REPORT ON Radio testing of the VERTEX STANDARD VX-459-G6-5 In accordance with ANSI/TIA/EIA-603, RSS-119

Report number TA000934-A

November 2010

VX-450 (UHF) Series Specifications

General

Frequency range Number of Channel Channel spacing: Emission type: Power supply voltage Current consumption	(TX): (RX): (Rated): (RX @ 7.4 V, 0.5 W AF):	400-470 MHz 400-470 MHz 512 channels (VX-454 / VX-459) 32 channels (VX-451) 12.5 kHz 11K0F3E 7.4 V DC 0.3 A
Temperature range: Case size Weight	(TX @ 5 W): (W x H x D): (Approx.):	1.5 A -30 to +60 °C 63 x 115 x 35 mm 300 g with FNB-V112LI,Antenna
Receiver		
Circuit type: Ifs 12dB SINAD Sensitivity Adjacent channel selectivi Intermodulation: Spurious rejection: Speaker impedance: AF Output	(1 st): (2 nd): ity: (@ 5 % THD):	Double-conversion superheterodyne 67.65 MHz 450 kHz 0.25 μ V 70 / 60 dB 70 dB 65 dB 4 Ω 0.5 W
Transmitter		
Power Output Frequency stability: Modulation system: Maximum deviation:	(High): (Low):	5 W 0.25 W ± 2.5 ppm Variable reactance 2.5 kHz
FM Noise: Spurious emissions: AF distortion Microphone type: Microphone impedance:	(@ 1 kHz)	better than 45 / 40 dB better than 60 dB 5 % Condenser 2 kΩ

This report was prepared by Vertex Standard Co., Ltd.

Test performed by

Shigemite Takahashi

Shigemitu Takahashi

Chief Test Engineer Engineering Division T/A Section Vertex Standard Co., Ltd.

Date: 29 / October /2010

CH No.	Shown on LCD	Transmit Frequency	Receive Frequency	CH Spacing	Po	wer
	200	[MHz]	[MHz]		High	Low
-						
-						
-						
-						
-						
-						
7	406.1WL	406.100	406.100	12.5k	5 W	-
8	435NH	435.000	435.000	12.5k	5 W	-
9	470NH	470.000	470.000	12.5k	5 W	-
10	406.1WL	406.100	406.100	12.5k	-	0.25 W
11	435NL	435.000	435.000	12.5k	-	0.25 W
12	470NL	470.000	470.000	12.5k	-	0.25 W
13						
14						
15						
16						
17						
18						
19						
20						

VX-459-G6-5 Channel Settings

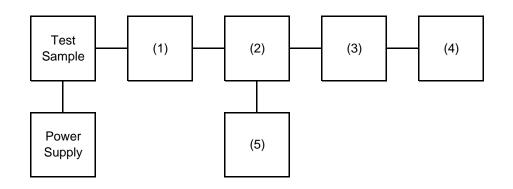
NAME OF TEST:	R.F. Power Output (Conducted)
SPECIFICATION:	47 CFR 2.1046 (a)
GUIDE:	ANSI/TIA/EIA-603, Paragraph 2.2.1
TEST EQUIPMENT:	As per attached page

MEASUREMENT PROCEDURE

- 1. The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the modulated output powerwas measured by means of an R.F. power meter.
- 2. Measurement accuracy is ± 4%

MEASUREMENT RESULTS

	R.F. POWER, WATTS		
NOMINAL, MHz	CHANNEL	LOW	HIGH
406.100	1	0.27	4.97
435.000	2	0.27	4.93
470.000	3	0.27	4.79


NAME OF TEST:

R.F. Power Output (Radiated)

LEVEL,	
dBm	
36.0	
36.7	
38.3	
	dBm 36.0 36.7

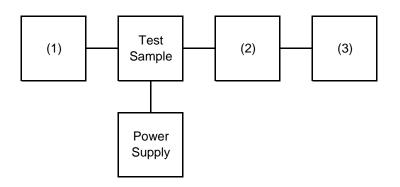
TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R.F. POWER OUTPUT TEST 2: FREQUENCY STABILITY

Instruments	Description	Calibration Date	Next Calibration
(1) COAXUAL ATTENUATOR	WEINSCHELL 49-10-43	2010.1.10	One year after
(2) RF COUPLER	ADVANTEST TR4153	-	-
(3) POWER SENSOR	Agilent 8482B	2010.1.6	One year after
(4) POWER METER	Agilent 8901B POWER MODE	2010.1.6	One year after
(5) FREQUENCY COUNTER	Agilent 8901B FREQUENCY MODE	2010.1.6	One year after

NAME OF TEST:
SPECIFICATION:
GUIDE:
TEST EQUIPMENT:

Unwanted Emissions (Conducted) 47 CFR 2.1051 ANSI/TIA/EIA-603, Paragraph 2.2.13 As per attached page


MEASUREMENT PROCEDURE

- 1. The emissions were measured for the worst case as follows:
 - (a): within a band of frequencies defined by the carrier frequency plus and minus one channel.
 - (b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40GHz, whichever is lower.
- 2. The magnitude of spurious emissions that are attenuated more than 20dB below the permissible value need not be specified.
- 3. MEASUREMENT RESULTS:

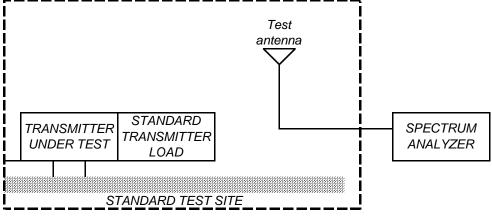
FREQUENCY OF CARRIER, MHz	=	406.1 , 435 , 470
SPECTRUM SEARCHED, GHz	=	0 to 10 x Fc
MAXIMUM RESPONSE, Hz	=	2800
ALL OTHER EMISSIONS	=	>= 20dB BELOW LIMIT

TRANSMITTER SPURIOUS EMISSION

TEST 1: OCCUPIED BANDWIDTH (IN-BAND SPURIOUS) TEST 2: OUT-OF-BAND SPURIOUS

Instruments	Description	Calibration Date	Next Calibration
(1) AUDIO GENERATOR	Agilent 8903B	2010.1.6	One year after
(2) COAXUAL ATTENUATOR	WEINSCHELL 49-10-43	2010.1.10	One year after
(2) COAXUAL ATTENUATOR	Agilent 8498A	2009.12.21	One year after
(3) SPECTRUM ANALYZER	ADVANTEST TR4173	2009.12.14	One year after

NAME OF	TEST:	Unwanted Emissions	(Conducte	ed)	
	LIMIT'S), dBc:	-(50+10xLOG(P)) -(50+10xLOG(P))	= -57 = -44	()
High Powe	r				·
FREQU	ENCY	FREQUENCY	LEVEL,	LEVEL,	MARGIN,
TUNED	, MHz E	MISSION, MHz	dBm	dBc	dB
406.10	000	812.2000	-39.0	-76.0	19.0
435.00	000	870.0000	-36.7	-73.7	16.7
470.00	000	940.0000	-37.5	-74.5	17.5
470.00	000	940.0000	-37.5	-74.5	17.5

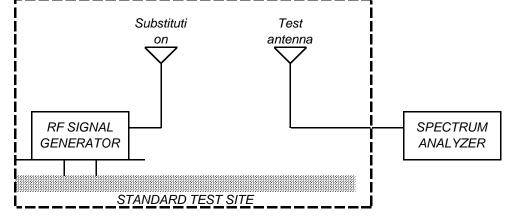

NAME OF TEST:	Unwanted Emissions	(Conducted)		
LIMIT'S), dBc:	-(50+10xLOG(P)) -(50+10xLOG(P))	= -57 = -44	(5 Watts (0.25 Watts)
Low Power				
FREQUENCY F	REQUENCY	LEVEL,	LEVEL,	MARGIN,
TUNED, MHZ EN	1ISSION, MHz	dBm	dBc	dB
406.1000	812.2000	-35.6	-59.6	15.6

NAME OF TEST:
SPECIFICATION:
GUIDE:

Field Strength of Spurious Radiation 47 CFR 2.1053 (a) ANSI/TIA/EIA-603, Paragraph 1.2.12

MEASUREMENT PROCEDURE

- 1.2.12.1 Definition: Radiated spurious emissions are emissions from the equipment when transmitting load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.
- 1.2.12.2 Method of measurement
- A) Connect the equipment as illustrated.
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth <= 3kHz
 - 2) Video Bandwidth >= 10kHz
 - 3) Sweep Speed <= 2000Hz/second
 - 4) Detector Mode = Positive Peak
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load which is placed on the turntable. The RF cable to this load should be of minimum length.



- D) For each spurious measurment the test antenna should be adjusted to the correct length for the frequency involved. This length maybe determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier qeual to ± the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity.

F)

Field Strength of Spurious Radiation

Repeat step E) for each spurious frequency with the test antenna polarized vertically.

- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved).
 The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is plarized vertically. In such case the lower end of the antenna should be 0.3m above the ground.
- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output untill the previusl recorded maximum reading for the set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in step J) and K) by the power loss in the cable between the generator and the antenna and futher corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB = 10log(TX power in watts/0.001) - the levels in step L)

Report number TA000934-A

NAME OF TEST: Field Strength of Spurious Radiation

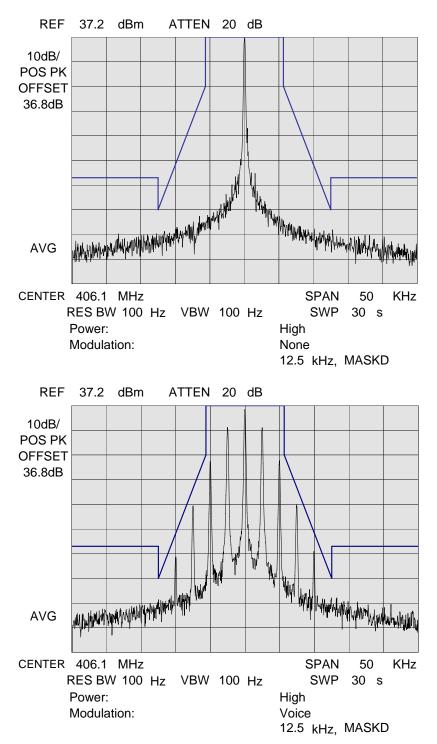
Note: It is permissible that other antennas provided can be referenced to a dipole.

Instruments	Description	Calibration Date	Next Calibration
TRANSDUCER	Schaffner-Chase CBL6143	-	-
TRANSDUCER	EMCO 3115	-	-
AMPLIFIER	Agilent 8447D	2010.2.1	One year after
AMPLIFIER	Agilent 8449B	2010.2.1	One year after
SPECTRUM ANALYZER	Agilent 8561B	2009.12.6	One year after

NAME OF TEST:	Field Strength of	of Spurious Rac	diation		
LIMIT'S)	, dBc: -(50+10xLO0 -(50+10xLO0	- (-))	57 (5 14 (0.2	, ,	
High Power					
FREQUENCY	FREQUENCY	METER,	C.F.,	ERP,	ERP,
TUNED, MHz	EMISSION, MHz	dBuV	dB	dBm	dBc
435.0000	870.0000	39.0	33.8	-34.2	-71.2
470.0000	940.0000	106.1	33.2	32.3	-69.3
406.1000	1218.3000	76.5	2.8	-27.7	-64.7
435.0000	1305.0000	71.3	3.8	-31.9	-68.9
470.0000	1410.0000	68.1	4.6	-34.3	-71.3
435.0000	1740.0000	60.7	6.8	-39.5	-76.5
470.0000	1880.0000	71.3	4.6	-31.1	-68.1
470.0000	2350.0000	58.2	9.4	-39.4	-76.4
406.1000	2436.6000	57.9	13.8	-35.3	-72.3
470.0000	2820.0000	55.5	13.6	-37.9	-74.9
406.1000	2842.7000	53.7	13.4	-39.9	-76.9
					-

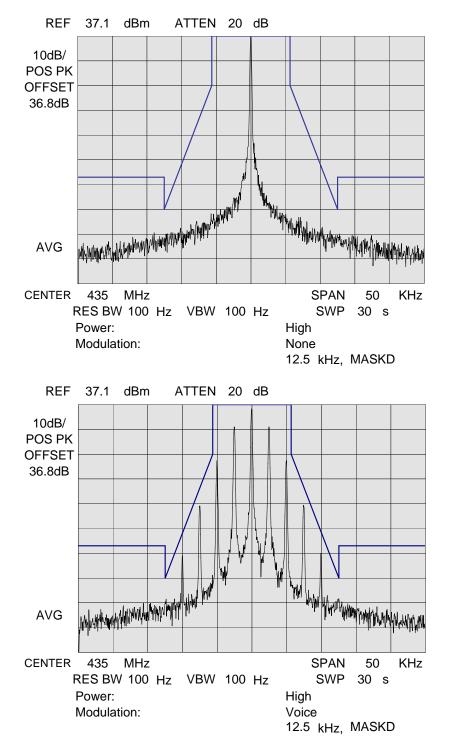
NAME OF TE	d Strength of Sp	urious Radiatio	on			
LI	,	50+10xLOG(P)) 50+10xLOG(P))		(atts) atts)	
Low Power						
FREQUEN	CY FREQL	JENCY M	IETER,	C.F.,	ERP,	ERP,
TUNED, M	Hz EMISSIC	DN, MHz	dBuV	dB	dBm	dBc
406.1000) 812.2	000	40.3	31.2	-35.5	-59.5
435.0000) 870.0	000	39.0	33.8	-34.2	-58.2
406.1000) 1218.3	3000	65.4	2.8	-38.8	-62.8
406.1000) 1305.0	0000	71.3	3.8	-31.9	-55.9
470.0000) 1410.0	0000	62.6	4.6	-39.8	-63.8
406.1000) 1740.0	0000	60.7	6.8	-39.5	-63.5

NAME OF TEST:
SPECIFICATION:
GUIDE:
TEST EQUIPMENT:

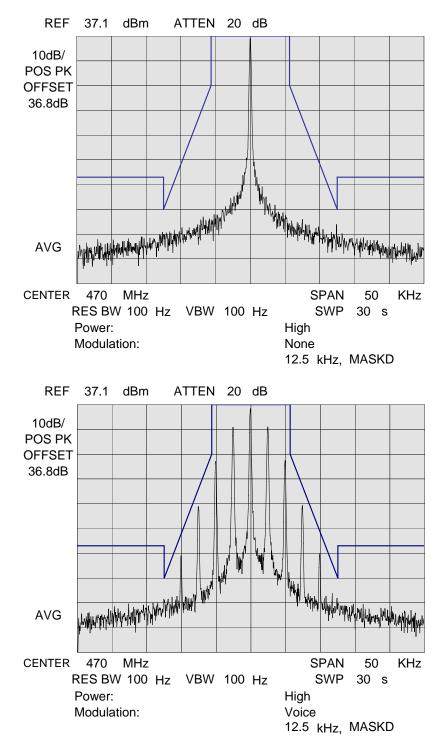

Emission Masks (Occupied Bandwidth) 47 CFR 2.1049 (c) (1) ANSI/TIA/EIA-603, Paragraph 2.2.11 As per previous page

MEASUREMENT PROCEDURE

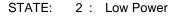
- 1. The EUT and test equipment ware set up as shown on the following page, with the spectrum analyzer connected.
- For EUT's supporting audio modulation, the audio signal generator was adjusted to the frequency of maxmum response and with output level set for ±2.5/±1.5kHz deviation (or 50% modulation). With level constant, the signal level was increased 16dB.
- 3. For EUT's supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 4. The occupied bandwidth was measured with the spectrum analyzer controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED

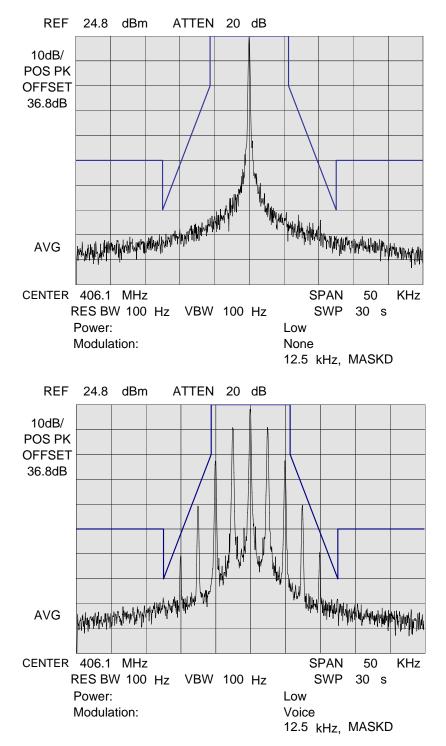

Emission Masks (Occupied Bandwidth)

STATE: 1 : High Power

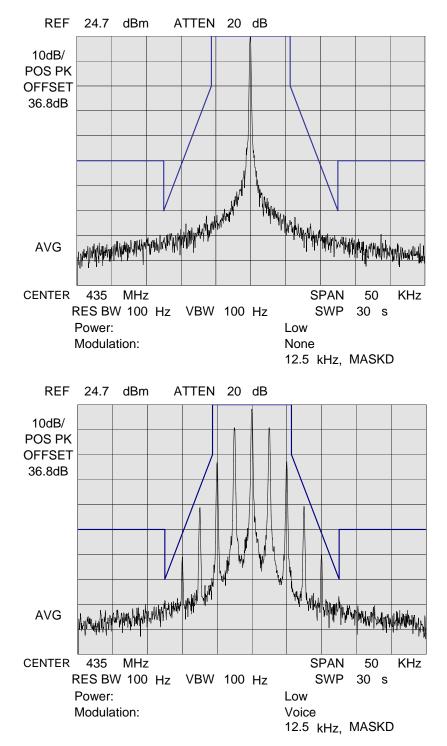

Emission Masks (Occupied Bandwidth)

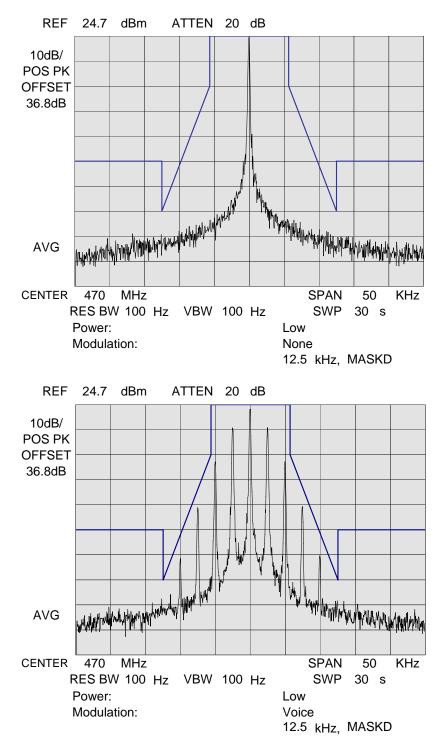
STATE: 1 : High Power



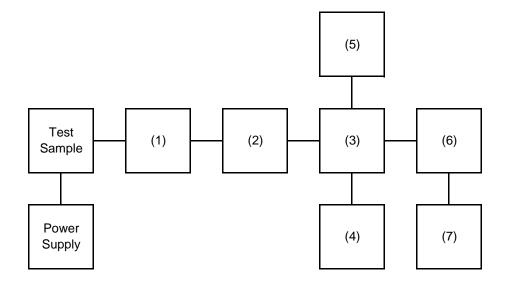

Emission Masks (Occupied Bandwidth)

STATE: 1 : High Power

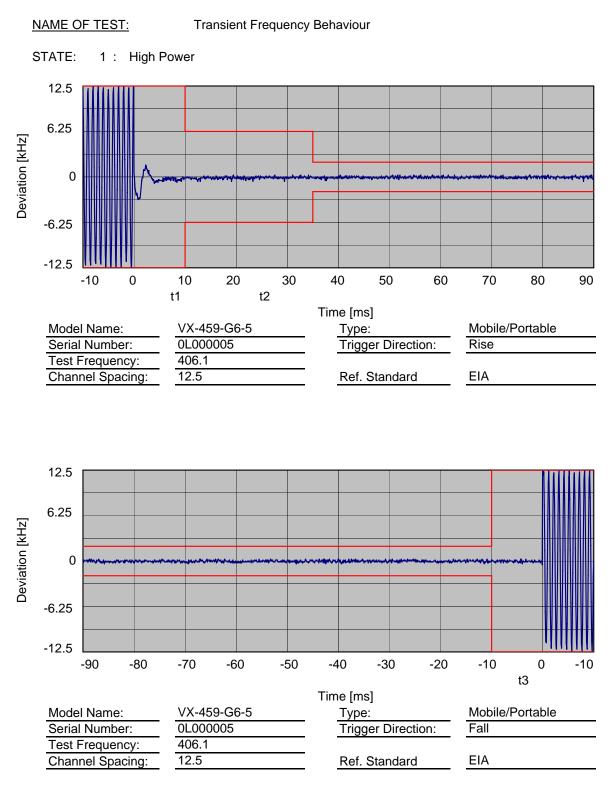

Emission Masks (Occupied Bandwidth)

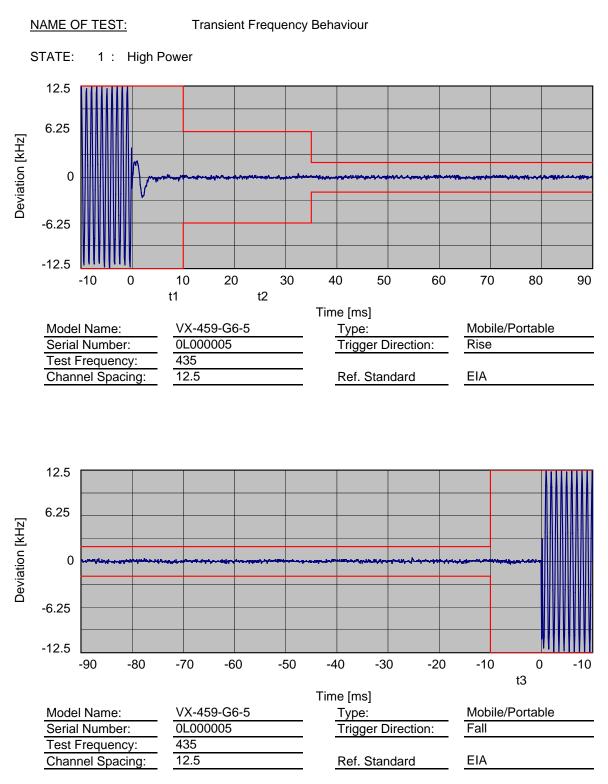

Emission Masks (Occupied Bandwidth)

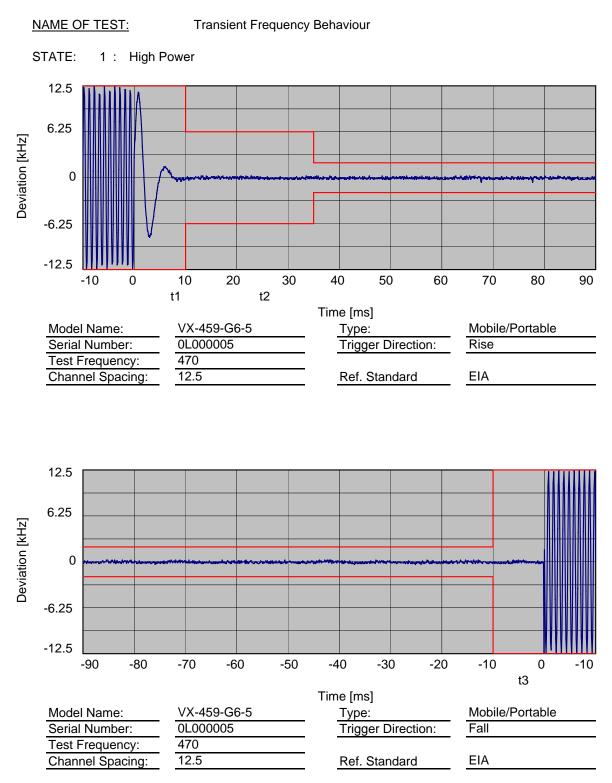
STATE: 2 : Low Power



Emission Masks (Occupied Bandwidth)

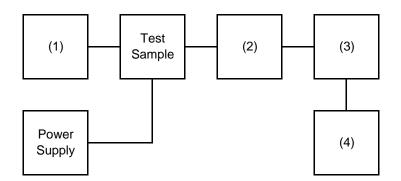




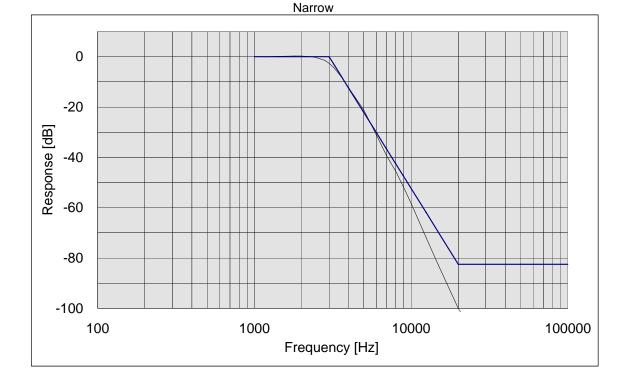

TRANSIENT FREQUENCY BEHAVIOR

Instruments	Description	Calibration Date	Next Calibration
(1) COAXUAL ATTENUATOR	WEINSCHELL 49-10-43	2010.1.10	One year after
(2) COAXUAL ATTENUATOR	WEINSCHELL 49-10-43	2010.1.10	One year after
(3) COMBINER	IWATSU B-504D	2010.1.10	One year after
(4) CRYSTAL DETECTOR	Agilent 8470B	2009.2.26	One year after
(5) RF SIGNAL GENERATOR	Agilent 8642B	2010.1.6	One year after
(5) MODULATION ANALYZER	Agilent 8901B	2010.1.6	One year after
(5) SCOPE	Agilent 54504A	2010.1.10	One year after

NAME OF TEST:
SPECIFICATION:
GUIDE:
TEST EQUIPMENT:


Audio Low Pass Filter (Voice Input) 47 CFR 2.1047 (a) ANSI/TIA/EIA-603, Paragraph 2.2.15 As per attached page

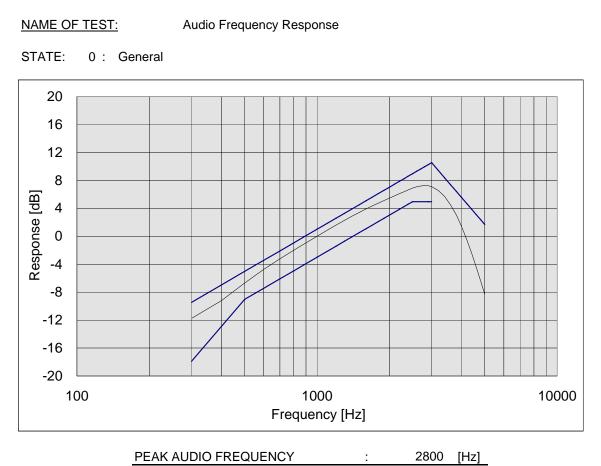
MEASUREMENT PROCEDURE


- 1. The EUT and test equipment ware set up such that the audio input was connected at the input of the modulation limiter, and the modulated stage.
- 2. The audio output was connected at the output to the modulated stage.
- 3. MEASUREMENT RESULTS: ATTACHED

TRANSMITTER TEST SET-UP

TEST A: MODULATION CAPABILITY / DISTORTION TEST B: AUDIO FREQUENCY RESPONSE TEST C: HUM AND NOISE LEVEL TEST D: RESPONSE OF LOW PASS FILTER TEST E: MODULATION KIMITING

Instruments	Description	Calibration Date	Next Calibration
(1) AUDIO GENERATOR	Agilent 8903B	2010.1.6	One year after
(2) COAXIAL ATTENUATOR	Agilent 8498A	2009.12.21	One year after
(3) MODULATION ANALYZER	Agilent 8901B	2010.1.6	One year after
(4) AUDIO ANALYZER	Agilent 8903B	2010.1.6	One year after



NAME OF TEST:
SPECIFICATION:
GUIDE:
TEST EQUIPMENT:

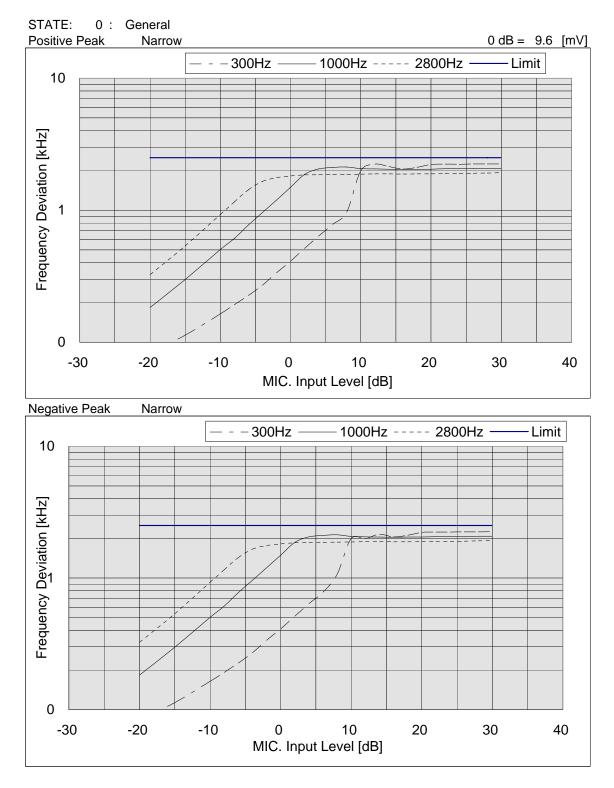
Audio Frequency Response 47 CFR 2.1047 (a) ANSI/TIA/EIA-603, Paragraph 2.2.6 As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT and test equipment ware set up as shown on the following page.
- 2. The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- 3. The audio signal input was adjusted to obtain 20% modulation at 1kHz, and this point was taken as the 0dB reference level.
- 4. Which input levels hold constant and below limiting at all frequencies, the audio signal generator was varied from 100Hz to 5kHz.
- 5. The response in dB relative to 1kHz was then measured, using the Agilent 8901B modulation analyzer.
- 6. MEASUREMENT RESULTS: ATTACHED

NAME OF TEST:
SPECIFICATION:
GUIDE:
TEST EQUIPMENT:

Modulation Limiting 47 CFR 2.1047 (b) ANSI/TIA/EIA-603, Paragraph 2.2.3 As per previous page

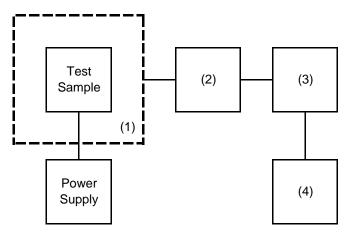

MEASUREMENT PROCEDURE

- 1. The signal generator was connected to the input of the EUT as for "Frequency Response of the Modulating Circuit".
- 2. The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an Agilent 8901B modulation analyzer.
- 3. The input level was varied from 30% modulation (± 1.5kHz deviation) to at least 20dB higher than the saturation point.
- 4. Measurements ware performed for both negative and positive modulation and the respective results ware recorded.

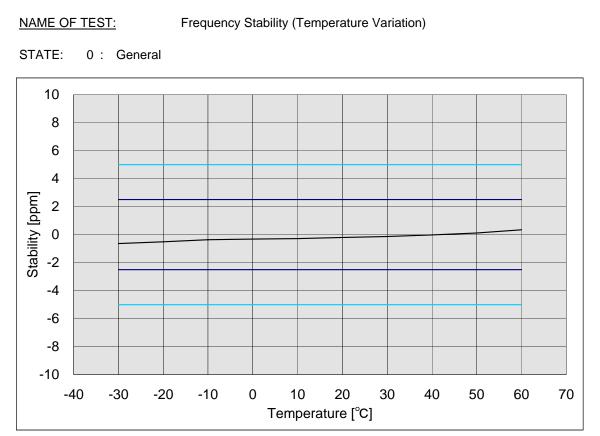
5. MEASUREMENT RESULTS: ATTACHED

Modulation Limiting

NAME OF TEST:
SPECIFICATION:
GUIDE:
TEST CONDITIONS:
TEST EQUIPMENT:


Frequency Stability (Temperature Variation) 47 CFR 2.1055 (a) (1) ANSI/TIA/EIA-603, Paragraph 2.2.2 As indicated As per previous page

MEASUREMENT PROCEDURE

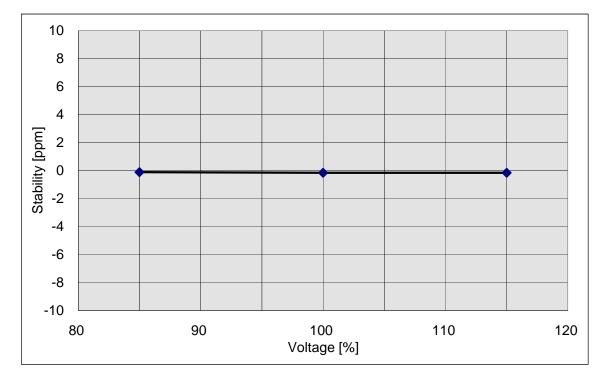

- 1. The EUT and test equipment ware set up as shown on the following page.
- 2. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and themaximum change in frequency was noted within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- 4. The temperature tests ware performed for the worst case.
- 5. MEASUREMENT RESULTS: ATTACHED

TRANSMITTER TEST SET-UP

TEST A: OPERATIONAL STABILITY TEST B: CARRIER FREQUENCY STABILITY TEST C: OPERATIONAL PERFORMANCE STABILITY TEST D: HUMIDITY TEST E: VIBRATION TEST F: ENVIRONMENTAL TEMPERATURE TEST G: FREQUENCY STABILITY, TEMPERATURE VARIATION TEST H: FREQUENCY STABILITY, VOLTAGE VARIATION

Instruments	Description	Calibration Date	Next Calibration
(1) TEMPERATURE CHAMBER	ETAC FX4100	-	-
(2) COAXIAL ATTENUATOR	Weinschel 53-30-33	2009.12.26	One year after
(3) POWER METER	Agilent 436A	2009.12.22	One year after
(4) FREQUENCY COUNTER	Agilent 8901B FREQUENCY MODE	2010.1.6	One year after

NAME OF TEST:	Frequency Stability (Voltage Variation)
SPECIFICATION:	47 CFR 2.1055 (b)
GUIDE:	ANSI/TIA/EIA-603, Paragraph 2.2.2
TEST EQUIPMENT:	As per previous page


MEASUREMENT PROCEDURE

- 1. The EUT was placed in a temperature chamber at 25±5℃ and connected as for "Frequency Stability - Temperature Variation" test.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

<u>RESULTS:</u> Frequency Stability (Voltage Variation)

- STATE: 0 : General
- LIMIT', ppm = 2.5 LIMIT', Hz = 1088

% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
85	6.29	434.999950	-50	-0.11
100	7.40	434.999930	-70	-0.16
115	8.51	434.999930	-70	-0.16

MODULATION = 11K0F3E

NECESSARY BANDWIDTH CALUCULATION:

MAXIMUM MODULATION (M), kHz	=	3
MAXIMUM DEVIATION (D), kHz	=	3
CONSTANT FACTOR (K)	=	1
NECESSARY BANDWIDTH (BN), kHz	=	(2xM) + (2xDxK)
	=	11

NAME OF TEST:	Receiver Spurious Emissions (Conducted)			
STATE: 0 : General				
All other emissions in the required measurement range ware mora than				
	- 11-			

20dB below the required limits.

MEASUREMENT RESULTS				
 FREQUENCY	FREQUENCY	LEVEL,	LEVEL,	
TUNED, MHz	EMISSION, MHz	dBm	nW	

measurements exceed the requirements by more than 20 dB

 NAME OF TEST:
 Receiver Spurious Emissions (Radiated)

 STATE:
 0 : General

 All other emissions in the required measurement range ware mora than

20dB below the required limits.

MEASUREMENT RESULTS					
FREQUENCY	FREQUENCY	LEVEL,	@m	CF,	uV/m
TUNED, MHz	EMISSION, MHz	dBuV		dB	

measurements exceed the requirements by more than 20 dB