Page 1 of 31

REPORT ON Radio testing of the STANDARD HORIZON HX290 In accordance with ANSI/TIA/EIA-603, RSS-182

Report number TA000948

December 2010

GENERAL INFORMATION

MODEL NAME: FCC ID: IC ID: MANUFACTURER: TRADE NAME: EUT DESCRIPTION: SERIAL NUMBER: VOLTAGE RQUIREMENTS: NUMBER OF CHANNELS: SPECIFICATION ARE REFERENCI	HX290 K6630453X20 511B-30453X20 Vertex Standard Co., Ltd. STANDARD HORIZON FM Transceiver 0M000010 7.4 DC 65 ED ANSI/TIA/EIA-603 RSS-182	[V]
TRANSMITTERS TYPE OF EMISSION: FREQUENCY RANGE: POWER OUTPUT RATING:	16K0G3E 156 to 157.425 1 to 5 <u>x</u> Switchable Variable N/A	[MHz] [W]
MAXIMUM POWER RATING:	10	[W]
INPUT IMPEDANCE (MIC):	2000	[Ω]
OUTPUT IMPEDANCE (RF):	50	[Ω]
Collector Voltage:	7.4	[V]
Collector Current:	1.6	[A]
RECEIVERS	156 to 163.275	[MHz]
FREQUENCY RANGE:	1st 21.7	[MHz]
INTERMEDIATE FREQUENCIES:	2nd 450	[kHz]
INPUT IMPEDANCE (RF):	50	[Ω]
OUTPUT IMPEDANCE (SP):	16	[Ω]
AUDIO OUTPUT POWER:	0.7	[W]

This report was prepared by Vertex Standard Co., Ltd.

Test performed by

Shigemita Takahashi Shigemitu Takahashi Chief Test Engineer Engineering Division T/A Section Vertex Standard Co., Ltd.

Date 03 / December /2010

Page 3 of 31

CH No.	Shown on LCD	Transmit Frequency		CH Spacing		wer
4	01140	[MHz]	[MHz]	054	HI	LOW
1	CH16	156.800	156.800	25k	5W	1W
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

HX290 Channel Settings

NAME OF TEST:	R.F. Power Output (Conducted)
SPECIFICATION:	47 CFR 2.1046 (a)
<u>GUIDE:</u>	ANSI/TIA/EIA-603, Paragraph 2.2.1
TEST EQUIPMENT:	As per attached page

MEASUREMENT PROCEDURE

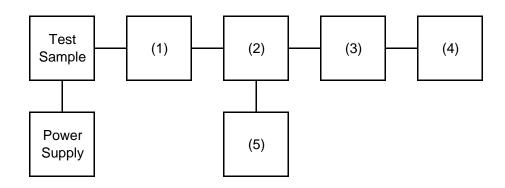
- 1. The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the modulated output powerwas measured by means of an R.F. power meter.
- 2. Measurement accuracy is $\pm 4\%$

MEASUREMENT RESULTS

	CHANNEL	R.F. POWEF	R, WATTS
NOMINAL, MHz	CHANNEL	LOW	HIGH
156.800	16	0.88	4.55

156.800

16


24.2 dBm (ERP)

Page 4 of 31

Page 5 of 31

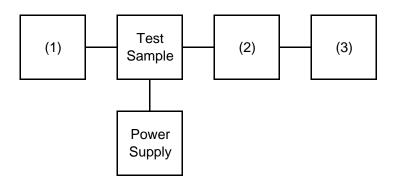
TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R.F. POWER OUTPUT TEST 2: FREQUENCY STABILITY

Instruments	Description	Calibration Date	Next Calibration
(1) COAXUAL ATTENUATOR	WEINSCHELL 49-10-43	2010.1.10	One year after
(2) RF COUPLER	ADVANTEST TR4153	-	-
(3) POWER SENSOR	Agilent 8482B	2010.1.6	One year after
(4) POWER METER	Agilent 8901B POWER MODE	2010.1.6	One year after
(5) FREQUENCY COUNTER	Agilent 8901B FREQUENCY MODE	2010.1.6	One year after

NAME OF TEST:	Unwanted Emissions (Conducted)
SPECIFICATION:	47 CFR 2.1051
<u>GUIDE:</u>	ANSI/TIA/EIA-603, Paragraph 2.2.13
TEST EQUIPMENT:	As per attached page

MEASUREMENT PROCEDURE


- 1. The emissions were measured for the worst case as follows:
 - (a): within a band of frequencies defined by the carrier frequency plus and minus one channel.
 - (b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40GHz, whichever is lower.
- 2. The magnitude of spurious emissions that are attenuated more than 20dB below the permissible value need not be specified.
- 3. MEASUREMENT RESULTS:

FREQUENCY OF CARRIER, MHz	=	156.8 , 0 , 0
SPECTRUM SEARCHED, GHz	=	0 to 10 x Fc
MAXIMUM RESPONSE, Hz	=	2700
ALL OTHER EMISSIONS	=	>= 20dB BELOW LIMIT

Page 6 of 31

TRANSMITTER SPURIOUS EMISSION

TEST 1: OCCUPIED BANDWIDTH (IN-BAND SPURIOUS) TEST 2: OUT-OF-BAND SPURIOUS

Instruments	Description	Calibration Date	Next Calibration
(1) AUDIO GENERATOR	Agilent 8903B	2010.1.6	One year after
(2) COAXUAL ATTENUATOR	WEINSCHELL 49-10-43	2010.1.10	One year after
(2) COAXUAL ATTENUATOR	Agilent 8498A	2009.12.21	One year after
(3) SPECTRUM ANALYZER	ADVANTEST TR4173	2009.12.14	One year after

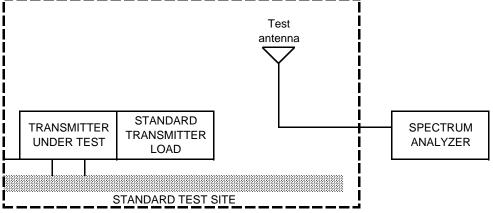
NAME OF TEST:	Unwanted Emissic	ons (Conducted)		
LIMIT'S), dB	Bc: -(43+10xLOG(P -(43+10xLOG(P	<i>,,</i>	(5 Wat (1 Wat	/
High Power	, , , , , , , , , , , , , , , , , , ,	,,	,	,
FREQUENCY	FREQUENCY	LEVEL,	LEVEL,	MARGIN,
TUNED, MHZ E	MISSION, MHz	dBm	dBc	dB

measurements exceed the requirements by more than 20 dB

Page 8 of 31

NAME OF TEST:	Unwanted Emissi	ons (Conducted))		
LIMIT'S), dBc:	-(43+10xLOG(I -(43+10xLOG(I	,,	(5 (1	Watts Watts)
Low Power			•		
FREQUENCY FF	REQUENCY	LEVEL,	LE	VEL,	MARGIN,
TUNED, MHZ EM	ISSION, MHz	dBm	d	lBc	dB

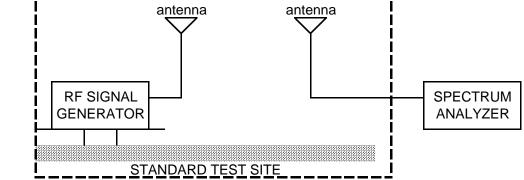
measurements exceed the requirements by more than 20 dB


Page 9 of 31

Page 10 of 31

NAME OF TEST:	Field Strength of Spurious Radiation
SPECIFICATION:	47 CFR 2.1053 (a)
GUIDE:	ANSI/TIA/EIA-603, Paragraph 1.2.12

MEASUREMENT PROCEDURE


- 1.2.12. Definition: Radiated spurious emissions are emissions from the equipment when transmitting load on a frequency or frequencies which are outside an occupied banc sufficient to ensure transmission of information of required quality for the class of communications desired.
- 1.2.12.2 Method of measurement
- A) Connect the equipment as illustrated.
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth <= 3kHz
 - 2) Video Bandwidth >= 10kHz
 - 3) Sweep Speed <= 2000Hz/second
 - 4) Detector Mode = Positive Peak
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load which is placed on the turntable. The RF cable to this load should be of minimum length.

- D) For each spurious measurment the test antenna should be adjusted to the correct length for the frequency involved. This length maybe determined from a calibratior ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier except for the region close to the carrier qeual to ± the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity.

Page 11 of 31

- NAME OF TEST: Field Strength of Spurious Radiation
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically Substitution Test antenna antenna

- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved).
 The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is plarized vertically In such case the lower end of the antenna should be 0.3m above the ground
- J) Feed the substitution antenna at the transmitter end with a signal generator connectec to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output untill the previusl recorded maximum reading for the set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in step J) and K) by the power loss in the cable between the generator and the antenna and futher corrected for the gain of the substitutior antenna used relative to an ideal half-wave dipole antenna
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB = 10log10(TX power in watts/0.001) - the levels in step L)

NAME OF TEST: Field Strength of Spurious Radiation

Note: It is permissible that other antennas provided can be referenced to a dipole.

Instruments	Description	Calibration Date	Next Calibration
TRANSDUCER	Schaffner-Chase CBL6143	-	-
TRANSDUCER	EMCO 3115	-	-
AMPLIFIER	Agilent 8447D	2010.2.1	One year after
AMPLIFIER	Agilent 8449B	2010.2.1	One year after
SPECTRUM ANALYZER	Agilent 8561B	2009.12.6	One year after

NAME OF TEST: Field Strength of Spurious Radiation										
LIMIT	'S), dBc:	-(43+10xLC -(43+10xLC	())	-50 -43	(5 1	Watts Watts))		
High Power		-						-		
FREQUENCY	FRE	QUENCY	METER,		C.F.,		ERP	,	ERP,	_
TUNED, MHz	EMISS	SION, MHZ	dBuV		dB		dBm	۱	dBc	

measurements exceed the requirements by more than 20 dB

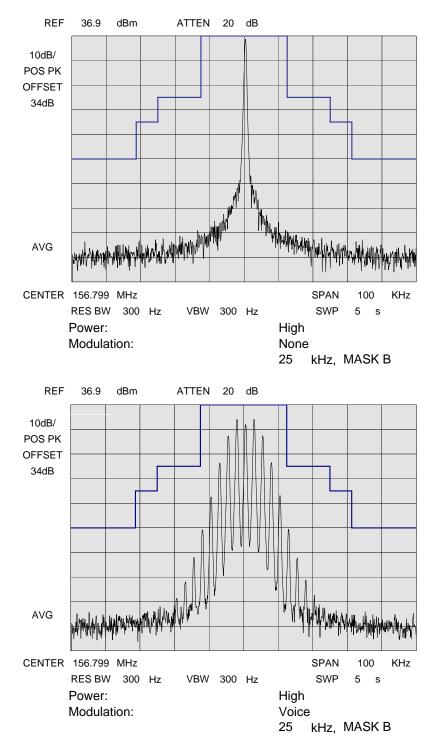
Page 13 of 31

NAME OF TEST: Field Strength of Spurious Radiation								
LIMIT'S), o	`	<log(p)) =<br=""><log(p)) =<="" td=""><td></td><td>(</td><td>5 1</td><td>Watts Watts</td><td>)</td><td></td></log(p))></log(p))>		(5 1	Watts Watts)	
 Low Power	(10110)		10	(•	mano	,	
 FREQUENCY	FREQUENCY	METER,		C.F.,		ERP,		ERP,
TUNED, MHz	EMISSION, MH	z dBuV		dB		dBm		dBc

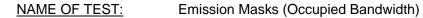
measurements exceed the requirements by more than 20 dB

Page 14 of 31

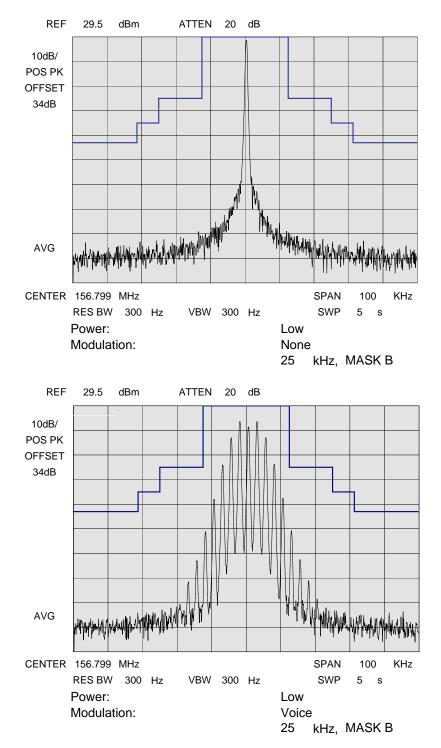
NAME OF TEST:	Emission Masks (Occupied Bandwidth)
SPECIFICATION:	47 CFR 2.1049 (c) (1)
<u>GUIDE:</u>	ANSI/TIA/EIA-603, Paragraph 2.2.11
TEST EQUIPMENT:	As per previous page


MEASUREMENT PROCEDURE

- 1. The EUT and test equipment ware set up as shown on the following page, with the spectrum analyzer connected.
- 2. For EUT's supporting audio modulation, the audio signal generator was adjusted to the frequency of maxmum response and with output level set for ±2.5/±1.5kHz deviation (or 50% modulation). With level constant, the signal level was increased 16dB.
- 3. For EUT's supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 4. The occupied bandwidth was measured with the spectrum analyzer controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED

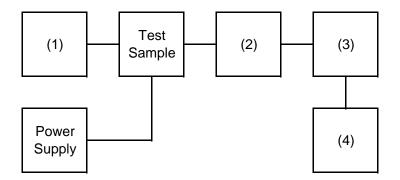

Page 15 of 31

NAME OF TEST: Emission Masks (Occupied Bandwidth)


STATE: 1 : High Power

Page 17 of 31

STATE: 2 : Low Power

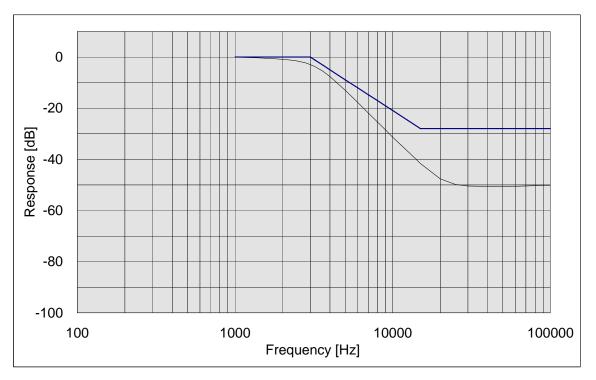

NAME OF TEST:	Audio Low Pass Filter (Voice Input)
SPECIFICATION:	47 CFR 2.1047 (a)
<u>GUIDE:</u>	ANSI/TIA/EIA-603, Paragraph 2.2.15
TEST EQUIPMENT:	As per attached page

MEASUREMENT PROCEDURE

- 1. The EUT and test equipment ware set up such that the audio input was connected at the input of the modulation limiter, and the modulated stage.
- 2. The audio output was connected at the output to the modulated stage.
- 3. MEASUREMENT RESULTS: ATTACHED

TRANSMITTER TEST SET-UP

TEST A: MODULATION CAPABILITY / DISTORTION TEST B: AUDIO FREQUENCY RESPONSE TEST C: HUM AND NOISE LEVEL TEST D: RESPONSE OF LOW PASS FILTER TEST E: MODULATION KIMITING


Instruments	Description	Calibration Date	Next Calibration
(1) AUDIO GENERATOR	Agilent 8903B	2010.1.10	One year after
(2) COAXIAL ATTENUATOR	Agilent 8498A	2010.1.10	One year after
(2) COAXIAL ATTENUATOR	Weinschel 53-30-33	2010.1.10	One year after
(3) MODULATION ANALYZER	Agilent 8901B	2010.1.16	One year after
(4) AUDIO ANALYZER	Agilent 8903B	2010.1.6	One year after

Page 18 of 31

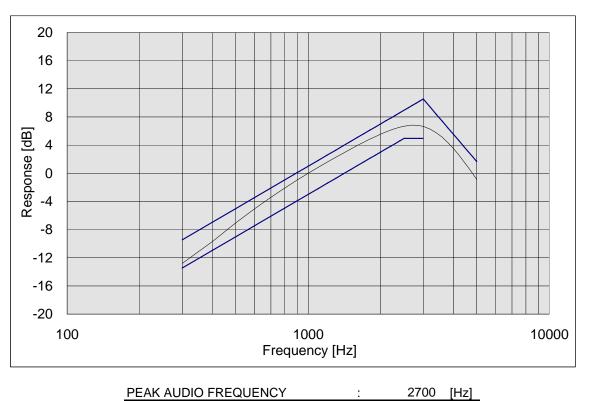
Page 19 of 31

NAME OF TEST: Audio Low Pass Filter (Voice Input)

STATE: 0 : General

NAME OF TEST:	Audio Frequency Response
SPECIFICATION:	47 CFR 2.1047 (a)
<u>GUIDE:</u>	ANSI/TIA/EIA-603, Paragraph 2.2.6
TEST EQUIPMENT:	As per previous page

MEASUREMENT PROCEDURE


- 1. The EUT and test equipment ware set up as shown on the following page
- 2. The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- 3. The audio signal input was adjusted to obtain 20% modulation at 1kHz, and this poin was taken as the 0dB reference level.
- 4. Which input levels hold constant and below limiting at all frequencies, the audio signal generator was varied from 100Hz to 5kHz.
- 5. The response in dB relative to 1kHz was then measured, using the Agilent 8901E modulation analyzer.
- 6. MEASUREMENT RESULTS: ATTACHED

Page 20 of 31

Page 21 of 31

NAME OF TEST: Audio Frequency Response

STATE: 0 : General

<u>NAME OF TEST:</u>	Modulation Limiting
SPECIFICATION:	47 CFR 2.1047 (b)
GUIDE:	ANSI/TIA/EIA-603, Paragraph 2.2.3
TEST EQUIPMENT:	As per previous page

MEASUREMENT PROCEDURE

- 1. The signal generator was connected to the input of the EUT as for "Frequency Response of the Modulating Circuit".
- 2. The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an Agilent 8901B modulation analyzer
- 3. The input level was varied from 30% modulation (\pm 1.5kHz deviation) to at least 20dB higher than the saturation point.
- 4. Measurements ware performed for both negative and positive modulation and the respective results ware recorded.
- 5. MEASUREMENT RESULTS: ATTACHED

Page 22 of 31

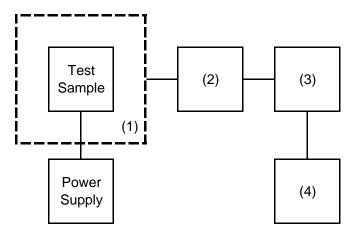
NAME OF TEST:

Modulation Limiting

STATE: 0 : General Positive Peak 0 dB = 4.87 [mV] - 300Hz Limit 1000Hz ---- 2700Hz 10 Frequency Deviation [kHz] 1 0 -30 -20 -10 0 10 20 30 40 MIC. Input Level [dB] Negative Peak – 300Hz 1000Hz ---- 2700Hz Limit 10 Frequency Deviation [kHz] / / 1 0 -30 -20 -10 0 10 20 30 40 MIC. Input Level [dB]

NAME OF TEST:	Frequency Stability (Temperature Variation)
SPECIFICATION:	47 CFR 2.1055 (a) (1)
<u>GUIDE:</u>	ANSI/TIA/EIA-603, Paragraph 2.2.2
TEST CONDITIONS:	As indicated
TEST EQUIPMENT:	As per previous page

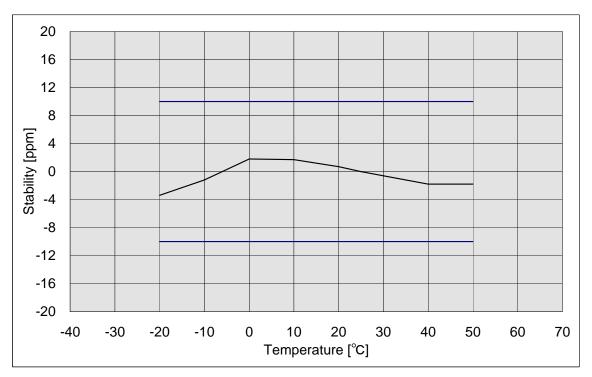
MEASUREMENT PROCEDURE


- 1. The EUT and test equipment ware set up as shown on the following page
- 2. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and themaximum change ir frequency was noted within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- 4. The temperature tests ware performed for the worst case.
- 5. MEASUREMENT RESULTS: ATTACHED

Page 24 of 31

Page 25 of 31

TRANSMITTER TEST SET-UP


TEST A: OPERATIONAL STABILITY TEST B: CARRIER FREQUENCY STABILITY TEST C: OPERATIONAL PERFORMANCE STABILITY TEST D: HUMIDITY TEST E: VIBRATION TEST F: ENVIRONMENTAL TEMPERATURE TEST G: FREQUENCY STABILITY, TEMPERATURE VARIATION TEST H: FREQUENCY STABILITY, VOLTAGE VARIATION

Instruments	Description	Calibration Date	Next Calibration
(1) TEMPERATURE CHAMBER	ETAC FX4100	-	-
(2) COAXIAL ATTENUATOR	Weinschel 53-30-33	2009.12.26	One year after
(3) POWER METER	Agilent 436A	2009.12.22	One year after
(4) FREQUENCY COUNTER	Agilent 8901B FREQUENCY MODE	2010.1.6	One year after

NAME OF TEST: Frequency Stability (Temperature Variation)

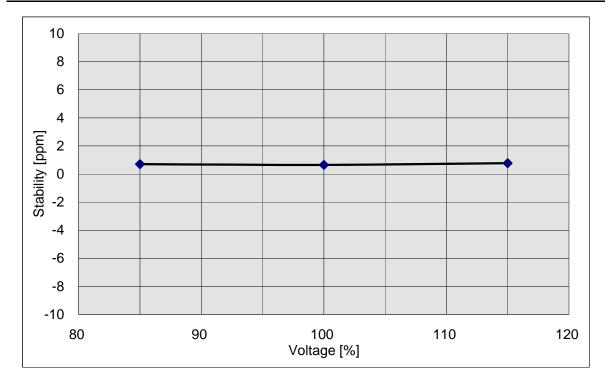
STATE: 0 : General

Page 26 of 31

NAME OF TEST:	Frequency Stability (Voltage Variation)
SPECIFICATION:	47 CFR 2.1055 (b)
<u>GUIDE:</u>	ANSI/TIA/EIA-603, Paragraph 2.2.2
TEST EQUIPMENT:	As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT was placed in a temperature chamber at $25\pm5^{\circ}$ C and connected as for "Frequency Stability Temperature Variation" test.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nomina value measured at the input to the EUT.


3. The variation in frequency was measured for the worst case.

RESULTS:	Frequency Stability (\	Voltage Variation)

STATE: 0 : General

LIMIT', ppm = 10.0 LIMIT', Hz = 1568

% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
85	6.29	156.800110	110	0.70
100	7.40	156.800100	100	0.64
115	8.51	156.800120	120	0.77

Page 27 of 31

NAME OF TEST:	Necessary Bandwidth and Emission Bandwidth
SPECIFICATION:	47 CFR 2.202 (g)

MODULATION = 16K0F3E

NECESSARY BANDWIDTH CALUCULATION:

MAXIMUM MODULATION (M), kHz	=	3
MAXIMUM DEVIATION (D), kHz	=	5
CONSTANT FACTOR (K)	=	1
NECESSARY BANDWIDTH (BN), kHz	=	(2xM) + (2xDxK)
	=	16.0

Page 28 of 31

Page 29 of 31

NAME OF TEST:	Receiver Spurious Emissions (Conducted)		
STATE: 0 : Gene	eral		
All other emissions in	n the required measurement range ware mora than		
20dB below the requ	ired limits.		
MEASUREMENT RESULTS			
EDEOLIENOV			

MEASOREMENT RESOLTS						
FREQUENCY	FREQUENCY	LEVEL,	LEVEL,			
TUNED, MHz	EMISSION, MHz	dBm	nW			

measurements exceed the requirements by more than 20 $\ensuremath{\text{dB}}$

 NAME OF TEST:
 Receiver Spurious Emissions (Radiated)

 STATE:
 0 : General

 All other emissions in the required measurement range ware mora than

 20dB below the required limits.

 MEASUREMENT RESULTS

MEASOREMENT RESOLTS							
FREQUENCY	FREQUENCY	LEVEL,	@m	CF,	uV/m		
TUNED, MHz	EMISSION, MHz	dBuV		dB			

measurements exceed the requirements by more than 20 $\ensuremath{\text{dB}}$

NAME OF TEST:Subpart T G3E EmissionsSPECIFICATION:47 CFR 80.961 (a) & (b)

MEASUREMENT PROCEDURE

- (a) The receiver is capable of reception of G3E Emissions on the required frequencires.
- (b) The sensitivity of the receiver at 20dB SINAD is better than:

Sensitivity, dBm = -118.6Sensitivity, uV = 0.263 Page 31 of 31