

TEST REPORT

For

25 Watt VHF/FM Marine Transceiver / EXPLORER SERIES

In conformity with

FCC CFR 47 Part80 Subpart E RSS-182 Issue5 (RSS-Gen Issue 3)

- Model : GX1700
- FCC ID : K6630483X3D IC : 511B-30483X3S
- Test Item : 25 Watt VHF/FM Marine Transceiver / EXPLORER SERIES
- Report No. : ERY1401P06R1
- Issue Date : 06 Jan. 2014

Prepared for	YAESU MUSEN CO., LTD. Tennozu Parkside Building 2-5-8 Higashi-shinagawa, Shinagawa-ku, Tokyo 140-0002 Japan
Prepared by	RF Technologies Ltd. 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan Telephone: +81+(0)45- 534-0645 FAX: +81+(0)45- 534-0646

This report shall not be reproduced, except in full, without the written permission of RF Technologies Ltd. The test results in this report apply only to the sample tested. RF Technologies Ltd. is managed to ISO17025 and has the necessary knowledge and test facilities for testing according to the referenced standards.

Table of contents

1	Ger	neral information	.3
		Product description	
	1.2	Test(s) performed/ Summary of test result	3
	1.3	Test facility	4
	1.4	Measurement uncertainty	4
	1.5	Summary of test results	5
	1.6	Setup of equipment under test (EUT)	
	1.6.1		5
	1.6.2	2 Operating condition:	5
	1.6.3	3 Setup diagram of tested system	6
	1.7	Equipment modifications	6
	1.8	Deviation from the standard	6
2	Tes	t procedure and test data	.7
	2.1	Radiated spurious emissions (Transmitter test)	7
	2.2	Radiated emissions (Receiver test)	10
3		t setup photographs	
		Radiated emissions	
4		t of utilized test equipment / calibration	

History

Report No.	Date	Revisions	Issued By
ERY1312P18R1	18 Dec. 2013	Initial Issue	T.Kato
ERY1401P06R1	06 Jan.v2014	Revise the standard name of IC (Page 1) RSS-282 \rightarrow RSS-182	T.Kato

1 General information

1.1 Product description

Test item	: 25 Watt VHF/FM Marine Transceiver / EXPLORER SERIES
Manufacturer	: YAESU MUSEN CO., LTD.
Address	: 43 Utsuroda, Morijuku, Sukagawa-shi, Fukushima-ken 962-0001 Japan
Model	: GX1700
FCC ID	: K6630483X3D
IC	: 511B-30483X3S
Serial number	: L63Q000001
Operating frequency	: 156.025 – 163.275 MHz
Output power	: 25 W (High) / 1 W (Low) nominal
Emission designator	: 16K0G3E (Voice), 16K0G2B (DSC)
Software version	: N/A
Hardware version	: N/A
Highest operating frequency	: 29.95 MHz
Receipt date of EUT	: 10 Dec. 2013
Nominal power source voltages	: 13.8 Vdc

1.2 Test(s) performed/ Summary of test result

Test specification(s)	: FCC CFR 47. Part 80 subpart E
	: RSS-182 Issue 5 (RSS-Gen Issue 3)
Test method(s)	: TIS-603-D (FCC Part 80)
	: ANSI C63.4: 2003 (RSS)
Test(s) started	: 17 Dec. 2013
Test(s) completed	: 17 Dec. 2013
Purpose of test(s)	: Certification / Class II permissive change
Summary of test result	: <u>Complied</u>

Note: The above judgment is only based on the measurement data and it does not include the measurement uncertainty. Accordingly, the statement below is applied to the test result.

The EUT complies with the limit required in the standard in case that the margin is not less than the measurement uncertainty in the Laboratory.

Compliance of the EUT is more probable than non-compliance is case that the margin is less than the measurement uncertainty in the Laboratory.

Test engineer

T. Kato EMC testing Department

K. Ohnishi Manager EMC testing Department

Reviewer

1.3 Test facility

The Federal Communications Commission has reviewed the technical characteristics of the test facilities at RF Technologies Ltd., located in 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948, per October 1, 2010.

The description of the test facilities has been filed under registration number 319924 at the Office of the Federal Communications Commission. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The list of all public test facilities is available on the Internet at http://www.fcc.gov.

Registered by Industry Canada (IC): The registered facility number is as follows; Test site No. 1 (Semi-Anechoic chamber 3m): 6974A-1

Accredited by **National Voluntary Laboratory Accreditation Program** (NVLAP) for the emission tests stated in the scope of the certificate under Certificate Number 200780-0

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

1.4 Measurement uncertainty

The treatment of uncertainty is based on the general matters on the definition of uncertainty in "Guide to the expression of uncertainty in measurement (GUM)" published by ISO. The Lab's uncertainty is determined by referring UKAS Publication LAB34: 2002 "The Expression of Uncertainty in EMC Testing" and CISPR16-4-2: 2011 "Uncertainty in EMC Measurements". The uncertainty of the measurement result in the level of confidence of approximately 95% (k=2) is as follows;

Conducted emission: ± 3.4 dB (150 kHz - 30 MHz) Radiated emission (9 kHz - 30 MHz): ± 3.8 dB Radiated emission (30 MHz - 200 MHz): ± 5.0 dB Radiated emission (200 MHz - 1000 MHz): ± 6.2 dB Radiated spurious emission (30 MHz - 1000 MHz): ± 1.8 dB Radiated spurious emission (1 GHz - 18 GHz): ± 2.5 dB

1.5 Summary of test results

Requirement	Section in Standard	Result	Section in this report
Tx Radiated spurious emissions (30 to 1700 MHz) *	FCC 80.211(f)(3)	Complied	2.1
Rx Radiated emissions (30 – 1000 MHz) **	RSS-182 Sec. 7.11 RSS-Gen Sec. 4.10	Complied	2.2

* Maximum frequency of transmitter is 163.275 MHz

** Maximum internal operating frequency is 29.95 MHz.

1.6 Setup of equipment under test (EUT)

1.6.1 Test configuration of EUT

Equipment(s) under test

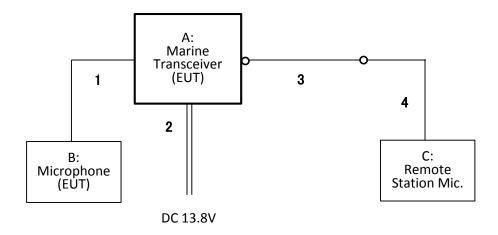
No.	Item	Manufacture	Model No.	Serial No.
Α	25 Watt VHF/FM	YAESU MUSEN CO., LTD.	GX1700	L63Q000001
	Marine Transceiver / EXPLORER SERIES			
В	Microphone	-	-	-

*Microphone is a part of the EUT.

Support Equipment(s)

	No.	Item	Manufacture	Model No.	Serial No.	FCC ID
ĺ	С	Remote Station Microphone	Vertex Standard Co., Ltd.	CMP30	0J150202	-
						-

Connected cable(s)


	No.	Item	Identification	Cable	Ferrite	Length
			(Manu.etc.)	Shielded	Core	[m]
ſ	1	Mic cable of EUT	YAESU MUSEN CO., LTD.	Yes	No	0.5
	2	DC cable	YAESU MUSEN CO., LTD.	No	No	1.3
	3	23-Foot Routing cable	YAESU MUSEN CO., LTD.	Yes	Yes	7.0
	4	Mic. cable of CMP30	YAESU MUSEN CO., LTD.	Yes	No	0.5

1.6.2 Operating condition:

Tx Mode:	The EUT transmit Tx power in 16 ch.
	(Tx power level are two mode. (Hi:25W, Low:1W)
Rx Mode:	The EUT is in receiving mode at 16/70 ch.

1.6.3 Setup diagram of tested system

1.7 Equipment modifications

No modifications have been made to the equipment in order to achieve compliance with the applicable standards described in clause 1.2.

1.8 Deviation from the standard

No deviations from the standards described in clause 1.2.

2 Test procedure and test data

2.1 Radiated spurious emissions (Transmitter test)

Test setup

Test setup was implemented according to the method of ANSI C63.4: 2003 clause 6 "General requirements for EUT equipment arrangements and operation", clause 8.2 and Annex H.3 "Radiated emission measurements setup".

Test procedure

Measurement procedures were implemented according to the method of TIA-603-C clauses 2.2.12.2.

- a) Antenna terminal of the EUT is terminated with a nonradiating load.
- b) Adjust the spectrum analyzer as below.
 - 1) RBW = 10 kHz (below 1 GHz), 1 MHz (above 1 GHz)
 - 2) VBW = 300 kHz (below 1 GHz), 3 MHz (above 1 GHz)
 - 3) Sweep speed slow enough to maintain measurement
 - 4) Detector mode : Peak
- c) Place the EUT on the turntable. The EUT set Tx ON in max power level
- d) For each spurious frequency that was found, the test antenna is raised and lowered from 1 to 4 m to obtain a maximum level on the spectrum alnalyzer. Then the turntable should be rotated 360 deg to determine the maximum reading.
- e) Repeat step d) for each spurious frequency with the test antenna polarized vert/hori.
- f) The EUT was replaced with substitution antenna and signal generator.
- g) Feed the substitution antenna at the transmitter end with signal generator connected to the antenna by means od a nonradiating cable. With the antennas at both ends horizontally polarized, and with the signal generator tuned to a paticular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spestrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- h) Repeat step g) with both antennas vertically polarized for each spurious frequency.
- i) Calculate power in dBm erp as below.
 - Spurious emission level = Antenna input level [dBm] + Substitution antenna gain [dBd]

Applicable rule and limitation

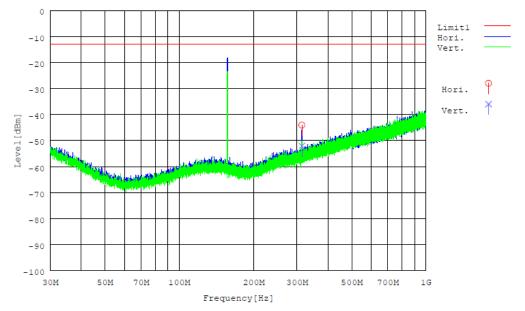
Part 80.211 (f) (3) Radiated emission limits

Limit Level = Po [dBm] - (43 + 10 log (Po [W])) = -13 [dBm erp]

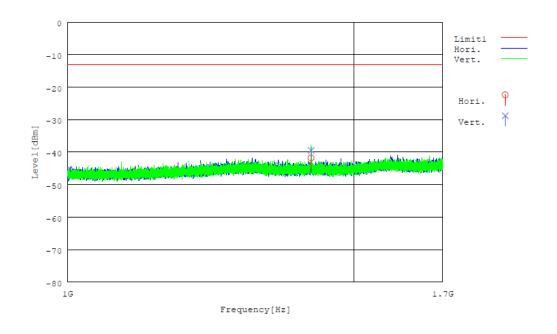
Test results - Complied with requirement

Test equipment used (refer to List of utilized test equipment)

AC01	CL11	TR06	BA10	CL30	CL31	DH01


Test Data

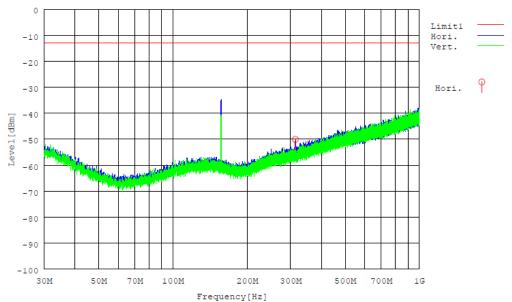
Operating mode: Tx mode (16ch / 25W) Measurement distance: 3 m


[Spurious emission level]

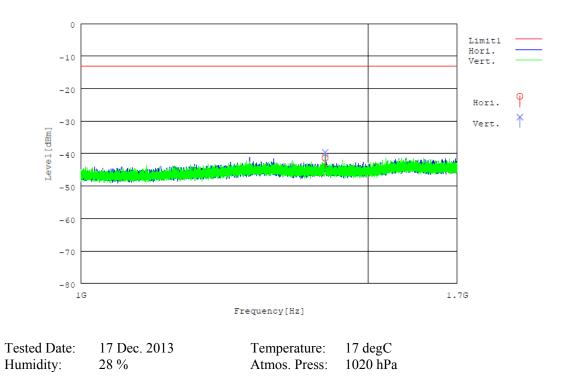
No.	Frequency [MHz]	Result [dBm]	Limit [dBm]	Margin [dB]	Ant.
1	313.600	-44.1	-13.0	31.1	Hori.
2	1411.200	-41.8	-13.0	28.8	Hori.
3	313.600	-52.1	-13.0	39.1	Vert.
4	1411.200	-39.5	-13.0	26.5	Vert.

[Chart]

Note: 156.8 MHz is Tx carrier frequency.



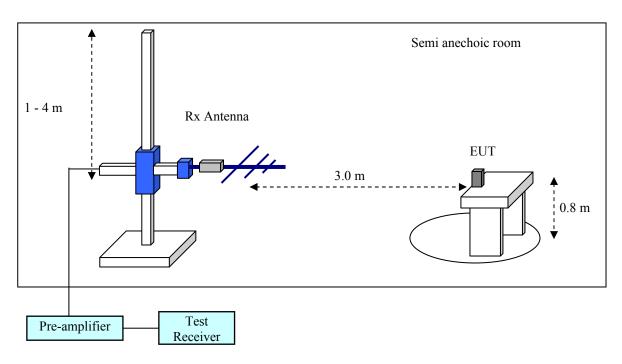
Operating mode: Tx mode (16ch / 1W) Measurement distance: 3 m


[Spurious emission level]

No.	Frequency [MHz]	Result [dBm]	Limit [dBm]	Margin [dB]	Ant.
1	313.600	-50.1	-13.0	37.1	Hori.
2	1411.200	-41.4	-13.0	28.4	Hori.
3	1411.200	-39.6	-13.0	26.6	Vert.

[Chart]

Note: 156.8 MHz is Tx carrier frequency.



2.2 Radiated emissions (Receiver test)

Test setup

Test setup was implemented according to the method of ANSI C63.4: 2003 clause 6 "General requirements for EUT equipment arrangements and operation", clause 8.2 and Annex H.3 "Radiated emission measurements setup".

Test procedure

Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 8.2. The EUT is place on a non-conducted table which is 0.8 m height from a ground plane and the measurement antenna to EUT distance is 3 meters. The turn table is rotated for 360 degrees to determine the maximum emission level.

The antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

The spectrum analyzer and receiver are set to the followings;

RBW=100 kHz, VBW= 300 kHz

Final measurement is carried out with a receiver RBW of 120 kHz (QP)

Applicable rule and limitation

RSS-Gen clauses 6.1: Radiated emission limits

~~											
	Frequency	Field Strength	Measurement	Field Strength							
	[MHz]	[µV/m]	Distance [m]	$[dB\mu V/m]$							
	30 - 88	100	3	40.0							
	88 - 216	150	3	43.5							
	216 - 960	200	3	46.0							
	Above 960	500	3	53.9							

In the emission table above, the tighter limit applies at the band edges.

The emission limits shown in the above table are based on measurements employing a quasi-peak detector.

Test results - <u>Complied with requirement</u>

Test equipment used (refer to List of utilized test equipment)

	· · · · · · · · · · · · · · · · · · ·	TDOC	DD 15	D A 10	
AC01 C	LII	TR06	PR15	BA10	

Test Data

Operating mode: Rx mode 16ch Measurement distance: 3 m

[Emission level]

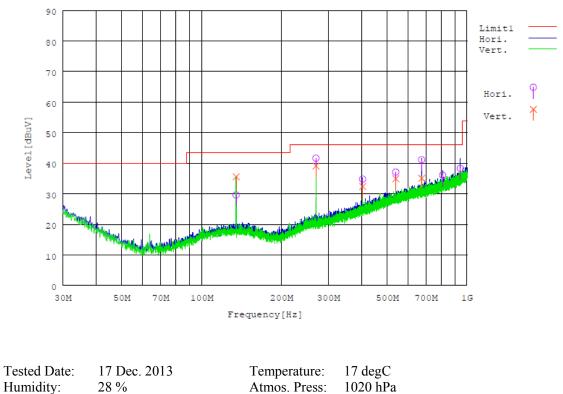
No.	Frequency [MHz]	Reading [dBµV]	Factor [dB/m]	Loss [dB]	Gain [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Ant.
1	135.100	39.0	11.6	8.4	30.1	28.9	43.5	14.6	Hori.
2	270.200	49.4	12.6	9.8	29.9	41.9	46.0	4.1	Hori.
3	405.300	37.4	15.9	11.1	29.8	34.6	46.0	11.4	Hori.
4	540.400	36.0	18.5	12.0	29.5	37.0	46.0	9.0	Hori.
5	675.500	38.5	20.1	12.6	29.8	41.4	46.0	4.6	Hori.
6	810.600	32.4	22.0	13.1	30.4	37.1	46.0	8.9	Hori.
7	945.700	31.4	23.4	13.7	30.2	38.3	46.0	7.7	Hori.
8	135.100	46.3	11.6	8.4	30.1	36.2	43.5	7.3	Vert.
9	270.200	46.8	12.6	9.8	29.9	39.3	46.0	6.7	Vert.
10	405.300	35.8	15.9	11.1	29.8	33.0	46.0	13.0	Vert.
11	540.400	34.0	18.5	12.0	29.5	35.0	46.0	11.0	Vert.
12	675.500	32.7	20.1	12.6	29.8	35.6	46.0	10.4	Vert.

[Calculation sample]

Correction Factor [dB/m] = FACTOR [dB/m] + LOSS [dB] – GAIN [dB]

RESULT $[dB\mu V/m]$ = READING $[dB\mu V]$ + Correction Factor [dB/m]

Operating mode: Rx mode 70ch Measurement distance: 3 m


No.	Frequency [MHz]	Reading [dBµV]	Factor [dB/m]	Loss [dB]	Gain [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Ant.
1	134.825	39.7	11.6	8.4	30.1	29.6	43.5	13.9	Hori.
2	269.650	49.1	12.6	9.8	29.9	41.6	46.0	4.4	Hori.
3	404.475	37.6	15.9	11.1	29.8	34.8	46.0	11.2	Hori.
4	539.300	36.1	18.5	12.0	29.5	37.1	46.0	8.9	Hori.
5	674.125	38.2	20.1	12.6	29.8	41.1	46.0	4.9	Hori.
6	808.950	31.4	22.0	13.1	30.4	36.1	46.0	9.9	Hori.
7	943.775	31.4	23.4	13.7	30.2	38.3	46.0	7.7	Hori
8	134.825	45.7	11.6	8.4	30.1	35.6	43.5	7.9	Vert.
9	269.650	46.6	12.6	9.8	29.9	39.1	46.0	6.9	Vert.
10	404.475	35.2	15.9	11.1	29.8	32.4	46.0	13.6	Vert.
11	539.300	33.9	18.5	12.0	29.5	34.9	46.0	11.1	Vert
12	674.125	32.2	20.1	12.6	29.8	35.1	46.0	10.9	Vert

[Calculation sample]

Correction Factor [dB/m] = FACTOR [dB/m] + LOSS [dB] – GAIN [dB]

RESULT $[dB\mu V/m]$ = READING $[dB\mu V]$ + Correction Factor [dB/m]

[Chart]

3 Test setup photographs

3.1 Radiated emissions

4 List of utilized test equipment / calibration

RFT ID No.	Kind of Equipment and Precision	Manufacturer	Model No.	Serial Number	Calibration Date	Calibrated until
AC01(EM)	Anechoic Chamber (1st test room)	JSE	203397C	-	2013/4/20	2014/4/30
AC01(EG)	Anechoic Chamber (1st test room)	JSE	203397C	-	2013/11/23	2014/11/30
BA10	Bilogical Antenna	TESEQ	CBL6111D	32342	2013/6/14	2014/6/30
CL11	Antenna Cable for RE	RFT	-	-	2013/10/22	2014/10/31
CL30	RF Cable 5 m	SUHNER	SUCOFLEX104PE	MY3599	2013/8/10	2014/8/31
CL31	RF Cable 1 m	Junkosha	MWX221	1303S118	2013/10/17	2014/10/31
DH01	DRG Horn Antenna	A.H. Systems	SAS-571	785	2012/1/27	2014/1/31
PR15	Pre. Amplifier	Anritsu	MH648A	6201156141	2013/6/11	2014/6/30
TR06	Test Receiver (F/W : 3.93 SP2)	Rohde & Schwarz	ESU26	100002	2013/9/10	2014/9/30

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.