REPORT ON Radio testing of the STANDARD HORIZON GX1700 In accordance with ANSI/TIA/EIA-603-C, RSS-182

Report number TA001112

November 2011

GENERAL INFORMATION

	MODEL NAME: FCC ID: IC: MANUFACTURER: TRADE NAME: EUT DESCRIPTION: SERIAL NUMBER: VOLTAGE RQUIREMENTS: NUMBER OF CHANNELS: SPECIFICATION ARE REFERENCED:	GX1700 K6630483X3D 511B-30483X3S Vertex Standard Co., Ltd. STANDARD HORIZON VHF FM Mobile Transceiver 1L000006 13.8 DC 65 ANSI/TIA/EIA-603-C RSS-182	[V]
TRANS	MITTERS TYPE OF EMISSION: FREQUENCY RANGE: POWER OUTPUT RATING:	16K0G3E, 16K0G2B(for DSC) 156.05 to 157.43 1 to 25 <u>x</u> Switchable Variable	[MHz] [W]
	MAXIMUM POWER RATING: INPUT IMPEDANCE (MIC): OUTPUT IMPEDANCE (RF): Collector Voltage: Collector Current:	25 2000 50 13.8 5	[W] [Ω] [Ω] [V] [A]
RECEI	VERS FREQUENCY RANGE: INTERMEDIATE FREQUENCIES:	156.050 to 163.475 1st -21.7	[MHz] [MHz]
	INPUT IMPEDANCE (RF): OUTPUT IMPEDANCE (SP): AUDIO OUTPUT POWER:	2nd -450 50 4 4.5	[kHz] [Ω] [Ω] [W]

This report was prepared by Vertex Standard Co., Ltd.

Test performed by

Shigemite Takahashi

Shigemitu Takahashi

Chief Test Engineer Engineering Division T/A Section Vertex Standard Co., Ltd.

Date:

November 1, 2011

Page 3 of 16

CH No.	Shown on	n on Frequency Frequency		CH Spacing	Power		
	LCD	[MHz]	[MHz]		HI	LOW	
1	CH16	156.800	156.800	25k	25W	1W	
2	CH70	156.525	156.525	25k	25W	1W	
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

GX1700 Channel Settings

NAME OF TEST:	R.F. Power Output (Conducted)
SPECIFICATION:	47 CFR 2.1046 (a)
GUIDE:	ANSI/TIA/EIA-603-C, Paragraph 2.2.1.2
TEST EQUIPMENT:	As per attached page

MEASUREMENT PROCEDURE

- 1. The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the modulated output powerwas measured by means of an R.F. power meter.
- 2. Measurement accuracy is $\pm 4\%$

MEASUREMENT RESULTS

		R.F. POWER, WATTS			
	CHANNEL	LOW	HIGH		
156.800	16	0.9	23.8		
156.525	70	0.9	23.7		

Page 4 of 16

TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R.F. POWER OUTPUT TEST 2: FREQUENCY STABILITY

Instruments	Description	Calibration Date	Next Calibration
(1) COAXUAL ATTENUATOR	WEINSCHELL 49-10-43	2011.1.10	1 Year After
(2) RF COUPLER	ADVANTEST TR4153	-	1 Year After
(3) POWER SENSOR	Agilent 8482B	2010.12.27	1 Year After
(4) POWER METER	Agilent 8901B POWER MODE	2010.12.27	1 Year After
(5) FREQUENCY COUNTER	Agilent 8901B FREQUENCY MODE	2010.12.27	1 Year After

NAME OF TEST:	Unwanted Emissions (Conducted)
SPECIFICATION:	47 CFR 2.1051
<u>GUIDE:</u>	ANSI/TIA/EIA-603-C, Paragraph 2.2.13.2
TEST EQUIPMENT:	As per attached page

MEASUREMENT PROCEDURE

- 1. The emissions were measured for the worst case as follows:
 - (a): within a band of frequencies defined by the carrier frequency plus and minus one channel.
 - (b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40GHz, whichever is lower.
- 2. The magnitude of spurious emissions that are attenuated more than 20dB below the permissible value need not be specified.
- 3. MEASUREMENT RESULTS:

FREQUENCY OF CARRIER, MHz	=	156.8 , 156.525 , 0
SPECTRUM SEARCHED, GHz	=	0 to 10 x Fc
MAXIMUM RESPONSE, Hz	=	2900
ALL OTHER EMISSIONS	=	>= 20dB BELOW LIMIT

Page 6 of 16

NAME OF TEST:		Unwanted Emissions (Conducted)								
LIMI	T'S), dBc:	-(43+10xLOG(P)) -(43+10xLOG(P))	=	-57 -43	(25 1	Watts Watts))		
High Power								-		
FREQUENC	Y FR	EQUENCY	LEVE	L,		LE	VEL,		MARGIN,	
TUNED, MH	z EMIS	SSION, MHz	dBm	า		d	Bc		dB	

measurements exceed the requirements by more than 20 dB

Page 7 of 16

NAME OF TEST:		Unwanted Emissions (Conducted)								
L	.IMIT'S), dBc:	-(43+10xLOG(P)) -(43+10xLOG(P))	= =	-57 -43	(25 1	Watts Watts)		
Low Power					,			,		
FREQUE	NCY F	REQUENCY	LEVE	_,		LE	VEL,		MARGIN,	
TUNED. I	MHZ EN	MISSION, MHz	dBm			d	Bc		dB	

measurements exceed the requirements by more than 20 dB

Page 8 of 16

NAME OF TEST:	Field Strength of Spurious Radiation
SPECIFICATION:	47 CFR 2.1053 (a)
<u>GUIDE:</u>	ANSI/TIA/EIA-603-C, Paragraph 2.2.12.2

MEASUREMENT PROCEDURE

- 2.2.12.1 Definition: Radiated spurious emissions are emissions from the equipment when transmitting load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.
- 2.2.12.2 Method of measurement
- A) Connect the equipment as illustrated.
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth <= 3kHz
 - 2) Video Bandwidth >= 10kHz
 - 3) Sweep Speed <= 2000Hz/second
 - 4) Detector Mode = Positive Peak
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load which is placed on the turntable. The RF cable to this load should be of minimum length.

- D) For each spurious measurment the test antenna should be adjusted to the correct length for the frequency involved. This length maybe determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier qeual to ± the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity.

Page 9 of 16

NAME OF TEST: Field Strength of Spurious Radiation

F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.

- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved).
 The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is plarized vertically. In such case the lower end of the antenna should be 0.3m above the ground.
- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output untill the previusl recorded maximum reading for the set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in step J) and K) by the power loss in the cable between the generator and the antenna and futher corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB = 10log10(TX power in watts/0.001) - the levels in step L)

NAME OF TEST:

Field Strength of Spurious Radiation

Note: It is permissible that other antennas provided can be referenced to a dipole.

Instruments	Description	Calibration Date	Next Calibration
TRANSDUCER	Schaffner-Chase CBL6143	-	-
TRANSDUCER	EMCO 3115	-	-
AMPLIFIER	Agilent 8447D	2011.2.14	1 Year After
AMPLIFIER	Agilent 8449B	2011.2.14	1 Year After
SPECTRUM ANALYZER	Agilent 8561B	2010.12.10	1 Year After

Page 11 of 16

	NAME OF TEST:	Field Strength o	Field Strength of Spurious Radiation					
	LIMIT'S), d	Bc: -(43+10xLOC -(43+10xLOC	G(P)) = -57 G(P)) = -43	7 (25 3 (1	Watts) Watts)			
	High Power							
_	FREQUENCY	FREQUENCY	METER,	C.F.,	ERP,	ERP,		
	TUNED, MHz	EMISSION, MHz	dBuV	dB	dBm	dBc		
	156.8000	470.4000	44.9	31.1	-31.0	-75.0		

Page 12 of 16

NAME OF TEST:	Field Strength of	Field Strength of Spurious Radiation						
LIMIT'S), dBc	:: -(43+10xLOG	6(P)) =	-57	(25	Watts)	
	-(43+10xLOG	6(P)) =	-43	(1	Watts)	
Low Power								
FREQUENCY	FREQUENCY	METEI	۲,	C.F.,		ERF	р <u>,</u>	ERP,
TUNED. MHZ	EMISSION, MHz	dBuV		dB		dBn	n	dBc

measurements exceed the requirements by more than 20 $\ensuremath{\mathsf{dB}}$

Page 13 of 16

<u>NAME OF TEST:</u> Receiver Spurious Emissions (Conducted) STATE: 0 : General

All other emissions in the required measurement range ware mora than 20dB below the required limits.

MEASUREMENT RESULTS

FREQUENCY	FREQUENCY	LEVEL,	LEVEL,
TUNED, MHz	EMISSION, MHz	dBm	nW
156.800	135.100	-72.5	0.0562

Page 14 of 16

NAME OF TEST: Receiver Spurious Emissions (Radiated)

STATE: 0 : General

All other emissions in the required measurement range ware mora than 20dB below the required limits.

MEASUREMENT RESULTS

_							
	FREQUENCY	FREQUENCY	LEVEL,	@m	CF,	uV/m	
	TUNED, MHz	EMISSION, MHz	dBuV		dB		
	156.800	135.100	48.3	3	-9.2	90.2	
	156.800	270.200	46.2	3	-10.6	60.3	
	156.800	405.300	42.0	3	-6.3	61.0	
	156.800	540.400	42.2	3	-5.7	66.8	
	156.800	675.500	41.6	3	-4.9	68.4	
	156.800	810.600	37.9	3	-4.9	44.7	
	156.800	945.700	38.5	3	-4.2	51.9	
	156.800	1763.000	51.5	3	-5.3	204.2	
	156.800	1890.000	47.7	3	-4.4	146.2	

Page 15 of 16

Page 16 of 16

NAME OF TEST:	Subpart T G3E Emissions
SPECIFICATION:	47 CFR 80.961 (a) & (b)

MEASUREMENT PROCEDURE

(a) The receiver is capable of reception of G3E Emissions on the required frequencires.

(b) The sensitivity of the receiver at 20dB SINAD is better than:

Sensitivity, dBm = -118.2 Sensitivity, uV = 0.275