

TEST REPORT

		Depart varification	In Charles and In	
Report No	CHTEW19030075	Report verification :		
Project No	SQ201811002301EW			
FCC ID:	K6630653X3D		ReportNo: CHTEW15030075	
Applicant's name:	YAESU MUSEN CO., LTD.			
Address:		Tennozu Parkside Building 2-5-8 Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-0002 Japan		
Manufacturer	QUANZHOU QIXIANG EL TECHNOLOGY CO., LTD		x	
Address	Wan'An Tangxi Industrial 2 Fujian, China	Zone, Luojiang District	, Quanzhou,	
Test item description:	25 Watt VHF/FM Marine	Fransceiver		
Trade Mark:	STANDARD HORIZON			
Model/Type reference:	GX1400GPS			
Listed Model(s):	GX1400			
Standard:	FCC CFR Title 47 Part 2	C CFR Title 47 Part 2		
Standard	FCC CFR Title 47 Part 80			
Date of receipt of test sample:	Mar.01, 2019			
Date of testing	Mar.01, 2019- Mar.13, 201	9		
Date of issue	Mar.14, 2019			
Result	PASS			
Compiled by		ſ		
(position+printed name+signature).:	File administrators Fanghu	ii Zhu Jang)	wi. hu	
Supervised by				
(position+printed name+signature).:	Project Engineer Edward Pan HowsHy			
Approved by	I tour Hu		HU	
(position+printed name+signature).:	: RF Manager Hans Hu			
Testing Laboratory Name:	.: Shenzhen Huatongwei International Inspection Co., Ltd.			
Address:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China			

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report revised information	3
<u>2</u>	TEST DESCRIPTION	4
<u>3</u>	SUMMARY	5
3.1	Client Information	5
3.2	Product Description	5
3.3	Test frequency list	6
3.4	Operation mode	6
3.5	EUT configuration	7
<u>4</u>	TEST ENVIRONMENT	8
4.1	Address of the test laboratory	8
4.2	Test Facility	8
4.3	Environmental conditions	9
4.4	Statement of the measurement uncertainty	9
4.5	Equipments Used during the Test	10
<u>5</u>	TEST CONDITIONS AND RESULTS	12
5.1	Conducted Carrier Output Power	12
5.2	99% Occupied Bandwidth & 26dB Bandwidth	13
5.3	Emission Mask	14
5.4	Modulation Limit	15
5.5	Audio Frequency Response	16
5.6	Audio Low Pass Filter Response	18
5.7	Frequency stability VS Temperature	19
5.8	Frequency stability VS Voltage	21
5.9	Transmit Conducted Spurious Emission	23
5.10	Transmitter Radiated Spurious Emission	24
5.11	AC Power Line Conducted Spurious Emission	28
5.12	Radiated Emission	29
6	APPENDIX REPORT	32

1 TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 2:</u> Frequency allocations and radio treaty matters; General rules and regulations <u>FCC Rules Part 80:</u> STATIONS IN THE MARITIME SERVICES

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

<u>ANSI/TIA-603-E(2016):</u> Land Mobile FM or PM Communications Equipment and Performance Standards

1.2. Report revised information

Revised No.	Date of issued	Description
N/A	2019-03-14	Original

2 TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Carrier Output Power	Part 80.215 Pass Ga Part 2.1046(a) Pass Ga		Gaosheng Pan
99% Occupied Bandwidth & 26dB bandwidth	Part 80.205 Part 2.1049	Pass	Gaosheng Pan
Emission Mask	Part 80.211(f) Part 2.1049	Pass	Gaosheng Pan
Modulation Limit	Part 2.1047(b) Part 80.213	Pass	Gaosheng Pan
Audio Frequency Response	FCC Part 2.1047(a)	Pass	Gaosheng Pan
Audio Low Pass Filter Response	FCC Part 80.213, Part 2.1047(a)		
Frequency Stability V.S. Temperature	Part 80.209 Part 2.1055 Pass Ga		Gaosheng Pan
Frequency Stability V.S. Voltage	Part 80.209 Part 2.1055	Pass	Gaosheng Pan
Transmit Conducted Spurious Emission	Part 80.211(f)(3) Part 2.1051	Pass	Gaosheng Pan
Transmit Radiated Spurious Emission	Part 80.211(f)(3) Part 2.1053	Pass	Baojin Ling
	Receiver Requirement		
Test item	Standards requirement Result		Test Engineer
AC Power Line Conducted Emission	FCC Part 15.207	N/A	N/A
Radiated Emission	FCC Part 15.209	Pass	Shower Dai

3 SUMMARY

3.1 Client Information

Applicant:	YAESU MUSEN CO., LTD.
Address:	Tennozu Parkside Building 2-5-8 Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-0002 Japan
Manufacturer:	QUANZHOU QIXIANG ELECTRON SCIENCE & TECHNOLOGY CO., LTD.
Address:	Wan'An Tangxi Industrial Zone, Luojiang District, Quanzhou, Fujian, China

3.2 **Product Description**

-			1
Name of EUT:	25 Watt VHF/FM Marine Transceiver		
Trade mark:	STANDARD HORIZON		
Model/Type reference:	GX1400GPS		
Listed model(s):	GX1400		
Power supply:	DC 13.8V		
Hardware version:	SPP01		
Software version:	SPP01		
RF Specification			
	TX:156.025MHz to 161.600MHz		
Operation Frequency Range:	RX:156.050MHz to 162.025MHz		
Rated Output Power:	High Power: 25W	🛛 Low Power: 1W	
Modulation Type:	Analog:	FM	
Channel Separation:	Analog:	12.5kHz	🛛 25kHz
Emission Designator: *1	Analog:	16K0G3E	
Antenna Type:	External		

Note:

(1) *¹ According to FCC Part 2.202 requirements, the Necessary Bandwidth is calculated as follows:

For FM Voice Modulation
Channel Spacing = 25 KHz, D = 5 KHz max, K = 1, M = 3 KHz
Bn = 2M + 2DK = 2*3 + 2*5*1 = 16 KHz
Emission designation: 16K0G3E

3.3 Test frequency list

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2.

Frequency range over which EUT operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom

Frequency Bands	Test	Test Frequency(MHz)		
(MHz)	Channel	ТХ	RX	
	CH _L (CH1001)	156.05MHz	156.05MHz	
156.025 ~ 162.025	CH _{M2} (CH16)	156.800MHz	156.800MHz	
	CH _H (CH88)	157.425MHz	157.425MHz	

3.4 Operation mode

Test mode	Transmitting Receiving		Ving Power level Analog Voice/F		Analog Voice/PM	GPS	US Weather
restmode	Transmung	mitting Receiving		Low	25kHz	GFS	03 weather
TX-AWH	\checkmark		\checkmark		\checkmark		
TX-AWL	\checkmark			\checkmark	\checkmark		
RX-AW		\checkmark			\checkmark		
RX-GPS		\checkmark				\checkmark	
RX-US Weather		\checkmark					\checkmark

Note:

 $\sqrt{}$: is operation mode.

Note:

• US weather Channel:

Channel	Frequency(MHz)	Restrictions
WX1	162.550	RX ONLY
WX2	162.400	RX ONLY
WX3	162.475	RX ONLY
WX4	162.425	RX ONLY
WX5	162.450	RX ONLY
WX6	162.500	RX ONLY
WX7	162.525	RX ONLY

Modulation Type	Description
UM	Un-modulation
AM2	Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
AM6	Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, then increase the level from the audio generator by 20 dB
AM5	Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation.

Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report.

Test item	Modulation Type	Test mode (Worse case mode)
Conducted Output Power	UM	TX-AWH, TX-AWL
99% Occupied Bandwidth & 26dB bandwidth	AM6	TX-AWH, TX-AWL
Emission Mask	AM5	TX-AWH, TX-AWL
Modulation Limit	AM6	TX-AWH
Audio Frequency Response	AM2	TX-AWH
Frequency Stability VS Temperature	UM	TX-AWH, TX-AWL
Frequency Stability VS Voltage	UM	TX-AWH, TX-AWL
Transmit Conducted Spurious Emission	AM5	TX-AWH
Transmit Radiated Spurious Emission	AM5	TX-AWH
AC Power Line Conducted Emission	-	N/A
Radiated Emission	-	RX-GPS

3.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- supplied by the lab

•	Power Cable	Length (m) :	/
		Shield :	Unshielded
		Detachable :	Undetachable
0	Multimeter	Manufacturer :	/
		Model No. :	/

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China **4.2** Test Facility

4.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered byCertification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3 Environmental conditions

Atmospheric Contions			
Temperature:	21°C to 25°C		
Relative Humidity:	20 % to 75 %.		
Atmospheric Pressure:	860 mbar to 1060 mbar		
Norminal Test Voltage:	V _N = DC 13.8V		
Extrem Test Voltage @115%V _N :	V _H = DC 15.87V		
Extrem Test Voltage @85%V _N :	V _L = DC 11.73V		

4.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability & Occupied Bandwidth	18Hz for <1GHz 69Hz for >1GHz	(1)
Conducted Output Power	0.63dB	(1)
ERP / EIRP / RSE	2.38dB for <1GHz 3.45dB for >1GHz	(1)
Conducted Emission 9KHz-30MHz	3.35 dB	(1)
Radiated Emission 30~1000MHz	4.80 dB	(1)
Radiated Emission 1~18GHz	5.16 dB	(1)
Radiated Emission 18-40GHz	5.54 dB	(1)
FM deviation	25 Hz	(1)
Audio level	0.62 dB	(1)
Low Pass Filter Response	0.76 dB	(1)
Modulation Limiting	0.42 %	(1)
Transient Frequency Behavior	6.8 %	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5 Equipments Used during the Test

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-02	N/A	2018/09/30	2021/09/29
•	EMI Test Receiver	R&S	ESCI	100900	2018/10/28	2019/10/27
0	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19
•	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	546	2017/04/05	2020/04/04
•	Pre-Amplifer	SCHWARZBECK	BBV 9742	N/A	2018/11/15	2019/11/14
•	RF Connection Cable	HUBER+SUHNER	N/A	N/A	2018/09/28	2019/09/27
•	RF Connection Cable	HUBER+SUHNER	SUCOFLEX104	501184/4	2018/09/28	2019/09/27
•	Test Software	R&S	ES-K1	N/A	N/A	N/A
•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

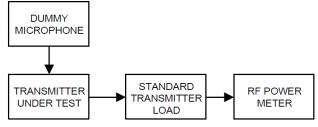
•	Radiated emission-7th test site					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29
•	Spectrum Analyzer	R&S	FSP40	100597	2018/10/27	2019/10/26
•	Horn Antenna	SCHWARZBECK	9120D	1011	2017/03/27	2020/03/26
0	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13
•	Pre-amplifier	CD	PAP-0102	12004	2018/11/14	2019/11/13
•	Broadband Pre- amplifier	SCHWARZBECK	BBV 9718	9718-248	2018/04/28	2019/04/27
•	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14
•	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14
•	Test Software	Audix	E3	N/A	N/A	N/A
•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

•	TS8613 Test system					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2018/09/29	2019/09/28
•	Signal & Spectrum Analyzer	R&S	FSW26	103440	2018/10/28	2019/10/27
•	RF Communication Test Set	HP	8920A	3813A10206	2018/10/28	2019/10/27
•	Digital intercom communication tester	Aeroflex	3920B	1001682041	2018/10/28	2019/10/27
•	Signal Generator	R&S	SML02	100507	2018/10/27	2019/10/26
•	Signal Generator	IFR	2032	203002\100	2018/11/11	2019/11/10
•	RF Control Unit	Tonscend	JS0806-2	N/A	N/A	N/A
•	Fliter-VHF	Microwave	N26460M1	498702	2018/03/19	2019/03/18
0	Fliter-UHF	Microwave	N25155M2	498704	2018/03/19	2019/03/18
0	Power Divider	Microwave	OPD1040-N-4	N/A	2018/11/15	2019/11/14
0	Attenuator	JFW	50FH-030-100	N/A	2018/11/15	2019/11/14
0	Attenuator	JFW	50-A-MFN-20	0322	2018/11/15	2019/11/14
•	Test software	HTW	Radio ATE	N/A	N/A	N/A

•	Auxiliary Equipment						
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Climate chamber	ESPEC	GPL-2	N/A	2018/11/08	2019/11/07	
•	DC Power Supply	Gwinstek	SPS-2415	GER835793	2018/10/28	2019/10/27	

•	Radiated Spurious Emission					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29
•	Spectrum Analyzer	R&S	FSP40	100597	2018/10/27	2019/10/26
•	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19
•	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	538	2017/04/05	2020/04/04
•	Horn Antenna	SCHWARZBECK	9120D	1011	2017/04/01	2020/03/31
0	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2017/03/27	2020/03/26
0	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13
•	Pre-amplifier	CD	PAP-0102	12004	2018/11/14	2019/11/13
•	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-248	2018/04/28	2019/04/27
•	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14
•	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14
•	EMI Test Software	Audix	E3	N/A	N/A	N/A
•	Turntable	MATURO	TT2.0	N/A	N/A	N/A
•	Antenna Mast	MATURO	TAM-4.0-P	N/A	N/A	N/A

5 TEST CONDITIONS AND RESULTS


5.1 Conducted Carrier Output Power

<u>LIMIT</u>

FCC Part 80.215, FCC Part 2.1046

Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation.

TEST CONFIGURATION

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Correct for all losses in the RF path
- (3) Measure the transmitter output power
- (4) If the power output is adjustable, measurements shall be made for the highest and lowest power levels.

TEST MODE

Please reference to the section 3.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix A on the section 6 appendix report


5.2 99% Occupied Bandwidth & 26dB Bandwidth

<u>LIMIT</u>

Class of emission	Emission designator	Authorized bandwidth (kHz)
A1A		0.4
A1B ¹	160HA1B	0.4
A1D ¹²	16K0A1D	20.0
A2A	2K66A2A	2.8
A2B ¹	2K66A2B	2.8
A2D ¹²	16K0A2D	20.0
A3E	6K00A3E	8.0
A3N ²	2K66A3N	2.8
A3X ³	3K20A3X	25.0
F1B ⁴	280HF1B	0.3
F1B ⁵	300HF1B	0.5
F1B ⁶	16KOF1B	20.0
F1C	2K80F1C	3.0
F1D ¹²	16K0F1D	20.0
F2B ⁶	16KOF2B	20.0
F2C ⁷	16KOF2C	20.0
F2D ¹²	16K0F2D	20.0
F3C	2K80F3C	3.0
F3C ⁷	16KOF3C	20.0
F3E ⁸	16KOF3E	20.0

⁸Applicable only when maximum frequency deviation is 5 kHz. See also paragraph (b) of this section.

TEST CONFIGURATION

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Spectrum set as follow:

Centre frequency = the nominal EUT channel center frequency,

The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of $1.5 \times OBW$ is sufficient) RBW = 1% to 5% of the anticipated OBW, VBW $\ge 3 \times RBW$, Sweep = auto,

Detector function = peak, Trace = max hold

- (3) Set 99% Occupied Bandwidth and 26dB Bandwidth
- (4) Measure and record the results in the test report.

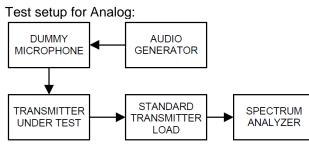
TEST MODE

Please reference to the section 3.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix B on the section 6 appendix report


5.3 Emission Mask

<u>LIMIT</u>

FCC Part 80.211(f),FCC Part 2.1049

- (1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;
- (2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log10 (mean power in watts) dB.

TEST CONFIGURATION

TEST PROCEDURE

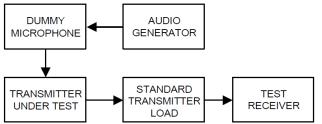
- 1) Connect the equipment as illustrated.
- 2) Spectrum set as follow: Centre frequency = fundamental frequency, span=120kHz for 12.5kHz channel spacing, RBW=100Hz, VBW=1000Hz, Sweep = auto, Detector function = peak, Trace = max hold
- Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- 4) Apply Input Modulation Signal to EUT according to Section 3.4
- 5) Measure and record the results in the test report.

TEST MODE

Please reference to the section 3.4

TEST RESULTS

☑ Passed □ Not Applicable


Please refer to appendix C on the section 6 appendix report

5.4 Modulation Limit

<u>LIMIT</u>

FCC Part 80.213,FCC Part 2.1047(b) 5kHz for 25 KHz Channel Spacing System

TEST CONFIGURATION

TEST PROCEDURE

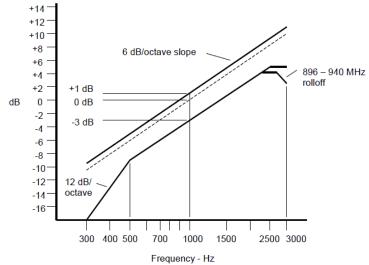
- 1) Connect the equipment as illustrated.
- 2) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15,000 Hz. Turn the de-emphasis function off.
- Apply Input Modulation Signal to EUT according to Section 3.4 and vary the input level from –20 to +20dB.
- 5) Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
- 6) Repeat step 4-5 with input frequency changing to 300Hz, 1004Hz, 1500Hz and 2500Hz in sequence.

TEST MODE

Please reference to the section 3.4

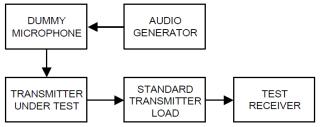
TEST RESULTS

☑ Passed □ Not Applicable


Please refer to appendix D on the section 6 appendix report

5.5 Audio Frequency Response

<u>LIMIT</u>


FCC Part 80.213(e) ,FCC Part 2.1047(a):

Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range.

TEST CONFIGURATION

TEST PROCEDURE

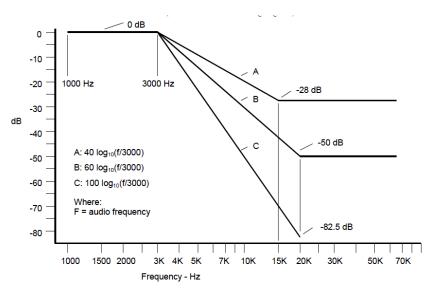
- 1) Connect the equipment as illustrated.
- Set the test receiver to measure peak positive deviation. Set the audio bandwidth for 50 Hz to 15,000 Hz. Turn the de-emphasis function off.
- 3) Set the DMM to measure rms voltage.
- 4) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 5) Apply Input Modulation Signal to EUT according to Section 3.4
- 6) Set the test receiver to measure rms deviation and record the deviation reading.
- 7) Record the DMM reading as V_{REF}.
- 8) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz.
- Vary the audio frequency generator output level until the deviation reading that was recorded in step 6) is obtained.
- 10) Record the DMM reading as V_{FREQ}
- 11) Calculate the audio frequency response at the present frequency as: audio frequency response= $20\log_{10} (V_{FREQ}/V_{REF})$.
- 12) Repeat steps 8) through 11) for all the desired test frequencies

TEST MODE

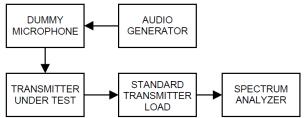
Please reference to the section 3.4

TEST RESULTS

☑ Passed □ Not Applicable


Please refer to appendix E on the section 6 appendix report

5.6 Audio Low Pass Filter Response


<u>LIMIT</u>

FCC Part 2.1047(b),FCC Part 80.213(e)

Coast station transmitters operated in the 156-162 MHz band must be equipped with an audio low-pass filter. The filter must be installed between the modulation limiter and the modulated radio frequency stage. At frequencies between 3 kHz and 20 kHz it must have an attenuation greater than at 1 kHz by at least 60log10(f/3) dB where "f" is the audio frequency in kilohertz. At frequencies above 20 kHz the attenuation must be at least 50 dB greater than at 1 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Configure the EUT as shown in figure .
- Apply a 1000 Hz tone from the audio signal generator and adjust the level per manufacturer's specifications. Record the dB level of the 1000 Hz tone as LEV_{REF}.
- Set the audio signal generator to the desired test frequency between 3000 Hz and the upper low pass filter limit. Record the dB level at the test frequency as LEV_{FREQ}.
- Calculate the audio frequency response at the test frequency as: low pass filter response = LEV_{FREQ} - LEV_{REF}

TEST MODE:

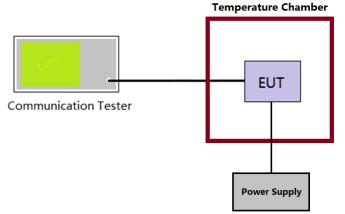
Please reference to the section 3.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix F on the section 8 appendix report

5.7 Frequency stability VS Temperature


<u>LIMIT</u>

FCC Part 80.209, FCC Part 2.1055

Frequency bands and categories of stations	Tolerances ¹
(5) Band 156-162 MHz:	
(i) Coast stations:	
For carriers licensed to operate with a carrier power:	
Below 3 watts	10.
3 to 100 watts	5.7
(ii) Ship stations	10.4
(iii) Survival craft stations operating on 121.500 MHz	50.
(iv) EPIRBs:	
Operating on 121.500 and 243.000 MHz	50.
Operating on 156.750 and 156.800 MHz. ⁶	10.
(6) Band 216-220 MHz:	
(i) Coast stations:	
For all emissions	5.
(ii) Ship stations:	
For all emissions	5.
(7) Band 400-466 MHz:	
(i) EPIRBs operating on 406-406.1 MHz	5.
(ii) On-board stations	5.
(iii) Radiolocation and telecommand stations.	5.
(8) Band 1626.5-1646.5 MHz:	
(i) Ship earth stations	5.

⁷For transmitters operated at private coast stations with antenna heights less than 6 meters (20 feet) above ground and output power of 25 watts or less the frequency tolerance is 10 parts in 10⁶.

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- 2) The EUT was placed inside the temperature chamber.
- 3) Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency as MCF_{MHz} .
- Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- 5) Repeat step 3 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE

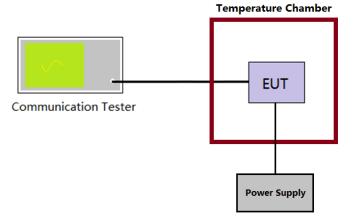
Please reference to the section 3.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix G on the section 6 appendix report

5.8 Frequency stability VS Voltage


<u>LIMIT</u>

FCC Part 80.209, FCC Part 2.1055

Frequency bands and categories of stations	Tolerances ¹
(5) Band 156-162 MHz:	
(i) Coast stations:	
For carriers licensed to operate with a carrier power:	
Below 3 watts	10.
3 to 100 watts	5.7
(ii) Ship stations	10.4
(iii) Survival craft stations operating on 121.500 MHz	50.
(iv) EPIRBs:	
Operating on 121.500 and 243.000 MHz	50.
Operating on 156.750 and 156.800 MHz. ⁶	10.
(6) Band 216-220 MHz:	
(i) Coast stations:	
For all emissions	5.
(ii) Ship stations:	
For all emissions	5.
(7) Band 400-466 MHz:	
(i) EPIRBs operating on 406-406.1 MHz	5.
(ii) On-board stations	5.
(iii) Radiolocation and telecommand stations.	5.
(8) Band 1626.5-1646.5 MHz:	
(i) Ship earth stations	5.

⁷For transmitters operated at private coast stations with antenna heights less than 6 meters (20 feet) above ground and output power of 25 watts or less the frequency tolerance is 10 parts in 10⁶.

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- 2) The EUT was placed inside the temperature chamber at 25°C
- 3) Record the carrier frequency of the transmitter as MCF_{MHZ}
- Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- 5) Repeat step 3 measure with varied ±15% of the nominal value measured at the input to the EUT

TEST MODE

Please reference to the section 3.4

TEST RESULTS

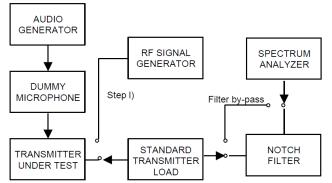
☑ Passed □ Not Applicable

Please refer to appendix H on the section 6 appendix report

5.9 Transmit Conducted Spurious Emission

<u>LIMIT</u>

FCC Part 80.211(f)(3), FCC Part 2.1051


FCC Rules	Attenuation Limit (dBc)
§ 80.211(f)(3)	At least 43 +10log10 (mean power in watts) dB

43 + 10 log (Pwatts)

Calculation: Limit (dBm) =EL-43-10log10 (TP)

Notes: ÉL is the emission level of the Output Power expressed in dBm, In this application, the EL is P(dBm). Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the equipment as illustrated, with the notch filter by-passed.
- 2. Apply Input Modulation Signal to EUT according to Section 3.4
- Adjust the spectrum analyzer for the following settings: Below 1GHz: RBW=100kHz, VBW=300kHz Above 1GHz: RBW=1MHz, VBW=3MHz Detector=Peak, Sweep time=Auto, Trace=Max hold
- 4. Scan frequency range up to 10th harmonic.
- 5. Record the frequencies and levels of spurious emissions

TEST MODE

Please reference to the section 3.4

TEST RESULTS

☑ Passed □ Not Applicable

Please refer to appendix I on the section 6 appendix report

5.10 Transmitter Radiated Spurious Emission

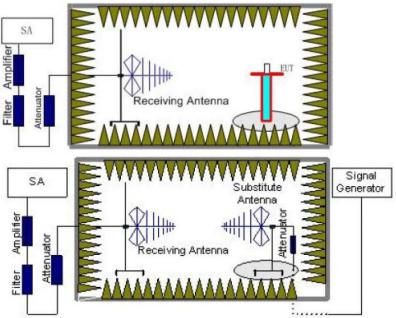
Radiated spurious emissions are emissions from the equipment when transmitting into a nonradiating load on a frequency or frequencies that are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

<u>LIMIT</u>

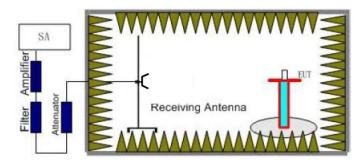
FCC Part 80.211(f)(3), FCC Part 2.1051

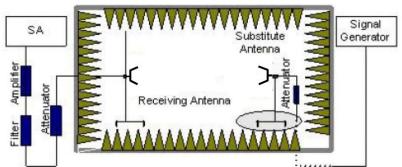
FCC Rules	Attenuation Limit (dBc)
§ 80.211(f)(3)	At least 43 +10log10 (mean power in watts) dB

43 + 10 log (Pwatts)


Calculation: Limit (dBm) =EL-43-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm, In this application, the EL is P(dBm).


Limit $(dBm) = P(dBm)-43-10 \log (Pwatts) = -13 dBm$


TEST CONFIGURATION

Below 1GHz:

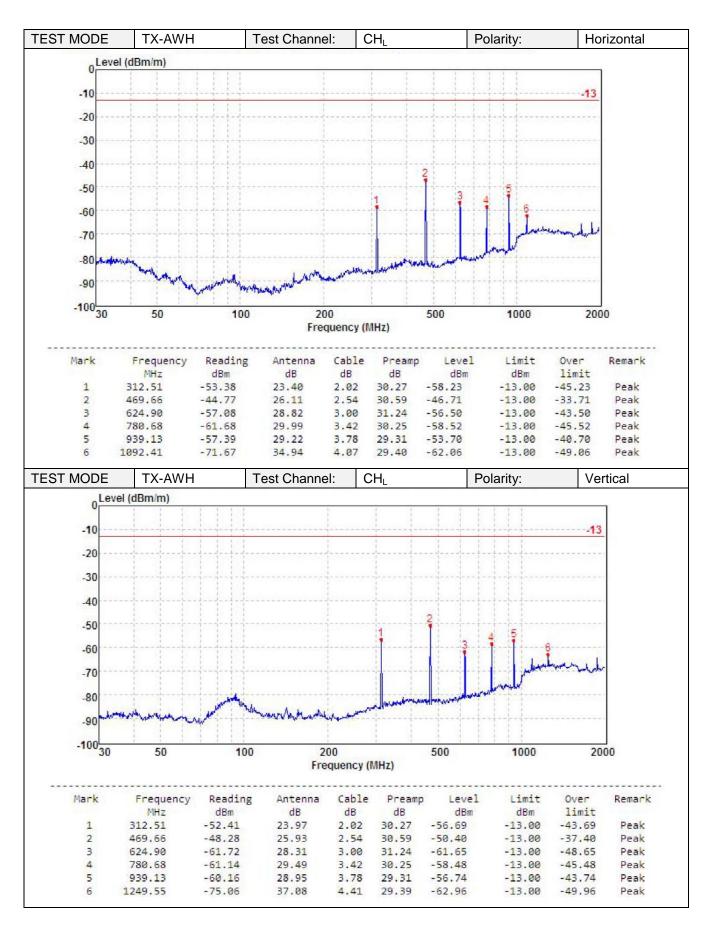
Above 1GHz:

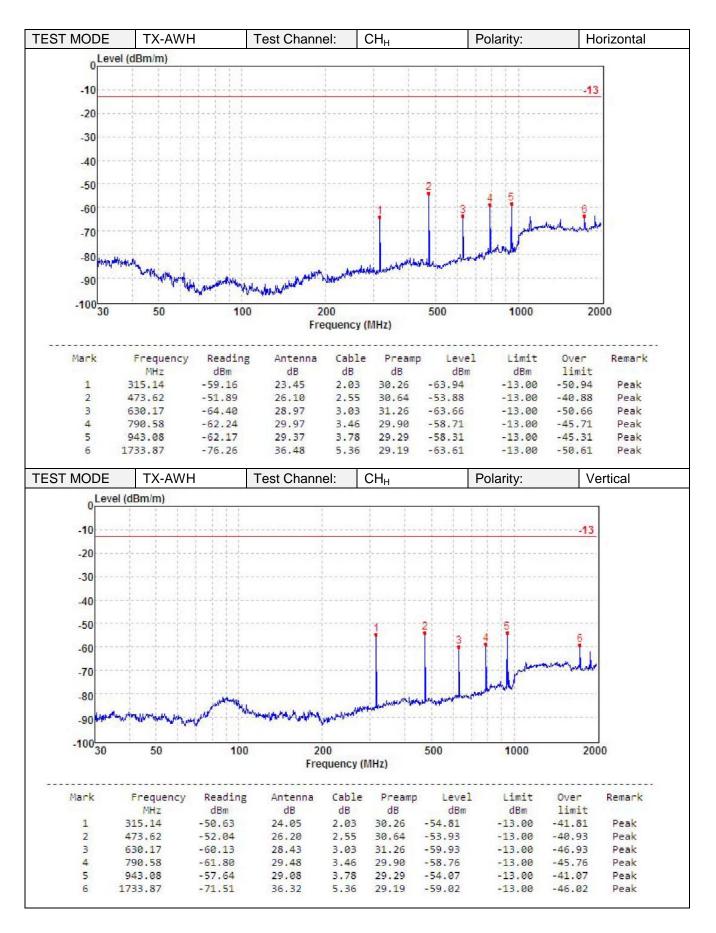
TEST PROCEDURE

- 1. Standard Transmitter Load with a 50 Ω input impedance and an output impedance matched to the test equipment.
- 2. EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 3. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl - Ga

We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl - Ga


- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.


TEST MODE

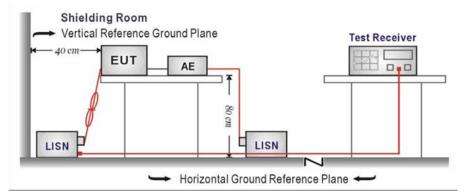
Please reference to the section 3.4

TEST RESULTS

☑ Passed □ Not Applicable

5.11 AC Power Line Conducted Spurious Emission

The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm / 50 u Henry as specified by section 5.1 of ANSI C63.4. Cables and peripherals were moved to find the maximum emission levels for each frequency.


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Erequency renge (MHz)	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

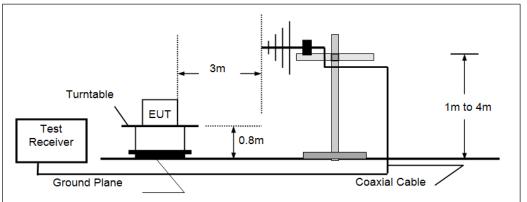
TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

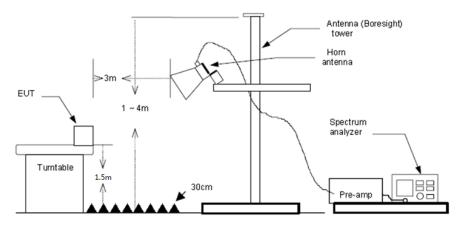
TEST MODE

Please reference to the section 3.4

TEST RESULTS


5.12 Radiated Emission

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION

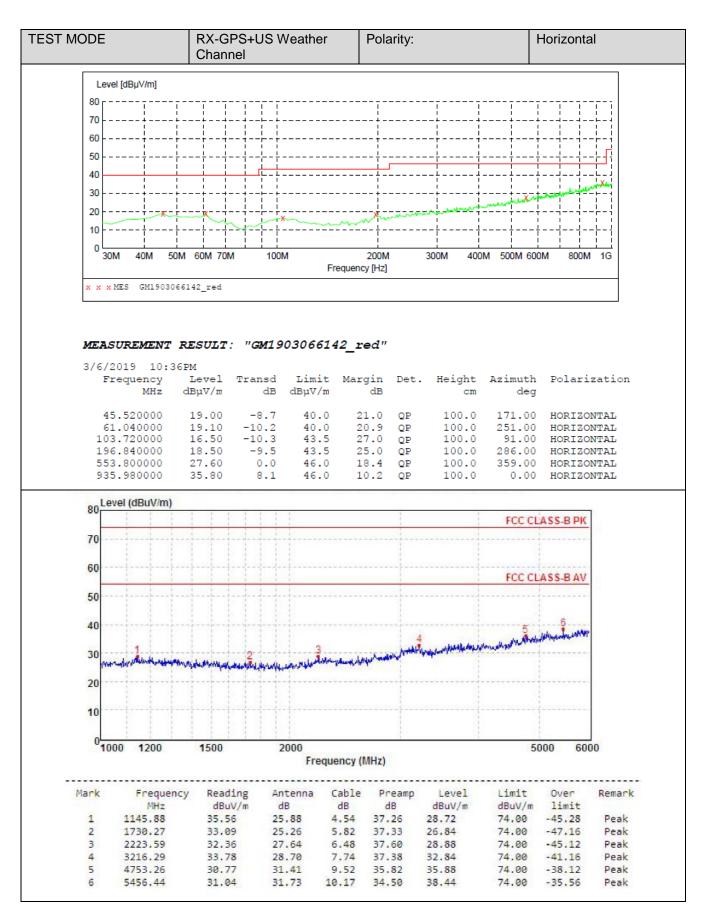
> 30MHz ~ 1GHz

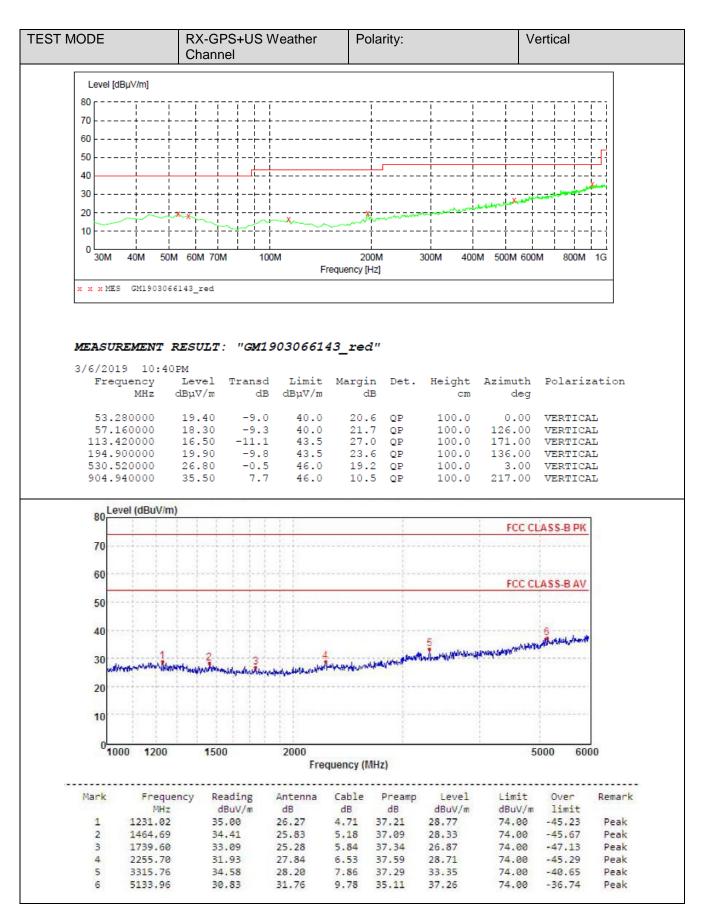
Above 1GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:
 - RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE


Please reference to the section 3.4


TEST RESULTS

☑ Passed □ Not Applicable

Note:

The EUT shall be scanned from 30 MHz to the 5th harmonic of the highest oscillator frequency in the digital devices or 1 GHz whichever is higher.

6 APPENDIX REPORT

Operation Mode	Modulation Type	Test Channel	Measured Power(dBm)	Measured Power(W)	Rated Power(W)	Percentage (%)	Limit (%)	Result
TX-AWH	FM	CH_{L}	43.9	24.38	25.00	-2.5	±20	PASS
TX-AWH	FM	CH _{M2}	43.9	24.32	25.00	-2.7	±20	PASS
TX-AWH	FM	СН _н	43.9	24.27	25.00	-2.9	±20	PASS
TX-AWL	FM	CH_{L}	29.1	0.81	1.00	-18.9	±20	PASS
TX-AWL	FM	CH _{M2}	29.1	0.81	1.00	-18.9	±20	PASS
TX-AWL	FM	CH _H	29.1	0.81	1.00	-19.1	±20	PASS

Appendix A:Maximum Transmitter Power

Appendix B:Occupied Bandwidth

Operation	Modulation	Test	Occupied Bandwidth		99% Limit(kHz)	Result
Mode	Туре	Channel	99%(kHz)	26dB(kHz)	9970 LITTIL(KTZ)	Result
TX-AWH	FM	CH_{L}	15.141	15.720	≤20	PASS
TX-AWH	FM	CH _{M2}	15.152	15.720	≤20	PASS
TX-AWH	FM	СН _н	15.146	15.720	≤20	PASS
TX-AWL	FM	CH_{L}	15.157	17.940	≤20	PASS
TX-AWL	FM	CH _{M2}	15.163	17.940	≤20	PASS
TX-AWL	FM	СН _Н	15.165	17.910	≤20	PASS

Appendix B:Occupied Bandwidth

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CHL	Allow Section Molecular Decision Mills Center Freq 156.050000 MHz WFGainLW
TX-AWH	FM	CH _{M2}	Allow Spectrum Analyzer . Docugied BW Ref 42. 75 dBm 100 dB/dy Ref 47.75 dBm 100 dB/dy Ref 47
TX-AWH	FM	СН _Н	Allow Spectrum Analyzer Occupied BW Ref 42.723 dBm 0 dBddiv Ref 47.73 dBm Center Freq 157.425000 MHz WFGalacLaw WFGalacL

Appendix B:Occupied Bandwidth

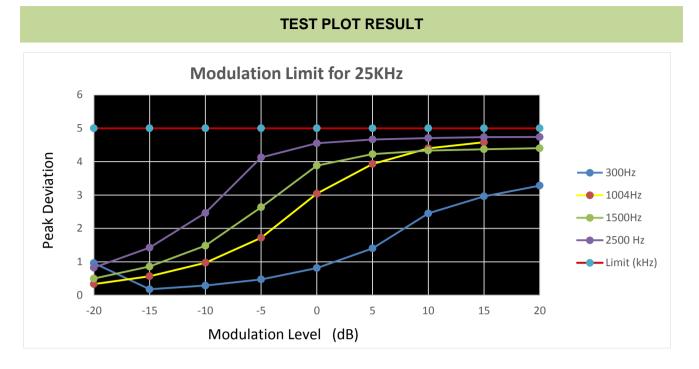
Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWL	FM	CHL	All content freq 156.05000 MHz Center Freq 156.05000 MHz Center Freq 156.05000 MHz Center Section Angleted North Center Section Angleted North Section Angleted North Center Section Angleted North Center Section Angleted North Center Section Angleted North Center Section Angleted North Section Angleted North Center Section Angleted North Section Angle
TX-AWL	FM	CH _{M2}	Addred Social Audyor: Drageted BV Center Freq 156.800000 MHz Genter Freq 156.800000 MHz Genter Freq 156.800000 MHz Genter Freq 156.80000 MHz Genter Freq 156.80000 MHz Center Freq 156.8000 MHz Center Freq 0Freq 156.8000 MHz Center Freq 156.8000 MHz Center Freq 0Freq 156.8000 MHz Center Freq 0Freq 156.8000 MHz Center Freq 0Freq 156.8000 MHz Center Freq 0Freq 0Freq 156.8000 MHz Center Freq 0Freq
TX-AWL	FM	СН _Н	Arbert Spectrum Andryzer - Occuded BW Arbert Spectrum Andryzer - Occuded BW Center Freq 157,425000 MHz IFF Free Rum ArgBiold > 1010 Radio Staf. None Radio Device: BTS Frequency Center Freq 10 dB/dd/ Center Freq

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CHL	Ref Offset 27 els Center Freq Statis
TX-AWH	FM	CH∟	Augent System System Ensuing System Augency Frequency PASS If Called w Frequency System
TX-AWH	FM	CH _{M2}	Reform Spectrum Analyzer Spectrum Environment Spectrum Environment Spectrum Environment Spectrum Environment Spectrum Environment Frequency Center Freq 136.8000000 MHz Frequency Radio Side None Radio Device: BTS Frequency Center Freq 136.800000 MHz Frequency Radio Device: BTS Frequency Center Freq Comparison Ref Offset 27 of 8 Center Freq Spectrum Environment Center Freq Comparison Ref Offset 27 of 8 Center Freq Spectrum Environment Center Freq Center 136.8 MHz Span 120 kHz Span 120 kHz CF Step 1200 kHz Contex 100 000 Hz 200 01 Hz Span 120 kHz Autor Man Stat Freq Stot Freq Heg BW Heg BW Lower Center 16 (4300) 220 kHz Contex 100 00 Hz 200 01 Hz 200 01 Hz 200 01 Hz 200 01 Hz Man Stat Freq Stot Freq Heg Hz Center Center Center Center Stat Freq Stot Freq Heg HZ Center Cent

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CH _{M2}	Applicit Spectrum Analyzer Spectrum Findulation Made M.R.L. B2 Sold with an analyzer Center Freq 105.000000 MHz Frequency PASS IF Galax and the findulation Made Center Freq 105.000000 MHz Radio Sci Nene Frequency PASS IF Galax and the findulation Made Frequency Radio Sci Nene Frequency PASS IF Galax and the findulation Made Frequency Radio Sci Nene Frequency PASS IF Galax and the findulation Made Frequency Radio Sci Nene Frequency Paster Sci Nene Ref 49.0 dBm Frequency Center Freq 166.8000000 MHz Paster Sci Nene Frequency Radio Sci Nene Frequency Center Freq Paster Sci Nene Frequency Radio Sci Nene Frequency Center Freq Paster Sci Nene Frequency Frequency Center Freq 166.8000000 MHz Frequency Paster Sci Nene Galax Ange Nene Sci Nene Frequency Frequency Conter Tises Sci Nene Sci Nene Freq Offset Frequency
TX-AWH	FM	СН _Н	Augent Spectrum Analyzer Spectrum Enistion Math Center Freq Spectrum Enistic Math Center F
TX-AWH	FM	CH _H	Reform Spectrum Analyzer. Spectrum Finduation Made Construction Construction Construction Reform Spectrum Finduation Made Frequency Center Freq 157.425000 MHz Frequency Frequency Radio Std. None Radio Std. None Frequency PASS IF Galaction Frequency Radio Std. None Radio Std. None Frequency 0 o Bidity Ref Offset 27 of 400 If Galaction Radio Std. None Frequency 0 o Bidity Ref Offset 27 of 400 If Galaction Radio Std. None Frequency 0 o Bidity Ref Offset 27 of 400 If Galaction Radio Std. None Frequency 0 o Bidity Ref Offset 27 of 400 If Galaction Radio Std. None Frequency 0 o Bidity Ref Offset 27 of 400 If Galaction If Galaction CF Step 10 o If Galaction Span 120 kHz Span 120 kHz If Galaction If Galaction 10 of the 10 out 125 MHz If Galaction Span 120 kHz If Galaction Man 10 of the 10 out 125 MHz If Galaction If Galaction If Galaction If Galaction

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWL	FM	CHL	Network Spectrum Analyzer Spectrum Fundation Spectrum Fundation Spectrum Fundation Spectrum Fundation Spectrum Fundation Frequency Frequency Center Freq 156.050000 MHz Freq 156.050000 MHz Frequency Center Freq 156.050000 MHz Center Freq 120.05000 MHz Man Freq (Ftz) 120.05000 MHz Center Freq 120.0500 MHz Man Freq (Ftz) 120.0500 MHz Man Freq (Ftz) 120.0500 MHz 120.0500 MHz Man Freq (Ftz) 120.0500 MHz 120.0500 MHz 120.0500 MHz 120.0500 MHz 120.0500 MHz </td
TX-AWL	FM	CHL	Androm Center Firequancy 0.8 Line Firequancy State Freq State Freq <t< td=""></t<>
TX-AWL	FM	CH _{M2}	Mailed System Carter Freq 156: 800000 MHz System 2000 MHz Frequency PASS If Gaind.ow If Gaind.ow Radio Stat.Name Center Freq 156: 800000 MHz Center Freq 156: 80000 MHz Center Freq 150: 8000 MHz Center Freq 150: 8000 MHz

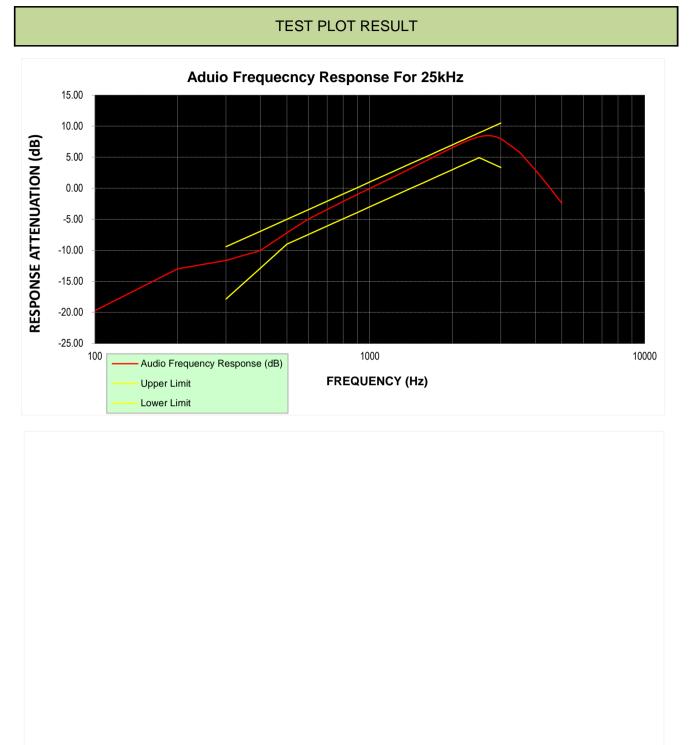
Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWL	FM	CH _{M2}	Applications Spectrum function Mail Application
TX-AWL	FM	СН _Н	Andred Spectrum Analyzyr - Spectrum Enkikion Mack Stock PLAS Aut 2010FF OLSAS PMMar(0, 20)9 Frequency PASS IFGault.ov Enter Freq: 157.425000 MHz Stock PLAS Radio Sci: None Frequency PASS IFGault.ov Enter Freq: 157.42000 MHz Radio Sci: None Frequency Center Freq: 157.425000 MHz IFGault.ov Enter Freq: 157.42000 MHz Radio Device: BTS It of dBldir Ref Offset 27 dB IfGault.ov Enter Freq: 157.42000 MHz IfGault.ov Center Freq 157.425000 MHz IfGault.ov IfGault.ov IfGault.ov IfGault.ov Center Isr.4 B B IfGault.ov IfGault.ov IfGault.ov IfGault.ov IfGault.ov Center Isr.4 MHz Span 120 KHz IfGault.ov IfGa
TX-AWL	FM	CH _H	Medical Systems Fundamental State Context Autor of the State Name of the State N



Appendix D:Modulation Limit

Operation	ration Modulation	Test M	est Modulation	Peal	k frequency	deviation (I	kHz)	Limit	Decult
Mode	Туре	Channel	Level (dB)	300Hz	1004Hz	1500Hz	2500 Hz	(kHz)	Result
TX-AWH	FM	CH _{M2}	-20	0.962	0.334	0.5	0.825	5	PASS
TX-AWH	FM	CH _{M2}	-15	0.178	0.568	0.859	1.425	5	PASS
TX-AWH	FM	CH _{M2}	-10	0.287	0.971	1.483	2.465	5	PASS
TX-AWH	FM	CH _{M2}	-5	0.472	1.72	2.635	4.126	5	PASS
TX-AWH	FM	CH _{M2}	0	0.813	3.041	3.882	4.552	5	PASS
TX-AWH	FM	CH _{M2}	5	1.403	3.929	4.224	4.665	5	PASS
TX-AWH	FM	CH _{M2}	10	2.45	4.397	4.332	4.708	5	PASS
TX-AWH	FM	CH _{M2}	15	2.962	4.581	4.372	4.734	5	PASS
TX-AWH	FM	CH _{M2}	20	3.283	4.64	4.403	4.737	5	PASS

Appendix D:Modulation Limit



Appendix E:Aduio Frequency Response

Operation Mode	Modulation Type	Test Channel	Frequency (Hz)	Audio Frequency Response (dB)	Lower Limit	Upper Limit	Result
TX-AWH	FM	CH _{M2}	100	-19.74			PASS
TX-AWH	FM	CH _{M2}	200	-12.97			PASS
TX-AWH	FM	CH _{M2}	300	-11.63	-17.84	-9.42	PASS
TX-AWH	FM	CH _{M2}	400	-10.03	-12.86	-6.93	PASS
TX-AWH	FM	CH _{M2}	500	-7.18	-9.00	-5.00	PASS
TX-AWH	FM	CH _{M2}	600	-4.92	-7.42	-3.42	PASS
TX-AWH	FM	CH _{M2}	700	-3.42	-6.09	-2.09	PASS
TX-AWH	FM	CH _{M2}	800	-2.11	-4.93	-0.93	PASS
TX-AWH	FM	CH _{M2}	900	-1.01	-3.91	0.09	PASS
TX-AWH	FM	CH _{M2}	1000	-0.02	-3.00	1.00	PASS
TX-AWH	FM	CH _{M2}	1200	1.66	-1.42	2.58	PASS
TX-AWH	FM	CH _{M2}	1400	3.13	-0.09	3.91	PASS
TX-AWH	FM	CH _{M2}	1600	4.41	1.07	5.07	PASS
TX-AWH	FM	CH _{M2}	1800	5.54	2.09	6.09	PASS
TX-AWH	FM	CH _{M2}	2000	6.55	3.00	7.00	PASS
TX-AWH	FM	CH _{M2}	2100	7.00	3.42	7.42	PASS
TX-AWH	FM	CH _{M2}	2200	7.40	3.83	7.83	PASS
TX-AWH	FM	CH _{M2}	2300	7.77	4.21	8.21	PASS
TX-AWH	FM	CH _{M2}	2400	8.06	4.58	8.58	PASS
TX-AWH	FM	CH _{M2}	2500	8.30	4.93	8.93	PASS
TX-AWH	FM	CH _{M2}	2600	8.45	4.59	9.27	PASS
TX-AWH	FM	CH _{M2}	2700	8.48	4.27	9.60	PASS
TX-AWH	FM	CH _{M2}	2800	8.40	3.95	9.91	PASS
TX-AWH	FM	CH _{M2}	2900	8.24	3.65	10.22	PASS
TX-AWH	FM	CH _{M2}	3000	8.01	3.35	10.51	PASS
TX-AWH	FM	CH _{M2}	3500	5.86			PASS
TX-AWH	FM	CH _{M2}	4000	2.97			PASS
TX-AWH	FM	CH _{M2}	4500	0.22			PASS
TX-AWH	FM	CH _{M2}	5000	-2.43			PASS

Appendix E:Aduio Frequency Response

Note: The highest audio frequency response at 3kHz<3.125kHz, so meet the requirement.

Appendix F:Audio Low Pass Filter Response

Operation Mode	Modulation Type	Test Channel	Frequency (KHz)	dB relative to 1 KHz	Limit	Result
TX-AWH	FM	CH _{M2}	1	-16.64	0.00	PASS
TX-AWH	FM	CH _{M2}	3	-25.58	0.00	PASS
TX-AWH	FM	CH _{M2}	4	-41.97	-7.50	PASS
TX-AWH	FM	CH _{M2}	5	-55.65	-13.30	PASS
TX-AWH	FM	CH _{M2}	6	-58.21	-18.10	PASS
TX-AWH	FM	CH _{M2}	8	-58.60	-25.60	PASS
TX-AWH	FM	CH _{M2}	10	-58.62	-31.40	PASS
TX-AWH	FM	CH _{M2}	15	-58.41	-41.90	PASS
TX-AWH	FM	CH _{M2}	20	-58.04	-50.00	PASS
TX-AWH	FM	CH _{M2}	30	-58.66	-50.00	PASS
TX-AWH	FM	CH _{M2}	40	-58.66	-50.00	PASS
TX-AWH	FM	CH _{M2}	50	-58.66	-50.00	PASS
TX-AWH	FM	CH _{M2}	60	-58.66	-50.00	PASS
TX-AWH	FM	CH _{M2}	70	-58.66	-50.00	PASS
TX-AWH	FM	CH _{M2}	80	-58.66	-50.00	PASS
TX-AWH	FM	CH _{M2}	90	-58.66	-50.00	PASS
TX-AWH	FM	CH _{M2}	100	-58.66	-50.00	PASS

Operation	Modulation	Test	TEST PLOT RESULT
Mode	Type	Channel	
TX-AWH	FM	CH _{M2}	10.00 0.00 -10.00 -20.00 -30.00 -30.00 -60.00 -70.00 1 -0 B relative to 1 KHz 10 10 FREQUENCY (KHz)

Appendix F:Audio Low Pass Filter Response

Operation Modulatio		Test Conditions		Frequ	ency error	Limit	Decult	
Mode	n Type	Voltage	Temperat ure	CH∟	CH _{M2}	СН _н	(ppm)	Result
TX-AWH	FM	VN	-30	<u>0.140</u>	0.131	0.129	±10	PASS
TX-AWH	FM	VN	-20	0.121	0.130	0.121	±10	PASS
TX-AWH	FM	VN	-10	0.116	0.112	0.105	±10	PASS
TX-AWH	FM	VN	0	0.100	0.105	0.103	±10	PASS
TX-AWH	FM	VN	10	0.092	0.095	0.090	±10	PASS
TX-AWH	FM	VN	20	0.085	0.086	0.078	±10	PASS
TX-AWH	FM	VN	30	0.094	0.100	0.089	±10	PASS
TX-AWH	FM	VN	40	0.104	0.106	0.097	±10	PASS
TX-AWH	FM	VN	55	0.110	0.117	0.109	±10	PASS
TX-AWL	FM	VN	-30	0.135	0.131	0.136	±10	PASS
TX-AWL	FM	VN	-20	0.124	0.119	0.127	±10	PASS
TX-AWL	FM	VN	-10	0.105	0.115	0.111	±10	PASS
TX-AWL	FM	VN	0	0.101	0.109	0.105	±10	PASS
TX-AWL	FM	VN	10	0.089	0.099	0.091	±10	PASS
TX-AWL	FM	VN	20	0.080	0.084	0.082	±10	PASS
TX-AWL	FM	VN	30	0.092	0.093	0.094	±10	PASS
TX-AWL	FM	VN	40	0.097	0.107	0.101	±10	PASS
TX-AWL	FM	VN	55	0.107	0.110	0.107	±10	PASS

Appendix G:Frequency Stability Test & Temperature

Operation Modulatio	Test Conditions		Frequ	ency error	Limit	Desult		
Mode	n Type	Voltage	Temperat ure	CH∟	CH _{M2}	CH _H	(ppm)	Result
TX-AWH	FM	VN	ΤN	0.085	0.086	0.078	±10	PASS
TX-AWH	FM	VL	ΤN	0.105	<u>0.109</u>	0.099	±10	PASS
TX-AWH	FM	Vн	ΤN	0.096	0.099	0.085	±10	PASS
TX-AWL	FM	VN	ΤN	0.080	0.084	0.082	±10	PASS
TX-AWL	FM	VL	ΤN	0.102	0.104	0.108	±10	PASS
TX-AWL	FM	Vн	ΤN	0.091	0.096	0.094	±10	PASS

Appendix H:Frequency Stability Test & Voltage

Appendix I:Spurious Emission On Antenna Port

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	CH∟	Secence: Freq 515.000000 MHz Frequency PROCERASE AUXIO OF DESTROY OF DESTROY OF THE
TX-AWH	FM	CH∟	Optimized Systems Indicer - Swert 54 ISOURCE LE FICH LE FICH LE Optimized Systems Indicer - Swert 54 ISOURCE LE Itel 1967 Itel 2007 Frequency Center Freq 1.2802250000 GHz Itel 1967 Itel 1967 Itel 1967 Itel 1967 Itel 1967 Ref Offset 26 dB Itel 1967 Itel 1967 Itel 1967 Itel 1967 Itel 1967 Itel 1967 Conter Freq 1.2802250000 GHz Itel 1967 Itel 1967 Itel 1967 Itel 1967 Itel 1967 Conter Freq 1.280250000 GHz Itel 1967 Itel 1967 Itel 1967 Itel 1967 Itel 1967 Conter Freq 1.280250000 GHz Itel 1967 Itel 1967 Itel 1967 Itel 1967 Itel 1967 Conter Freq 1.280250000 GHz Itel 1967 Itel 1967 Itel 1967 Itel 1967 Itel 1967 Conter Freq 1.280250000 GHz Itel 1967 Itel 1967 Itel 1967 Itel 1967 Itel 1967 Conter Freq 1.280250000 GHz Itel 1967 Itel 1967 Itel 1967 Itel 1967 Itel 1967 Conter Freq 1.280250000 GHz Itel 1967 Itel 1967 Itel 1967 Itel 1967 Itel 1967 Conter Freq 1.280250000 GHz
TX-AWH	FM	СНм2	Center Freq 315.000000 MHz Ref 0.00 dBm Center Freq 355.000000 MHz Ref 0.00 dBm Center Freq 355.000000 MHz Ref 0.00 dBm Center Freq Stop 1.0000 GHz Freq Genter Freq Stop 1.0000 GHz Freq Genter Freq Stop 1.0000 GHz Freq Genter Freq Stop 1.0000 GHz Freq Genter Freq Stop Freq 1.0000000 GHz Stop Freq 3.000000 GHz Stop Freq 3.000000 Hz Stop Freq 3.00000 GHz Stop Freq 3.000000 GHz Stop Freq 3.000000 GHz Stop Freq 3.000000 GHz Stop Freq 3.00000 GHz Stop Freq 3.000000 GHz Stop Freq 3.0000000 GHz Stop Freq 3.000000 GHz Stop Freq 3.0000000 GHz Stop Freq 3.0000000 GHz Stop Freq 3.0000000 GHz Stop Freq 3.0000000 GHz Stop Freq 3.000000000000000000000000000000000000

Appendix I:Spurious Emission On Antenna Port

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-AWH	FM	СНм2	Ref Operation State Number Control of the state of the stat
TX-AWH	FM	CH⊦	Protect Production Center Freq 515.000000 MHz IFGalc.law Frequency Aughed 20100
TX-AWH	FM	CH⊦	General Product Synthesis Indicator - Swryt Sd. (SECENTE) Action off (SECENTE) Frequency General Product Synthesis Indicator - Swryt Sd. (SECENTE) Action off (SECENTE) Frequency General Product Synthesis Indicator - Swryt Sd. (SECENTE) Action off Frequency Auto Tune Frequency Frequency Action off Mkr11.416 9 GHz Auto Tune Frequency Action off Action off Action off Auto Tune Frequency Action off Action off Action off Auto Tune Frequency Action off Action off Action off Action off Frequency Action off Action off Action off Action off Frequency Action off Action off Action off Action off Frequency Action off Action off Action off Action off Frequency Action off Action off Action off Action off Frequency Action off Action off Action off Action off Frequency Action off Action off Action off Action off

Appendix Page:18 to 18