¹¹	2K80J3E	
J3N	160HJ3N	
NON	NON	
PON	(12)	
R3E ¹¹	2K80R3E	

TEST CONFIGURATION

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Spectrum set as follow:

Centre frequency = the nominal EUT channel center frequency,

The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of $1.5 \times OBW$ is sufficient) RBW = 1% to 5% of the anticipated OBW, VBW $\ge 3 \times RBW$, Sweep = auto,

Detector function = peak, Trace = max hold

- (3) Set 99% Occupied Bandwidth and 26dB Bandwidth
- (4) Measure and record the results in the test report.

TEST MODE

Please reference to the section 4.2

TEST RESULTS

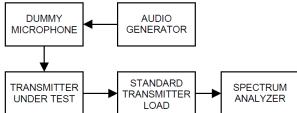
☑ Passed □ Not Applicable

TEST DATA

Please refer to appendix B on the appendix report

5.3. Emission Mask

<u>LIMIT</u>


FCC Part 80.211

(f) The mean power when using emissions other than those in paragraphs (a), (b), (c) and (d) of this section: (1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;

(2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log10 (mean power in watts) dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- Spectrum set as follow: Centre frequency= fundamental frequency, span=120kHz, RBW=300Hz, VBW=1000Hz, Sweep= auto, Detector function=peak, Trace=max hold.
- 3) Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- 4) Apply Input Modulation Signal to EUT according to Section 4.2
- 5) Measure and record the results in the test report.

TEST MODE

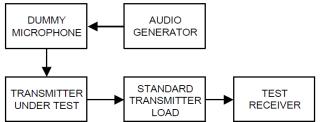
Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

TEST DATA

Please refer to appendix C on the appendix report


5.4. Modulation Limit

<u>LIMIT</u>

FCC Part 2.1047(b), FCC Part 80.213(d)

Ship and coast station transmitters operating in the 156-162 MHz and 216-220 bands must be capable of proper operation with a frequency deviation that does not exceed ± 5 kHz when using any emission authorized by \$80.207.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- 2) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 3) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15,000 Hz. Turn the de-emphasis function off.
- Apply Input Modulation Signal to EUT according to Section 4.2 and vary the input level from –20 to +20dB.
- 5) Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
- 6) Repeat step 4-5 with input frequency changing to 300Hz,1004Hz,1500Hz and 2500Hz in sequence.

TEST MODE

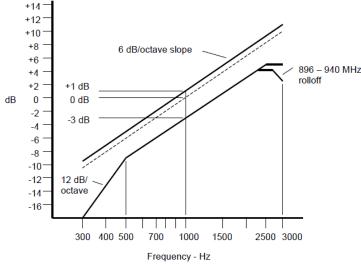
Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

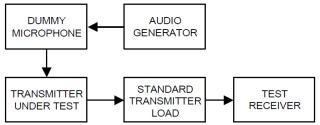
TEST DATA

Please refer to appendix D on the appendix report


Page: 17 of 29

5.5. Audio Frequency Response

<u>LIMIT</u>


FCC Part 2.1047(a):

Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- Set the test receiver to measure peak positive deviation. Set the audio bandwidth for 50 Hz to 15,000 Hz. Turn the de-emphasis function off.
- 3) Set the DMM to measure rms voltage.
- 4) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 5) Apply Input Modulation Signal to EUT according to Section 4.2
- 6) Set the test receiver to measure rms deviation and record the deviation reading.
- 7) Record the DMM reading as V_{REF} .
- 8) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz.
- Vary the audio frequency generator output level until the deviation reading that was recorded in step 6) is obtained.
- 10) Record the DMM reading as V_{FREQ}
- 11) Calculate the audio frequency response at the present frequency as: audio frequency response=20log₁₀ (V_{FREQ}/V_{REF}).
- 12) Repeat steps 8) through 11) for all the desired test frequencies

TEST MODE

Please reference to the section 4.2

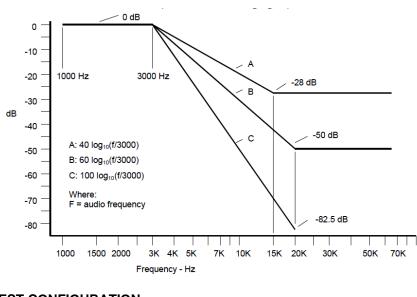
TEST RESULTS

🛛 Passed

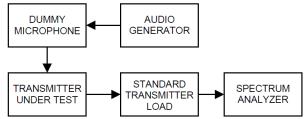
Not Applicable

TEST DATA

Please refer to appendix E on the appendix report


Page: 19 of 29

5.6. Audio Low Pass Filter Response


LIMIT

FCC Part 2.1047(b), FCC Part 80.213(e)

Coast station transmitters operated in the 156-162 MHz band must be equipped with an audio low-pass filter. The filter must be installed between the modulation limiter and the modulated radio frequency stage. At frequencies between 3 kHz and 20 kHz it must have an attenuation greater than at 1 kHz by at least 60log10(f/3) dB where "f" is the audio frequency in kilohertz. At frequencies above 20 kHz the attenuation must be at least 50 dB greater than at 1 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Configure the EUT as shown in figure .
- Apply a 1000 Hz tone from the audio signal generator and adjust the level per manufacturer's specifications. Record the dB level of the 1000 Hz tone as LEV_{REF}.
- Set the audio signal generator to the desired test frequency between 3000 Hz and the upper low pass filter limit. Record the dB level at the test frequency as LEV_{FREQ}.
- Calculate the audio frequency response at the test frequency as: low pass filter response = LEV_{FREQ} - LEV_{REF}

TEST MODE

Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

TEST DATA

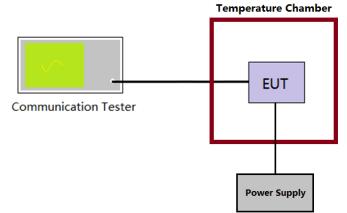
Please refer to appendix F on the appendix report

5.7. Frequency stability VS Temperature

<u>LIMIT</u>

FCC Part 80.209(a):

The frequency tolerance requirements applicable to transmitters in the maritime services are shown in the following table. Tolerances are given as parts in 10⁶ unless shown in Hz.


Frequency bands and categories of stations	Tolerances ¹
(5) Band 156-162 MHz:	
(i) Coast stations:	
For carriers licensed to operate with a carrier power:	
Below 3 watts	10.
3 to 100 watts	5.7
(ii) Ship stations	10.4
(iii) Survival craft stations operating on 121.500 MHz	50.
(iv) EPIRBs:	
Operating on 121.500 and 243.000 MHz	50.
Operating on 156.750 and 156.800 MHz. ⁶	10.
(6) Band 216-220 MHz:	
(i) Coast stations:	
For all emissions	5.
(ii) Ship stations:	
For all emissions	5.
(7) Band 400-466 MHz:	
(i) EPIRBs operating on 406-406.1 MHz	5.
(ii) On-board stations	5.
(iii) Radiolocation and telecommand stations.	5.
(8) Band 1626.5-1646.5 MHz:	
(i) Ship earth stations	5.

⁴For transmitters in the radiolocation and associated telecommand service operating on 154.584 MHz,

159.480 MHz, 160.725 MHz and 160.785 MHz the frequency tolerance is 15 parts in 10⁶. ⁷For transmitters operated at private coast stations with antenna heights less than 6 meters (20 feet) above

ground and output power of 25 watts or less the frequency tolerance is 10 parts in 10⁶.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT output port was connected to communication tester.
- 2. The EUT was placed inside the temperature chamber.
- 3. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency as MCF_{MHz}.
- Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- 5. Repeat step 3 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE

Please reference to the section 4.2

TEST RESULTS

🛛 Passed

□ Not Applicable

TEST DATA

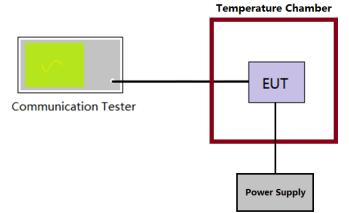
Please refer to appendix G on the appendix report

5.8. Frequency stability VS Voltage

<u>LIMIT</u>

FCC Part 80.209(a):

The frequency tolerance requirements applicable to transmitters in the maritime services are shown in the following table. Tolerances are given as parts in 10⁶ unless shown in Hz.


Frequency bands and categories of stations	Tolerances ¹
(5) Band 156-162 MHz:	
(i) Coast stations:	
For carriers licensed to operate with a carrier power:	
Below 3 watts	10.
3 to 100 watts	5.7
(ii) Ship stations	10.4
(iii) Survival craft stations operating on 121.500 MHz	50.
(iv) EPIRBs:	
Operating on 121.500 and 243.000 MHz	50.
Operating on 156.750 and 156.800 MHz. ⁶	10.
(6) Band 216-220 MHz:	
(i) Coast stations:	
For all emissions	5.
(ii) Ship stations:	
For all emissions	5.
(7) Band 400-466 MHz:	
(i) EPIRBs operating on 406-406.1 MHz	5.
(ii) On-board stations	5.
(iii) Radiolocation and telecommand stations.	5.
(8) Band 1626.5-1646.5 MHz:	
(i) Ship earth stations	5.

⁴For transmitters in the radiolocation and associated telecommand service operating on 154.584 MHz,

159.480 MHz, 160.725 MHz and 160.785 MHz the frequency tolerance is 15 parts in 10⁶. ⁷For transmitters operated at private coast stations with antenna heights less than 6 meters (20 feet) above

ground and output power of 25 watts or less the frequency tolerance is 10 parts in 10⁶.

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- 2) The EUT was placed inside the temperature chamber at 25°C
- 3) Record the carrier frequency of the transmitter as MCF_{MHZ}
- Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- 5) Repeat step 3 measure with varied ±15% of the nominal value measured at the input to the EUT

TEST MODE

Please reference to the section 4.2

TEST RESULTS

🛛 Passed

□ Not Applicable

TEST DATA

Please refer to appendix H on the appendix report

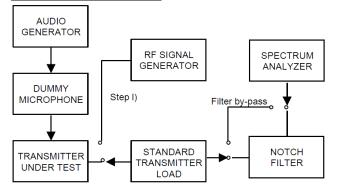
5.9. Transmit Conducted Spurious Emission

<u>LIMIT</u>

FCC Part 80.211(f)(3)

On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log10 (mean power in watts) dB.

Note: In general, the worse case attenuation requirement shown above was applied.


Calculation: Limit (dBm) =EL-43-10log10 (TP)

EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is P(dBm)

Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated, with the notch filter by-passed.
- 2) Apply Input Modulation Signal to EUT according to Section 4.2
- Adjust the spectrum analyzer for the following settings: Below 1GHz: RBW=100kHz, VBW=300kHz, Above 1GHz: RBW=1MHz, VBW=3MHz Detector=Peak, Sweep time=Auto, Trace=Max hold
- 4) Scan frequency range up to 10th harmonic.
- 5) Record the frequencies and levels of spurious emissions.

TEST MODE

Please reference to the section 4.2

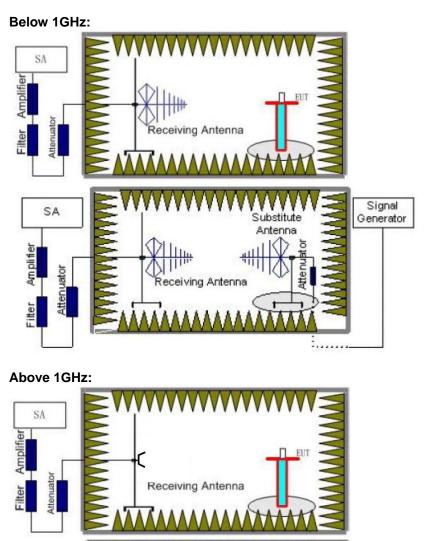
TEST RESULTS

☑ Passed □ Not Applicable

TEST DATA

Please refer to appendix I on the appendix report

5.10. Transmitter Radiated Spurious Emission


<u>LIMIT</u>

FCC Part 80.211(f)(3)

On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log10 (mean power in watts) dB.

Note: In general, the worse case attenuation requirement shown above was applied. Calculation: Limit (dBm) =EL-43-10log10 (TP) EL is the emission level of the Output Power expressed in dBm, In this application, the EL is P(dBm) Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13dBm

TEST CONFIGURATION

Receiving Antenna

SA

in ator

m plife

Signal

Generator

Substitute

Antenna

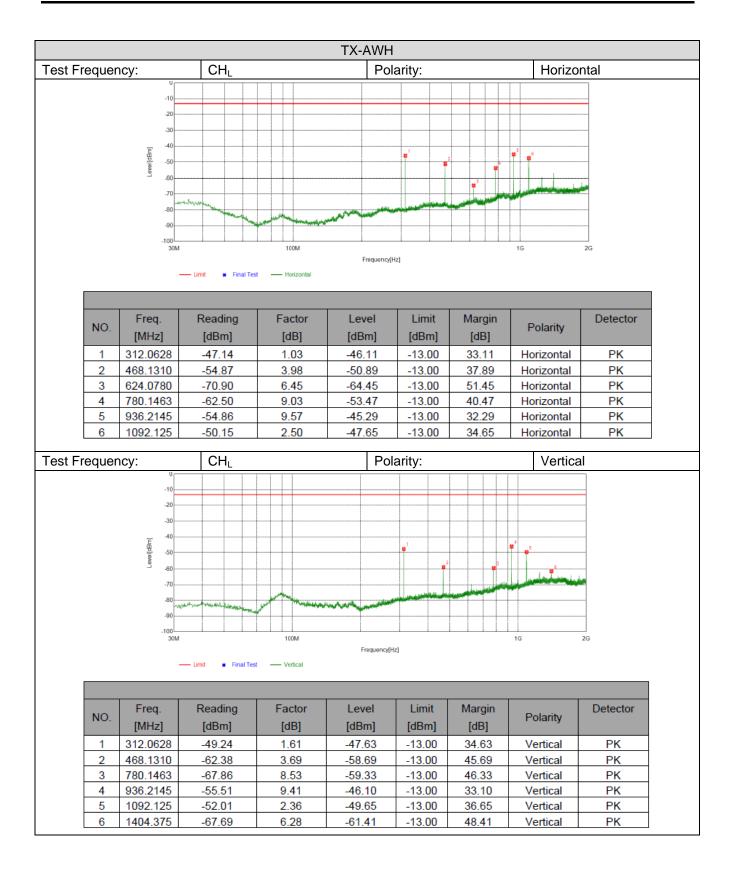
TEST PROCEDURE

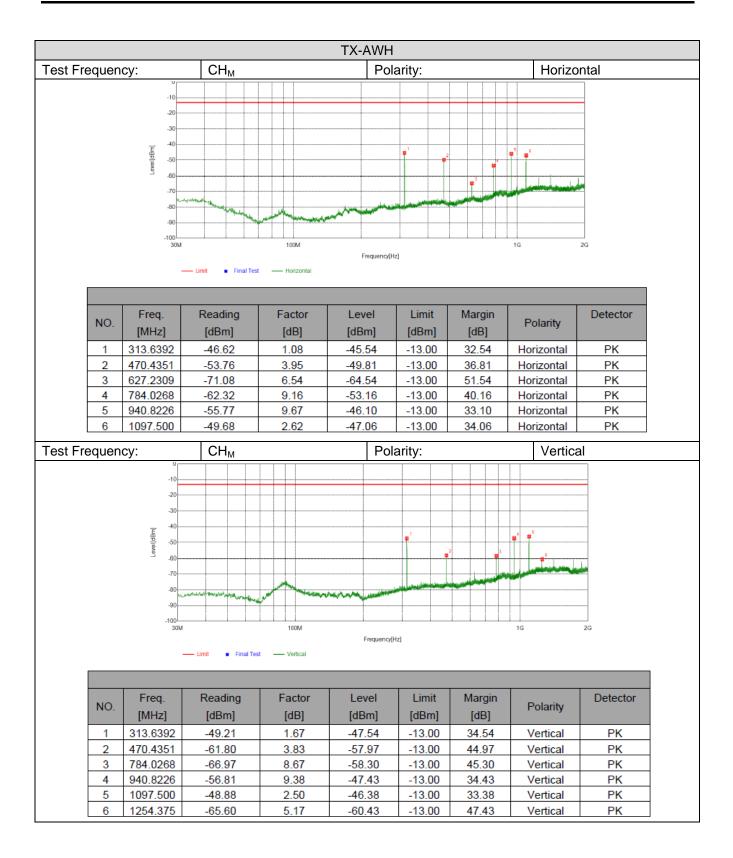
- 1. Standard Transmitter Load with a 50 Ω input impedance and an output impedance matched to the test equipment.
- 2. EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 3. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. The measurement results are obtained as described below:

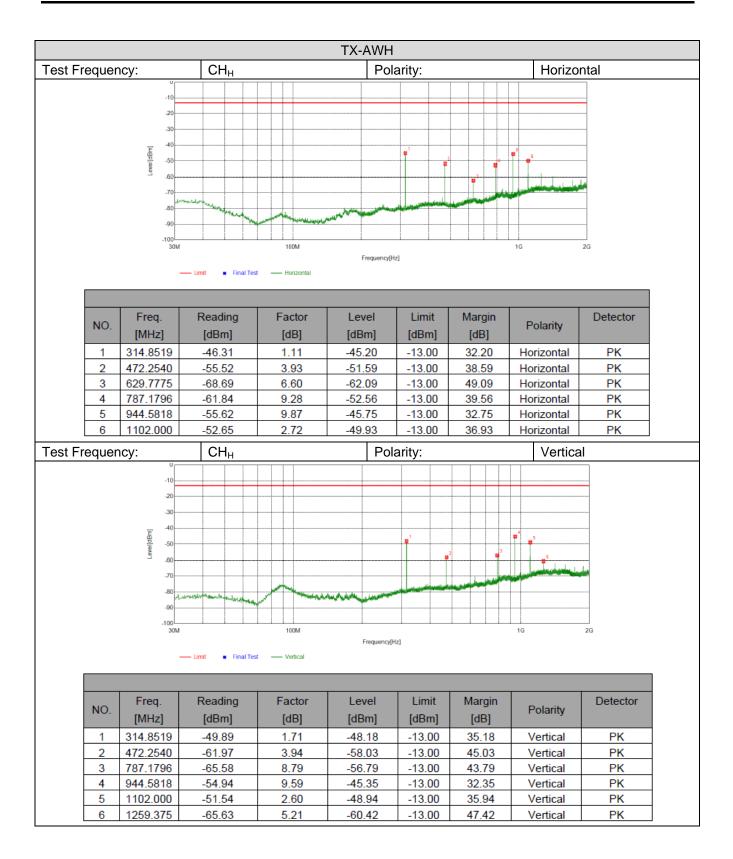
Power(EIRP)=PMea- PAg - Pcl - Ga

We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl - Ga

- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.


TEST MODE


Please reference to the section 4.2


TEST RESULTS

🛛 Passed

Not Applicable

6. APPENDIX REPORT

Project No.	SHT1909084902EW			
Test sample No.	YPHT19090849002	Model No.	GX2400GPS	
Start test date	2020/3/2	Finish date	2020/3/3	
Temperature	22.8 ℃	Humidity	50%	
Test Engineer	Gaosheng. Pan	Auditor	William . wang	

Appendix clause	Test Item	Test date (M/D)	Test Result (PASS/FAIL)
А	Maximum Transmitter Power	2020/3/3	PASS
В	Occupied Bandwidth	2020/3/3	PASS
С	Emission Mask	2020/3/3	PASS
D	Modulation Limit	2020/3/3	PASS
E	Aduio Frequency Response	2020/3/3	PASS
F	Audio Low Pass Filter Response	2020/3/3	PASS
G	Frequency Stability Test & Temperature	2020/3/3	PASS
н	Frequency Stability Test & Voltage	2020/3/3	PASS
I	Spurious Emission On Antenna Port	2020/3/3	PASS

Appendix A:Maximum Transmitter Power

Operation Mode	Modulation Type	Test Channel	Measured Power(dBm)	Measured Power(W)	Limit(W)	Result
TX-AWH	FM	CH∟	43.79	23.90	25	PASS
TX-AWH	FM	CH _M	43.78	23.90	25	PASS
TX-AWH	FM	CH _H	43.77	23.80	25	PASS
TX-AWL	FM	CHL	29.08	0.81	1	PASS
TX-AWL	FM	CH _M	29.10	0.81	1	PASS
TX-AWL	FM	CH _H	29.05	0.80	1	PASS

Appendix B:Occupied Bandwidth

Operation	Modulation	Test Channel	Occupied Bandwidth		99%	Result
Mode	Туре	Test Charmer	99%(kHz)	26dB(kHz)	Limit(kHz)	Result
TX-AWH	FM	CH∟	15.034	15.69	≪20	PASS
TX-AWH	FM	CH _M	15.045	15.68	≪20	PASS
TX-AWH	FM	CH _H	15.056	15.70	≪20	PASS
TX-AWL	FM	CH∟	15.044	15.69	≪20	PASS
TX-AWL	FM	CH _M	15.062	15.69	≪20	PASS
TX-AWL	FM	CH _H	15.069	15.70	≪20	PASS

Appendix B:Occupied Bandwidth

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CH∟	Image: Section Analyzie Conter Freq 156.025000 MHz Conter Freq 156.025000 MHz Conter Freq 156.025000 MHz Frequency Image: Conter Freq 156.025000 MHz Conter Freq 156.025000 MHz Conter Freq 156.025000 MHz Radio Std: None Radio Std: None Image: Conter Freq 156.025000 MHz Image: Conter Freq 156.025000 MHz Image: Conter Freq 156.025000 MHz Conter Freq 156.025000 MHz Conter Freq 156.025000 MHz Image: Conter Freq 156.025000 MHz Image: Conter Freq 156.025000 MHz Image: Conter Freq 156.025000 MHz Conter Freq 156.025000 MHz Image: Conter 156 MHz Image: Conter Freq 156.025000 MHz Image: Conter Freq 156.025000 MHz Image: Conter Freq 156.025000 MHz Image: Conter 156 MHz Image: WBW 1 KHz Span 50 kHz Image: Conter Freq 156.000 MHz Image: Conter 156 MHz Image: WBW 1 KHz Sweep 327.2 ms Image: Conter Freq 0ffset 0 Hz Image: Conter 156 MHz Image: WBW 1 KHz Sweep 327.0 ms Image: Conter Freq 0ffset 0 Hz Image: Conter 156 MHz Image: WBW 1 KHz Sweep 32.0 ms Image: Conter Freq 0ffset 0 Hz Image: Conter Freq Error Image: WBW 1 KHz Image: Contert 0 Hz<
TX-AWH	FM	CH _M	Alter Spectrum Andyzer Discusted BW Alter Production Alter Produ
TX-AWH	FM	СН _н	Added Spectrum Andyzer. Dicagled BW Center Freq 157,425000 MHz PFGalad w PFGalad w PFGGAlad w PFGGAla

Appendix B:Occupied Bandwidth

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWL	FM	CHL	Raffed Spectrum Andyzer. Broughold Jill Context Freq. 156.025000 MHz Context Freq. 156.025000 MHz Frequency Center Freq 156.025000 MHz Context Freq. 156.025000 MHz Context Freq. 156.025000 MHz Radio Device: BTS Image: Context Freq. 156.025000 MHz Context Freq. 156.025000 MHz Context Freq. 156.025000 MHz Center Freq. 156.025000 MHz Image: Context Freq. 156.025000 MHz Trig: Freq Must AngleHeid>10/10 Radio Device: BTS Radio Device: BTS Image: Context Freq. 156.02500 MHz Image: Context Freq. 156.025000 MHz Center Freq. 156.025000 MHz Center Freq. 156.025000 MHz Image: Context Freq. 156.04Hz Radio Device: BTS Span 50 kHz Span 50 kHz Image: Context Freq. 156 MHz #VBW 1 kHz Sweep 527.2 ms Store Max Occupied Bandwidth Total Power 29.60 dBm Man 150.044 kHz Transmit Freq Error -31 Hz OBW Power 99.00 % 0 Hz Image: Concupied Bandwidth 15.69 kHz x dB -26.00 dB 0 Hz 0 Hz
TX-AWL	FM	CH _M	Allent Spectrum Andyzer. Docupied 11W Di the Parison Conservation Margare Docupied 11W Center Freq 156.800000 MHz Big Frequency Center Freq 156.800000 MHz Big Frequency Center Freq 156.800000 MHz Center Freq 156.80000 MHz Center Specific Center Freq 156.80000 MHz Center Specific Center Freq 156.80000 MHz Center Specific Center Specific Center Freq 156.80000 MHz Center Specific Center Spe
TX-AWL	FM	СН _н	Referred Statistics Center Freq 157.425000 MHz Center Freq 167.425000 MHz Center Freq 167.425000 MHz Center Freq 167.425000 MHz Center Freq 157.425000 MHz Span 50 KHz Center Freq 157.4 MHz Span 50 KHz Center 137.4 MHz Frequency Center Freq 157.4 MHz Span 50 KHz Center Freq 157.4 MHz Span 50 KHz Cocupied Bandwidth 15.069 KHz Transmit Freq Error 20 Hz Cocupied Math DC Coup

Appendix C:Emission Mask

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CHL	Agenet Spectrum Kadyor Spe
TX-AWH	FM	CHL	Ref Office Specifient Addition Occurrent Freq Addition Occurrent Freq Addition Occurrent Freq Addition Occurrent Freq Addition Ad
TX-AWH	FM	CH _M	Edited Spectrum Andron - Spectrum Failed Mud Context Freq 156.800000 MHz Context Freq 156.80000 MHz

Appendix C:Emission Mask

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	F	CH _M	Applicit Spectrum Ladigue Spectrum Ladigue Activities Radio Stat. None Frequency Center Freq 156.800000 MHz Center Freq 186.80000 MHz Radio Stat. None Radio Stat. None Frequency PASS If Guine or Activities Radio Stat. None Radio Stat. None Frequency 00 BBd/u Ref 49.0 dBm 0 Activities State Device: BTS State Device: BTS 00 BBd/u Ref 49.0 dBm 0 Activities State Device: BTS State Device: BTS 00 BBd/u Ref 49.0 dBm 0 Activities State Device: BTS State Device: BTS 00 BBd/u Ref 49.0 dBm 0 Activities State Device: BTS State Device: BTS 01 BBd/u Center Freq 100 BBd/u Activities Span 120 BHz Effect 01 BBd/u State Device: BTS State Device: BTS State Device: BTS State Device: BTS 10 BBd/u Activities Span 120 BHz State Device: BTS State Device: BTS 11 BB Device: BTS State Device: BTS State Device: BTS State Device: BTS
TX-AWH	FM	CH _H	Referet forest trans fordades Max Concernance Radio Stat. Radio Stat. Frequency Center Freq 157.425000 MHz Center Freq. 177.425000 MHz Radio Device. B15 PASS If Galladew Frequency Center Freq. 157.425000 MHz Radio Device. B15 PASS If Galladew Center Freq. 157.425000 MHz Radio Device. B15 Pass If Galladew Adden.40 B Radio Device. B15 Center Freq. 10 0400 Miz Span 120 MHz Center Freq. 157.425000 MHz Center Freq. 10 0400 Miz Span 120 MHz Span 120 MHz Center Freq. 157.425000 MHz 11 0400 Miz Span 120 MHz Span 120 MHz Center 157.4 MHz Span 120 MHz Center 157.4 MHz Span 120 MHz Man 12.000 MHz 100 MHz 100 Miz Span 120 MHz Span 120 MHz Freq.0ftb Man 12.000 MHz 100 MHz 100 MHz Span 120 MHz Span 120 MHz Freq.0ftb Man 12.000 MHz 100 MHz 100 Miz Sp
TX-AWH	FM	CH _H	Adject Spectrum Analyzer, Spectrum Fainland Rod Carter Freq 137.425000 MHz Carter Freq 137.425000

Appendix C:Emission Mask

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWL	FM	CHL	Applicit Spectrum Ladyury - Spectrum Faindum Rudz PL21/U/O CL22/U/O CL22/U
TX-AWL	FM	CH∟	Ref Of Spectrum Fund Sould with a status Context Freq 156.025000 MHz Context Freq 156.025000 MHz Freq Units and the status Freq Units and the status<
TX-AWL	FM	CH _M	Biglinet Synchron Freq Number Synchron Freidels Hade Context Freq 1568.00000 MHz Context Freq 1568.0000 Miz Radio Device: BTS PASS If Call dev Pres Run Radio Device: BTS Center Freq 156.0000 Miz Center Freq 156.0000 Miz Center Freq 156.0000 Miz Center Freq 156.0000 Miz Radio Device: BTS 10 GBUTh Ref Offset 37.60 Mix much diff Center Freq 156.0000 Miz Center Freq 156.0000 Miz Center Freq 156.0000 Miz Center Freq 156.0000 Miz 200 Center Freq 156.0000 Miz 200 Center Tis6.8 Miz Span 120 Miz Span 120 Miz CF Step 12.000 Hiz Man 100 Miz 2000 Hiz 2

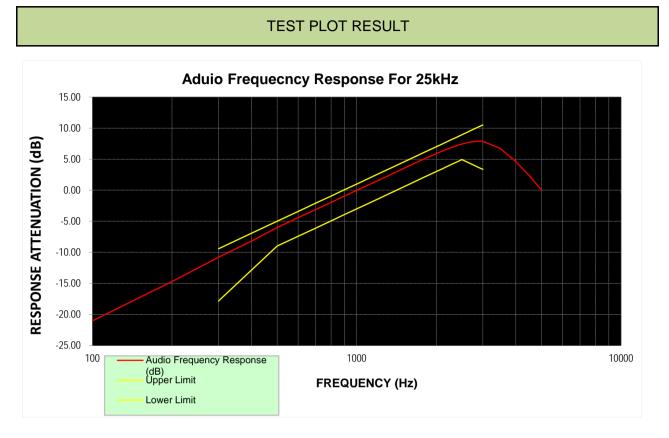
Appendix C:Emission Mask

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWL	FM	CH _M	Applicit Spectrum: Kowkywer Spectrum: Kowkywer <t< td=""></t<>
TX-AWL	FM	CH _H	Applext fyset fueld Control Fire State State Control Fire State State State Frequency PASS EGaint.or Frequency Center Fire State State State Frequency PASS EGaint.or Frequency Center Fire State State State Frequency PASS EGaint.or Frequency Center Fire State State State Center Fire PASS EGaint.or Matter.45 dB Rate State State Rate State State Center Fire PASS EGaint.or Matter.45 dB Rate State State Firequency Center Fire 10 oBMM Ref Offset 37 cB Matter.45 dB Rate State State Fire Fire 10 oBMM Ref State State State Addition Matter State State Fire
TX-AWL	FM	CH _H	Addrext forestram finisher Muke Carter Freq Addrext fore Carter Freq Carter Freq <thca< td=""></thca<>

Appendix D:Modulation Limit

Operation	Modulation Test	Test Modulation	Modulation	on Peak frequency deviation (kHz)					Result
Mode	Туре	Channel	Level (dB)	300Hz	1004Hz	1500Hz	2500 Hz	(kHz)	Result
TX-AWH	FM	CH_{M}	-20	0.866	0.339	0.485	0.748	5	PASS
TX-AWH	FM	CH_{M}	-15	0.198	0.574	0.827	1.313	5	PASS
TX-AWH	FM	CH_M	-10	0.316	0.975	1.443	2.266	5	PASS
TX-AWH	FM	CH_M	-5	0.528	1.732	2.568	3.957	5	PASS
TX-AWH	FM	CH_M	0	0.903	3.031	4.09	4.491	5	PASS
TX-AWH	FM	СН _м	5	1.569	4.145	4.464	4.615	5	PASS
TX-AWH	FM	CH_{M}	10	2.739	4.576	4.587	4.661	5	PASS
TX-AWH	FM	CH_{M}	15	4.242	4.761	4.637	4.69	5	PASS
TX-AWH	FM	CH _M	20	4.866	4.928	4.671	4.698	5	PASS

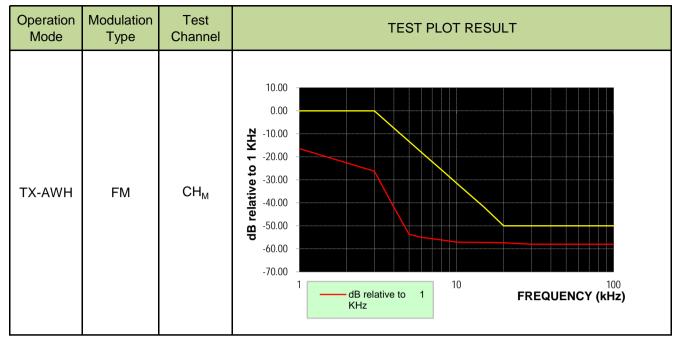
Appendix D:Modulation Limit



Appendix E:Aduio Frequency Response

Operation Mode	Modulation Type	Test Channel	Frequency (Hz)	Audio Frequency Response (dB)	Lower Limit	Upper Limit	Result
TX-AWH	FM	CH _M	100	-21.02			PASS
TX-AWH	FM	CH _M	200	-14.71			
TX-AWH	FM	CH _M	300	-10.80	-17.84	-9.42	PASS
TX-AWH	FM	CH _M	400	-8.18	-12.86	-6.93	PASS
TX-AWH	FM	CH _M	500	-6.02	-9.00	-5.00	PASS
TX-AWH	FM	CH _M	600	-4.43	-7.42	-3.42	PASS
TX-AWH	FM	СН _м	700	-3.12	-6.09	-2.09	PASS
TX-AWH	FM	CH _M	800	-1.94	-4.93	-0.93	PASS
TX-AWH	FM	CH _M	900	-0.95	-3.91	0.09	PASS
TX-AWH	FM	CH _M	1000	-0.03	-3.00	1.00	PASS
TX-AWH	FM	CH _M	1200	1.53	-1.42	2.58	PASS
TX-AWH	FM	CH _M	1400	2.87	-0.09	3.91	PASS
TX-AWH	FM	CH _M	1600	4.04	1.07	5.07	PASS
TX-AWH	FM	CH _M	1800	5.03	2.09	6.09	PASS
TX-AWH	FM	CH _M	2000	5.90	3.00	7.00	PASS
TX-AWH	FM	CH _M	2100	6.28	3.42	7.42	PASS
TX-AWH	FM	CH _M	2200	6.63	3.83	7.83	PASS
TX-AWH	FM	CH _M	2300	6.94	4.21	8.21	PASS
TX-AWH	FM	CH _M	2400	7.20	4.58	8.58	PASS
TX-AWH	FM	CH _M	2500	7.43	4.93	8.93	PASS
TX-AWH	FM	СН _м	2600	7.62	4.59	9.27	PASS
TX-AWH	FM	СН _м	2700	7.77	4.27	9.60	PASS
TX-AWH	FM	CH _M	2800	7.86	3.95	9.91	PASS
TX-AWH	FM	CH _M	2900	7.91	3.65	10.22	PASS
TX-AWH	FM	CH _M	3000	7.87	3.35	10.51	PASS
TX-AWH	FM	CH _M	3500	6.71			PASS
TX-AWH	FM	CH _M	4000	4.61			PASS
TX-AWH	FM	CH _M	4500	2.35			PASS
TX-AWH	FM	CH _M	5000	0.03			PASS

Appendix E:Aduio Frequency Response



Appendix F:Audio Low Pass Filter Response

Operation Mode	Modulation Type	Test Channel	Frequency (KHz)	dB relative to 1 KHz	Limit	Result
TX-AWH	FM	CH _M	1	-16.43	0.00	PASS
TX-AWH	FM	CH _M	3	-26.25	0.00	PASS
TX-AWH	FM	CH _M	4	-41.93	-7.50	PASS
TX-AWH	FM	CH _M	5	-53.69	-13.30	PASS
TX-AWH	FM	CH _M	6	-55.03	-18.10	PASS
TX-AWH	FM	CH _M	8	-56.16	-25.60	PASS
TX-AWH	FM	CH _M	10	-57.14	-31.40	PASS
TX-AWH	FM	CH _M	15	-57.26	-41.90	PASS
TX-AWH	FM	CH _M	20	-57.42	-50.00	PASS
TX-AWH	FM	CH _M	30	-58.03	-50.00	PASS
TX-AWH	FM	CH _M	40	-58.03	-50.00	PASS
TX-AWH	FM	CH _M	50	-58.03	-50.00	PASS
TX-AWH	FM	CH _M	60	-58.03	-50.00	PASS
TX-AWH	FM	CH _M	70	-58.03	-50.00	PASS
TX-AWH	FM	CH _M	80	-58.03	-50.00	PASS
TX-AWH	FM	CH _M	90	-58.03	-50.00	PASS
TX-AWH	FM	CH _M	100	-58.03	-50.00	PASS

Appendix F:Audio Low Pass Filter Response

Operation	Modulation	Test (Conditions	Fre	quency error (pp	om)	Limit	Decult
Mode Type	Voltage	Temperature	CH_{L}	CH _{M1}	CH _H	(ppm)	Result	
TX-AWH	FM	VN	-20	0.058	0.072	0.067	±10	PASS
TX-AWH	FM	VN	-10	0.049	0.058	0.056	±10	PASS
TX-AWH	FM	VN	0	0.041	0.046	0.042	±10	PASS
TX-AWH	FM	VN	10	0.033	0.038	0.031	±10	PASS
TX-AWH	FM	VN	20	0.029	0.028	0.026	±10	PASS
TX-AWH	FM	VN	30	0.042	0.035	0.037	±10	PASS
TX-AWH	FM	VN	40	0.054	0.044	0.059	±10	PASS
TX-AWH	FM	VN	50	0.062	0.059	0.067	±10	PASS
TX-AWL	FM	VN	-20	0.067	0.063	0.071	±10	PASS
TX-AWL	FM	VN	-10	0.055	0.051	0.059	±10	PASS
TX-AWL	FM	VN	0	0.048	0.039	0.046	±10	PASS
TX-AWL	FM	VN	10	0.041	0.032	0.035	±10	PASS
TX-AWL	FM	VN	20	0.030	0.027	0.024	±10	PASS
TX-AWL	FM	VN	30	0.045	0.036	0.038	±10	PASS
TX-AWL	FM	VN	40	0.054	0.043	0.049	±10	PASS
TX-AWL	FM	VN	50	0.068	0.055	0.059	±10	PASS

Appendix G:Frequency Stability Test & Temperature

Appendix H:Frequency Stability Test & Voltage

Operation	Modulation	Test (Conditions	Frequency error (ppm)			Limit	Deput
Mode	Туре	Voltage	Temperature	CH∟	СН _м	CH _H	(ppm)	Result
TX-AWH	FM	VN	ΤN	0.029	0.028	0.026	±10	PASS
TX-AWH	FM	VL	ΤN	0.057	0.048	0.051	±10	PASS
TX-AWH	FM	Vн	ΤN	0.042	0.035	0.038	±10	PASS
TX-AWL	FM	VN	ΤN	0.030	0.027	0.024	±10	PASS
TX-AWL	FM	VL	ΤN	0.052	0.054	0.049	±10	PASS
TX-AWL	FM	Vн	ΤN	0.044	0.041	0.037	±10	PASS

Appendix I:Spurious Emission On Antenna Port

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CH∟	All of the second se
TX-AWH	FM	CH∟	Image: Service
TX-AWH	FM	СНм	Contract for the contract of the contrecont of the contract of the contract of the

Appendix I:Spurious Emission On Antenna Port

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CHM	Ministry Start Freq Start Freq Start Freq Start Start Start
TX-AWH	FM	CH⊦	ISINZ-TOURTHAINDHE ISINZ-TOURTHAINDHE ISINZ-TOURTHAINDHE ISINZ-TOURTHAINDHE ISINZ-TOURTHAINDHE ISINZ-TOURTHAINDHE ISINZ-TOURTHAINDHE ISINZ-TOURTHAINDHE ISINZ - ISINZ ISINZ - ISINZ - ISINZ ISINZ - ISINZ - ISINZ - ISINZ ISINZ -
TX-AWH	FM	CH⊦	Address Sector 122 Contract - Front 122 Address Sector 122 The sector 122 The sector 122 The sector 122 Center Freq 1.287/122000 GHz Broad New Code The sector 122 The sector 122 Frequency Interfere Argende 1000 GHz Broad New Code Frequency Auto Tune Ref Offset 36 dB I 0 cBdf Ref Offset 36 dB I 2000 GHz Mikr1 1.477 8 GHz -37.917 dBm Center Freq I 207225000 GHz I 207225000 GHz Start Freq I 0 cBdf I 0 cBdf Start Freq I 1000 GHz I 0 cBdf Start Freq I 1000 GHz I 0 cBdf Start I 0000 GHz I 0 cBdf Start I 0000 GHz I 0 cBdf Start I 0000 GHz I 0 cBdf Start I 0000 GHz I 0 cBdf Start I 0000 GHz <thi 0="" cbdf<="" th=""> I 0 cBdf <th< td=""></th<></thi>

----End of Report----