

| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |
|                       |

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

Rev. 1.0 (1st Release)

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.



| DECLARATION OF COMPL                | IANCE         | SAR RF EXPOSURE EVALUATION FCC & IC           |                                                                                      |                  |                     |              |                          |  |
|-------------------------------------|---------------|-----------------------------------------------|--------------------------------------------------------------------------------------|------------------|---------------------|--------------|--------------------------|--|
| Test Lab Information                | Name          | CELLTEC                                       | H LABS                                                                               | INC.             |                     |              |                          |  |
| Test Lab information                | Address       | 21-364 Lo                                     | ugheed I                                                                             | Road, Kelown     | a, B.C. V1          | X 7R8 Canad  | da                       |  |
| Test Lab Accreditation(s)           | ISO 17025     | A2LA Tes                                      | t Lab Cei                                                                            | rtificate No. 24 | 70.01               |              |                          |  |
|                                     | Name          | YAESU MUSEN CO., LTD.                         |                                                                                      |                  |                     |              |                          |  |
| Applicant Information               | Address       |                                               | Tennozu Parkside Bldg., 2-5-8 Higashi-Shinagawa, Shinagawa-ku, Tokyo, Japan 140-0002 |                  |                     |              |                          |  |
| Application Type(s)                 | FCC           | TCB Certi                                     | fication                                                                             |                  | IC CB Certification |              |                          |  |
| Standard(s) Applied                 | FCC           | 47 CFR §2                                     | 2.1093                                                                               |                  | IC                  | Health C     | anada Safety Code 6      |  |
| Procedure(s) Applied                | FCC           | OET 65, S                                     | Suppleme                                                                             | ent C            | IC                  | RSS-102      | Issue 4                  |  |
| Procedure(s) Applied                | IEEE          | 1528-2003                                     | 3                                                                                    |                  | IEC                 | 62209-2:     | 2010                     |  |
| Device Classification(s)            | FCC           | Licensed I                                    | Non-Broa                                                                             | adcast Transm    | nitter Held         | to Face (TNF | -)                       |  |
| Device Classification(s)            | IC            | Maritime F                                    | Radio Tra                                                                            | nsmitter and     | Receiver (          | RSS-182)     |                          |  |
| Device RF Exposure Category         | FCC/IC        | General Population / Uncontrolled Environment |                                                                                      |                  |                     |              |                          |  |
| Device Identifier(s)                | FCC ID:       | D: K6630553X20                                |                                                                                      |                  |                     |              |                          |  |
| Device identifier(s)                | IC:           | 511B-30553X20                                 |                                                                                      |                  |                     |              |                          |  |
| Device Model(s)                     | HX100         |                                               |                                                                                      |                  |                     |              |                          |  |
| Test Sample Hardware Revision No.   | CB6024000     |                                               |                                                                                      |                  |                     |              |                          |  |
| Test Sample Firmware Revision No.   | V006          |                                               |                                                                                      |                  |                     |              |                          |  |
| Test Sample Serial No.              | 21000003 (Id  | lentical Prot                                 | otype)                                                                               |                  |                     |              |                          |  |
| Date of Sample Receipt              | July 13, 201  | 2                                             |                                                                                      |                  |                     |              |                          |  |
| Date(s) of Evaluations              | July 24, 201  | 2                                             |                                                                                      |                  |                     |              |                          |  |
| Device-Under-Test Description (DUT) | Portable FM   | VHF Push-                                     | To-Talk (                                                                            | PTT) Marine      | Radio Trar          | sceiver      |                          |  |
| VHF Transmit Frequency Range(s)     | 156.025 - 15  | 7.425 MHz                                     | (VHF Ma                                                                              | rine Band)       |                     |              |                          |  |
| Manuf. Rated Output Power           | 2.5 Watts     |                                               | <u>+</u> 0.5 dl                                                                      | 3                | High Pov            | ver setting  |                          |  |
| Measured RF Output Power            | 2.77 Watts    |                                               | 34.4 dB                                                                              | lm               | Conducte            | ed           | 156.7 MHz (Ch. 14)       |  |
| Battery Type(s) Tested              | Ni-MH         |                                               | 4.8 V                                                                                |                  | 700 mAh             |              | Model: FNB-125           |  |
| Antenna Type(s) Tested              | Flexible Whi  | Whip (non-detachable)                         |                                                                                      |                  |                     |              |                          |  |
| Body-worn Accessories               | Belt-Clip (Fo | r carrying p                                  | urpose o                                                                             | nly - radio doe  | s not cont          | ain external | audio connector)         |  |
| Max. SAR Level(s) Evaluated         | Face-held     | 0.036 W/k                                     | <b>g</b> 1g                                                                          | 50% PTT du       | uty factor          | General Po   | opulation / Uncontrolled |  |
| FCC/IC Spatial Peak SAR Limit       | Head/Face     | e 1.6 W/kg 1g 50% PTT duty fa                 |                                                                                      |                  |                     | factor       |                          |  |

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada Safety Code 6 for the General Population / Uncontrolled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 4, IEEE Standard 1528-2003 and IEC International Standard 62209-2:2010. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results and statements contained in this report pertain only to the device(s) evaluated.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

**Test Report Approved By** 



Sean Johnston

Lab Manager

Celltech Labs Inc.

| Applicant:                                      | t: Yaesı |   | sen Co., Ltd. | FCC ID:                                  | K6630553X20                    | K6630553X20 IC: |                                 | YAESU                                   |
|-------------------------------------------------|----------|---|---------------|------------------------------------------|--------------------------------|-----------------|---------------------------------|-----------------------------------------|
| Model(s):                                       | HX10     | 0 | DUT Type:     | Portable VHF PTT Marine Radio Transceive |                                | nsceiver        | 156.025 - 157.425 MHz           | 111111111111111111111111111111111111111 |
| 2012 Celltech Labs Inc. This document is not to |          |   |               | be reproduced in v                       | whole or in part without the p | prior written p | ermission of Celltech Labs Inc. | Page 1 of 37                            |



| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |

Test Report Serial No. 071312K66-T1185-S80V Test Report Revision No. Rev. 1.0 (1st Release) RF Exposure Category

Gen. Pop. / Uncontrolled



| Report Issue Date | Description of Test(s)   |
|-------------------|--------------------------|
| July 27, 2012     | Specific Absorption Rate |

| TABLE OF CONTENTS                                                        |    |
|--------------------------------------------------------------------------|----|
| 1.0 INTRODUCTION                                                         | 4  |
| 2.0 SAR MEASUREMENT SYSTEM                                               | 4  |
| 3.0 FCC POWER THRESHOLDS FOR PTT DEVICES (F < 0.5 GHZ)                   | 5  |
| 4.0 RF OUTPUT POWER MEASUREMENT                                          | 5  |
| 5.0 NO. OF TEST CHANNELS (N <sub>C</sub> )                               | 5  |
| 6.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES                      | 5  |
| 7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING                           | 6  |
| 8.0 FLUID DIELECTRIC PARAMETERS                                          | 7  |
| 9.0 SAR MEASUREMENT SUMMARY                                              | 9  |
| 10.0 DETAILS OF SAR EVALUATION                                           | 9  |
| 11.0 SAR LEVEL CORRECTION FOR FLUID DEVIATION (IC RSS-102 / IEC 62209-2) | 10 |
| 12.0 SAR EVALUATION PROCEDURES                                           | 11 |
| 13.0 SYSTEM PERFORMANCE CHECK                                            | 12 |
| 14.0 SIMULATED EQUIVALENT TISSUES                                        | 13 |
| 15.0 SAR LIMITS                                                          | 13 |
| 16.0 ROBOT SYSTEM SPECIFICATIONS                                         | 14 |
| 17.0 PROBE SPECIFICATION (ET3DV6)                                        | 15 |
| 18.0 SIDE PLANAR PHANTOM                                                 | 15 |
| 19.0 BARSKI PLANAR PHANTOM                                               | 15 |
| 20.0 DEVICE HOLDER                                                       | 15 |
| 21.0 TEST EQUIPMENT LIST                                                 | 16 |
| 22.0 MEASUREMENT UNCERTAINTY (FCC)                                       | 17 |
| 23.0 MEASUREMENT UNCERTAINTY (IC)                                        | 18 |
| 24.0 REFERENCES                                                          | 19 |
| APPENDIX A - SAR MEASUREMENT PLOT                                        | 20 |
| APPENDIX B - SYSTEM PERFORMANCE CHECK PLOT                               | 23 |
| APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS                        | 26 |
| APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS                            | 29 |
| APPENDIX E - DIPOLE CALIBRATION                                          | 35 |
| APPENDIX F - PROBE CALIBRATION                                           | 36 |
| APPENDIX G - BARSKI PHANTOM CERTIFICATE OF CONFORMITY                    | 37 |
|                                                                          |    |

| Applicant:      | Yaesu Musen Co., Ltd. |         | FCC ID:           | K6630553X20        | IC:                          | 511B-30553X20                   | YAESU        |
|-----------------|-----------------------|---------|-------------------|--------------------|------------------------------|---------------------------------|--------------|
| Model(s):       | HX10                  | 00 [    | DUT Type:         | Portable VHF       | PTT Marine Radio Tra         | 156.025 - 157.425 MHz           |              |
| 2012 Celltech L | _abs Inc.             | This do | ocument is not to | be reproduced in v | whole or in part without the | ermission of Celltech Labs Inc. | Page 2 of 37 |



| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.0 (1st Release)



| REVISION HISTORY |             |                |               |  |  |  |  |
|------------------|-------------|----------------|---------------|--|--|--|--|
| REVISION NO.     | DESCRIPTION | IMPLEMENTED BY | RELEASE DATE  |  |  |  |  |
| 1.0              | 1st Release | Jon Hughes     | July 27, 2012 |  |  |  |  |

| TEST REPORT SIGN-OFF |                    |              |                    |  |  |  |  |
|----------------------|--------------------|--------------|--------------------|--|--|--|--|
| DEVICE TESTED BY     | REPORT PREPARED BY | QA REVIEW BY | REPORT APPROVED BY |  |  |  |  |
| Sean Johnston        | Mike Meaker        | Jon Hughes   | Sean Johnston      |  |  |  |  |

| Applicant:      | Yaesu Musen Co., Ltd. |      | FCC ID:              | K6630553X20                               | IC:                          | 511B-30553X20                   | YAESU                 |        |
|-----------------|-----------------------|------|----------------------|-------------------------------------------|------------------------------|---------------------------------|-----------------------|--------|
| Model(s):       | HX10                  | 00   | DUT Type:            | Portable VHF PTT Marine Radio Transceiver |                              |                                 | 156.025 - 157.425 MHz | 111100 |
| 2012 Celltech L | _abs Inc.             | This | s document is not to | be reproduced in v                        | whole or in part without the | ermission of Celltech Labs Inc. | Page 3 of 37          |        |



Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



#### 1.0 INTRODUCTION

This measurement report demonstrates that the Yaesu Musen Co., Ltd. Model: HX100 Portable VHF PTT Marine Radio Transceiver complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C 01-01 (see reference [3]), IC RSS-102 Issue 4 (see reference [4]), IEEE Standard 1528-2003 (see reference [5]) and IEC Standard 62209-2:2010 (see reference [6]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

#### 2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASYTM) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.







DASY4 SAR System with Barski Fiberglas Planar Phantom

|                         | Applicant:                | pplicant: Yaesu Musen Co., Ltd. |                                           | FCC ID:              | K6630553X20        | IC:                          | 511B-30553X20   |                                 |
|-------------------------|---------------------------|---------------------------------|-------------------------------------------|----------------------|--------------------|------------------------------|-----------------|---------------------------------|
|                         | Model(s): HX100 DUT Type: |                                 | Portable VHF PTT Marine Radio Transceiver |                      |                    | 156.025 - 157.425 MHz        |                 |                                 |
| 2012 Celltech Labs Inc. |                           |                                 | This                                      | s document is not to | be reproduced in v | whole or in part without the | prior written p | ermission of Celltech Labs Inc. |





| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.0 (1st Release)



### 3.0 FCC POWER THRESHOLDS FOR PTT DEVICES ( $f \le 0.5 \text{ GHz}$ )

| FCC SAR Evaluation Power Thresholds for PTT Devices, $f \le 0.5 \text{ GHz}^*$ |     |      |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|-----|------|--|--|--|--|--|--|--|
| Exposure Conditions                                                            |     |      |  |  |  |  |  |  |  |
| Held to face, d ≥ 2.5 cm                                                       | 250 | 1250 |  |  |  |  |  |  |  |
| Body-worn, $d \ge 1.5$ cm                                                      | 200 | 1000 |  |  |  |  |  |  |  |
| Body-worn, <i>d</i> ≥ 1.0 cm                                                   | 150 | 750  |  |  |  |  |  |  |  |

- 1. The time-averaged output power, corresponding to the required PTT duty factor, is compared with these thresholds.
- 2. The closest distance between the user and the device or its antenna is used to determine the power thresholds.

  \* Per FCC KDB 447498 D01v04 Section 5)b)i) (see reference [7]).

### 4.0 RF OUTPUT POWER MEASUREMENT

| Band  | Frequency | Channel            | Mode | Power   | Measured P | ower Level | Method            |
|-------|-----------|--------------------|------|---------|------------|------------|-------------------|
| Dallu |           | Frequency Chainlei |      | Setting | dBm        | Watts      | Wethod            |
| VHF   | 156.7 MHz | 14                 | CW   | High    | 34.4       | 2.77       | Average Conducted |

#### **Notes**

- 1. The test channel was selected in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [7]).
- 2. The RF conducted output power level of the DUT was measured by Celltech prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the antenna connector of the DUT in accordance with FCC 47 CFR §2.1046 (see reference [11]) and IC RSS-Gen (see reference [12]).

# 5.0 NO. OF TEST CHANNELS (N<sub>c</sub>)

| Device Frequency Range | Band       | N <sub>c</sub> | Test Frequencies (MHz) |  |
|------------------------|------------|----------------|------------------------|--|
| 156.025 - 157.425 MHz  | VHF Marine | 1              | 156.7 MHz              |  |

Note: The number of test channels (*Nc*) was calculated in accordance with the procedures specified in FCC KDB 447498 Section 6) c) (see reference [7]).

# 6.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within ±50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ±100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, ±25 MHz < 300 MHz and ±50 MHz ≥300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [8]).

| Probe Calibration Freq.                                                                                                   | Device Measurement Freq. | Frequency Interval | <u>+</u> 25 MHz <u>&lt;</u> 300 MHz |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|-------------------------------------|--|--|--|--|
| 150 MHz                                                                                                                   | 156.7 MHz                | 156.7 MHz 6.7 MHz  |                                     |  |  |  |  |
| Note: The probe calibration and measurement frequency interval is < 25 MHz; therefore additional steps were not required. |                          |                    |                                     |  |  |  |  |

| Applicant:                                      | Yaesu Musen Co., Ltd. |  | FCC ID:   | FCC ID: K6630553X20 IC:                   |                                | 511B-30553X20   | YAESU                           |              |
|-------------------------------------------------|-----------------------|--|-----------|-------------------------------------------|--------------------------------|-----------------|---------------------------------|--------------|
| Model(s):                                       | s): HX100 DUT Type:   |  | DUT Type: | Portable VHF PTT Marine Radio Transceiver |                                |                 | 156.025 - 157.425 MHz           |              |
| 2012 Celltech Labs Inc. This document is not to |                       |  |           | be reproduced in v                        | whole or in part without the p | prior written p | ermission of Celltech Labs Inc. | Page 5 of 37 |



| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |
|                       |

Report Issue Date Description of Test(s)

July 27, 2012 Specific Absorption Rate

Test Report Serial No.

071312K66-T1185-S80V

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

Gen. Pop. / Uncontrolled



# 7.0 MANUFACTURER'S DISCLOSED ACCESSORY LISTING

| Part No. | Accessory Description                 | Accessory Type |  |
|----------|---------------------------------------|----------------|--|
| FNB-125  | Ni-MH, 4.8V, 700mAh                   | Battery        |  |
| CLIP-24  | Belt-Clip (for carrying purpose only) | Body-worn      |  |

#### Note:

1. Manufacturer's disclosed accessory listing information provided by Yaesu Musen Co., Ltd.

|                                   | Applicant: | Yaes     | esu Musen Co., Ltd.  |                    | Musen Co., Ltd. FCC ID: K6630553X20 IC: |                      | 511B-30553X20                   | YAESU                 |        |
|-----------------------------------|------------|----------|----------------------|--------------------|-----------------------------------------|----------------------|---------------------------------|-----------------------|--------|
|                                   | Model(s):  | ): HX100 |                      | DUT Type:          | Portable VHF                            | PTT Marine Radio Tra | nsceiver                        | 156.025 - 157.425 MHz | 111100 |
| 2012 Celltech Labs Inc. This docu |            |          | s document is not to | be reproduced in v | whole or in part without the            | prior written p      | ermission of Celltech Labs Inc. | Page 6 of 37          |        |



Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.
Rev. 1.0 (1st Release)



# **8.0 FLUID DIELECTRIC PARAMETERS**

|            | FLUID DIELECTRIC PARAMETERS |        |            |          |                           |                           |  |  |  |  |  |  |
|------------|-----------------------------|--------|------------|----------|---------------------------|---------------------------|--|--|--|--|--|--|
| Date: 07/2 | 24/2012                     | Freq   | uency: 300 | MHz      | Tissue: Head              |                           |  |  |  |  |  |  |
| Freq       | Test_e                      | Test_s | Target_e   | Target_s | Deviation<br>Permittivity | Deviation<br>Conductivity |  |  |  |  |  |  |
| 0.200      | 50.12                       | 0.79   | 45.3       | 0.87     | 10.64%                    | -9.20%                    |  |  |  |  |  |  |
| 0.210      | 48.98                       | 0.8    | 45.3       | 0.87     | 8.12%                     | -8.05%                    |  |  |  |  |  |  |
| 0.220      | 49.53                       | 0.82   | 45.3       | 0.87     | 9.34%                     | -5.75%                    |  |  |  |  |  |  |
| 0.230      | 47.68                       | 0.82   | 45.3       | 0.87     | 5.25%                     | -5.75%                    |  |  |  |  |  |  |
| 0.240      | 47.9                        | 0.83   | 45.3       | 0.87     | 5.74%                     | -4.60%                    |  |  |  |  |  |  |
| 0.250      | 48.19                       | 0.84   | 45.3       | 0.87     | 6.38%                     | -3.45%                    |  |  |  |  |  |  |
| 0.260      | 46.85                       | 0.84   | 45.3       | 0.87     | 3.42%                     | -3.45%                    |  |  |  |  |  |  |
| 0.270      | 45.74                       | 0.85   | 45.3       | 0.87     | 0.97%                     | -2.30%                    |  |  |  |  |  |  |
| 0.280      | 46.73                       | 0.86   | 45.3       | 0.87     | 3.16%                     | -1.15%                    |  |  |  |  |  |  |
| 0.290      | 46.66                       | 0.86   | 45.3       | 0.87     | 3.00%                     | -1.15%                    |  |  |  |  |  |  |
| 0.300      | 46.04                       | 0.88   | 45.3       | 0.87     | 1.63%                     | 1.15%                     |  |  |  |  |  |  |
| 0.310      | 44.82                       | 0.89   | 45.3       | 0.87     | -1.06%                    | 2.30%                     |  |  |  |  |  |  |
| 0.320      | 45.12                       | 0.89   | 45.3       | 0.87     | -0.40%                    | 2.30%                     |  |  |  |  |  |  |
| 0.330      | 43.83                       | 0.91   | 45.3       | 0.87     | -3.25%                    | 4.60%                     |  |  |  |  |  |  |
| 0.340      | 44.56                       | 0.91   | 45.3       | 0.87     | -1.63%                    | 4.60%                     |  |  |  |  |  |  |
| 0.350      | 44.58                       | 0.92   | 45.3       | 0.87     | -1.59%                    | 5.75%                     |  |  |  |  |  |  |
| 0.360      | 44.61                       | 0.92   | 45.3       | 0.87     | -1.52%                    | 5.75%                     |  |  |  |  |  |  |
| 0.370      | 43.89                       | 0.93   | 45.3       | 0.87     | -3.11%                    | 6.90%                     |  |  |  |  |  |  |
| 0.380      | 43.83                       | 0.94   | 45.3       | 0.87     | -3.25%                    | 8.05%                     |  |  |  |  |  |  |
| 0.390      | 43.59                       | 0.96   | 45.3       | 0.87     | -3.77%                    | 10.34%                    |  |  |  |  |  |  |
| 0.400      | 43.51                       | 0.96   | 45.3       | 0.87     | -3.95%                    | 10.34%                    |  |  |  |  |  |  |

| Test Date | Fluid Type | Ambient Fluid Temperature |         | Fluid<br>Depth | Atmospheric<br>Pressure | Relative<br>Humidity | ρ (Kg/m³) |
|-----------|------------|---------------------------|---------|----------------|-------------------------|----------------------|-----------|
| Jul 24    | 300 Head   | 24.0 °C                   | 24.0 °C | ≥ 15 cm        | 101.1 kPa               | 32%                  | 1000      |

| Applicant:                                   | Yaesi               | Yaesu Musen Co., Ltd. |                      | FCC ID:            | K6630553X20 IC:                |                       | 511B-30553X20                   | YAESU        |
|----------------------------------------------|---------------------|-----------------------|----------------------|--------------------|--------------------------------|-----------------------|---------------------------------|--------------|
| Model(s):                                    | (s): HX100 DUT Type |                       | DUT Type:            | Portable VHF       | PTT Marine Radio Tra           | 156.025 - 157.425 MHz |                                 |              |
| 2012 Celltech Labs Inc. This document is not |                     |                       | s document is not to | be reproduced in v | whole or in part without the p | prior written p       | ermission of Celltech Labs Inc. | Page 7 of 37 |



Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



|            | FLU     | JID DIEL        | ECTRIC     | PARAME       | ETERS                     |                           |  |
|------------|---------|-----------------|------------|--------------|---------------------------|---------------------------|--|
| Date: 07/2 | 24/2012 | Freq            | uency: 150 | Tissue: Head |                           |                           |  |
| Freq       | Test_e  | Test_s Target_e |            | Target_s     | Deviation<br>Permittivity | Deviation<br>Conductivity |  |
| 0.050      | 105.13  | 0.62            | 52.3       | 0.76         | 101.01%                   | -18.42%                   |  |
| 0.060      | 92.21   | 0.68            | 52.3       | 0.76         | 76.31%                    | -10.53%                   |  |
| 0.070      | 77.44   | 0.7             | 52.3       | 0.76         | 48.07%                    | -7.89%                    |  |
| 0.080      | 78.24   | 0.68            | 52.3       | 0.76         | 49.60%                    | -10.53%                   |  |
| 0.090      | 68.52   | 0.71            | 52.3       | 0.76         | 31.01%                    | -6.58%                    |  |
| 0.100      | 63.62   | 0.72            | 52.3       | 0.76         | 21.64%                    | -5.26%                    |  |
| 0.110      | 59.1    | 0.76            | 52.3       | 0.76         | 13.00%                    | 0.00%                     |  |
| 0.120      | 60.83   | 0.74            | 52.3       | 0.76         | 16.31%                    | -2.63%                    |  |
| 0.130      | 55.67   | 0.75            | 52.3       | 0.76         | 6.44%                     | -1.32%                    |  |
| 0.140      | 56.74   | 0.75            | 52.3       | 0.76         | 8.49%                     | -1.32%                    |  |
| 0.150      | 55.22   | 0.77            | 52.3       | 0.76         | 5.58%                     | 1.32%                     |  |
| 0.1567*    | 55.5    | 0.763           | 52.3       | 0.76         | 6.12%                     | 0.39%                     |  |
| 0.160      | 55.58   | 0.76            | 52.3       | 0.76         | 6.27%                     | 0.00%                     |  |
| 0.170      | 56.31   | 0.77            | 52.3       | 0.76         | 7.67%                     | 1.32%                     |  |
| 0.180      | 52.49   | 0.8             | 52.3       | 0.76         | 0.36%                     | 5.26%                     |  |
| 0.190      | 51.69   | 0.79            | 52.3       | 0.76         | -1.17%                    | 3.95%                     |  |
| 0.200      | 51.35   | 0.79            | 52.3       | 0.76         | -1.82%                    | 3.95%                     |  |
| 0.210      | 50.35   | 0.82            | 52.3       | 0.76         | -3.73%                    | 7.89%                     |  |
| 0.220      | 51.71   | 0.82            | 52.3       | 0.76         | -1.13%                    | 7.89%                     |  |
| 0.230      | 50.64   | 0.83            | 52.3       | 0.76         | -3.17%                    | 9.21%                     |  |
| 0.240      | 49.35   | 0.83            | 52.3       | 0.76         | -5.64%                    | 9.21%                     |  |
| 0.250      | 48.61   | 0.85            | 52.3       | 0.76         | -7.06%                    | 11.84%                    |  |

<sup>\*</sup>interpolated using DASY4 software

| Te | est Date | Fluid Type | Ambient<br>Temperature | Fluid<br>Temperature | Fluid<br>Depth | Atmospheric<br>Pressure | Relative<br>Humidity | ρ (Kg/m³) |
|----|----------|------------|------------------------|----------------------|----------------|-------------------------|----------------------|-----------|
|    | Jul 24   | 150 Head   | 23.0 °C                | 23.1 °C              | ≥ 15 cm        | 101.1 kPa               | 32%                  | 1000      |

| Applicant:      | Yaesi    | u <b>M</b> u | sen Co., Ltd.        | FCC ID:            | K6630553X20                               | IC:             | 511B-30553X20                   | YAESU        |  |
|-----------------|----------|--------------|----------------------|--------------------|-------------------------------------------|-----------------|---------------------------------|--------------|--|
| Model(s):       | HX10     | 0            | DUT Type:            | Portable VHF       | Portable VHF PTT Marine Radio Transceiver |                 | 156.025 - 157.425 MHz           |              |  |
| 2012 Celltech L | abs Inc. | This         | s document is not to | be reproduced in v | whole or in part without the p            | prior written p | ermission of Celltech Labs Inc. | Page 8 of 37 |  |



Test Report Issue Date
July 27, 2012

#### <u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)
Specific Absorption Rate

# Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



#### 9.0 SAR MEASUREMENT SUMMARY

|                               |              |               |           |            | SAR EVA | LUAT               | ION RE | SULTS                  |                                        |                 |                        |                           |          |
|-------------------------------|--------------|---------------|-----------|------------|---------|--------------------|--------|------------------------|----------------------------------------|-----------------|------------------------|---------------------------|----------|
| Test<br>Config.               | Test<br>Date | Test<br>Freq. | Chan.     | Battery    | Antenna | Antenna Type Phant |        | ance Power anar Before |                                        | ed SAR<br>N/kg) | SAR<br>Drift<br>During | Scaled<br>with 0<br>1g (V | droop    |
| Comig.                        | Date         |               |           | Туре       | туре    | Pha                | antom  | Test                   | PTT Dut                                | y Factor        | Test                   | PTT Dut                   | y Factor |
|                               |              | MHz           |           |            |         | DUT                | Ant.   | Watts                  | 100%                                   | 50%             | dB                     | 100%                      | 50%      |
| Face-held                     | Jul 24       | 156.7         | 14        | Ni-MH      | Fixed   | 2.5 cm             | 3.7 cm | 2.77                   | 0.072                                  | 0.036           | -0.322                 | 0.078                     | 0.039    |
| SAR LIMIT(S) HEAD SPATIAL PEA |              |               |           |            |         |                    |        | K                      | RF                                     | EXPOSURE        | CATEGO                 | RY                        |          |
| FCC 47 CFF                    | R 2.1093     | Health Ca     | nada Safe | ety Code 6 | 1.6 W/I | kg                 | averag | jed over 1             | gram General Population / Uncontrolled |                 |                        |                           | rolled   |

#### 10.0 DETAILS OF SAR EVALUATION

The Yaesu Musen Co., Ltd. HX100 Portable VHF PTT Marine Radio Transceiver was compliant for localized Specific Absorption Rate (General Population / Uncontrolled Exposure) based on the test provisions and conditions described below.

- 1. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. The test setup photographs are shown in Appendix D.
- The DUT was evaluated in face-held configuration with the front of the device placed parallel to the outer surface of the side planar phantom. A 2.5 cm spacing was maintained between the front side of the DUT and the outer surface of the side planar phantom.
- 4. The DUT does not contain an external audio connector; therefore body-worn SAR evaluations were not applicable.
- 5. The SAR evaluation was performed with a fully-charged battery.
- 6. The DUT was evaluated for SAR at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- The SAR drift of the DUT was measured by the DASY4 system. The SAR droop was added to the measured SAR level as shown in the above test data table.
- 8. The fluid temperature remained within +/-2°C from the fluid dielectric parameter measurement to the completion of the SAR evaluation.
- 9. The dielectric parameters of the simulated tissue mixture were measured prior to the SAR evaluation using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).

| Applicant:      | Yaesi     | u Mus | sen Co., Ltd.        | FCC ID:                                                                                         | K6630553X20          | IC:                   | 511B-30553X20 | YAES |  |  |
|-----------------|-----------|-------|----------------------|-------------------------------------------------------------------------------------------------|----------------------|-----------------------|---------------|------|--|--|
| Model(s):       | HX10      | 0     | DUT Type:            | Portable VHF                                                                                    | PTT Marine Radio Tra | 156.025 - 157.425 MHz | IAD           |      |  |  |
| 2012 Celltech L | _abs Inc. | This  | s document is not to | to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                      |                       |               |      |  |  |



| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |

Test Report Issue Date

July 27, 2012

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



### 11.0 SAR LEVEL CORRECTION FOR FLUID DEVIATION (IC RSS-102 / IEC 62209-2)

Test Report Serial No.

071312K66-T1185-S80V

The SAR levels are corrected for deviation of complex permittivity in accordance with Section 6.1.1 of IEC 62209-2:2010 (see reference [6]) as shown below.

| Test<br>Freq. | Test_e | Test_s | Target_e | Target_s | Deviation<br>Permittivity | Deviation<br>Conductivity | Measured<br>SAR Level<br>50% (W/kg) | Corrected<br>SAR Level<br>50% (W/kg) |
|---------------|--------|--------|----------|----------|---------------------------|---------------------------|-------------------------------------|--------------------------------------|
| 0.1567        | 55.5   | 0.763  | 52.3     | 0.76     | +6.12%                    | +0.39%                    | 0.036                               | 0.036                                |

#### SAR Correction Formula (IEC 62209-2:2010 Section 6.1.1)

$$\Delta SAR = c_{\epsilon} \Delta \varepsilon_{r} + c_{\eta} \Delta \sigma \qquad (F.1)$$

where

 $c_{\rm s} = \partial(\Delta {\sf SAR})/\partial(\Delta \varepsilon)$  is the coefficients representing the sensitivity of SAR to permittivity where SAR is normalized to output power;

 $c_0 = \partial(\Delta SAR)/\partial(\Delta\sigma)$  is the coefficients representing the sensitivity of SAR to conductivity, where SAR is normalized to output power.

The values of  $c_a$  and  $c_g$  have a simple relationship with frequency that can be described using polynomial equations. For the 1 g averaged SAR  $c_a$  and  $c_g$  are given by

$$c_s = -7.854 \times 10^{-4} f^3 + 9.402 \times 10^{-3} f^2 - 2.742 \times 10^{-2} f - 0.2026$$
 (F.2)

$$c_n = 9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.7829$$
 (F.3)

where

f is the frequency in GHz.

#### **SAR Correction Calculation**

| Frequency (GHz) | 0.1567  |
|-----------------|---------|
| Ce              | -0.2067 |
| Сσ              | 0.7855  |
| ΔΕ              | 6.12%   |
| Δσ              | 0.39%   |
| ΔSAR            | -0.96%  |

#### Conclusion

The correction ΔSAR has a negative sign; therefore correction is applied to the measured SAR level.

| Applicant:      | Yaesi     | u Mu | sen Co., Ltd.        | FCC ID:                                                                                         | K6630553X20          | IC:                   | 511B-30553X20 | YAES |  |  |
|-----------------|-----------|------|----------------------|-------------------------------------------------------------------------------------------------|----------------------|-----------------------|---------------|------|--|--|
| Model(s):       | HX10      | 0    | DUT Type:            | Portable VHF                                                                                    | PTT Marine Radio Tra | 156.025 - 157.425 MHz | IAB           |      |  |  |
| 2012 Celltech L | _abs Inc. | This | s document is not to | to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                      |                       |               |      |  |  |



Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category

Gen. Pop. / Uncontrolled



#### 12.0 SAR EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
  - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm.
  - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
  - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 30 mm x 30 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.



Test Report Issue Date
July 27, 2012

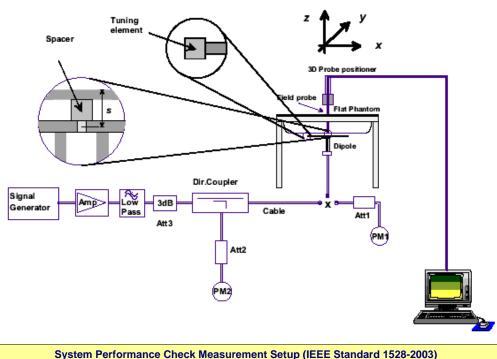
<u>Test Report Serial No.</u> 071312K66-T1185-S80V

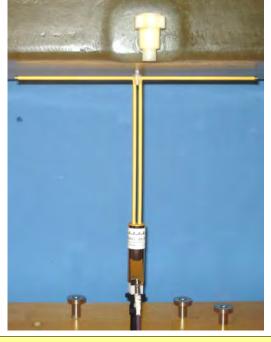
<u>Description of Test(s)</u>
Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled







Test Lab Certificate No. 2470.01

#### 13.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation, a daily system check was performed with a planar phantom and 300 MHz SPEAG validation dipole (see Appendix B for system performance check evaluation plot) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 398 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

|        | SYSTEM PERFORMANCE CHECK EVALUATION |                                                                                                                                                                                     |                                                                                                                                               |           |            |           |          |            |            |          |          |           |                  |           |            |         |
|--------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------|----------|------------|------------|----------|----------|-----------|------------------|-----------|------------|---------|
| Test   | Equiv.<br>Tissue                    |                                                                                                                                                                                     | SAR 1g Dielectric Constant Conductivity σ (mho/m) ρ Amb. Fluid Temp.                                                                          |           |            |           |          |            |            |          |          | Humid.    | Barom.<br>Press. |           |            |         |
| Date   | Freq.<br>(MHz)                      | Target                                                                                                                                                                              | Meas.                                                                                                                                         | Dev.      | Target     | Meas.     | Dev.     | Target     | Meas.      | Dev.     | (Kg/m³)  | (°C)      | (°C)             | (cm)      | (%)        | (kPa)   |
| Jul 24 | Head<br>300                         | 1.14<br>±10%                                                                                                                                                                        | 1 1 20   1 +5 3%                                                                                                                              |           |            |           |          |            |            |          |          |           |                  |           |            |         |
|        | 1.                                  | The targ                                                                                                                                                                            | et SAR v                                                                                                                                      | alue is t | he measuı  | red value | specifie | d in the S | AR syste   | em man   | ufacture | r's dipol | e calibra        | ition (se | e Append   | lix E). |
|        | 2.                                  | The targ<br>Appendix                                                                                                                                                                |                                                                                                                                               | electric  | parameters | s are the | nominal  | values sp  | ecified in | n the SA | AR syste | m manu    | ıfacturer'       | s dipole  | calibratio | n (see  |
| Notes  | 3.                                  |                                                                                                                                                                                     | ne fluid temperature remained within +/-2°C from the fluid dielectric parameter measurement to the completion of the system erformance check. |           |            |           |          |            |            |          |          |           |                  |           |            |         |
|        | 4.                                  | The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C). |                                                                                                                                               |           |            |           |          |            |            |          |          |           |                  |           |            |         |
|        |                                     | Dielectri                                                                                                                                                                           | c Probe i                                                                                                                                     | Kit and a | Network /  | Anaiyzer  | (see Ap  | pendix C). |            |          |          |           |                  |           |            |         |





**SPEAG 300 MHz Validation Dipole Setup** 

| Applicant:      | Yaesı     | u Mu | sen Co., Ltd.        | FCC ID:            | K6630553X20                                                                                 | IC:      | 511B-30553X20         | YAESU |  |  |  |  |
|-----------------|-----------|------|----------------------|--------------------|---------------------------------------------------------------------------------------------|----------|-----------------------|-------|--|--|--|--|
| Model(s):       | HX10      | 0    | DUT Type:            | Portable VHF       | PTT Marine Radio Tra                                                                        | nsceiver | 156.025 - 157.425 MHz |       |  |  |  |  |
| 2012 Celltech L | _abs Inc. | This | s document is not to | be reproduced in v | e reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |          |                       |       |  |  |  |  |



| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.0 (1st Release)



#### 14.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see reference [9]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [5]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

|            | SIMULATED TISSUE MIXTURES |                                      |         |                                      |         |  |  |  |  |  |  |  |
|------------|---------------------------|--------------------------------------|---------|--------------------------------------|---------|--|--|--|--|--|--|--|
| INGREDIENT | Water                     |                                      | 37.56 % | 150 MHz<br>Head<br>Tissue<br>Mixture | 38.35 % |  |  |  |  |  |  |  |
|            | Sugar                     | 300 MHz<br>Head<br>Tissue<br>Mixture | 55.32 % |                                      | 55.5%   |  |  |  |  |  |  |  |
|            | Salt                      |                                      | 5.95 %  |                                      | 5.15%   |  |  |  |  |  |  |  |
|            | HEC                       |                                      | 0.98 %  |                                      | 0.9%    |  |  |  |  |  |  |  |
|            | Bactericide               |                                      | 0.19 %  |                                      | 0.1%    |  |  |  |  |  |  |  |

#### 15.0 SAR LIMITS

|                            | SAR RF EXPOSURE LIMITS            |                                              |                                      |  |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------|----------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|
| FCC 47 CFR 2.1093          | Health Canada Safety Code 6       | (General Population / Uncontrolled Exposure) | (Occupational / Controlled Exposure) |  |  |  |  |  |  |  |  |
| Spatial Average (ave       | raged over the whole body)        | 0.08 W/kg                                    | 0.4 W/kg                             |  |  |  |  |  |  |  |  |
| Spatial Peak (average      | ged over any 1 g of tissue)       | 1.6 W/kg                                     | 8.0 W/kg                             |  |  |  |  |  |  |  |  |
| Spatial Peak (hands/wrists | s/feet/ankles averaged over 10 g) | 4.0 W/kg                                     | 20.0 W/kg                            |  |  |  |  |  |  |  |  |

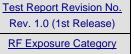
The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.


| Applicant:      | Yaes    | su Musen Co., Ltd. |                      | FCC ID:            | K6630553X20                    | IC:             | 511B-30553X20                  | -   |
|-----------------|---------|--------------------|----------------------|--------------------|--------------------------------|-----------------|--------------------------------|-----|
| Model(s):       | HX10    | 0                  | DUT Type:            | Portable VHF       | F PTT Marine Radio Transceiver |                 | 156.025 - 157.425 MHz          |     |
| 2012 Calltach I | ahe Inc | Thi                | e document is not to | he reproduced in v | whole or in part without the   | orior written n | ermission of Calltach Labs Inc | Pac |



Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s) RF Exposure Category
Specific Absorption Rate Gen. Pop. / Uncontrolled





# **16.0 ROBOT SYSTEM SPECIFICATIONS**

| Specifications                   |                                                                                   |
|----------------------------------|-----------------------------------------------------------------------------------|
| Positioner                       | Stäubli Unimation Corp. Robot Model: RX60L                                        |
| Repeatability                    | 0.02 mm                                                                           |
| No. of axis                      | 6                                                                                 |
| Data Acquisition Electronic (DAE | ) System                                                                          |
| Cell Controller                  |                                                                                   |
| Processor                        | AMD Athlon XP 2400+                                                               |
| Clock Speed                      | 2.0 GHz                                                                           |
| Operating System                 | Windows XP Professional                                                           |
| Data Converter                   |                                                                                   |
| Features                         | Signal Amplifier, multiplexer, A/D converter, and control logic                   |
| Software                         | Measurement Software: DASY4, V4.7 Build 44                                        |
| Software                         | Postprocessing Software: SEMCAD, V1.8 Build 171                                   |
| Connecting Lines                 | Optical downlink for data and status info., Optical uplink for commands and clock |
| DASY4 Measurement Server         |                                                                                   |
| Function                         | Real-time data evaluation for field measurements and surface detection            |
| Hardware                         | PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM                              |
| Connections                      | COM1, COM2, DAE, Robot, Ethernet, Service Interface                               |
| E-Field Probe                    |                                                                                   |
| Model                            | ET3DV6                                                                            |
| Serial No.                       | 1590                                                                              |
| Construction                     | Triangular core fiber optic detection system                                      |
| Frequency                        | 10 MHz to 6 GHz                                                                   |
| Linearity                        | ±0.2 dB (30 MHz to 3 GHz)                                                         |
| <b>Evaluation Phantom</b>        |                                                                                   |
| Туре                             | Side Planar Phantom                                                               |
| Shell Material                   | Plexiglas                                                                         |
| Bottom Thickness                 | 2.0 mm ± 0.1 mm                                                                   |
| Outer Dimensions                 | 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)                  |
| <u>Validation Phantom</u>        |                                                                                   |
| Туре                             | Barski Planar Phantom                                                             |
| Shell Material                   | Fiberglass                                                                        |
| Thickness                        | 2.0 ±0.1 mm                                                                       |
| Volume                           | Approx. 70 liters                                                                 |

| Applicant:      | Yaesı     | u Musen Co., Ltd. |                    | FCC ID: K6630553X20 IC: |                                                                                             |  | 511B-30553X20         | YAE |  |
|-----------------|-----------|-------------------|--------------------|-------------------------|---------------------------------------------------------------------------------------------|--|-----------------------|-----|--|
| Model(s):       | HX10      | 0                 | DUT Type:          | Portable VHF            | rtable VHF PTT Marine Radio Transceiver                                                     |  | 156.025 - 157.425 MHz |     |  |
| 2012 Celltech L | _abs Inc. | This              | document is not to | be reproduced in v      | e reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |  |                       |     |  |



Dimensions:

Date(s) of Evaluation July 24, 2012

Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.
Rev. 1.0 (1st Release)



### 17.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In Body simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity:  $\pm$  0.2 dB

(30 MHz to 3 GHz)

Directivity:  $\pm$  0.2 dB in Body tissue (rotation around probe axis)

 $\pm$  0.4 dB in Body tissue (rotation normal to probe axis)

Dynamic Range:  $5 \mu W/g$  to > 100 mW/g; Linearity:  $\pm$  0.2 dB

Surface Detect:  $\pm$  0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm

Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm
Application: General dosimetry up to 3 GHz

Compliance tests of mobile phone



**ET3DV6 E-Field Probe** 

#### 18.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.



Plexiglas Side Planar Phantom

#### 19.0 BARSKI PLANAR PHANTOM

The Barski planar phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table. The Barski planar phantom was used for the system performance check evaluation. See Appendix G for dimensions and specifications of the Barski planar phantom.



**Barski Planar Phantom** 

#### 20.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Face-held SAR evaluations (PTT radios) are performed with the device holder in the body axis.



**Device Holder** 

| Applicant: | Yaesu Musen Co., Ltd. |           | FCC ID:      | K6630553X20          | IC:      | 511B-30553X20         |
|------------|-----------------------|-----------|--------------|----------------------|----------|-----------------------|
| Model(s):  | HX100                 | DUT Type: | Portable VHF | PTT Marine Radio Tra | nsceiver | 156.025 - 157.425 MHz |





Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled
Test Lab Certifi



21.0 TEST EQUIPMENT LIST

|       | TEST EQUIPMENT                           | ASSET NO. | SERIAL NO. | DATE       | CALIBRATION |
|-------|------------------------------------------|-----------|------------|------------|-------------|
| USED  | DESCRIPTION                              | ASSET NO. | SERIAL NO. | CALIBRATED | INTERVAL    |
| х     | Schmid & Partner DASY4 System            | -         | -          | -          | -           |
| х     | -DASY4 Measurement Server                | 00158     | 1078       | CNR        | CNR         |
| х     | -Robot                                   | 00046     | 599396-01  | CNR        | CNR         |
| х     | -DAE4                                    | 00019     | 353        | 19-Apr-12  | Biennial    |
| х     | -ET3DV6 E-Field Probe                    | 00017     | 1590       | 24-Apr-12  | Annual      |
| х     | -D300V3 Validation Dipole                | 00220     | 1009       | 17-Apr-12  | Triennial   |
| х     | Side Planar Phantom                      | 00156     | 161        | CNR        | CNR         |
| х     | Barski Planar Phantom                    | 00155     | 03-01      | CNR        | CNR         |
| х     | HP 85070C Dielectric Probe Kit           | 00033     | none       | CNR        | CNR         |
| х     | Gigatronics 8652A Power Meter            | 00007     | 1835272    | 03-May-12  | Biennial    |
| х     | Gigatronics 80701A Power Sensor          | 00014     | 1833542    | 03-May-12  | Biennial    |
| х     | Gigatronics 80334A Power Sensor          | -         | 1837001    | 03-May-12  | Biennial    |
| х     | Narda 3020A Directional Coupler          | 00064     | none       | CNR        | CNR         |
| х     | HP 8753ET Network Analyzer               | 00134     | US39170292 | 26-Apr-12  | Biennial    |
| х     | Rohde & Schwarz SMR20 Signal Generator   | 00006     | 100104     | 02-May-12  | Biennial    |
| х     | Amplifier Research 5S1G4 Power Amplifier | 00106     | 26235      | CNR        | CNR         |
| Abbr. | CNR = Calibration Not Required           |           |            |            |             |

| Applicant:      | Yaes    | aesu Musen Co., Ltd. |                                                                                                                      | FCC ID:      | K6630553X20                              | IC: | 511B-30553X20         |  |  |
|-----------------|---------|----------------------|----------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|-----|-----------------------|--|--|
| Model(s):       | HX10    | 0                    | DUT Type:                                                                                                            | Portable VHF | ortable VHF PTT Marine Radio Transceiver |     | 156.025 - 157.425 MHz |  |  |
| 2012 Celltech I | ahs Inc | Thi                  | This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |              |                                          |     |                       |  |  |





Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



# 22.0 MEASUREMENT UNCERTAINTY (FCC)

| UNCERTAINTY BUDGET FOR DEVICE EVALUATION (IEEE 1528-2003)                     |                         |                         |                             |             |          |           |                                 |                                  |                                    |  |  |  |
|-------------------------------------------------------------------------------|-------------------------|-------------------------|-----------------------------|-------------|----------|-----------|---------------------------------|----------------------------------|------------------------------------|--|--|--|
| Uncertainty Component                                                         | IEEE<br>1528<br>Section | Uncertainty<br>Value ±% | Probability<br>Distribution | Divisor     | ci<br>1g | ci<br>10g | Uncertainty<br>Value ±%<br>(1g) | Uncertainty<br>Value ±%<br>(10g) | V <sub>i</sub> or V <sub>eff</sub> |  |  |  |
| Measurement System                                                            |                         |                         |                             |             |          |           |                                 |                                  |                                    |  |  |  |
| Probe Calibration (150 MHz)                                                   | E.2.1                   | 10.0                    | Normal                      | 1           | 1        | 1         | 10.0                            | 10.0                             | 8                                  |  |  |  |
| Axial Isotropy                                                                | E.2.2                   | 4.7                     | Rectangular                 | 1.732050808 | 0.7      | 0.7       | 1.9                             | 1.9                              | ∞                                  |  |  |  |
| Hemispherical Isotropy                                                        | E.2.2                   | 9.6                     | Rectangular                 | 1.732050808 | 0.7      | 0.7       | 3.9                             | 3.9                              | $\infty$                           |  |  |  |
| Boundary Effect                                                               | E.2.3                   | 2.5                     | Rectangular                 | 1.732050808 | 1        | 1         | 1.4                             | 1.4                              | ∞                                  |  |  |  |
| Linearity                                                                     | E.2.4                   | 4.7                     | Rectangular                 | 1.732050808 | 1        | 1         | 2.7                             | 2.7                              | ∞                                  |  |  |  |
| System Detection Limits                                                       | E.2.5                   | 1                       | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                             | 0.6                              | $\infty$                           |  |  |  |
| Readout Electronics                                                           | E.2.6                   | 0.3                     | Normal                      | 1           | 1        | 1         | 0.3                             | 0.3                              | $\infty$                           |  |  |  |
| Response Time                                                                 | E.2.7                   | 0.8                     | Rectangular                 | 1.732050808 | 1        | 1         | 0.5                             | 0.5                              | $\infty$                           |  |  |  |
| Integration Time                                                              | E.2.8                   | 2.6                     | Rectangular                 | 1.732050808 | 1        | 1         | 1.5                             | 1.5                              | $\infty$                           |  |  |  |
| RF Ambient Conditions                                                         | E.6.1                   | 3                       | Rectangular                 | 1.732050808 | 1        | 1         | 1.7                             | 1.7                              | ∞                                  |  |  |  |
| Probe Positioner Mechanical Tolerance                                         | E.6.2                   | 0.4                     | Rectangular                 | 1.732050808 | 1        | 1         | 0.2                             | 0.2                              | ∞                                  |  |  |  |
| Probe Positioning wrt Phantom Shell                                           | E.6.3                   | 2.9                     | Rectangular                 | 1.732050808 | 1        | 1         | 1.7                             | 1.7                              | $\infty$                           |  |  |  |
| Extrapolation, interpolation & integration algorithms for max. SAR evaluation | E.5                     | 1                       | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                             | 0.6                              | ∞                                  |  |  |  |
| Test Sample Related                                                           |                         |                         |                             |             |          |           |                                 |                                  |                                    |  |  |  |
| Test Sample Positioning                                                       | E.4.2                   | 2.9                     | Normal                      | 1           | 1        | 1         | 2.9                             | 2.9                              | 12                                 |  |  |  |
| Device Holder Uncertainty                                                     | E.4.1                   | 3.6                     | Normal                      | 1           | 1        | 1         | 3.6                             | 3.6                              | 8                                  |  |  |  |
| SAR Drift Measurement                                                         | 6.6.2                   | 5                       | Rectangular                 | 1.732050808 | 1        | 1         | 2.9                             | 2.9                              | $\infty$                           |  |  |  |
| Phantom and Tissue Parameters                                                 |                         |                         |                             |             |          |           |                                 |                                  |                                    |  |  |  |
| Phantom Uncertainty                                                           | E.3.1                   | 4                       | Rectangular                 | 1.732050808 | 1        | 1         | 2.3                             | 2.3                              | ∞                                  |  |  |  |
| Liquid Conductivity (target)                                                  | E.3.2                   | 5                       | Rectangular                 | 1.732050808 | 0.64     | 0.43      | 1.8                             | 1.2                              | $\infty$                           |  |  |  |
| Liquid Conductivity (measured)                                                | E.3.3                   | 0.39                    | Normal                      | 1           | 0.64     | 0.43      | 0.2                             | 0.2                              | 8                                  |  |  |  |
| Liquid Permittivity (target)                                                  | E.3.2                   | 5                       | Rectangular                 | 1.732050808 | 0.6      | 0.49      | 1.7                             | 1.4                              | ∞                                  |  |  |  |
| Liquid Permittivity (measured)                                                | E.3.3                   | 6.12                    | Normal                      | 1           | 0.6      | 0.49      | 3.7                             | 3.0                              | ∞                                  |  |  |  |
| Combined Standard Uncertainty                                                 |                         |                         | RSS                         |             |          |           | 13.86                           | 13.59                            |                                    |  |  |  |
| Expanded Uncertainty (95% Confidence                                          | e Interval)             |                         | k=2                         |             |          |           | 27.73                           | 27.19                            |                                    |  |  |  |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

| Applicant:                                                                                                                                   | Yaesı | u Mu | sen Co., Ltd.                                       | FCC ID: | K6630553X20           | IC:           | 511B-30553X20 | YAESU |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----------------------------------------------------|---------|-----------------------|---------------|---------------|-------|
| Model(s):                                                                                                                                    | HX10  | 0    | DUT Type: Portable VHF PTT Marine Radio Transceiver |         | 156.025 - 157.425 MHz |               |               |       |
| 2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |       |      |                                                     |         |                       | Page 17 of 37 |               |       |



Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



# 23.0 MEASUREMENT UNCERTAINTY (IC)

| UNCERTA                                                                  | INTY BUI                  | DGET FOR I                       | DEVICE EVA                  | LUATION (II     | EC 62    | 209-2:    | 2010)                              |                                     |                                    |
|--------------------------------------------------------------------------|---------------------------|----------------------------------|-----------------------------|-----------------|----------|-----------|------------------------------------|-------------------------------------|------------------------------------|
| Source of Uncertainty                                                    | IEC<br>62209-2<br>Section | Tolerance /<br>Uncertainty<br>±% | Probability<br>Distribution | Divisor         | ci<br>1g | ci<br>10g | Standard<br>Uncertainty<br>±% (1g) | Standard<br>Uncertainty<br>±% (10g) | V <sub>i</sub> or V <sub>eff</sub> |
| Measurement System                                                       |                           |                                  |                             |                 |          |           |                                    |                                     |                                    |
| Probe Calibration (150 MHz)                                              | 7.2.2.1                   | 10.0                             | Normal                      | 1               | 1        | 1         | 10.0                               | 10.0                                | $\infty$                           |
| Isotropy                                                                 | 7.2.2.2                   | 4.7                              | Rectangular                 | 1.732050808     | 1        | 1         | 2.7                                | 2.7                                 | $\infty$                           |
| Boundary Effect                                                          | 7.2.2.6                   | 2.5                              | Rectangular                 | 1.732050808     | 1        | 1         | 1.4                                | 1.4                                 | $\infty$                           |
| Linearity                                                                | 7.2.2.3                   | 4.7                              | Rectangular                 | 1.732050808     | 1        | 1         | 2.7                                | 2.7                                 | $\infty$                           |
| Detection Limits                                                         | 7.2.2.5                   | 1                                | Rectangular                 | 1.732050808     | 1        | 1         | 0.6                                | 0.6                                 | $\infty$                           |
| Readout Electronics                                                      | 7.2.2.7                   | 0.3                              | Normal                      | 1               | 1        | 1         | 0.3                                | 0.3                                 | $\infty$                           |
| Response Time                                                            | 7.2.2.8                   | 0.8                              | Rectangular                 | 1.732050808     | 1        | 1         | 0.5                                | 0.5                                 | $\infty$                           |
| Integration Time                                                         | 7.2.2.9                   | 2.6                              | Rectangular                 | 1.732050808     | 1        | 1         | 1.5                                | 1.5                                 | $\infty$                           |
| RF Ambient Conditions                                                    | 7.2.4.5                   | 3                                | Rectangular                 | 1.732050808     | 1        | 1         | 1.7                                | 1.7                                 | $\infty$                           |
| Probe Positioner Mechanical Restrictions                                 | 7.2.3.1                   | 0.4                              | Rectangular                 | 1.732050808     | 1        | 1         | 0.2                                | 0.2                                 | $\infty$                           |
| Probe Positioning wrt Phantom Shell                                      | 7.2.3.3                   | 2.9                              | Rectangular                 | 1.732050808     | 1        | 1         | 1.7                                | 1.7                                 | $\infty$                           |
| Post-processing                                                          | 7.2.5                     | 1                                | Rectangular                 | 1.732050808     | 1        | 1         | 0.6                                | 0.6                                 | $\infty$                           |
| Test Sample Related                                                      |                           |                                  |                             |                 |          |           |                                    |                                     |                                    |
| Test Sample Positioning                                                  | 7.2.3.4.3                 | 2.9                              | Normal                      | 1               | 1        | 1         | 2.9                                | 2.9                                 | 12                                 |
| Device Holder Uncertainty                                                | 7.2.3.4.2                 | 3.6                              | Normal                      | 1               | 1        | 1         | 3.6                                | 3.6                                 | 8                                  |
| Drift of Output Power (meas. SAR drift)                                  | 7.2.2.10                  | 0                                | Rectangular                 | 1.732050808     | 1        | 1         | 0.0                                | 0.0                                 | ∞                                  |
| Phantom and Tissue Parameters                                            |                           |                                  |                             |                 |          |           |                                    |                                     |                                    |
| Phantom Uncertainty                                                      | 7.2.3.2                   | 4                                | Rectangular                 | 1.732050808     | 1        | 1         | 2.3                                | 2.3                                 | 8                                  |
| SAR Correction Algorithm for deviations in permittivity and conductivity | 7.2.4.3                   | 1.2                              | Normal                      | 1               | 1        | 0.81      | 1.2                                | 0.97                                | 8                                  |
| Liquid Conductivity (measured)                                           | 7.2.4.3                   | 0.39                             | Normal                      | 1               | 0.78     | 0.71      | 0.3                                | 0.3                                 | 8                                  |
| Liquid Permittivity (measured)                                           | 7.2.4.3                   | 6.12                             | Normal                      | 1               | 0.23     | 0.26      | 1.4                                | 1.6                                 | 80                                 |
| Liquid Permittivity - temp. uncertainty                                  | 7.2.4.4                   | 1.04                             | Rectangular                 | 1.732050808     | 0.78     | 0.71      | 0.5                                | 0.4                                 | 8                                  |
| Liquid Conductivity - temp. uncertainty                                  | 7.2.4.4                   | 1.97                             | Rectangular                 | 1.732050808     | 0.23     | 0.26      | 0.3                                | 0.3                                 | 80                                 |
| Combined Standard Uncertainty                                            | 7.3.1                     |                                  | RSS                         |                 |          |           | 12.51                              | 12.51                               |                                    |
| Expanded Uncertainty (95% Confidence Interval)                           | 7.3.2                     |                                  | k=2                         |                 |          |           | 25.01                              | 25.01                               |                                    |
| Measurement                                                              | Uncertainty               | Table in acco                    | rdance with Int             | ernational Stan | dard IE  | C 6220    | 9-2:2010                           |                                     |                                    |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

| Applicant:                                                                                                                                   | Yaes | u Mu                                                   | sen Co., Ltd. | FCC ID:  | K6630553X20           | IC:           | 511B-30553X20 | YAESU |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------|---------------|----------|-----------------------|---------------|---------------|-------|
| Model(s):                                                                                                                                    | HX10 | (100 DUT Type: Portable VHF PTT Marine Radio Transceiv |               | nsceiver | 156.025 - 157.425 MHz |               |               |       |
| 2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |      |                                                        |               |          |                       | Page 18 of 37 |               |       |



Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



#### 24.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices"; Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 4: March 2010.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] International Standard IEC 62209-2 Edition 1.0 2010-03 "Human exposure to radio frequency fields from hand-held & body-mounted wireless communication devices Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)".
- [7] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v04: November 2009.
- [8] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz"; KDB 450824 D01 v01r01: January 2007.
- [9] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.
- [10] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- [11] Federal Communications Commission "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.
- [12] Industry Canada "General Requirements and Information for the Certification of Radiocommunication Equipment", Radio Standards Specification RSS-Gen Issue 3: December 2010.



| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |

### <u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s) RF Exposure Category
Specific Absorption Rate Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.0 (1st Release)



# **APPENDIX A - SAR MEASUREMENT PLOT**

| Applicant:      | Yaesi                                 | u Musen Co., Lt | . FCC ID:              | K6630553X20                  | IC:                   | 511B-30553X20                   | YAESU         |
|-----------------|---------------------------------------|-----------------|------------------------|------------------------------|-----------------------|---------------------------------|---------------|
| Model(s):       | HX10                                  | 0 DUT Typ       | : Portable VHF         | PTT Marine Radio Tra         | 156.025 - 157.425 MHz |                                 |               |
| 2012 Celltech I | ech Labs Inc. This document is not to |                 | ot to be reproduced in | whole or in part without the | prior written p       | ermission of Celltech Labs Inc. | Page 20 of 37 |



| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.0 (1st Release)



Date Tested: 07/24/2012

#### Face-held SAR - Channel 14 - 156.7 MHz

DUT: Yaesu HX100; Type: VHF PTT Radio Transceiver; Serial: 21000003 (Identical Prototype)

Ambient Temp: 23C; Fluid Temp: 23.1C; Barometric Pressure: 101.1 kPa; Humidity: 32%

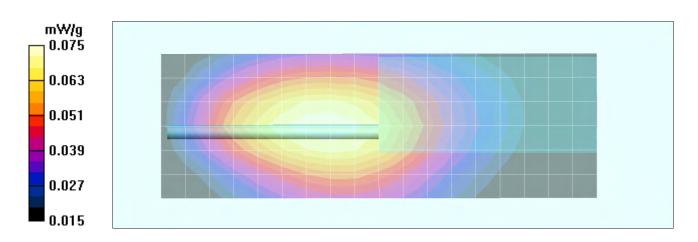
Communication System: VHF CW Frequency: 156.7 MHz; Duty Cycle: 1:1

Medium: HSL150 Medium parameters used (interpolated): f = 156.7 MHz;  $\sigma = 0.763$  mho/m;  $\varepsilon_r = 55.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

- Probe: ET3DV6 SN1590; ConvF(9.3, 9.3, 9.3); Calibrated: 24/04/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Side Planar; Type: Plexiglass; Serial: 161
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Area Scan (7x19x1):** Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.075 mW/g


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 9.29 V/m; Power Drift = -0.322 dB

Peak SAR (extrapolated) = 0.109 W/kg

SAR(1 g) = 0.072 mW/g; SAR(10 g) = 0.054 mW/g

Info: Interpolated medium parameters used for SAR evaluation.



| Applicant:                                                                                | Yaesi | u Mu | sen Co., Ltd.                                       | FCC ID:                      | K6630553X20     | IC:                             | 511B-30553X20 | YAE |
|-------------------------------------------------------------------------------------------|-------|------|-----------------------------------------------------|------------------------------|-----------------|---------------------------------|---------------|-----|
| Model(s):                                                                                 | HX10  | 0    | DUT Type: Portable VHF PTT Marine Radio Transceiver |                              | nsceiver        | 156.025 - 157.425 MHz           |               |     |
| 2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without |       |      |                                                     | whole or in part without the | prior written p | ermission of Celltech Labs Inc. | Page 21 of    |     |

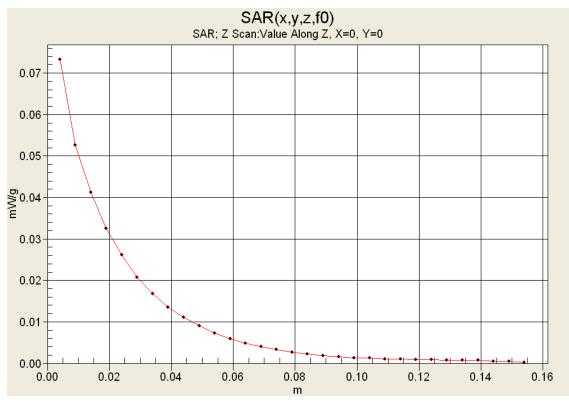


Test Report Issue Date
July 27, 2012

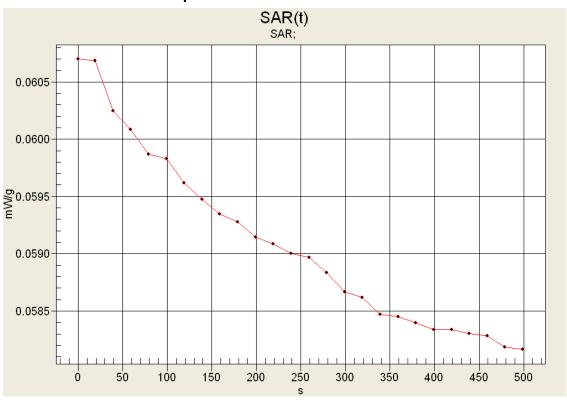
<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate


RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.


Rev. 1.0 (1st Release)



### **Z-Axis Scan**



# **SAR vs. Time Power Droop**



| Applicant:      | ,                                               |  | FCC ID:            | K6630553X20                               | IC:             | 511B-30553X20                   | YAESU                 |
|-----------------|-------------------------------------------------|--|--------------------|-------------------------------------------|-----------------|---------------------------------|-----------------------|
| Model(s):       |                                                 |  | DUT Type:          | Portable VHF PTT Marine Radio Transceiver |                 |                                 | 156.025 - 157.425 MHz |
| 2012 Celltech L | 2012 Celltech Labs Inc. This document is not to |  | be reproduced in v | whole or in part without the p            | prior written p | ermission of Celltech Labs Inc. | Page 22 of 37         |



| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |

### <u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

Rev. 1.0 (1st Release)

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.



# **APPENDIX B - SYSTEM PERFORMANCE CHECK PLOT**

| Applicant:      | Yaesi     | aesu Musen Co., Ltd.       |  | FCC ID: K6630553X20 IC:                   |                              | 511B-30553X20   | YAESU                           |                       |
|-----------------|-----------|----------------------------|--|-------------------------------------------|------------------------------|-----------------|---------------------------------|-----------------------|
| Model(s):       | HX10      |                            |  | Portable VHF PTT Marine Radio Transceiver |                              |                 |                                 | 156.025 - 157.425 MHz |
| 2012 Celltech I | _abs Inc. | c. This document is not to |  | be reproduced in v                        | whole or in part without the | prior written p | ermission of Celltech Labs Inc. | Page 23 of 37         |



| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |

Test Report Issue Date

July 27, 2012

Description of Test(s)

Specific Absorption Rate

Test Report Serial No.

071312K66-T1185-S80V

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



Date Tested: 07/24/2012

### System Performance Check - 300 MHz Dipole - Head

DUT: Dipole 300 MHz; Type: D300V3; Serial: 1009; Calibrated: 17/04/2012

Ambient Temp: 24C; Fluid Temp: 24.0C; Barometric Pressure: 101.1 kPa; Humidity: 32%

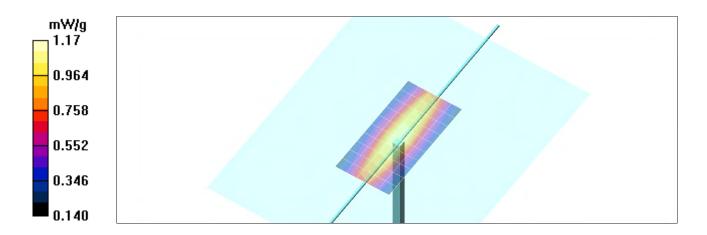
Communication System: CW

Frequency: 300 MHz; Duty Cycle: 1:1

Medium: 300 HSL Medium parameters used: f = 300 MHz;  $\sigma$  = 0.88 mho/m;  $\epsilon_r$  = 46;  $\rho$  = 1000 kg/m<sup>3</sup>

- Probe: ET3DV6 SN1590; ConvF(8.3, 8.3, 8.3); Calibrated: 24/04/2012
- Sensor-Surface: 5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: Barski Industries; Type: Fiberglass Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Head d=15mm, Pin = 398mW/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.08 mW/g

Head d=15mm, Pin = 398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.5 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 g) = 1.2 mW/g; SAR(10 g) = 0.803 mW/g Maximum value of SAR (measured) = 1.17 mW/g



| Applicant:                                      | Yaesu Musen Co., Ltd. |                |  | FCC ID:                                   | K6630553X20                  | IC:             | 511B-30553X20                   | YAE        |
|-------------------------------------------------|-----------------------|----------------|--|-------------------------------------------|------------------------------|-----------------|---------------------------------|------------|
| Model(s):                                       | HX10                  | X100 DUT Type: |  | Portable VHF PTT Marine Radio Transceiver |                              |                 | 156.025 - 157.425 MHz           |            |
| 2012 Celltech Labs Inc. This document is not to |                       |                |  | be reproduced in v                        | whole or in part without the | prior written p | ermission of Celltech Labs Inc. | Page 24 of |

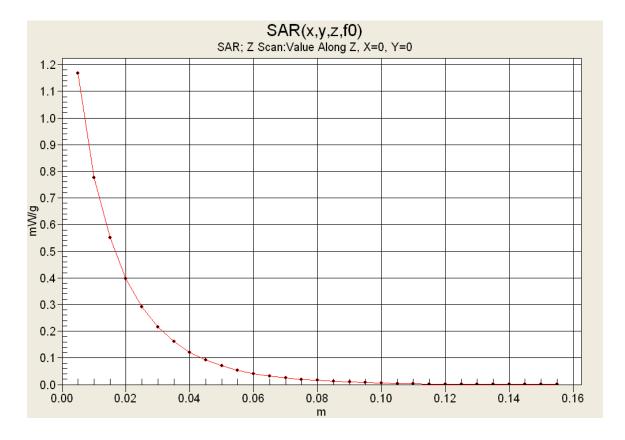


Test Report Issue Date July 27, 2012

Test Report Serial No. 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate


Rev. 1.0 (1st Release) RF Exposure Category Gen. Pop. / Uncontrolled

Test Report Revision No.

ilac MRA



**Z-Axis Scan** 



| Applicant:      | Yaesi                             | Yaesu Musen Co., Ltd. |                    | FCC ID:                        | K6630553X20          | IC:                             | 511B-30553X20         | YAESU |
|-----------------|-----------------------------------|-----------------------|--------------------|--------------------------------|----------------------|---------------------------------|-----------------------|-------|
| Model(s):       | HX10                              | 0                     | DUT Type:          | Portable VHF                   | PTT Marine Radio Tra | nsceiver                        | 156.025 - 157.425 MHz |       |
| 2012 Celltech L | Labs Inc. This document is not to |                       | be reproduced in v | whole or in part without the p | prior written p      | ermission of Celltech Labs Inc. | Page 25 of 37         |       |



Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.0 (1st Release)



# **APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS**

| Applicant:      | Yaes     | Yaesu Musen Co., Ltd.  HX100 DUT Type: |  | FCC ID:                                   | K6630553X20                  | IC:             | 511B-30553X20                   | YAESU         |
|-----------------|----------|----------------------------------------|--|-------------------------------------------|------------------------------|-----------------|---------------------------------|---------------|
| Model(s):       | HX10     |                                        |  | Portable VHF PTT Marine Radio Transceiver |                              |                 | 156.025 - 157.425 MHz           |               |
| 2012 Celltech L | abs Inc. | s Inc. This document is not t          |  | be reproduced in v                        | vhole or in part without the | prior written p | ermission of Celltech Labs Inc. | Page 26 of 37 |



Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Specific Absorption Rate

71312K66-T1185-S80V Rev. 1.0 (1st Release)

<u>Description of Test(s)</u> <u>RF Exposure Category</u>

Test Report Revision No.

Gen. Pop. / Uncontrolled



### 300 MHz Head

Celltech Labs
Test Result for UIM Dielectric Parameter
24/Jul/2012

Frequency (GHz)

FCC\_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC\_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test\_e Epsilon of UIM

Test\_s Sigma of UIM

| *********** | ****** | ******  | ****** | ****** |
|-------------|--------|---------|--------|--------|
| Freq        | FCC_eH | IFCC_sh | Test_e | Test_s |
| 0.2000      | 49.97  | 0.80    | 50.12  | 0.79   |
| 0.2100      | 49.50  | 0.80    | 48.98  | 0.80   |
| 0.2200      | 49.03  | 0.81    | 49.53  | 0.82   |
| 0.2300      | 48.57  | 0.82    | 47.68  | 0.82   |
| 0.2400      | 48.10  | 0.83    | 47.90  | 0.83   |
| 0.2500      | 47.63  | 0.83    | 48.19  | 0.84   |
| 0.2600      | 47.17  | 0.84    | 46.85  | 0.84   |
| 0.2700      | 46.70  | 0.85    | 45.74  | 0.85   |
| 0.2800      | 46.23  | 0.86    | 46.73  | 0.86   |
| 0.2900      | 45.77  | 0.86    | 46.66  | 0.86   |
| 0.3000      | 45.30  | 0.87    | 46.04  | 0.88   |
| 0.3100      | 45.18  | 0.87    | 44.82  | 0.89   |
| 0.3200      | 45.06  | 0.87    | 45.12  | 0.89   |
| 0.3300      | 44.94  | 0.87    | 43.83  | 0.91   |
| 0.3400      | 44.82  | 0.87    | 44.56  | 0.91   |
| 0.3500      | 44.70  | 0.87    | 44.58  | 0.92   |
| 0.3600      | 44.58  | 0.87    | 44.61  | 0.92   |
| 0.3700      | 44.46  | 0.87    | 43.89  | 0.93   |
| 0.3800      | 44.34  | 0.87    | 43.83  | 0.94   |
| 0.3900      | 44.22  | 0.87    | 43.59  | 0.96   |
| 0.4000      | 44.10  | 0.87    | 43.51  | 0.96   |
|             |        |         |        |        |

| Applicant:      | Yaesi     | u Mu | sen Co., Ltd.        | FCC ID:            | K6630553X20                  | IC:             | 511B-30553X20                   | YAESU         |
|-----------------|-----------|------|----------------------|--------------------|------------------------------|-----------------|---------------------------------|---------------|
| Model(s):       | HX10      | 0    | DUT Type:            | Portable VHF       | PTT Marine Radio Tra         | nsceiver        | 156.025 - 157.425 MHz           |               |
| 2012 Celltech I | _abs Inc. | This | s document is not to | be reproduced in v | whole or in part without the | prior written p | ermission of Celltech Labs Inc. | Page 27 of 37 |



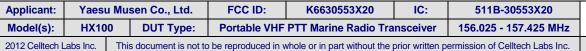
Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled




#### 150 MHz Head

Celltech Labs
Test Result for UIM Dielectric Parameter
24/Jul/2012
Frequency (GHz)

FCC\_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC\_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test\_e Epsilon of UIM
Test\_s Sigma of UIM

| Freq   | FCC_eF | IFCC_sH | Test_e | Test_s |
|--------|--------|---------|--------|--------|
| 0.0500 | 56.97  | 0.69    | 105.13 | 0.62   |
| 0.0600 | 56.50  | 0.69    | 92.21  | 0.68   |
| 0.0700 | 56.03  | 0.70    | 77.44  | 0.70   |
| 0.0800 | 55.57  | 0.71    | 78.24  | 0.68   |
| 0.0900 | 55.10  | 0.72    | 68.52  | 0.71   |
| 0.1000 | 54.63  | 0.72    | 63.62  | 0.72   |
| 0.1100 | 54.17  | 0.73    | 59.10  | 0.76   |
| 0.1200 | 53.70  | 0.74    | 60.83  | 0.74   |
| 0.1300 | 53.23  | 0.75    | 55.67  | 0.75   |
| 0.1400 | 52.77  | 0.75    | 56.74  | 0.75   |
| 0.1500 | 52.30  | 0.76    | 55.22  | 0.77   |
| 0.1600 | 51.83  | 0.77    | 55.58  | 0.76   |
| 0.1700 | 51.37  | 0.77    | 56.31  | 0.77   |
| 0.1800 | 50.90  | 0.78    | 52.49  | 0.80   |
| 0.1900 | 50.43  | 0.79    | 51.69  | 0.79   |
| 0.2000 | 49.97  | 0.80    | 51.35  | 0.79   |
| 0.2100 | 49.50  | 0.80    | 50.35  | 0.82   |
| 0.2200 | 49.03  | 0.81    | 51.71  | 0.82   |
| 0.2300 | 48.57  | 0.82    | 50.64  | 0.83   |
| 0.2400 | 48.10  | 0.83    | 49.35  | 0.83   |
| 0.2500 | 47.63  | 0.83    | 48.61  | 0.85   |
|        |        |         |        |        |







Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.0 (1st Release)



# **APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS**

| Applicant:      | Yaesı     | u Mu | sen Co., Ltd.        | FCC ID:            | K6630553X20                  | IC:             | 511B-30553X20                   | YAESU         |
|-----------------|-----------|------|----------------------|--------------------|------------------------------|-----------------|---------------------------------|---------------|
| Model(s):       | HX10      | 0    | DUT Type:            | Portable VHF       | PTT Marine Radio Tra         | nsceiver        | 156.025 - 157.425 MHz           |               |
| 2012 Celltech I | _abs Inc. | This | s document is not to | be reproduced in v | whole or in part without the | prior written p | ermission of Celltech Labs Inc. | Page 29 of 37 |



Test Report Issue Date July 27, 2012

Test Report Serial No. 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.0 (1st Release)



# **FACE-HELD SAR TEST SETUP PHOTOGRAPHS**

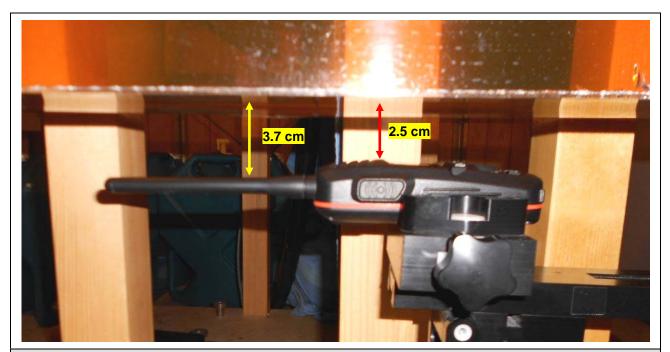


| Ap  | oplicant:                                       | Yaesu M |                    | sen Co., Ltd.                | FCC ID:                                        | K6630553X20                    | IC:                   | 511B-30553X20 | - |
|-----|-------------------------------------------------|---------|--------------------|------------------------------|------------------------------------------------|--------------------------------|-----------------------|---------------|---|
| M   | odel(s):                                        | HX10    | 0                  | DUT Type:                    | Portable VHF PTT Marine Radio Transceiver 156. |                                | 156.025 - 157.425 MHz |               |   |
| 20. | 2012 Celltech Labs Inc. This document is not to |         | he reproduced in v | whole or in part without the | orior written n                                | ermission of Celltech Labs Inc | Page                  |               |   |





Test Report Issue Date
July 27, 2012


<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



### **FACE-HELD SAR TEST SETUP PHOTOGRAPHS**

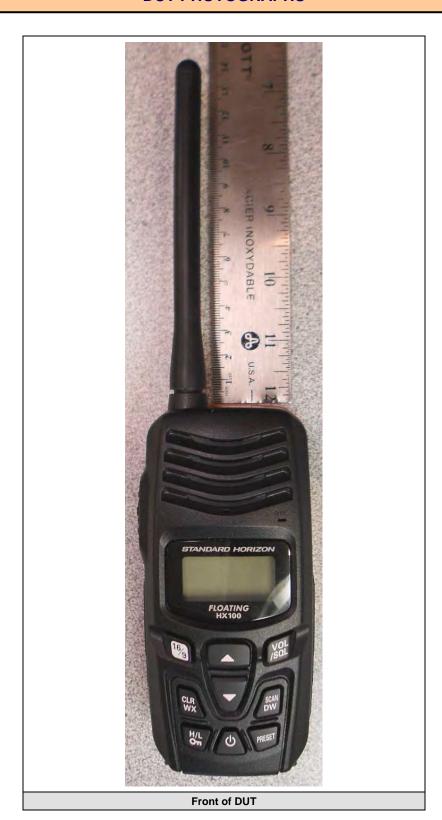


**DUT Spacing to Side Planar Phantom** 

| Applicant:      | Yaesı    | u Mus | sen Co., Ltd.        | FCC ID:            | K6630553X20                  | IC:             | 511B-30553X20                   | YAESU         |
|-----------------|----------|-------|----------------------|--------------------|------------------------------|-----------------|---------------------------------|---------------|
| Model(s):       | HX10     | 0     | DUT Type:            | Portable VHF       | PTT Marine Radio Tra         | nsceiver        | 156.025 - 157.425 MHz           |               |
| 2012 Celltech I | abs Inc. | This  | s document is not to | be reproduced in v | vhole or in part without the | prior written p | ermission of Celltech Labs Inc. | Page 31 of 37 |



Test Report Issue Date
July 27, 2012


<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



# **DUT PHOTOGRAPHS**



| Applicant:      | Yaes      | u Mu | sen Co., Ltd.        | FCC ID:            | K6630553X20                  | IC:             | 511B-30553X20                   | YAESU         |
|-----------------|-----------|------|----------------------|--------------------|------------------------------|-----------------|---------------------------------|---------------|
| Model(s):       | HX10      | 00   | DUT Type:            | Portable VHF       | PTT Marine Radio Tra         | nsceiver        | 156.025 - 157.425 MHz           |               |
| 2012 Celltech I | Labs Inc. | This | s document is not to | be reproduced in v | whole or in part without the | prior written p | ermission of Celltech Labs Inc. | Page 32 of 37 |



Test Report Issue Date July 27, 2012

Test Report Serial No. 071312K66-T1185-S80V

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (1st Release)

RF Exposure Category Gen. Pop. / Uncontrolled







**DUT Left side** 





**DUT Right side** 

YAESU

OR SAR

**DUT Top end** 



FCC ID: K6630553X20 511B-30553X20 Applicant: Yaesu Musen Co., Ltd. IC: Model(s): HX100 **Portable VHF PTT Marine Radio Transceiver** 156.025 - 157.425 MHz Page 33 of 37

2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.



<u>Test Report Serial No.</u> 071312K66-T1185-S80V

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (1st Release)

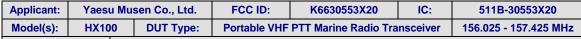
RF Exposure Category
Gen. Pop. / Uncontrolled







Front of Ni-MH Battery


**Back of Ni-MH Battery** 







**Back of DUT - Battery removed** 







| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |
|                       |

Test Report Issue Date Description of Test(s)

July 27, 2012 Specific Absorption Rate

Test Report Serial No.

071312K66-T1185-S80V

Test Report Revision No.
Rev. 1.0 (1st Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



# **APPENDIX E - DIPOLE CALIBRATION**

| Applicant:      | Yaesı     | ı Mu | sen Co., Ltd.        | FCC ID:            | K6630553X20                  | IC:             | 511B-30553X20                   | VAESU         |
|-----------------|-----------|------|----------------------|--------------------|------------------------------|-----------------|---------------------------------|---------------|
| Model(s):       | HX10      | 0    | DUT Type:            | Portable VHF       | PTT Marine Radio Tra         | nsceiver        | 156.025 - 157.425 MHz           |               |
| 2012 Celltech L | _abs Inc. | This | s document is not to | be reproduced in v | whole or in part without the | prior written p | ermission of Celltech Labs Inc. | Page 35 of 37 |

# Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Certificate No: D300V3-1009\_Apr12

# **CALIBRATION CERTIFICATE**

Object D300V3 - SN: 1009

Calibration procedure(s) QA CAL-15.v6

Calibration procedure for dipole validation kits below 700 MHz

Calibration date: April 17, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter E4419B          | GB41293874         | 29-Mar-12 (No. 217-01508)         | Apr-13                 |
| Power sensor E4412A         | MY41498087         | 29-Mar-12 (No. 217-01508)         | Apr-13                 |
| Reference 3 dB Attenuator   | SN: S5054 (3c)     | 27-Mar-12 (No. 217-01531)         | Apr-13                 |
| Reference 20 dB Attenuator  | SN: S5086 (20b)    | 27-Mar-12 (No. 217-01529)         | Apr-13                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533)         | Apr-13                 |
| Reference Probe ET3DV6      | SN: 1507           | 30-Dec-11 (No. ET3-1507_Dec11)    | Dec-12                 |
| DAE4                        | SN: 900            | 11-Apr-12 (No. DAE4-900_Apr12)    | Apr-13                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Jeton Kastrati     | Laboratory Technician             | tell                   |
|                             | Katja Pokovic      | Technical Manager                 |                        |

Issued: April 27, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D300V3-1009\_Apr12

# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D300V3-1009\_Apr12 Page 2 of 6

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.1                     |  |  |
|------------------------------|------------------------|-----------------------------|--|--|
| Extrapolation                | Advanced Extrapolation |                             |  |  |
| Phantom                      | ELI4 Flat Phantom      | Shell thickness: 2 ± 0.2 mm |  |  |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer                 |  |  |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |                             |  |  |
| Frequency                    | 300 MHz ± 1 MHz        |                             |  |  |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 45.3         | 0.87 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 44.9 ± 6 %   | 0.89 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### **SAR result with Head TSL**

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 398 mW input power | 1.17 mW / g               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 2.88 mW /g ± 18.1 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 398 mW input power | 0.770 mW / g              |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 1.90 mW /g ± 17.6 % (k=2) |

Certificate No: D300V3-1009\_Apr12 Page 3 of 6

#### **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 57.8 Ω - 2.9 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 22.2 dB       |  |  |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.748 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | February 26, 2009 |

Certificate No: D300V3-1009\_Apr12 Page 4 of 6

#### **DASY5 Validation Report for Head TSL**

Date: 17.04.2012

Test Laboratory: SPEAG

DUT: Dipole 300 MHz; Type: D300V3; Serial: D300V3 - SN: 1009

Communication System: CW; Frequency: 300 MHz

Medium parameters used: f = 300 MHz;  $\sigma = 0.89 \text{ mho/m}$ ;  $\varepsilon_r = 44.9$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ET3DV6 - SN1507; ConvF(6.59, 6.59, 6.59); Calibrated: 30.12.2011;

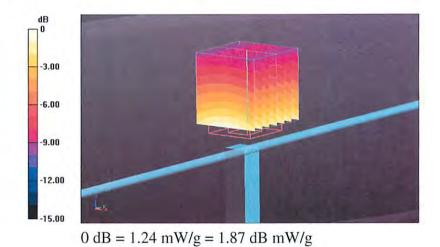
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn900; Calibrated: 11.04.2012

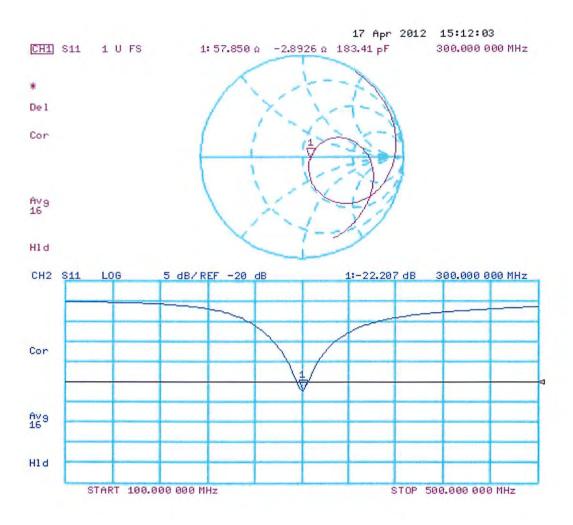
Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

• DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

## Dipole Calibration for Head Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.838 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 1.974 mW/g

SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.770 mW/g

Maximum value of SAR (measured) = 1.24 mW/g



## Impedance Measurement Plot for Head TSL





| Date(s) of Evaluation |
|-----------------------|
| July 24, 2012         |

071312K66-T1185-S80V Description of Test(s) July 27, 2012 Specific Absorption Rate

Test Report Serial No.

Test Report Revision No. Rev. 1.0 (1st Release) RF Exposure Category

Gen. Pop. / Uncontrolled



#### **APPENDIX F - PROBE CALIBRATION**

| Applicant:      | Yaesı     | u Mu | sen Co., Ltd.        | FCC ID: K6630553X20 IC: 511B-30553X20     |                                                                                           | FCC ID: K6630553X20 IC:                                         |  | YAESU                 |  |
|-----------------|-----------|------|----------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|-----------------------|--|
| Model(s):       | HX10      | 0    | DUT Type:            | Portable VHF PTT Marine Radio Transceiver |                                                                                           | Portable VHF PTT Marine Radio Transceiver 156.025 - 157.425 MHz |  | 156.025 - 157.425 MHz |  |
| 2012 Celltech L | _abs Inc. | This | s document is not to | be reproduced in v                        | reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                                                                 |  |                       |  |

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Accreditation No.: SCS 108

Certificate No: ET3-1590\_Apr12

## **CALIBRATION CERTIFICATE**

Object

ET3DV6 - SN:1590

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

April 24, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 29-Mar-12 (No. 217-01508)         | Apr-13                 |
| Power sensor E4412A        | MY41498087      | 29-Mar-12 (No. 217-01508)         | Apr-13                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 27-Mar-12 (No. 217-01531)         | Apr-13                 |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529)         | Apr-13                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532)         | Apr-13                 |
| Reference Probe ES3DV2     | SN: 3013        | 29-Dec-11 (No. ES3-3013_Dec11)    | Dec-12                 |
| DAE4                       | SN: 660         | 10-Jan-12 (No. DAE4-660_Jan12)    | Jan-13                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-11)  | In house check: Apr-13 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 |

Name Function Signature
Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: April 26, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization  $\varphi$   $\varphi$  rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

#### Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### **Methods Applied and Interpretation of Parameters:**

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Continue No. 570 4500 April 0

## Probe ET3DV6

SN:1590

Manufactured:

March 19, 2001 April 24, 2012

Calibrated:

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 1.79     | 1.92     | 1.60     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 94.8     | 98.4     | 88.8     |           |

#### **Modulation Calibration Parameters**

| UID | Communication System Name | PAR  |   | A<br>dB | B<br>dB | C<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|------|---|---------|---------|---------|----------|---------------------------|
| 0   | CW                        | 0.00 | Х | 0.00    | 0.00    | 1.00    | 143.4    | ±4.6 %                    |
|     |                           |      | Υ | 0.00    | 0.00    | 1.00    | 150.1    |                           |
|     |                           |      | Z | 0.00    | 0.00    | 1.00    | 179.4    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>8</sup> Numerical linearization parameter: uncertainty not required.

<sup>&</sup>lt;sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

#### **Calibration Parameter Determined in Head Tissue Simulating Media**

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------|
| 450                  | 43.5                                  | 0.87                    | 7.54    | 7.54    | 7.54    | 0.20  | 2.16          | ± 13.4 %       |
| 750                  | 41.9                                  | 0.89                    | 7.11    | 7.11    | 7.11    | 0.29  | 3.00          | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                    | 6.77    | 6.77    | 6.77    | 0.27  | 3.00          | ± 12.0 %       |
| 900                  | 41.5                                  | 0.97                    | 6.67    | 6.67    | 6.67    | 0.29  | 3.00          | ± 12.0 %       |

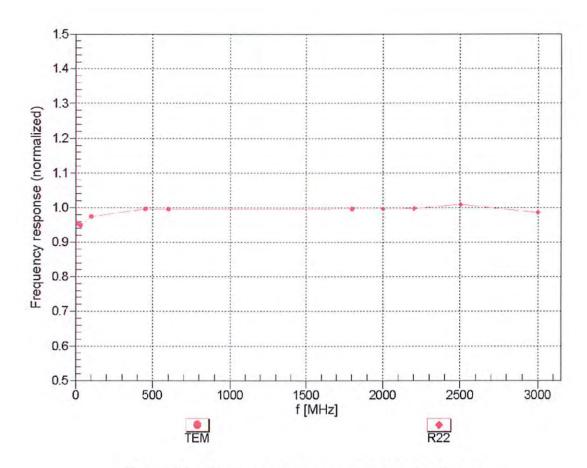
<sup>&</sup>lt;sup>c</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

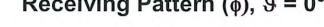
## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

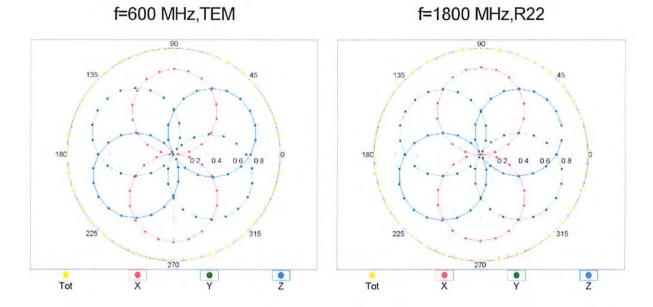
#### Calibration Parameter Determined in Body Tissue Simulating Media

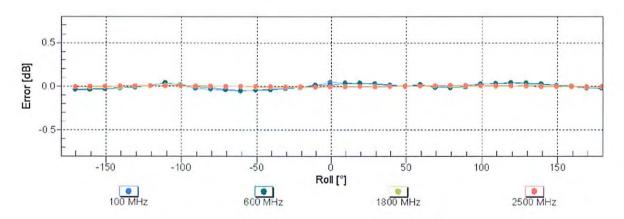

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------|
| 450                  | 56.7                                  | 0.94                               | 7.93    | 7.93    | 7.93    | 0.12  | 2.07          | ± 13.4 %       |
| 750                  | 55.5                                  | 0.96                               | 6.71    | 6.71    | 6.71    | 0.22  | 3.00          | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                               | 6.54    | 6.54    | 6.54    | 0.27  | 3.00          | ± 12.0 %       |
| 900                  | 55.0                                  | 1.05                               | 6.51    | 6.51    | 6.51    | 0.29  | 2.92          | ± 12.0 %       |

<sup>&</sup>lt;sup>c</sup> Frequency validity of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to

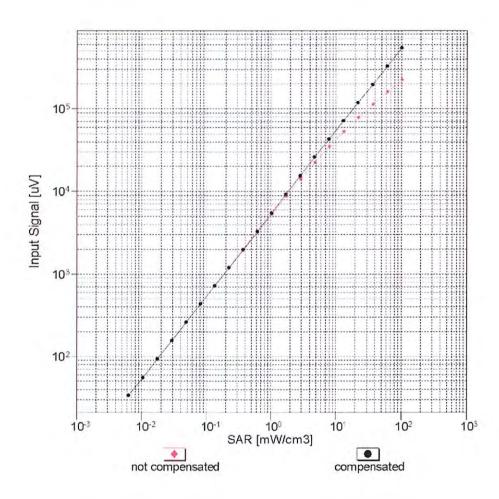

<sup>&</sup>lt;sup>L</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

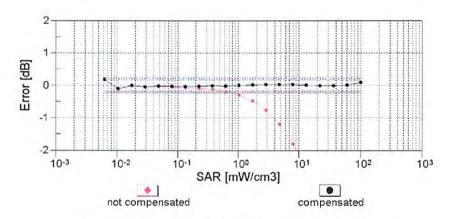

## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

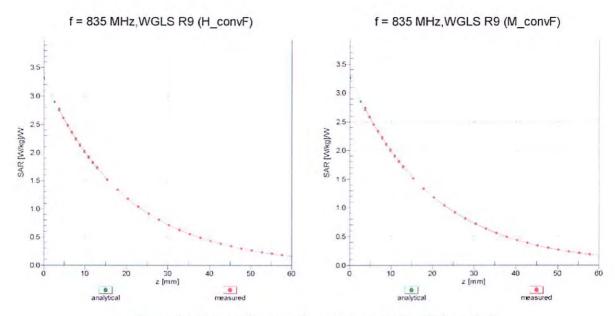
## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$



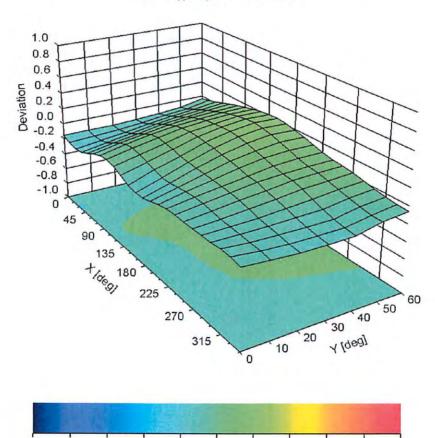



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f = 900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)

## **Conversion Factor Assessment**



## **Deviation from Isotropy in Liquid**

Error ( $\phi$ ,  $\vartheta$ ), f = 900 MHz



-0.8

-0.6

-0.4

-0.2

0.0

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

8.0

## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1590

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -170.8     |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | enabled    |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 6.8 mm     |
| Probe Tip to Sensor X Calibration Point       | 2.7 mm     |
| Probe Tip to Sensor Y Calibration Point       | 2.7 mm     |
| Probe Tip to Sensor Z Calibration Point       | 2.7 mm     |
| Recommended Measurement Distance from Surface | 4 mm       |

Certificate No: ET3-1590\_Apr12 Page 11 of 11

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

## **Additional Conversion Factors**

for Dosimetric E-Field Probe

| Type:                   | ET3DV6         |
|-------------------------|----------------|
| Serial Number:          | 1590           |
| Place of Assessment:    | Zurich         |
| Date of Assessment:     | May 21, 2012   |
| Probe Calibration Date: | April 24, 2012 |

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 450, 835 and 900 MHz.

Assessed by:

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

#### Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

 $300 \pm 50 \text{ MHz}$ 

ConvF

 $8.3 \pm 9\%$ 

 $\varepsilon_r = 45.3 \pm 5\%$ 

 $\sigma = 0.87 \pm 5\%$  mho/m

(head tissue)

#### **Important Note:**

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

## **Additional Conversion Factors**

for Dosimetric E-Field Probe

| Type:                   | ET3DV6         |
|-------------------------|----------------|
| Serial Number:          | 1590           |
| Place of Assessment:    | Zurich         |
| Date of Assessment:     | April 27, 2012 |
| Probe Calibration Date: | April 24, 2012 |

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 450, 835 and 900 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

#### Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

 $150 \pm 50 \text{ MHz}$  ConvF  $9.3 \pm 10\%$ 

 $\varepsilon_r = 52.3 \pm 5\%$ 

 $\sigma = 0.76 \pm 5\%$  mho/m

(head tissue)

 $150 \pm 50 \text{ MHz}$  ConvF  $8.6 \pm 10\%$ 

 $\varepsilon_r = 61.9 \pm 5\%$ 

 $\sigma = 0.80 \pm 5\%$  mho/m

(body tissue)

#### **Important Note:**

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.



Date(s) of Evaluation July 24, 2012

Test Report Issue Date
July 27, 2012

<u>Test Report Serial No.</u> 071312K66-T1185-S80V

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.0 (1st Release)



#### **APPENDIX G - BARSKI PHANTOM CERTIFICATE OF CONFORMITY**

| Applicant:      | Yaesu Musen Co., Ltd. |     | nt: Yaes             |                    | FCC ID:                      | K6630553X20     | IC:                            | 511B-30553X20 |  |
|-----------------|-----------------------|-----|----------------------|--------------------|------------------------------|-----------------|--------------------------------|---------------|--|
| Model(s):       | HX10                  | 0   | DUT Type:            | Portable VHF       | PTT Marine Radio Tra         | nsceiver        | 156.025 - 157.425 MHz          |               |  |
| 2012 Calltach I | ahe Inc               | Thi | e document is not to | he reproduced in v | whole or in part without the | orior written n | ermission of Celltech Labs Inc | Pa            |  |

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2



Ph. # 250-769-6848 Fax # 250-769-6334

E-mail: <u>barskiind@shaw.ca</u>
Web: www.bcfiberglass.com

#### FIBERGLASS FABRICATORS

## Certificate of Conformity

Item: Flat Planar Phantom Unit # 03-01

Date: June 16, 2003

Manufacturer: Barski Industries (1985 Ltd)

| Test                | Requirement                                                                         | Details                                                 |
|---------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|
| Shape               | Compliance to geometry according to drawing                                         | Supplied CAD drawing                                    |
| Material Thickness  | Compliant with the requirements                                                     | 2mm +/- 0.2mm in measurement area                       |
| Material Parameters | Dielectric parameters for required frequencies Based on Dow Chemical technical data | 100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05 |

#### Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

Signature:

Daniel Chailler





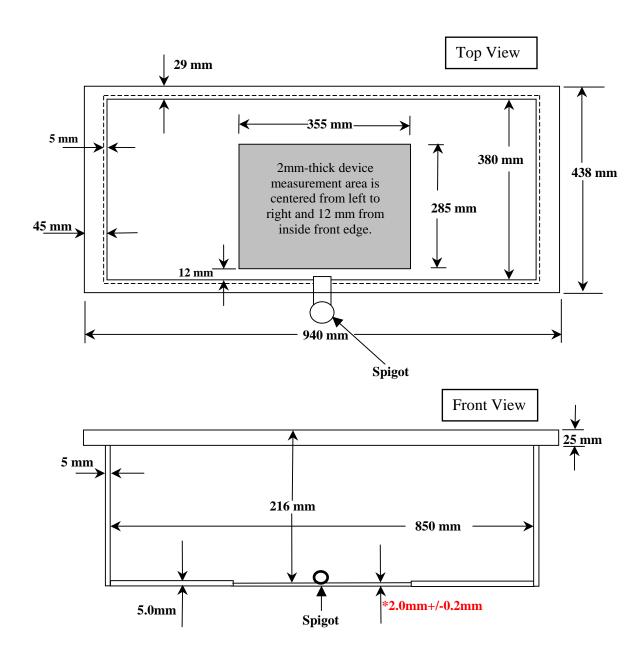
Fiberglass Planar Phantom - Top View



Fiberglass Planar Phantom - Front View



Fiberglass Planar Phantom - Back View




Fiberglass Planar Phantom - Bottom View



#### **Dimensions of Fiberglass Planar Phantom**

(Manufactured by Barski Industries Ltd. - Unit# 03-01)



Note: Measurements that aren't repeated for the opposite sides are the same as the side measured. This drawing is not to scale.