

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

Description of Test(s) RF
Specific Absorption Rate Occu

Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

SAR TEST REPORT (FCC/IC)									
RF EXPOSURE EVALU	ATION	S	PECIFIC	ABSOF	RPTION RATE				
APPLICANT		VERTEX STANDARD CO., LTD.							
DEVICE UNDER TEST (DUT)	PORTA	BLE FM UH	FM UHF PUSH-TO-TALK RADIO TRANSCEIVER						
DEVICE FREQUENCY RANGE	450 - 512 MHz								
DEVICE MODEL(S)			VX-231-	AG7B-5					
DEVICE IDENTIFIER(S)	FCC ID:	K6610	854720	IC:	511B-10854720				
APPLICATION TYPE			Certific	cation					
STANDARD(S) APPLIED			FCC 47 CF	R §2.109	3				
STANDARD(3) AFFLIED		Hea	Ith Canada	Safety Co	ode 6				
		FCC OET E	Bulletin 65,	Suppleme	ent C (01-01)				
PROCEDURE(S) APPLIED		Indus	try Canada	RSS-102	Issue 2				
PROCEDURE(3) APPEILD	IEEE 1528-2003								
	IEC 62209-1:2005								
FCC DEVICE CLASSIFICATION	Licensed Non-Broadcast Transmitter Held to Face (TNF)								
IC DEVICE CLASSIFICATION	Land Mobile Radio Transmitter/Receiver (27.41-960 MHz)				ver (27.41-960 MHz)				
RF EXPOSURE CATEGORY		0	ccupational	/ Contro	lled				
RF EXPOSURE EVALUATION		F	ace-held &	Body-wo	rn				
DATE(S) OF EVALUATION			August (06, 2008					
TEST REPORT SERIAL NO.			080608K66-	T918-S90	U				
TEST REPORT REVISION NO.	Revis	ion 1.0	Initial R	elease	August 13, 2008				
	Testi	ng Perform	ed By	Test F	Report Prepared By				
TEST REPORT SIGNATORIES		an Johnsto Itech Labs			nathan Hughes elltech Labs Inc.				
TEST LAB AND LOCATION	Cel	Itech Comp	liance Test	ing and E	ingineering Lab				
TEST LAD AND LOCATION	21-364	4 Lougheed	Road, Keld	owna, B.C	C. V1X 7R8 Canada				
TEST LAB CONTACT INFO.	Tel	.: 250-765-7	650	Fa	x: 250-765-7645				
LOT LAD CONTACT IN C.	info@	celltechlab	s.com	www	celltechlabs.com				
TEST LAB ACCREDITATION(S)					_				

Applicant:	Ver	tex Standard Co	., Ltd.	, Ltd. FCC ID: K6610854720			IC: 511B-10854720		
Model(s):	VX-	VX-231-AG7B-5 Portal		le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Vertex Standard	
2008 Celltech La	abs Inc	This document is	not to be re	produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc	Page 1 of 43	

Date(s) of Evaluation
August 06, 2008

 August 06, 2008
 080608K66-T918-S90U

 Test Report Issue Date
 Description of Test(s)

Test Report Serial No.

Test Report Revision No.
Rev. 1.0 (Initial Release)

August 13, 2008 Specific Absorption Rate

RF Exposure Category
Occupational (Controlled)

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION								
Test Lab Information	Name	CELLTECH LABS INC.						
Test Lab Illioillation	Address	21-364 Lougheed Road, Kelowna, B.C. V1X 7R8 Canada						
Applicant Information	Name VERTEX STANDARD CO., LTD.							
Applicant Information								

Applicant Information		•		
Applicant information	Address	4-8-8 Nakameguro, Meguro-ku, Tokyo 153-8664 Japan		
Standard(s) Applied	FCC	47 CFR §2.1093		
Standard(s) Applied	IC	Health Canada Safety Code 6		
	FCC	OET Bulletin 65, Supplement C (Edition 01-01)		

IEC

Device Classification(s)

FCC Licensed Non-Broadcast Transmitter Held to Face (TNF)

Land Mobile Radio Transmitter/Receiver (27.41-960 MHz)

62209-1:2005

Device RF Exposure Category Portable Occupational / Controlled Environment
FCC ID: K6610854720

 Device Identifier(s)
 IC:
 511B-10854720

 Model(s)
 VX-231-AG7B-5

Serial No.8H000019 (Identical Prototype)Device DescriptionPortable FM UHF Push-To-Talk (PTT) Radio Transceiver

Transmit Frequency Range(s) 450 - 512 MHz

5.3 Watts 37.24 dBm Conducted 450 MHz Low Channel Max. RF Output Power Tested 5.3 Watts 37.24 dBm Conducted 481 MHz Mid Channel 5.2 Watts 37.16 dBm Conducted 512 MHz High Channel 450 - 485 MHz **Detachable Whip** P/N: ATU-6D Length: 151 mm Antenna Type(s) Tested **Detachable Whip** 485 - 520 MHz P/N: ATU-6F Length: 141 mm

P/N: FNB-V103LI Lithium-ion 7.4 V 1150 mAh Battery Type(s) Tested 7.4 V P/N: FNB-V104LI Lithium-ion 2000 mAh Model: CLIP-18 **Body-worn Accessories Tested** Belt-Clip Contains Plastic and Metal Components **Audio Accessories Tested** Speaker-Microphone P/N: MH-45B4B **VOX Headset** P/N: VC-25 Speaker-Microphone Additional Audio Accessories P/N: MH-360S Speaker-Microphone P/N: MH-450S

| Body-worn | Saw | Saw | Body-worn | Saw | Saw

3.87 W/kg

the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6 for the Occupational/Controlled Exposure environment. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 2, IEEE 1528-2003 and IEC 62209-1:2005. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results and statements contained in this report pertain only to the device(s) evaluated.

Face-held

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

Test Report Approved By

Sean Johnston

50% duty cycle

Celltech Labs Inc.

Occupational / Controlled Exposure

Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	
Model(s):	VX-231-AG7B-5		Portab	Portable FM UHF PTT Radio Transceiver			450 - 512 MHz	
2008 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Cellte						sion of Celltech Labs Inc.		

August 13, 2008

Test Report Serial No. 080608K66-T918-S90U Test Report Issue Date Description of Test(s)

Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category Occupational (Controlled)

TABLE OF CONTENTS								
1.0 INTRODUCTION	4							
2.0 SAR MEASUREMENT SYSTEM	4							
3.0 MEASUREMENT SUMMARY	5							
4.0 DETAILS OF SAR EVALUATION	6							
5.0 EVALUATION PROCEDURES	6							
6.0 SYSTEM PERFORMANCE CHECK	7							
7.0 SIMULATED EQUIVALENT TISSUES	8							
8.0 SAR LIMITS	8							
9.0 ROBOT SYSTEM SPECIFICATIONS	9							
10.0 PROBE SPECIFICATION (ET3DV6)								
11.0 SIDE PLANAR PHANTOM	10							
12.0 VALIDATION PLANAR PHANTOM								
13.0 DEVICE HOLDER								
14.0 TEST EQUIPMENT LIST	11							
15.0 MEASUREMENT UNCERTAINTIES	12							
MEASUREMENT UNCERTAINTIES (CONT.)								
16.0 REFERENCES								
APPENDIX A - SAR MEASUREMENT DATA	15							
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	27							
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	30							
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS								
APPENDIX E - SYSTEM VALIDATION	42							
APPENDIX F - PROBE CALIBRATION	43							

Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Vertex Standard
2008 Celltech La	bs Inc.	This document is	not to be re	produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 3 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

1.0 INTRODUCTION

This measurement report demonstrates that the Vertex Standard Co., Ltd. Model: VX-231-AG7B-5 Portable FM UHF PTT Radio Transceiver complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C (Edition 01-01) (see reference [3]), IC RSS-102 Issue 2 (see reference [4]), IEEE 1528-2003 (see reference [5]) and IEC 62209-1:2005 (see reference [6]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR System with Plexiglas side planar phantom

Applicant:	Ver	Vertex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	-
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	
2008 Celltech La	he Inc	This document is	not to be re	produced in whole	or in part without the prior w	ritten nermiss	sion of Celltech Lahs Inc	Pa

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

Description of Test(s)
Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

3.0 MEASUREMENT SUMMARY

					S	AR EVAL	.UATION	RESUL	TS					
Test Type	Freq.	Ch.	Test Mode	Antenna Part No.	Battery Type	Accessory	y Type(s)	Device Spacing to Planar Phantom	Cond. Power Before Test	Measur 1g (V	V/kg)	SAR Drift During Test	with o	d SAR droop V/kg) Cycle
	MHz				mAh	Body-worn	Audio	cm	Watts	100%	50%	dB	100%	50%
Face	481	Mid	CW	ATU-6D	1150	n/a	n/a	2.5	5.3	5.67	2.84	-0.271	6.04	3.02
						-								
Face	481	Mid	CW	ATU-6D	2000	n/a	n/a	2.5	5.3	6.11	3.06	-0.236	6.45	3.23
Face	450	Low	CW	ATU-6D	2000	n/a	n/a	2.5	5.3	7.00	3.50	-0.147	7.24	3.62
Face	512	High	CW	ATU-6F	2000	n/a	n/a	2.5	5.2	7.25	3.63	-0.283	7.74	3.87
Body	481	Mid	CW	ATU-6D	1150	Belt-Clip	Spkr-Mic	1.5	5.3	8.98	4.49	-0.216	9.44	4.72
Body	481	Mid	CW	ATU-6D	2000	Belt-Clip	Spkr-Mic	1.5	5.3	9.61	4.81	-0.201	10.1	5.03
Body	481	Mid	CW	ATU-6D	2000	Belt-Clip	Headset	1.5	5.3	10.2	5.10	-0.193	10.7	5.33
Body	450	Low	CW	ATU-6D	2000	Belt-Clip	Headset	1.5	5.3	10.3	5.15	-0.110	10.6	5.28
Body	512	High	CW	ATU-6F	2000	Belt-Clip	Headset	1.5	5.2	9.59	4.80	-0.403	10.5	5.26
		SA	R LIMIT(S))		BRAIN 8	BODY	SP	SPATIAL PEAK			EXPOSUR	RE CATEG	ORY
FCC 4	47 CFR 2.	1093	Health C	anada Safe	ty Code 6	8.0 V	V/kg	averaç	ged over 1 g	ram	Oc	cupationa	al / Control	led
1	Test Date		A	ugust 06, 20	800	Au	August 06, 2008 Measu			Fluid Typ	е В	rain	Body	Unit
F	luid Type	•		80 MHz Bra	iin	480 MHz Body			Atmospher	ic Pressu	re 1	01.1	101.1	kPa
Dielec	ctric Con	stant	IEEE Tar	_		IEEE Targ			Relative Humidity			35	35	%
_	ε _r			5% 42.3			5 % 56.4					22.8	22.8	°C
F	Fluid Type			80 MHz Bra	ıın	480 MHz Body			Fluid Temperature			22.1	// 11	°C
_				not Moa	Dov	IEEE Targ	ot Mose				_			cm
	onductivit (mho/m)	ty	IEEE Tar	_		IEEE Targ		. Dev.	Fluid	Depth	2	≥ 15	≥ 15	cm
	onductivit	ty	IEEE Tar	get Mea 5% 0.88			et Meas 5% 0.95		Fluid		2	≥ 15		cm
Notes	onductivit (mho/m)	<u></u>	0.87 <u>+</u>	5% 0.88	3 +1.2%		5% 0.95	. Dev. +1.1%	Fluid ρ (Κ	Depth g/m³)	2	≥ 15	≥ 15	ст
Notes 1. D	onductivity (mho/m) Detailed m	easuremed SAR I	0.87 ± ent data ar evels evalu	5% 0.88 and plots should at the	wing the ma	0.94 <u>+</u>	5% 0.95 cation of the ycle) were ≥	DUT are rep	Fluid ρ (Kg orted in Appe	Depth g/m³) endix A.		≥ 15	≥ 15 1000	
Notes 1. D 2. If w	Detailed m f the scale vas option The area s	easuremed SAR In all (per Fo	0.87 ± ent data ar evels evalu CC OET Br uation was	5% 0.88 and plots should plots should at the ulletin 65, Some performed	wing the ma mid channe upplement C with a fully c	0.94 ± eximum SAR local (50% duty cyc.), Edition 01-0 charged batter	ocation of the sycle) were ≥ 1 - see reference.	DUT are rep 3 dB below ance [3]).	Fluid ρ (Κα orted in Appo the SAR limi	Depth g/m³) endix A. t, SAR eva	aluation fo	≥ 15	≥ 15 1000 and high c	hannels
Notes 1. D 2. If w 3. T 4 T	Detailed m f the scale vas option The area s eplaced w The power	easurem d SAR I al (per Fe can eval ith a fully	ent data ar evels evalucCC OET Bruation was a charged b	5% 0.86 and plots sho uated at the ulletin 65, S s performed battery prior measured	wing the ma mid channe upplement C with a fully of to the zoom by the DASY	0.94 ± eximum SAR local (50% duty concentrated batter scan evaluation) y4 system for	ocation of the cycle) were ≥ 1 - see referency. After the approximately.	DUT are rep 3 dB below tince [3]).	Fluid ρ (Κς orted in Appethe SAR limites completed	Depth g/m³) endix A. t, SAR eva	aluation fo	or the low	≥ 15 1000 and high count the batt	hannels ery was
Notes 1. D 2. If w 3. T 4. T 5. A	Detailed m f the scale vas option The area s eplaced w The power caled SAF A SAR-ven	easuremed SAR leal (per Focan evaluation of a fully droop of a results sus-Time	ent data arevels evaluation was charged but the DUT as shown is expower drown as a contract of the data.	5% 0.86 and plots sho uated at the ulletin 65, S s performed pattery prior measured in the above poop evaluati	wing the maximid channel upplement Cowith a fully of to the zoom by the DASY at test data taron was perfections.	0.94 ± eximum SAR local (50% duty cyc., Edition 01-0° charged batter scan evaluation 44 system for ible. ormed in the tocal control of the state o	ocation of the ycle) were ≥ 1 - see refere y. After the abon.	DUT are rep 3 dB below ance [3]). area scan wa	Fluid ρ (Κο orted in Apport the SAR limit as completed evaluations v	Depth g/m³) endix A. t, SAR eva the radio was added	was coole	or the low ed down a	≥ 15 1000 and high cound the batt	hannels ery was o report
Notes 1. D 2. If w 3. T 4. S 5. A T 6. T	Detailed more from the scale was option. The area seplaced work from the power scaled SAR-venters Plots) The fluid to the	easurement of SAR IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ent data arevels evaluation was a charged but the DUT as shown in the power dro-versus-Tirure was me	5% 0.86 and plots sho uated at the ulletin 65, S a performed battery prior measured lin the above coop evaluation me power dr easured prior	wing the maximid channe upplement Country a fully of to the zoom by the DASY at test data ta on was perfectop evaluation to and after to a test data the coop evaluation to and after the coop evaluation to a test to	0.94 ± eximum SAR local (50% duty cyc.), Edition 01-0 charged batter scan evaluation 44 system for lible. formed in the training plot. ter the SAR events and the same control of the s	ocation of the sycle) were ≥ 1 - see referency. After the son. the duration est configura	DUT are rep 3 dB below ince [3]). area scan wa of the SAR	Fluid ρ (Κ) orted in Appoint the SAR limit as completed evaluations we have the maximum orted the maximum orted the maximum or the same of the same or the same o	Depth g/m³) endix A. t, SAR eva the radio was added	was cooled to the management of the management o	or the low ed down a leasured \$ level. See	≥ 15 1000 and high cound the batt SAR level to e Appendix	hannels ery was o report A (SAR
Notes 1. C 2. Iff w 3. T 6. T 7. T	Detailed more the scale vas option The area seplaced we have called SAR-verifiest Plots) The fluid to eported during the dielection	easuremed SAR Idal (per Fican evaluation of results sus-Time for SAR emperaturing the tric para	ent data arevels evaluation was a charged but the DUT as shown in the power dreversus-Tire was medielectric preters of	nd plots sho uated at the ulletin 65, S s performed battery prior measured in the above coop evaluation me power dri easured prior easured prior parameter m	wing the maximid channe upplement C with a fully of to the zoom by the DASY test data ta on was perfectoop evaluation to and aft the asurement.	0.94 ± eximum SAR local (50% duty cyc.), Edition 01-0 charged batter scan evaluation 44 system for lible. formed in the training plot. ter the SAR events and the same control of the s	ocation of the ycle) were ≥ 1 - see refere y. After the abon. the duration est configurations to	DUT are rep 3 dB below tence [3]). area scan was of the SAR tion that repo	Fluid ρ (Kg orted in Appethe SAR limited as completed evaluations were sampled the maximum and the maximum an	Depth g/m³) endix A. t, SAR eva the radio was added ximum sca remained	aluation for was cooled to the maled SAR I	or the low ed down a neasured Seevel. See 2°C of the	≥ 15 1000 and high cound the batt SAR level to the Appendix e fluid temp	hannels ery was o report A (SAR
1. C 2. If w 3. T 6. T 7. T A	Detailed m If the scale was option The area s eplaced w The power caled SAF A SAR-ven est Plots) The fluid te eported du The dielec analyzer (s	easurement of SAR line and the article	ent data arevels evaluation was a charged but as shown in the power dro-versus-Tirure was medielectric present of endix C).	5% 0.86 and plots sho uated at the ulletin 65, S s performed battery prior measured in the above pop evaluation power dr easured prior parameter m the simulation	wing the maximid channel upplement Country to the zoom by the DASY extest data tare on was perfectop evaluation to and aft leasurement ed tissue m	0.94 ± eximum SAR lookel (50% duty cyc.), Edition 01-0 charged batter scan evaluation 44 system for able. commed in the total complete complete complete. eter the SAR exists.	ocation of the sycle) were ≥ 1 - see referency. After the storn. the duration est configurations to measured pr	DUT are reposed and below the same of the SAR tion that reposed ensure the same of the SAR tion to the SAR tion tion to the SAR tion tion tion to the SAR tion tion tion tion tion tion tion tion	Fluid ρ (Kg orted in Appethe SAR limited as completed evaluations were sampled the maximum and the maximum an	Depth g/m³) endix A. t, SAR eva the radio was added ximum sca remained	aluation for was cooled to the maled SAR I	or the low ed down a neasured Seevel. See 2°C of the	≥ 15 1000 and high cound the batt SAR level to the Appendix e fluid temp	hannels ery was o report A (SAR

Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard		
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Terre sumand		
2008 Celltech La	ibs Inc.	This document is	not to be re	eproduced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 5 of 43		

<u>Date(s) of Evaluation</u> August 06, 2008

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

4.0 DETAILS OF SAR EVALUATION

The Vertex Standard Co., Ltd. Model: VX-231-AG7B-5 Portable FM UHF PTT Radio Transceiver described in this report was compliant for localized Specific Absorption Rate (Occupational / Controlled Exposure) based on the test provisions and conditions described below. Detailed photographs of the test setup are shown in Appendix D.

Test Configuration(s)

- The DUT was evaluated in a face-held configuration with the front of the radio placed parallel to the outer surface of the planar phantom. A 2.5 cm spacing was maintained between the front side of the DUT and the outer surface of the planar phantom.
- 2. The DUT was evaluated in a body-worn configuration with the back of the radio placed parallel to the outer surface of the planar phantom. The attached belt-clip accessory was touching the planar phantom and provided a 1.5 cm spacing from the back of the DUT to the outer surface of the planar phantom. The DUT was evaluated for body-worn SAR with the manufacturer-supplied speaker-microphone accessory and VOX headset accessory connected to the audio port consecutively.

Test Mode & Output Power

- 3. The DUT was tested at maximum power in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 4. The conducted power levels were measured prior to the SAR evaluations at the antenna connector of the DUT using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046 and IC RSS-Gen.

Test Conditions

- 5. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 6. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).

5.0 EVALUATION PROCEDURES

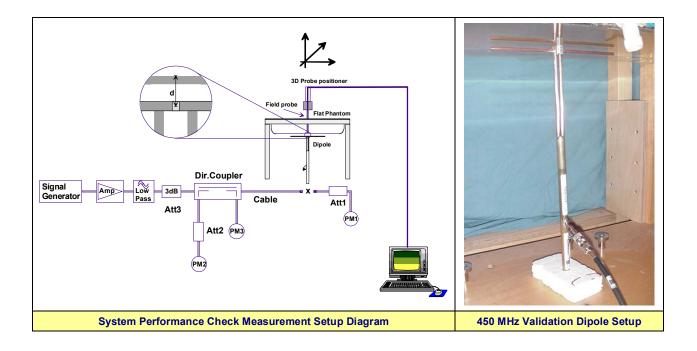
- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans. A 1q and 10q spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard	
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Vertex standard	
2008 Celltech La	ibs Inc.	This document is	not to be re	eproduced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 6 of 43	

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)


RF Exposure Category
Occupational (Controlled)

6.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed using a Plexiglas planar phantom and 450 MHz dipole (see Appendix B for system performance check test plot). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of +10% from the system validation target SAR value (see Appendix E for system validation procedures).

	SYSTEM PERFORMANCE CHECK EVALUATION															
Test	Equiv. Tissue	SAR 1g (W/kg)		Dielectric Constant ε _r		Conductivity σ (mho/m)		ρ,	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.			
Date	Freq. MHz	Sys. Val Target	Meas.	Dev.	Sys. Val Target	Meas.	Dev.	Sys. Val Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
Aug. 5	Brain	1.18 ±10%	1.18	0.0%	43.4 ±5%	44.4	+2.3%	0.89 ±5%	0.89	0.0%	1000	23.0	22.3	> 15	35	101.1
Aug. 5	450	1.10 ±10/6	1.10	0.070	40.4 ±5 /6	77.7	.2.070	0.03 ±3 /6	0.00	0.070	1000	20.0	22.0	<u> </u>	33	101.1
		1. The target SAR value is referenced from the System Validation procedure performed by Celltech Labs Inc. (see Appendix E).														
		2. The targ	get dielec	tric para	meters are r	eference	d from th	ne System V	'alidation	procedu	re perforn	ned by Ce	elltech La	bs Inc. (s	ee Append	dix E).
Note(s)								the system		nce che	ck to ensu	ure the te	mperature	e remaine	ed within +	/-2°C of
		4. The SA	R evalua	tions we	re performed	d within 2	4 hours	of the syste	m perform	nance ch	eck.				•	

Applicant:	Ver	tex Standard Co	o., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portal	ole FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Vertex Standard
2008 Celltech Labs Inc. This document is			not to be re	eproduced in whole	e or in part without the prior v	ritten permiss	sion of Celltech Labs Inc.	Page 7 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

7.0 SIMULATED EQUIVALENT TISSUES

The simulated tissue mixtures consisted of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection made to ensure air bubbles were not trapped during the mixing process. The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

SIMULATED TISSUE MIXTURES									
INGREDIENT	450 MHz Brain	450 MHz Body							
INGREDIENT	System Check & DUT Evaluation	DUT Evaluation							
Water	38.56 %	52.00 %							
Sugar	56.32 %	45.65 %							
Salt	3.95 %	1.75 %							
HEC	0.98 %	0.50 %							
Bactericide	0.19 %	0.10 %							

8.0 SAR LIMITS

SAR RF EXPOSURE LIMITS										
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)							
Spatial A	Average the whole body)	0.08 W/kg	0.4 W/kg							
Spatia (averaged over a		1.6 W/kg	8.0 W/kg							
Spatia (hands/wrists/feet/ankle		4.0 W/kg	20.0 W/kg							

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Vertex Stimumu
2008 Celltech Labs Inc. This document is			not to be re	eproduced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 8 of 43

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Test Lab Certi

9.0 ROBOT SYSTEM SPECIFICATIONS

Specifications	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Coffee	Measurement Software: DASY4, V4.7 Build 44
Software	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1590
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	±0.2 dB (30 MHz to 3 GHz)
Evaluation Phantom	
Туре	Side Planar Phantom
Shell Material	Plexiglas
Bottom Thickness	2.0 mm ± 0.1 mm
Outer Dimensions	75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)
Validation Phantom (≤ 450MHz)	
Туре	Planar Phantom
Shell Material	Plexiglas
Bottom Thickness	6.2 mm ± 0.1 mm
Outer Dimensions	86.0 cm (L) x 39.5 cm (W) x 21.8 cm (H)

Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	VELLEX SAMMAN U
2008 Celltech Labs Inc. This document is			not to be re	eproduced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 9 of 43

August 13, 2008

Test Report Issue Date

Test Report Serial No. 080608K66-T918-S90U

Description of Test(s)

Specific Absorption Rate

Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

10.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB

(30 MHz to 3 GHz)

Directivity: \pm 0.2 dB in brain tissue (rotation around probe axis)

 \pm 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Surface Detect: \pm 0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of mobile phone

ET3DV6 E-Field Probe

11.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

Plexiglas Side Planar Phantom

12.0 VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted to the table of the DASY4 compact system.

Plexiglas Validation Planar Phantom

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Vertex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720
Model(s):	VX-231-AG7B-5	Portab	le FM UHF PT	Γ Radio Transceiver	Freq.:	450 - 512 MHz

Test Report Issue Date August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

Description of Test(s)

RF Exposure Category Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (Initial Release)

14.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	ACCET NO.	OLKIAL NO.	CALIBRATED	DUE DATE
x	Schmid & Partner DASY4 System	-	-	-	-
x	-DASY4 Measurement Server	00158	1078	N/A	N/A
x	-Robot	00046	599396-01	N/A	N/A
х	-DAE4	00019	353	22Apr08	22Apr09
x	-ET3DV6 E-Field Probe	00017	1590	21Jul08	21Jul09
х	-450 MHz Validation Dipole	00024	136	25Jul08	25Jul09
	-SAM Phantom V4.0C	00154	1033	N/A	N/A
	-Barski Planar Phantom	00155	03-01	N/A	N/A
х	-Plexiglas Side Planar Phantom	00156	161	N/A	N/A
х	-Plexiglas Validation Planar Phantom	00157	137	N/A	N/A
	ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N/A	N/A
х	HP 85070C Dielectric Probe Kit	00033	US39240170	N/A	N/A
х	Gigatronics 8652A Power Meter	00007	1835272	23Apr08	23Apr09
х	Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	23Apr09
х	HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr09
х	HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
	Rohde & Schwarz SMR20 Signal Generator	00006	100104	NCR	NCR
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR
	Amplifier Research 10W1000C Power Amplifier	00041	27887	NCR	NCR
	Nextec NB00383 Microwave Amplifier	00151	0535	NCR	NCR
Abbr.	N/A = Not Applicable		NCR	= No Calibration Requ	uired

Applicant:	Ver	tex Standard Co	o., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	vertet summaru
2008 Celltech La	8 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 11 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate

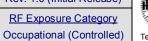
<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

15.0 MEASUREMENT UNCERTAINTIES

U	NCERTAINT	Y BUDGET FOR	DEVICE EVAL	UATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (450 MHz)	6.65	Normal	1	1	6.65	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	∞
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	0.8	Rectangular	1.732050808	1	0.5	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0.8	Rectangular	1.732050808	1	0.5	∞
Integration time	2.6	Rectangular	1.732050808	1	1.5	œ
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Device positioning	2.9	Normal	1	1	2.9	12
Device holder uncertainty	3.6	Normal	1	1	3.6	8
Power drift	5	Rectangular	1.732050808	1	2.9	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	œ
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	1.2	Normal	1	0.64	0.8	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	2.3	Normal	1	0.6	1.4	∞
Combined Standard Uncertain	tv				11.11	
Expanded Uncertainty (k=2)					22.22	
Measurement Uncertaint	v Table in acco	ordance with IEEE S	tandard 1528-2003	and IEC S	tandard 62209-	1:2005

Applicant:	Ver	ertex Standard Co., Ltd.		FCC ID:	FCC ID: K6610854720		511B-10854720	Vertex Standard	
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	NEI LEA SALIMAINA	
2008 Celltech La	ibs Inc.	This document is	not to be re	eproduced in whole	e or in part without the prior v	ritten permiss	sion of Celltech Labs Inc.	Page 12 of 43	



Test Report Issue Date August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

Description of Test(s) Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)

Test Lab Certificate No. 2470.01

MEASUREMENT UNCERTAINTIES (CONT.)

Measurement System	UNCERTAINTY BUDGET FOR SYSTEM VALIDATION												
Probe calibration (450 MHz) 6.65 Normal 1 1 6.65 ∞ Axial isotropy of the probe 4.7 Rectangular 1.732050808 1 2.7 ∞ Spherical isotropy of the probe 0 Rectangular 1.732050808 1 0.0 ∞ Spatial resolution 0 Rectangular 1.732050808 1 0.0 ∞ Boundary effects 0.8 Rectangular 1.732050808 1 0.5 ∞ Probe linearity 4.7 Rectangular 1.732050808 1 0.5 ∞ Probe linearity 4.7 Rectangular 1.732050808 1 0.6 ∞ Probe linearity 1 1 Rectangular 1.732050808 1 0.6 ∞ Probe clinearity 1 1 1 0.3 ∞ 0 ∞ 1 0.6 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0<	Error Description	Value		Divisor	_	Value	V _i or V _{eff}						
Axial isotropy of the probe 4.7 Rectangular 1.732050808 1 2.7 ∞ Spherical isotropy of the probe 0 Rectangular 1.732050808 1 0.0 ∞ Spatial resolution 0 Rectangular 1.732050808 1 0.0 ∞ Boundary effects 0.8 Rectangular 1.732050808 1 0.5 ∞ Probe linearity 4.7 Rectangular 1.732050808 1 0.5 ∞ Probe linearity 4.7 Rectangular 1.732050808 1 0.6 ∞ Probe position limit 1 Rectangular 1.732050808 1 0.6 ∞ Response time 0 Rectangular 1.732050808 1 0.0 ∞ Response time 0 Rectangular 1.732050808 1 0.0 ∞ RF ambient conditions 3 Rectangular 1.732050808 1 1.7 ∞ Mech. constraints of robot 0.4 Rectangular 1	Measurement System												
Spherical isotropy of the probe 0 Rectangular 1.732050808 1 0.0 ∞ Spatial resolution 0 Rectangular 1.732050808 1 0.0 ∞ Boundary effects 0.8 Rectangular 1.732050808 1 0.5 ∞ Probe linearity 4.7 Rectangular 1.732050808 1 2.7 ∞ Detection limit 1 Rectangular 1.732050808 1 0.6 ∞ Readout electronics 0.3 Normal 1 1 0.6 ∞ Response time 0 Rectangular 1.732050808 1 0.0 ∞ Response time 0 Rectangular 1.732050808 1 0.0 ∞ RF ambient conditions 3 Rectangular 1.732050808 1 1.7 ∞ Mech. constraints of robot 0.4 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808	Probe calibration (450 MHz)	6.65	Normal	1	1	6.65	∞						
Spatial resolution 0 Rectangular 1.732050808 1 0.0 ∞ Boundary effects 0.8 Rectangular 1.732050808 1 0.5 ∞ Probe linearity 4.7 Rectangular 1.732050808 1 2.7 ∞ Detection limit 1 Rectangular 1.732050808 1 0.6 ∞ Readout electronics 0.3 Normal 1 1 0.6 ∞ Response time 0 Rectangular 1.732050808 1 0.0 ∞ Response time 0 Rectangular 1.732050808 1 0.0 ∞ Integration time 0 Rectangular 1.732050808 1 0.0 ∞ RF ambient conditions 3 Rectangular 1.732050808 1 1.7 ∞ Mech. constraints of robot 0.4 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808 1 <td>Axial isotropy of the probe</td> <td>4.7</td> <td>Rectangular</td> <td>1.732050808</td> <td>1</td> <td>2.7</td> <td>∞</td>	Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞						
Boundary effects 0.8 Rectangular 1.732050808 1 0.5 ∞ Probe linearity 4.7 Rectangular 1.732050808 1 2.7 ∞ Detection limit 1 Rectangular 1.732050808 1 0.6 ∞ Readout electronics 0.3 Normal 1 1 0.3 ∞ Response time 0 Rectangular 1.732050808 1 0.0 ∞ Integration time 0 Rectangular 1.732050808 1 0.0 ∞ RF ambient conditions 3 Rectangular 1.732050808 1 0.0 ∞ RF ambient conditions 3 Rectangular 1.732050808 1 1.7 ∞ Mech. constraints of robot 0.4 Rectangular 1.732050808 1 1.7 ∞ Probe positioning 2.9 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808	Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	8						
Probe linearity 4.7 Rectangular 1.732050808 1 2.7 ∞ Detection limit 1 Rectangular 1.732050808 1 0.6 ∞ Readout electronics 0.3 Normal 1 1 0.3 ∞ Response time 0 Rectangular 1.732050808 1 0.0 ∞ Integration time 0 Rectangular 1.732050808 1 0.0 ∞ RF ambient conditions 3 Rectangular 1.732050808 1 1.7 ∞ Mech. constraints of robot 0.4 Rectangular 1.732050808 1 0.2 ∞ Probe positioning 2.9 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808 1 1.2 ∞ Power & Power Drift 4.7 Normal 1.732050808	Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞						
Detection limit 1 Rectangular 1.732050808 1 0.6 ∞ Readout electronics 0.3 Normal 1 1 0.3 ∞ Response time 0 Rectangular 1.732050808 1 0.0 ∞ Integration time 0 Rectangular 1.732050808 1 0.0 ∞ RF ambient conditions 3 Rectangular 1.732050808 1 1.7 ∞ Mech. constraints of robot 0.4 Rectangular 1.732050808 1 0.2 ∞ Probe positioning 2.9 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 ∞ Dipole Dipole Dipole Positioning 2 Normal 1.732050808 1 1.2 ∞ Power & Power Drift 4.7 Normal 1.732050808 1 2.7 ∞ Phantom uncertainty 4 Rectangular <td>Boundary effects</td> <td>0.8</td> <td>Rectangular</td> <td>1.732050808</td> <td>1</td> <td>0.5</td> <td>∞</td>	Boundary effects	0.8	Rectangular	1.732050808	1	0.5	∞						
Readout electronics 0.3 Normal 1 1 0.3 ∞ Response time 0 Rectangular 1.732050808 1 0.0 ∞ Integration time 0 Rectangular 1.732050808 1 0.0 ∞ RF ambient conditions 3 Rectangular 1.732050808 1 1.7 ∞ Mech. constraints of robot 0.4 Rectangular 1.732050808 1 0.2 ∞ Probe positioning 2.9 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 ∞ Dipole Dipole Positioning 2 Normal 1.732050808 1 1.2 ∞ Power & Power Drift 4.7 Normal 1.732050808 1 2.7 ∞ Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (traget) </td <td>Probe linearity</td> <td>4.7</td> <td>Rectangular</td> <td>1.732050808</td> <td>1</td> <td>2.7</td> <td>∞</td>	Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞						
Response time 0 Rectangular 1.732050808 1 0.0 ∞ Integration time 0 Rectangular 1.732050808 1 0.0 ∞ RF ambient conditions 3 Rectangular 1.732050808 1 1.7 ∞ Mech. constraints of robot 0.4 Rectangular 1.732050808 1 0.2 ∞ Probe positioning 2.9 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 ∞ Dipole Dipole Positioning 2 Normal 1.732050808 1 1.2 ∞ Power & Power Drift 4.7 Normal 1.732050808 1 2.7 ∞ Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid permittivi	Detection limit	1	Rectangular	1.732050808	1	0.6	∞						
Integration time	Readout electronics	0.3	Normal	1	1	0.3	∞						
RF ambient conditions 3 Rectangular 1.732050808 1 1.7 ∞ Mech. constraints of robot 0.4 Rectangular 1.732050808 1 0.2 ∞ Probe positioning 2.9 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 ∞ Dipole Dipole Positioning 2 Normal 1.732050808 1 1.2 ∞ Power & Power Drift 4.7 Normal 1.732050808 1 2.7 ∞ Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid permittivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ <td>Response time</td> <td>0</td> <td>Rectangular</td> <td>1.732050808</td> <td>1</td> <td>0.0</td> <td>∞</td>	Response time	0	Rectangular	1.732050808	1	0.0	∞						
Mech. constraints of robot 0.4 Rectangular 1.732050808 1 0.2 ∞ Probe positioning 2.9 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 ∞ Dipole Dipole Positioning 2 Normal 1.732050808 1 1.2 ∞ Power & Power Drift 4.7 Normal 1.732050808 1 2.7 ∞ Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid permittivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.7 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4	Integration time	0	Rectangular	1.732050808	1	0.0	8						
Probe positioning 2.9 Rectangular 1.732050808 1 1.7 ∞ Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 ∞ Dipole Dipole Positioning 2 Normal 1.732050808 1 1.2 ∞ Power & Power Drift 4.7 Normal 1.732050808 1 2.7 ∞ Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid permittivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.7 ∞ Combined Standard Uncertainty 9.39 18.77 18.77 18.77 18.77	RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞						
Extrapolation & integration 1 Rectangular 1.732050808 1 0.6 ∞ Dipole Dipole Positioning 2 Normal 1.732050808 1 1.2 ∞ Power & Power Drift 4.7 Normal 1.732050808 1 2.7 ∞ Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid permittivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.7 ∞ Combined Standard Uncertainty 9.39 18.77 18.77 18.77	Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞						
Dipole Normal 1.732050808 1 1.2 ∞ Power & Power Drift 4.7 Normal 1.732050808 1 2.7 ∞ Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid conductivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ Combined Standard Uncertainty 9.39 18.77 18.77 18.77	Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞						
Dipole Positioning 2 Normal 1.732050808 1 1.2 ∞ Power & Power Drift 4.7 Normal 1.732050808 1 2.7 ∞ Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid permittivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (measured) 5 Rectangular 1.732050808 0.6 1.7 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ Combined Standard Uncertainty 9.39 18.77 18.77	Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	8						
Power & Power Drift 4.7 Normal 1.732050808 1 2.7 ∞ Phantom and Setup Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid conductivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ Combined Standard Uncertainty 9.39 Expanded Uncertainty (k=2) 18.77	Dipole												
Phantom and Setup Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid conductivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ Combined Standard Uncertainty 9.39 Expanded Uncertainty (k=2) 18.77	Dipole Positioning	2	Normal	1.732050808	1	1.2	8						
Phantom uncertainty 4 Rectangular 1.732050808 1 2.3 ∞ Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid conductivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ Combined Standard Uncertainty 9.39 Expanded Uncertainty (k=2) 18.77	Power & Power Drift	4.7	Normal	1.732050808	1	2.7	8						
Liquid conductivity (target) 5 Rectangular 1.732050808 0.64 1.8 ∞ Liquid conductivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ Combined Standard Uncertainty 9.39 Expanded Uncertainty (k=2) 18.77	Phantom and Setup												
Liquid conductivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ Combined Standard Uncertainty 9.39 Expanded Uncertainty (k=2) 18.77	Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞						
Liquid conductivity (measured) 0 Normal 1 0.64 0.0 ∞ Liquid permittivity (target) 5 Rectangular 1.732050808 0.6 1.7 ∞ Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ Combined Standard Uncertainty 9.39 Expanded Uncertainty (k=2) 18.77	Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞						
Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ Combined Standard Uncertainty 9.39 Expanded Uncertainty (k=2) 18.77		0	Normal	1	0.64	0.0	∞						
Liquid permittivity (measured) 2.3 Normal 1 0.6 1.4 ∞ Combined Standard Uncertainty 9.39 Expanded Uncertainty (k=2) 18.77	Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞						
Combined Standard Uncertainty 9.39 Expanded Uncertainty (k=2) 18.77		2.3	Normal	1	0.6	1.4	∞						
Expanded Uncertainty (k=2) 18.77		v				9.39							

Applicant:	Ver	rtex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5 Portab		Portable FM UHF PTT Radio Transceiver		Freq.:	450 - 512 MHz	VELLEX SAMMAN U
2008 Celltech La	abs Inc.	This document is	not to be re	produced in whole	e or in part without the prior w	vritten permiss	sion of Celltech Labs Inc.	Page 13 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

16.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures."

Applicant:	Ver	tex Standard Co	o., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX	-231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Tertex Summing
2008 Celltech L	abs Inc.	s Inc. This document is not to be		produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 14 of 43

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX A - SAR MEASUREMENT DATA

Applicant:	Ver	Vertex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5 Portab		ortable FM UHF PTT Radio Transceiver		Freq.:	450 - 512 MHz	VELLEX SAMMAND
2008 Celltech La	bs Inc.	This document is	not to be re	eproduced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 15 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/06/2008

Face-held SAR - Antenna P/N: ATU-6D - 1150mAh Battery - Mid Channel - 481 MHz

DUT: Vertex Model: VX-231-AG7B-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 8H000019

Ambient Temp: 22.8°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Frequency: 481 MHz; Duty Cycle: 1:1 Communication System: FM UHF (CW) RF Output Power: 5.3 Watts (Conducted)

7.4V 1150mAh Lithium-ion Battery (P/N: FNB-V103LI)

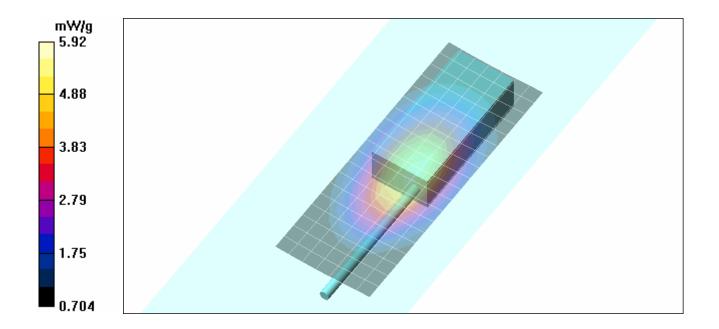
Medium: HSL450 Medium parameters used: f = 480 MHz; $\sigma = 0.88 \text{ mho/m}$; $\epsilon_r = 42.3$; $\rho = 1000 \text{ kg/m}^3$

- Probe: ET3DV6 SN1590; ConvF(7.66, 7.66, 7.66); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 5.53 mW/g

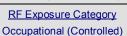

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 81.7 V/m; Power Drift = -0.271 dB

Peak SAR (extrapolated) = 8.05 W/kg

SAR(1 g) = 5.67 mW/g; SAR(10 g) = 4.11 mW/g Maximum value of SAR (measured) = 5.92 mW/g


Applicant:	Vertex Standard Co., Ltd.			FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	
2008 Celltech La	ibs Inc.	Inc. This document is not to be re		produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 16 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

Date Tested: 08/06/2008

Face-held SAR - Antenna P/N: ATU-6D - 2000mAh Battery - Mid Channel - 481 MHz

DUT: Vertex Model: VX-231-AG7B-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 8H000019

Ambient Temp: 22.8°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Frequency: 481 MHz; Duty Cycle: 1:1 Communication System: FM UHF (CW) RF Output Power: 5.3 Watts (Conducted)

7.4V 2000mAh Lithium-ion Battery (P/N: FNB-V104LI)

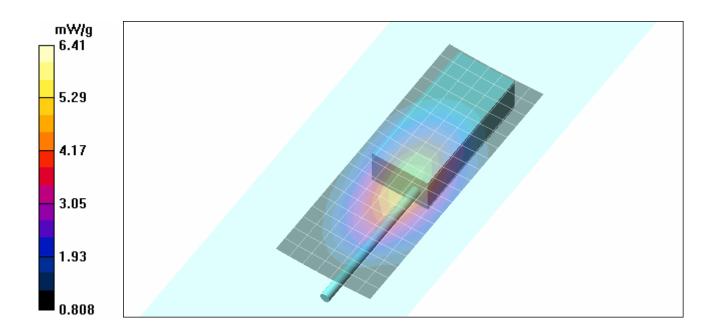
Medium: HSL450 Medium parameters used: f = 480 MHz; σ = 0.88 mho/m; ϵ_r = 42.3; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.66, 7.66, 7.66); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 5.01 mW/g


Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 82.3 V/m; Power Drift = -0.236 dB

Peak SAR (extrapolated) = 8.61 W/kg

SAR(1 g) = 6.11 mW/g; SAR(10 g) = 4.43 mW/g Maximum value of SAR (measured) = 6.41 mW/g

Applicant:	Vertex Standard Co., Ltd.			FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	
2008 Celltech La	ibs Inc.	Inc. This document is not to be r		produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 17 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/06/2008

Face-held SAR - Antenna P/N: ATU-6D - 2000mAh Battery - Low Channel - 450 MHz

DUT: Vertex Model: VX-231-AG7B-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 8H000019

Ambient Temp: 22.8°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Frequency: 450 MHz; Duty Cycle: 1:1 Communication System: FM UHF (CW) RF Output Power: 5.3 Watts (Conducted)

7.4V 2000mAh Lithium-ion Battery (P/N: FNB-V104LI)

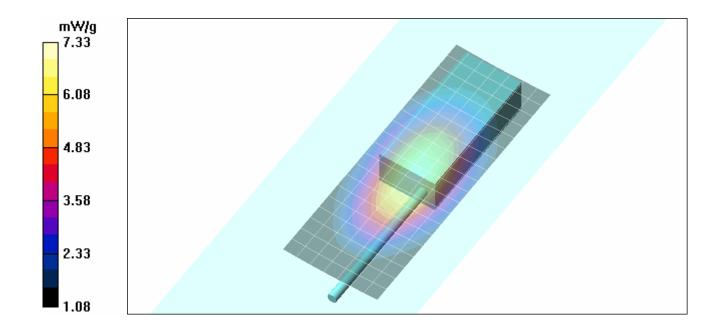
Medium: HSL450 Medium parameters used: f = 480 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.66, 7.66, 7.66); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 7.04 mW/g


Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 89.6 V/m; Power Drift = -0.147 dB

Peak SAR (extrapolated) = 9.79 W/kg

SAR(1 g) = 7 mW/g; SAR(10 g) = 5.12 mW/g Maximum value of SAR (measured) = 7.33 mW/g


Applicant:	Vertex Standard Co., Ltd.			FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Vertex standard
2008 Celltech La	ibs Inc.	This document is	not to be re	eproduced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 18 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

Date Tested: 08/06/2008

Face-held SAR - Antenna P/N: ATU-6F - 2000mAh Battery - High Channel - 512 MHz

DUT: Vertex Model: VX-231-AG7B-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 8H000019

Ambient Temp: 22.8°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Frequency: 512 MHz; Duty Cycle: 1:1 Communication System: FM UHF (CW) RF Output Power: 5.2 Watts (Conducted)

7.4V 2000mAh Lithium-ion Battery (P/N: FNB-V104LI)

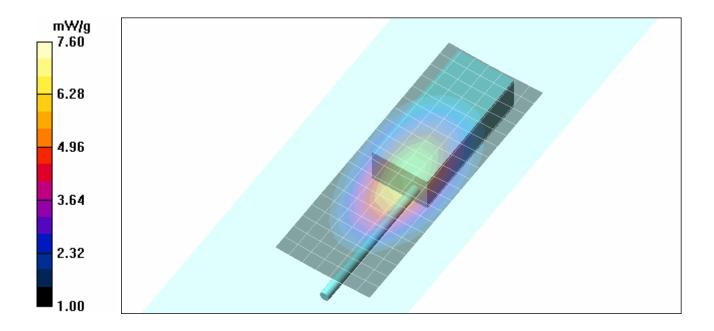
Medium: HSL450 Medium parameters used: f = 480 MHz; $\sigma = 0.88 \text{ mho/m}$; $\epsilon_r = 42.3$; $\rho = 1000 \text{ kg/m}^3$

- Probe: ET3DV6 SN1590; ConvF(7.66, 7.66, 7.66); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.46 mW/g


Face-held SAR - 2.5 cm Spacing from Front Side of DUT to Planar Phantom

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 91.0 V/m; Power Drift = -0.283 dB

Peak SAR (extrapolated) = 10.4 W/kg

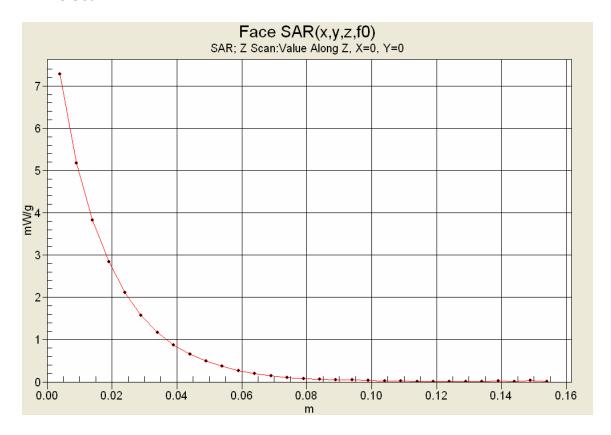
SAR(1 g) = 7.25 mW/g; SAR(10 g) = 5.2 mW/g Maximum value of SAR (measured) = 7.60 mW/g

Applicant:	Vertex Standard Co., Ltd.			FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Ver tex Standard
2008 Celltech La	bs Inc.	s Inc. This document is not to be r		produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 19 of 43

Test Report Issue Date August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

Description of Test(s)


RF Exposure Category Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (Initial Release)

Z-Axis Scan

Applicant:	Ver	Vertex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Stand
Model(s):	VX-	31-AG7B-5 Portab		le FM UHF PT	Γ Radio Transceiver	Freq.:	450 - 512 MHz	Vente stand
2008 Celltech La	bs Inc.	This document is	not to be re	eproduced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 20 of

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/06/2008

Body-worn SAR - Antenna P/N: ATU-6D - 1150mAh Battery - Mid Channel - 481 MHz

DUT: Vertex Model: VX-231-AG7B-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 8H000019

Body-worn Accessory: Belt-Clip (Model: CLIP-18); Audio Accessory: Speaker-Microphone (P/N: MH-45B4B)

Ambient Temp: 22.8°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Frequency: 481 MHz; Duty Cycle: 1:1 Communication System: FM UHF (CW) RF Output Power: 5.3 Watts (Conducted)

7.4V 1150mAh Lithium-ion Battery (P/N: FNB-V103LI)

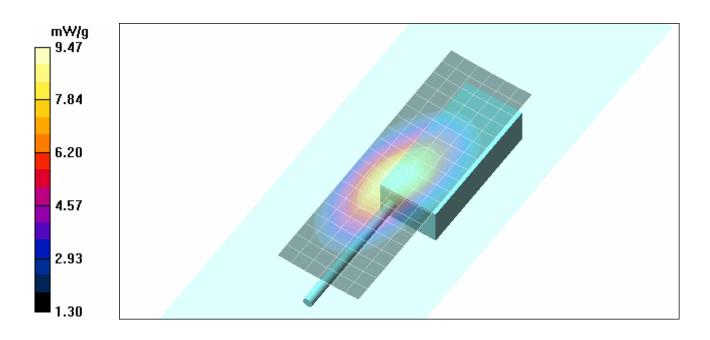
Medium: M450 Medium parameters used: f = 481 MHz; σ = 0.95 mho/m; ε_r = 56.4; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.5 cm Belt-Clip Spacing from Back Side of DUT to Planar Phantom

Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.73 mW/a


Body-worn SAR - 1.5 cm Belt-Clip Spacing from Back Side of DUT to Planar Phantom

Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 97.8 V/m; Power Drift = -0.216 dB

Peak SAR (extrapolated) = 13.3 W/kg

SAR(1 g) = 8.98 mW/g; SAR(10 g) = 6.32 mW/g Maximum value of SAR (measured) = 9.47 mW/g

Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Vertex Stimumu
2008 Celltech La	ibs Inc.	. This document is not to be re		produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 21 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/06/2008

Body-worn SAR - Antenna P/N: ATU-6D - 2000mAh Battery - Mid Channel - 481 MHz

DUT: Vertex Model: VX-231-AG7B-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 8H000019

Body-worn Accessory: Belt-Clip (Model: CLIP-18); Audio Accessory: Speaker-Microphone (P/N: MH-45B4B)

Ambient Temp: 22.8°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Frequency: 481 MHz; Duty Cycle: 1:1 Communication System: FM UHF (CW) RF Output Power: 5.3 Watts (Conducted)

7.4V 2000mAh Lithium-ion Battery (P/N: FNB-V104LI)

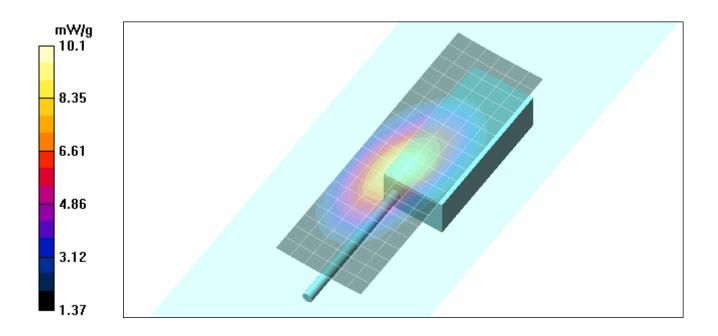
Medium: M450 Medium parameters used: f = 480 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon_r = 56.4$; $\rho = 1000 \text{ kg/m}^3$

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.5 cm Belt-Clip Spacing from Back Side of DUT to Planar Phantom

Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.73 mW/a


Body-worn SAR - 1.5 cm Belt-Clip Spacing from Back Side of DUT to Planar Phantom

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 104.0 V/m; Power Drift = -0.201 dB

Peak SAR (extrapolated) = 14.1 W/kg

SAR(1 g) = 9.61 mW/g; SAR(10 g) = 6.81 mW/g Maximum value of SAR (measured) = 10.1 mW/g

Applic	icant:	Vert	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Mode	el(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	We the samulation
2008 Ce	elltech La	bs Inc.	Inc. This document is not to be re		produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 22 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/06/2008

Body-worn SAR - Antenna P/N: ATU-6D - 2000mAh Battery - Mid Channel - 481 MHz

DUT: Vertex Model: VX-231-AG7B-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 8H000019

Body-worn Accessory: Belt-Clip (Model: CLIP-18); Audio Accessory: VOX Headset (P/N: VC-25)

Ambient Temp: 22.8°C; Fluid Temp: 22.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Frequency: 481 MHz; Duty Cycle: 1:1 Communication System: FM UHF (CW) RF Output Power: 5.3 Watts (Conducted)

7.4V 2000mAh Lithium-ion Battery (P/N: FNB-V104LI)

Medium: M450 Medium parameters used: f = 480 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon_r = 56.4$; $\rho = 1000 \text{ kg/m}^3$

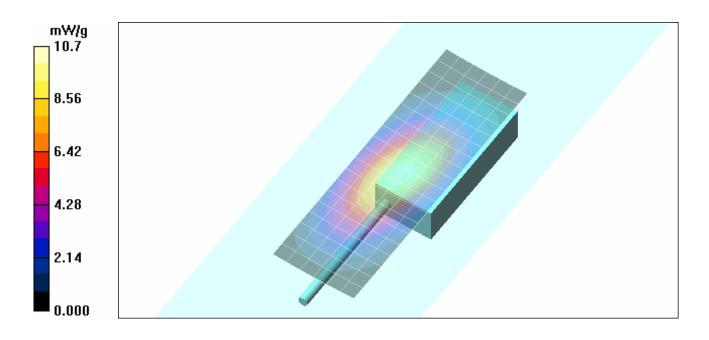
- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.5 cm Belt-Clip Spacing from Back Side of DUT to Planar Phantom

Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 10.5 mW/g

Body-worn SAR - 1.5 cm Belt-Clip Spacing from Back Side of DUT to Planar Phantom


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 109.3 V/m; Power Drift = -0.193 dB

Peak SAR (extrapolated) = 14.9 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 7.3 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Vertex Stimumu
2008 Celltech La	ibs Inc.	. This document is not to be re		produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 23 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

Date Tested: 08/06/2008

Body-worn SAR - Antenna P/N: ATU-6D - 2000mAh Battery - Low Channel - 450 MHz

DUT: Vertex Model: VX-231-AG7B-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 8H000019

Body-worn Accessory: Belt-Clip (Model: CLIP-18); Audio Accessory: VOX Headset (P/N: VC-25)

Ambient Temp: 22.8°C; Fluid Temp: 22.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Frequency: 450 MHz; Duty Cycle: 1:1 Communication System: FM UHF (CW) RF Output Power: 5.3 Watts (Conducted)

7.4V 2000mAh Lithium-ion Battery (P/N: FNB-V104LI)

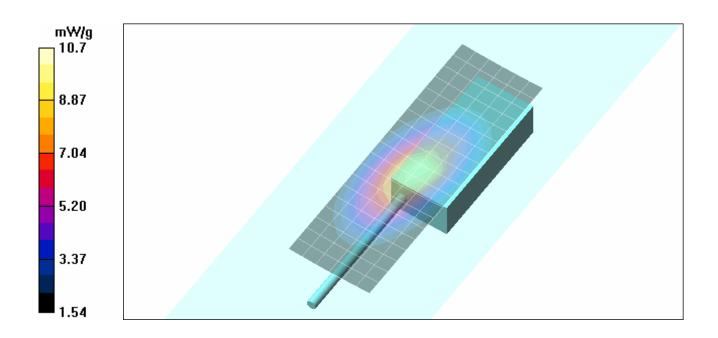
Medium: M450 Medium parameters used: f = 480 MHz; σ = 0.95 mho/m; ε_r = 56.4; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.5 cm Belt-Clip Spacing from Back Side of DUT to Planar Phantom

Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.42 mW/g


Body-worn SAR - 1.5 cm Belt-Clip Spacing from Back Side of DUT to Planar Phantom

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 106.4 V/m; Power Drift = -0.110 dB

Peak SAR (extrapolated) = 14.9 W/kg

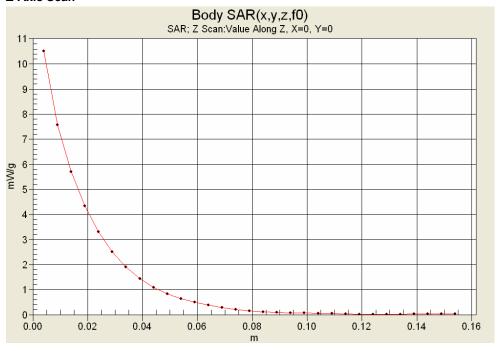
SAR(1 g) = 10.3 mW/g; SAR(10 g) = 7.37 mW/g Maximum value of SAR (measured) = 10.7 mW/g

Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	VX-231-AG7B-5 Portal		le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Tertes Standard
2008 Celltech La	ibs Inc.	This document is	not to be re	produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 24 of 43

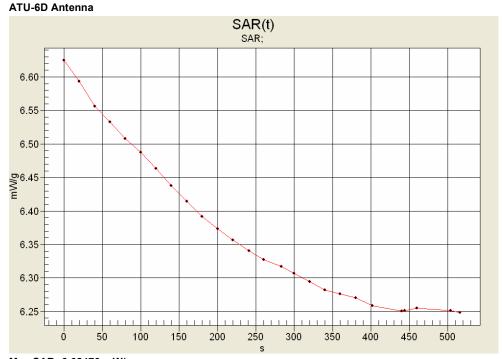


Test Report Issue Date August 13, 2008

Test Report Serial No. 080608K66-T918-S90U


Description of Test(s) Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)



Z-Axis Scan

SAR-versus-Time Power Droop Evaluation Body-worn Configuration Low Channel - 450 MHz

Max SAR: 6.62476 mW/g

End SAR: 6.24844 mW/g (-0.254 dB) SAR after 340s: 6.28221 mW/g (-0.231 dB)

(340s = Zoom Scan Duration) (516s = Area Scan Duration)

Applicant:	Ver	Vertex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	(-231-AG7B-5 Portab		le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	vertet stammaru
2008 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Cellte					sion of Celltech Labs Inc.	Page 25 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational (Controlled)

Test Report Revision No.

Rev. 1.0 (Initial Release)

Date Tested: 08/06/2008

Body-worn SAR - Antenna P/N: ATU-6F - 2000mAh Battery - High Channel - 512 MHz

DUT: Vertex Model: VX-231-AG7B-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 8H000019

Body-worn Accessory: Belt-Clip (Model: CLIP-18); Audio Accessory: VOX Headset (P/N: VC-25)

Ambient Temp: 22.8°C; Fluid Temp: 22.0°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Frequency: 512 MHz; Duty Cycle: 1:1 Communication System: FM UHF (CW) RF Output Power: 5.2 Watts (Conducted)

7.4V 2000mAh Lithium-ion Battery (P/N: FNB-V104LI)

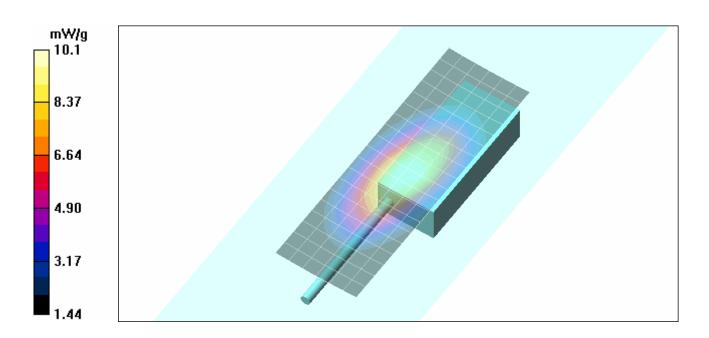
Medium: M450 Medium parameters used: f = 480 MHz; σ = 0.95 mho/m; ε_r = 56.4; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.5 cm Belt-Clip Spacing from Back Side of DUT to Planar Phantom

Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 10.8 mW/g


Body-worn SAR - 1.5 cm Belt-Clip Spacing from Back Side of DUT to Planar Phantom

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 105.9 V/m; Power Drift = -0.403 dB

Peak SAR (extrapolated) = 13.9 W/kg

SAR(1 g) = 9.59 mW/g; SAR(10 g) = 6.8 mW/g Maximum value of SAR (measured) = 10.1 mW/g

Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	VX-231-AG7B-5 Portal		le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	We the samulation
2008 Celltech La	abs Inc.	s Inc. This document is not to be r		produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 26 of 43

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Ver	Vertex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5 Portab		le FM UHF PTT Radio Transceiver		Freq.:	450 - 512 MHz	Vertex Stimuliu
2008 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior				ritten permiss	sion of Celltech Labs Inc.	Page 27 of 43

Test Report Issue Date August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category

Occupational (Controlled)

Date Tested: 08/05/2008

System Performance Check - 450 MHz Dipole - HSL

DUT: Dipole 450 MHz; Asset: 00024; Serial: 136; Validation: 07/25/2008

Ambient Temp: 23.0°C; Fluid Temp: 22.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

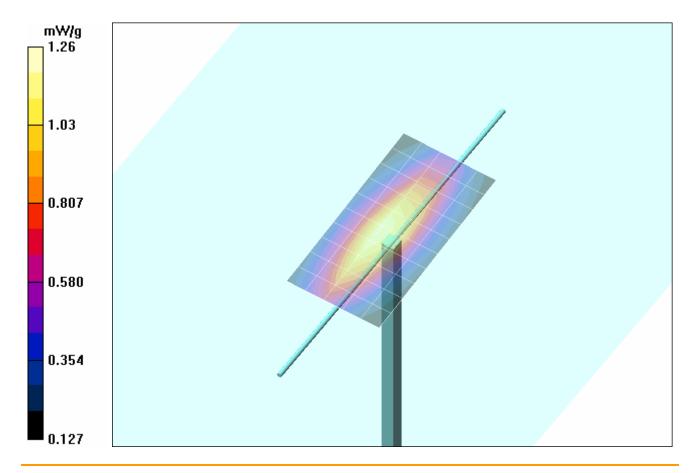
Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.89 mho/m; ϵ_r = 44.4; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.66, 7.66, 7.66); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Validation Planar; Type: Plexiglas; Serial: TE#137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

450 MHz Dipole - System Performance Check

Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.20 mW/g 450 MHz Dipole - System Performance Check

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

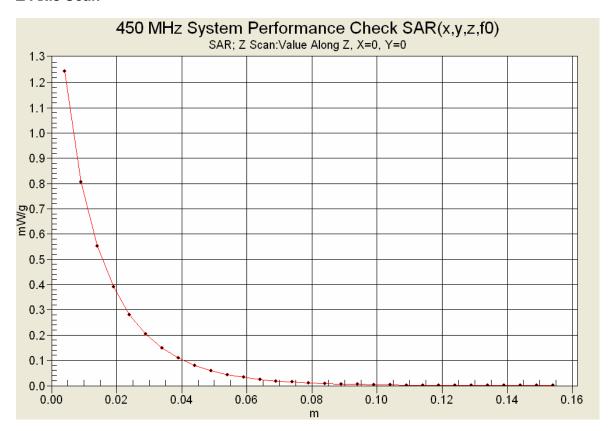
Reference Value = 39.6 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.772 mW/gMaximum value of SAR (measured) = 1.26 mW/g

	Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Γ	Model(s):	VX-	VX-231-AG7B-5 Portal		le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	V2 (C.) Stillmand
	2008 Celltech La	abs Inc.	Inc. This document is not to be re		produced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 28 of 43

Test Report Issue Date
August 13, 2008


Test Report Serial No. 080608K66-T918-S90U

Description of Test(s) RF Exposure Category
Specific Absorption Rate Occupational (Controlled)

Test Report Revision No.
Rev. 1.0 (Initial Release)

Z-Axis Scan

Applicant:	Ver	rtex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Stan
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Value State
2008 Celltech La	abs Inc.	This document is	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 29 of

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Ver	tex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PTT Radio Transceiver		Freq.:	450 - 512 MHz	
2008 Celltech La	bs Inc.	This document is	This document is not to be reproduced in whole or in part without the prior written permission of Celltech La					Page 30 of 43

August 13, 2008

Test Report Serial No. 080608K66-T918-S90U Test Report Issue Date Description of Test(s)

Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category Occupational (Controlled)

450 MHz System Performance Check (Brain)

Specific Absorption Rate

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Tue 05/Aug/2008 Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM Test_s Sigma of UIM

*********	******	******	*******	******
Freq	FCC_eH	FCC_sl	HTest_e	Test_s
0.3500	44.70	0.87	46.64	0.80
0.3600	44.58	0.87	46.65	0.82
0.3700	44.46	0.87	46.42	0.83
0.3800	44.34	0.87	46.08	0.83
0.3900	44.22	0.87	45.54	0.84
0.4000	44.10	0.87	45.41	0.84
0.4100	43.98	0.87	44.78	0.84
0.4200	43.86	0.87	44.52	0.84
0.4300	43.74	0.87	44.16	0.87
0.4400	43.62	0.87	44.83	0.87
<mark>0.4500</mark>	43.50	0.87	44.36	0.89
0.4600	43.45	0.87	44.56	0.90
0.4700	43.40	0.87	44.11	0.93
0.4800	43.34	0.87	44.31	0.92
0.4900	43.29	0.87	43.83	0.92
0.5000	43.24	0.87	43.17	0.94
0.5100	43.19	0.87	42.88	0.92
0.5200	43.14	0.88	43.15	0.94
0.5300	43.08	0.88	42.29	0.97
0.5400	43.03	0.88	42.52	0.98
0.5500	42.98	0.88	41.92	0.98

Applicant:	Ver	ertex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5 Portab		ble FM UHF PTT Radio Transceiver		Freq.:	450 - 512 MHz	vertex standard
2008 Celltech La	ibs Inc.	This document is	This document is not to be reproduced in whole or in part without the prior			ritten permiss	sion of Celltech Labs Inc.	Page 31 of 43

August 13, 2008

Test Report Serial No. 080608K66-T918-S90U Test Report Issue Date Description of Test(s)

Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category Occupational (Controlled)

480 MHz DUT Evaluation (Brain)

Specific Absorption Rate

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Wed 06/Aug/2008 Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM Test_s Sigma of UIM

******	*****	******	******	******
Freq	FCC_el-	IFCC_sl	-lTest_e	Test_s
0.3500	44.70	0.87	44.79	0.74
0.3600	44.58	0.87	44.84	0.76
0.3700	44.46	0.87	43.89	0.77
0.3800	44.34	0.87	43.82	0.77
0.3900	44.22	0.87	43.62	0.78
0.4000	44.10	0.87	42.97	0.81
0.4100	43.98	0.87	43.65	0.81
0.4200	43.86	0.87	42.81	0.82
0.4300	43.74	0.87	42.63	0.82
0.4400	43.62	0.87	43.00	0.82
0.4500	43.50	0.87	42.20	0.83
0.4600	43.45	0.87	42.02	0.84
0.4700	43.40	0.87	42.02	0.85
<mark>0.4800</mark>	43.34	0.87	42.27	0.88
0.4900	43.29	0.87	41.50	0.86
0.5000	43.24	0.87	41.70	0.87
0.5100	43.19	0.87	41.47	0.89
0.5200	43.14	0.88	41.31	0.89
0.5300	43.08	0.88	40.93	0.91
0.5400	43.03	0.88	40.48	0.92
0.5500	42.98	0.88	40.58	0.93

Applicant:	Ver	Vertex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5 Portab		le FM UHF PTT Radio Transceiver		Freq.:	450 - 512 MHz	Vertex Stimulard
2008 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior writt				ritten permiss	sion of Celltech Labs Inc.	Page 32 of 43

<u>Test Report Serial No.</u> 080608K66-T918-S90U Test Report Revision No.
Rev. 1.0 (Initial Release)

Test Report Issue Date
August 13, 2008

Description of Test(s)
Specific Absorption Rate

Occupational (Controlled)

480 MHz DUT Evaluation (Body)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Wed 06/Aug/2008
Frequency (GHz)

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

******	*****	*****	****	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.3500	57.70	0.93	57.76	0.85
0.3600	57.60	0.93	58.22	0.84
0.3700	57.50	0.93	57.73	0.85
0.3800	57.40	0.93	57.79	0.86
0.3900	57.30	0.93	57.34	0.87
0.4000	57.20	0.93	57.08	0.88
0.4100	57.10	0.93	57.66	0.90
0.4200	57.00	0.94	57.43	0.91
0.4300	56.90	0.94	56.67	0.90
0.4400	56.80	0.94	56.80	0.92
0.4500	56.70	0.94	56.21	0.93
0.4600	56.66	0.94	56.54	0.91
0.4700	56.62	0.94	56.18	0.94
<mark>0.4800</mark>	56.58	0.94	56.37	0.95
0.4900	56.54	0.94	55.46	0.94
0.5000	56.51	0.94	56.19	0.96
0.5100	56.47	0.94	55.97	0.98
0.5200	56.43	0.95	55.19	0.98
0.5300	56.39	0.95	55.88	0.99
0.5400	56.35	0.95	55.43	1.00
0.5500	56.31	0.95	55.46	1.01

Applicant: Vertex Standard Co., Ltd.			FCC ID:	K6610854720	IC:	511B-10854720	Vertex St.	
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	Γ Radio Transceiver	Freq.:	450 - 512 MHz	va tet st
2008 Celltech La	he Inc	This document is	not to be re	enroduced in whole	or in part without the prior w	ritten nermiss	sion of Celltech Labs Inc	Page 33

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

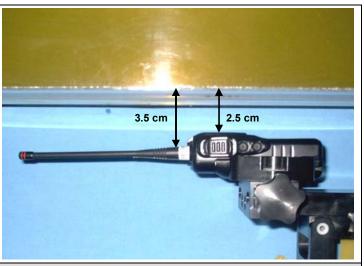
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

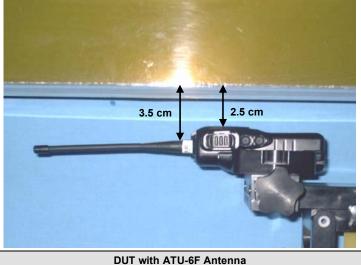
Applicant:	cant: Vertex Standard Co., Ltd.			FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	Model(s): VX-231-AG7B-5		Portab	Portable FM UHF PTT Radio Transceiver			450 - 512 MHz	Terres (standard
2008 Celltech La	abs Inc.	This document is	not to be re	eproduced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 34 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)


RF Exposure Category
Occupational (Controlled)


FACE-HELD SAR TEST SETUP PHOTOGRAPHS

2.5 cm Spacing from Front of DUT to Planar Phantom

DUT with ATU-6D Antenna

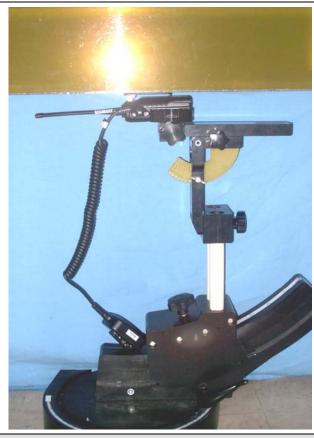
Applicant:	Ver	tex Standard Co	., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-231-AG7B-5		Portable FM UHF PTT Radio Transceiver		Freq.:	450 - 512 MHz		
2008 Celltech Labs Inc.		This document is	not to be re	produced in whole	e or in part without the prior w	vritten permiss	sion of Celltech Labs Inc.	Page 35 of 43

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)


RF Exposure Category
Occupational (Controlled)

BODY-WORN SAR TEST SETUP PHOTOGRAPHS

1.5 cm Belt-Clip Spacing from Back of DUT to Planar Phantom

DUT with VOX Headset Audio Accessory

DUT with Speaker-Microphone Audio Accessory

DUT with 1150mAh Battery & ATU-6D Antenna
1.0 cm from bottom end of belt-clip to phantom

DUT with 2000mAh Batt. & ATU-6F Antenn
1.0 cm distance from battery to phantom

DUT with 2000mAh Battery & ATU-6D Antenna

1.0 cm distance from battery to phantom

	Applicant:	icant: Vertex Standard Co., Ltd.			FCC ID:	K6610854720	IC:	511B-10854720	Vertex Stand
	Model(s):	VX-	231-AG7B-5	Portab	ole FM UHF PT	Γ Radio Transceiver	Freq.:	450 - 512 MHz	Verte stand
2008 Celltech Labs Inc.		This document is	not to be re	eproduced in whole	e or in part without the prior w	ritten permiss	sion of Celltech Labs Inc.	Page 36 of	

Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

DUT PHOTOGRAPHS

DUT with ATU-6D Antenna

DUT with ATU-6F Antenna

Whip Antenna P/N: ATU-6D (450-485 MHz)

Whip Antenna P/N: ATU-6F (485-512 MHz)

Applicant:	Ver	tex Standard Co	o., Ltd.	FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Tertes Standard
2008 Celltech La	ch Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Cellti				sion of Celltech Labs Inc.	Page 37 of 43		

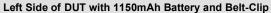
Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

DUT PHOTOGRAPHS



DUT with 1150mAh Battery & Belt-Clip

DUT with 2000mAh Battery & Belt-Clip

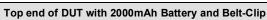
Top & Bottom end of DUT with 1150mAh Battery

Right Side of DUT with 1150mAh Battery and Belt-Clip

Applicant:	Ver	rtex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	/X-231-AG7B-5 Por		le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	
2008 Celltech La	relitech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 38 of 43		

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U


<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

DUT PHOTOGRAPHS

Bottom end of DUT with 2000mAh Battery & Belt-Clip

Belt-Clip Model: CLIP-18

Left & Right Sides of DUT with 2000mAh Battery and Belt-Clip

Belt-Clip Model: CLIP-18

Applicant:	Ver	tex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	VELLEX SUMMAND
2008 Celltech La	ibs Inc.	This document is	not to be re	to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				

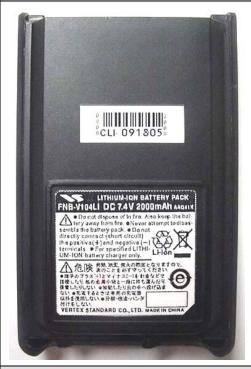
Test Report Issue Date
August 13, 2008

Test Report Serial No. 080608K66-T918-S90U

Description of Test(s)
Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)



DUT PHOTOGRAPHS

7.4V 1150mAh Lithium-ion Battery P/N: FNB-V103LI

7.4V 2000mAh Lithium-ion Battery P/N: FNB-V104LI

DUT Battery Compartment

Applicant:	Ver	Vertex Standard Co., Ltd.		FCC ID:	K6610854720	IC: 511B-10854720	Vertex Standard	
Model(s):	VX-	X-231-AG7B-5 Portab		le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	VELLEX SAMMAN
2008 Celltech La	ch Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 40 of 43		

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

DUT PHOTOGRAPHS

DUT w/ Speaker-Microphone Accessory (P/N: MH-45B4B)

DUT with VOX Headset Accessory (P/N: VC-25)

Applicant:	cant: Vertex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Stan	
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Value State
2008 Celltech La	abs Inc	This document is	not to be re	t to be reproduced in whole or in part without the prior v			sion of Celltech Labs Inc	Page 41 of

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX E - SYSTEM VALIDATION

Applicant:	Ver	ertex Standard Co., Ltd.		FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standari
Model(s):	VX-	231-AG7B-5	Portab	le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz	Verte standar
2008 Celltech Labs Inc. This document is not to be re			eproduced in whole	e or in part without the prior w	vritten permiss	sion of Celltech Labs Inc.	Page 42 of 4	

Date	of	Evaluation
Type	of	Evaluation

July 25, 2008 System Validation Validation Document Serial No.: Validation Dipole: 450 MHz

SV450B-072508-R1.0 Fluid Type:

Brain

450 MHz SYSTEM VALIDATION

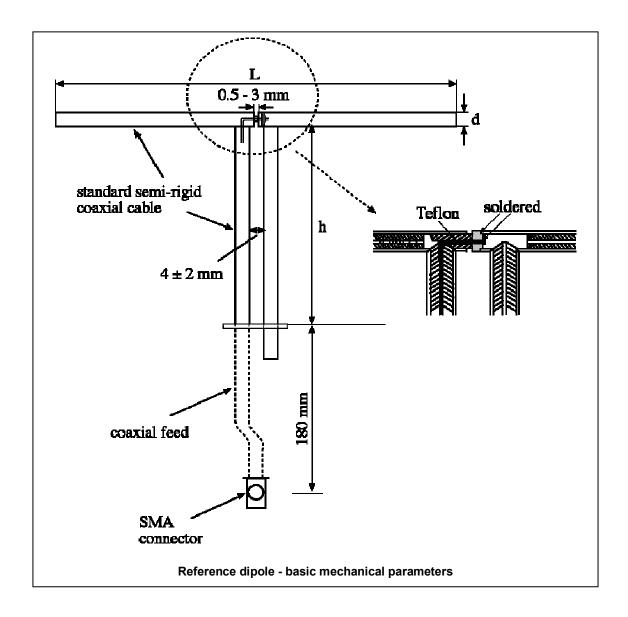
Type:	450 MHz Validation Dipole
Asset Number:	00024
Serial Number:	136
Place of Validation:	Celltech Labs Inc.
Date of Validation:	July 25, 2008

Celltech Labs Inc. certifies that the 450 MHz System Validation was performed on the date indicated above.

Validated by: **Sean Johnston**

Sum dund Signature:

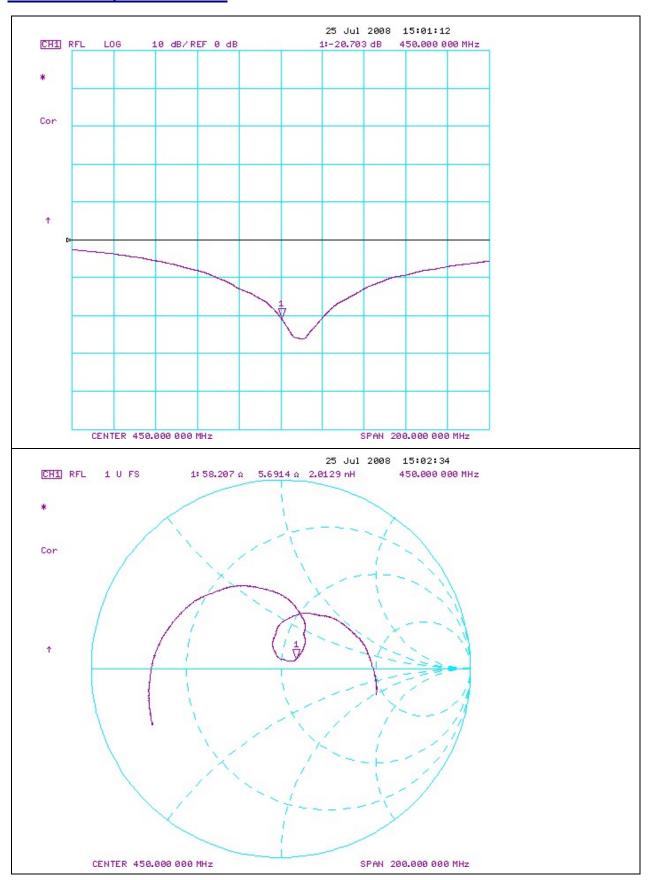
Date of Evaluation:	July 25, 2008	Validation Documen	t Serial No.:	SV450B-072508-R1.0	
Type of Evaluation:	System Validation	Validation Dipole:	450 MHz	Fluid Type:	Brain


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0 mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 450 MHz $Re{Z} = 58.207 \Omega$

 $Im{Z} = 5.6914 \Omega$


Return Loss at 450 MHz -20.703 dB

Date of Evaluation:	July 25, 2008	Validation Documer	nt Serial No.:	SV450B-072508-R1.0	
Type of Evaluation:	System Validation	Validation Dipole:	450 MHz	Fluid Type:	Brain

2. Validation Dipole VSWR Data

Date of Evaluation:	July 25, 2008	Validation Documer	nt Serial No.:	SV450B-072508-R1.0	
Type of Evaluation:	System Validation	Validation Dipole:	450 MHz	Fluid Type:	Brain

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	396.0	250.0	6.0
450	270.0	167.0	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom (planar) was constructed using relatively low-loss tangent Plexiglas material.

The inner dimensions of the validation phantom are as follows:

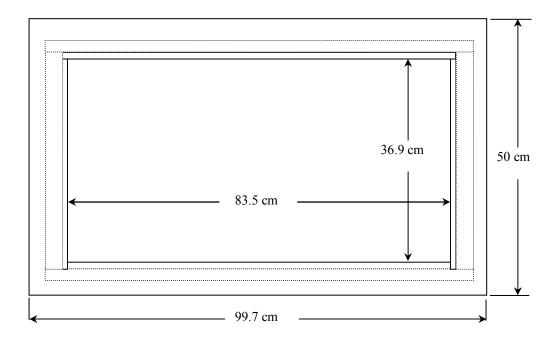
Length: 83.5 cm Width: 36.9 cm Height: 21.8 cm

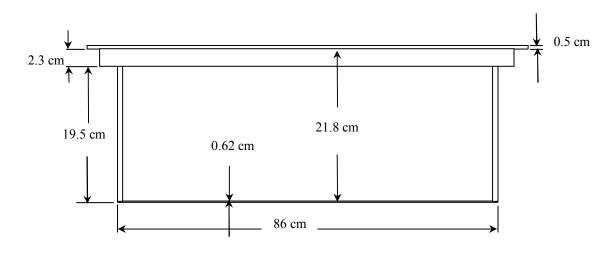
The bottom section of the validation phantom is constructed of 6.2 ± 0.1 mm Plexiglas.

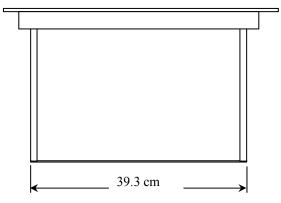
5. Test Equipment List

TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE4	00019	353	22Apr08	22Apr09
SPEAG ET3DV6 E-Field Probe	00017	1590	21Jul08	21Jul09
450 MHz Validation Dipole	00024	136	25Jul08	25Jul09
Plexiglas Validation Planar Phantom	00157	137	N/A	N/A
HP 85070C Dielectric Probe Kit	00033	US39240170	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	23Apr08	23Apr09
Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	23Apr09
HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr09
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR

Date of Evaluation:	July 25, 2008	Validation Docume
Type of Evaluation:	System Validation	Validation Dipole:

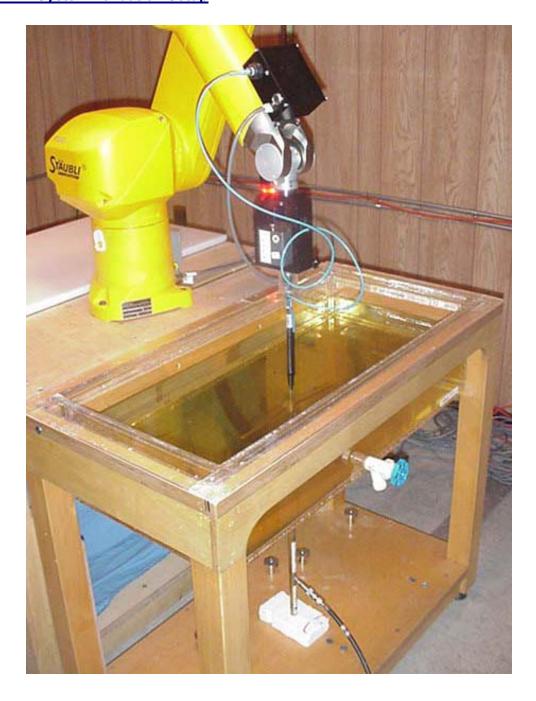

dation Document Serial No.:
dation Dipole: 450 MHz


SV450B-072508-R1.0

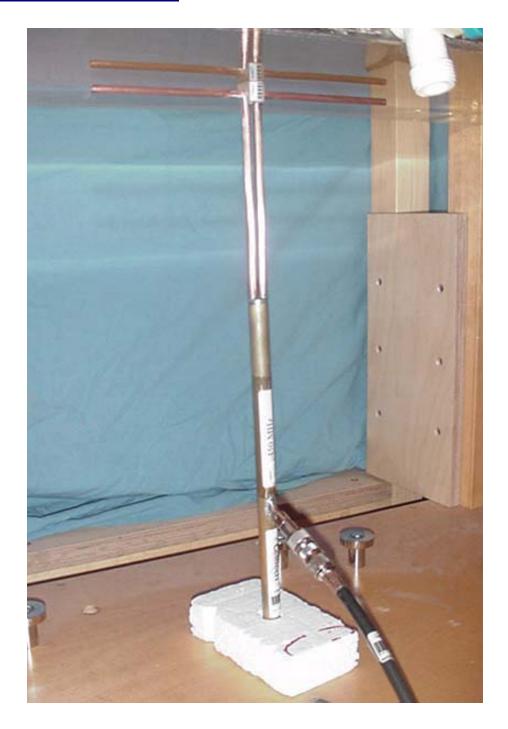

Brain

Fluid Type:

6. Dimensions of Plexiglas Planar Phantom

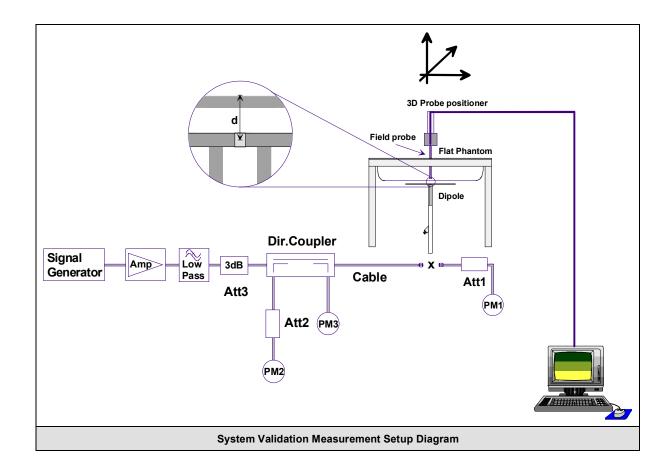


Date of Evaluation:	July 25, 2008	Validation Document Serial No.:		SV450B-072508-R1.0		
Type of Evaluation:	System Validation	Validation Dipole:	450 MHz	Fluid Type:	Brain	


7. 450 MHz System Validation Setup

Date of Evaluation:	July 25, 2008	Validation Document Serial No.:		SV450B-072	508-R1.0
Type of Evaluation:	System Validation	Validation Dipole:	450 MHz	Fluid Type:	Brain

8. 450 MHz Validation Dipole Setup



Date of Evaluation:	July 25, 2008	Validation Documer	SV450B-072	508-R1.0	
Type of Evaluation:	System Validation	Validation Dipole:	450 MHz	Fluid Type:	Brain

9. SAR Measurement

Measurements were made using a dosimetric E-field probe ET3DV6 (S/N: 1590, Conversion Factor 7.66). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Date of Evaluation:	July 25, 2008	Validation Document Serial No.:		SV450B-072	508-R1.0
Type of Evaluation:	System Validation	Validation Dipole:	450 MHz	Fluid Type:	Brain

10. Measurement Conditions

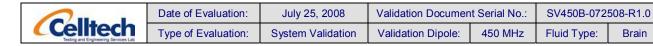
The validation phantom was filled with 450 MHz Brain tissue simulant.

Relative Permittivity: 43.4 (-0.2% deviation from target)

Conductivity: 0.89 mho/m (+2.3% deviation from target)
Fluid Temperature: 23.1°C (Start of Test) / 23.2°C (End of Test)

Fluid Depth: ≥ 15.0 cm

Environmental Conditions:


Ambient Temperature: 24.1°C
Barometric Pressure: 100.9 kPa
Humidity: 31%

The 450 MHz Brain tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight			
Water	38.5	56%		
Sugar	56.32%			
Salt	3.95%			
HEC	0.98%			
Dowicil 75	0.19%			
IEEE/IEC Target Dielectric Parameters (450 MHz):	$\varepsilon_{\rm r}$ = 43.5 (+/- 5%)	σ = 0.87 S/m (+/- 5%)		

11. System Validation SAR Results

SAR @ 0.25W Input averaged over 1g (W/kg)					SAR @ 1W Input averaged over 1g (W/kg)				
IEEE/IEC	Target	Measured	Dev	viation	IEE	E/IEC	Target	Measured	Deviation
1.23	+/- 10%	1.18	-4	4.0%	4.9	2	+/- 10%	4.72	-4.0%
SAR @ 0.2	25W Input av	veraged over	10g (\	W/kg)	SAR	@ 11	N Input ave	eraged over 10	g (W/kg)
IEEE/IEC	Target	Measured	Dev	viation	IEE	E/IEC	Target	Measured	Deviation
0.825	+/- 10%	0.775	-6	5.1%	3.3	0	+/- 10%	3.10	-6.1%
	Frequency (MHz)	1 g SAl	R	10 g	SAR	surf	cal SAR at face (above ed-point)	Local SAR at surface (y = 2 cm offset from feed-point) ^a	
	300	3.0		2.	.0		4.4	2.1	
	450	4.9		3.	.3		7.2	3.2	
	835	9.5		6.	.2		4.1	4.9	
	900	10.8		6.	.9		16.4	5.4	
	1450	29.0		16	.0		50.2	6.5	
	1800	38.1		19	.8		69.5	6.8	
	1900	39.7		20	1.5		72.1	6.6	
	2000	41.1		21	.1		74.6	6.5	
	2450	52.4		24	.0		104.2	7.7	
	3000	63.8		25	_		140.2	9.5	

Date Tested: 07/25/2008

System Validation - 450 MHz Dipole - HSL

DUT: Dipole 450 MHz; Asset: 00024; Serial: 136; Validation: 07/25/2008

Ambient Temp: 24.1°C; Fluid Temp: 23.1°C; Barometric Pressure: 100.9 kPa; Humidity: 31%

Communication System: CW

Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 43.4$; $\rho = 1000$ kg/m³

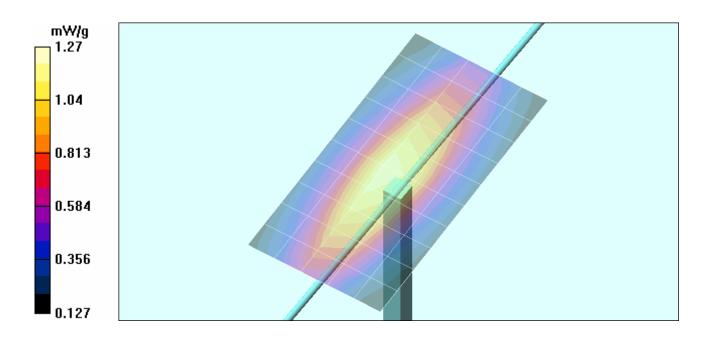
- Probe: ET3DV6 SN1590; ConvF(7.66, 7.66, 7.66); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Validation Planar; Type: Plexiglas; Serial: TE#137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

450 MHz Dipole - System Validation

Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.18 mW/g

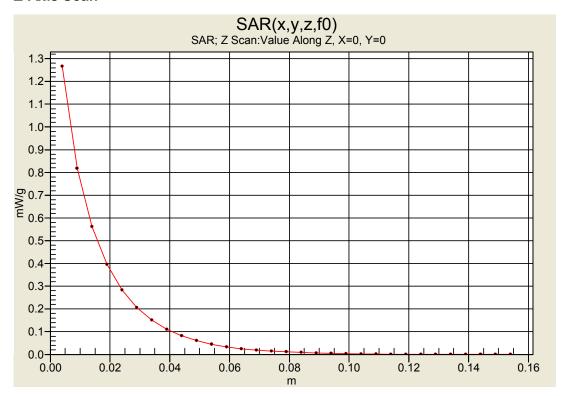
450 MHz Dipole - System Validation


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 38.3 V/m; Power Drift = 0.000 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.775 mW/g


Maximum value of SAR (measured) = 1.27 mW/g

Date of Evaluation:	July 25, 2008	Validation Documer	SV450B-072	508-R1.0	
Type of Evaluation:	System Validation	Validation Dipole:	450 MHz	Fluid Type:	Brain

Z-Axis Scan

12. Measured Fluid Dielectric Parameters

System Validation - 450 MHz (Brain)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Fri 25/Jul/2008
Frequency (GHz)
IEEE_eH_IEEE 1528-2003 Limits for Head Epsilon

IEEE_sH IEEE 1528-2003 Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

********	*****	*******	*****	***
Freq	_	IEEE_sH	_	Test_s
0.3500	44.70	0.87	46.31	0.80
0.3600	44.58	0.87	45.65	0.82
0.3700	44.46	0.87	45.27	0.82
0.3800	44.34	0.87	45.47	0.83
0.3900	44.22	0.87	44.76	0.84
0.4000	44.10	0.87	44.57	0.87
0.4100	43.98	0.87	44.63	0.86
0.4200	43.86	0.87	44.66	0.86
0.4300	43.74	0.87	43.79	0.89
0.4400	43.62	0.87	43.68	0.87
0.4500	43.50	0.87	43.44	0.89
0.4600	43.45	0.87	43.27	0.90
0.4700	43.40	0.87	43.17	0.90
0.4800	43.34	0.87	43.66	0.91
0.4900	43.29	0.87	42.68	0.92
0.5000	43.24	0.87	42.39	0.95
0.5100	43.19	0.87	42.24	0.94
0.5200	43.14	0.88	41.96	0.95
0.5300	43.08	0.88	42.42	0.95
0.5400	43.03	0.88	41.99	0.97
0.5500	42.98	0.88	41.92	0.98

Date of Evaluation:	July 25, 2008	Validation Document Serial No.:		SV450B-072508-R1.0	
Type of Evaluation:	System Validation	Validation Dipole:	450 MHz	Fluid Type:	Brain

13. Measurement Uncertainties

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION								
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}		
Measurement System								
Probe calibration (450 MHz)	6.65	Normal	1	1	6.65	∞		
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞		
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞		
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞		
Boundary effects	0.8	Rectangular	1.732050808	1	0.5	∞		
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞		
Detection limit	1	Rectangular	1.732050808	1	0.6	∞		
Readout electronics	0.3	Normal	1	1	0.3	∞		
Response time	0	Rectangular	1.732050808	1	0.0	∞		
Integration time	0	Rectangular	1.732050808	1	0.0	∞		
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞		
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞		
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞		
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞		
Dipole								
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞		
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞		
Phantom and Setup								
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞		
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞		
Liquid conductivity (measured)	2.3	Normal	1	0.64	1.5	∞		
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞		
Liquid permittivity (measured)	0.2	Normal	1	0.6	0.1	∞		
Combined Standard Uncertain	ty				9.40			
Expanded Uncertainty (k=2)					18.80			
Measurement Unce	rtainty Table in	accordance with IE	EE Standard 1528-	2003 and IE	EC 62209-1:200	5		

Test Report Issue Date
August 13, 2008

<u>Test Report Serial No.</u> 080608K66-T918-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
Occupational (Controlled)

APPENDIX F - PROBE CALIBRATION

Applicant:	: Vertex Standard Co., Ltd.			FCC ID:	K6610854720	IC:	511B-10854720	Vertex Standard	
Model(s):	VX-	VX-231-AG7B-5 P		le FM UHF PT	T Radio Transceiver	Freq.:	450 - 512 MHz		
2008 Celltech Labs Inc.		This document is	nent is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Issued: July 21, 2008

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celiteci

Certificate No: ET3-1590_Jul08

Accreditation No.: SCS 108

ET3DV6 - SN:1590 Object QA CAL-01.v6, QA CAL-12.v5 and QA CAL-23.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes July 21, 2008 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID# Cal Date (Certificate No.) Primary Standards Apr-09 1-Apr-08 (No. 217-00788) Power meter E4419B GB41293874 Apr-09 MY41495277 1-Apr-08 (No. 217-00788) Power sensor E4412A Apr-09 1-Apr-08 (No. 217-00788) Power sensor E4412A MY41498087 Jul-09 SN: S5054 (3c) 1-Jul-08 (No. 217-00865) Reference 3 dB Attenuator Apr-09 31-Mar-08 (No. 217-00787) Reference 20 dB Attenuator SN: S5086 (20b) Jul-09 Reference 30 dB Attenuator SN: S5129 (30b) 1-Jul-08 (No. 217-00866) Jan-09 SN: 3013 2-Jan-08 (No. ES3-3013_Jan08) Reference Probe ES3DV2 Sep-08 3-Sep-07 (No. DAE4-660_Sep07) DAE4 SN: 660 Scheduled Check Check Date (in house) ID# Secondary Standards 4-Aug-99 (in house check Oct-07) In house check: Oct-09 US3642U01700 RF generator HP 8648C In house check: Oct-08 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) Signature Function Name **Technical Manager** Calibrated by: Katja Pokovic

Niels Kuster

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Approved by:

Quality Manager

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1590

Manufactured:

March 19, 2001

Last calibrated:

May 20, 2005

Recalibrated:

July 21, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.81 ± 10.1%	μ V/(V/m) ²	DCP X	87 mV
NormY	2.00 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	92 mV
NormZ	1.72 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	85 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

835 MHz

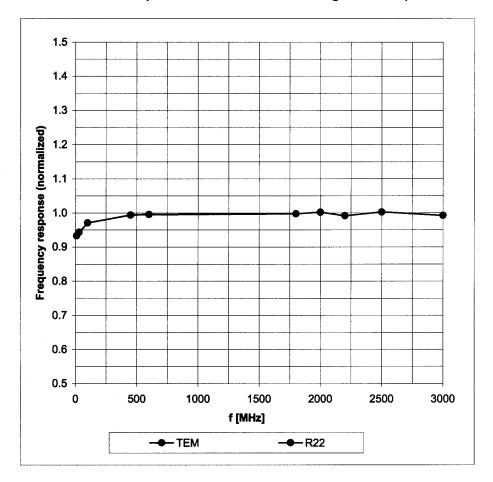
Typical SAR gradient: 5 % per mm

Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	10.7	7.2
SAR _{be} [%]	With Correction Algorithm	0.8	0.5

Sensor Offset

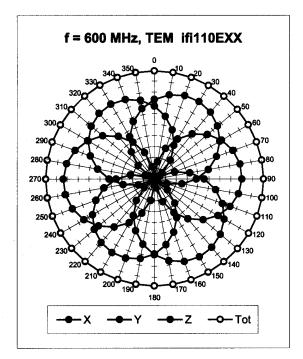
Probe Tip to Sensor Center

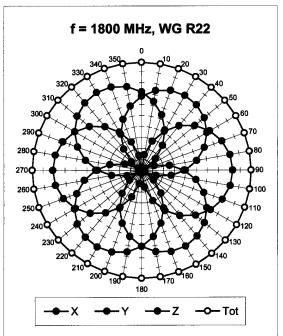
2.7 mm

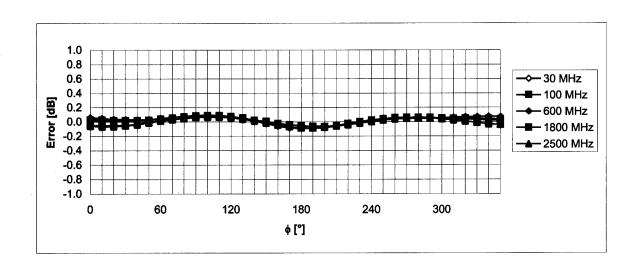

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

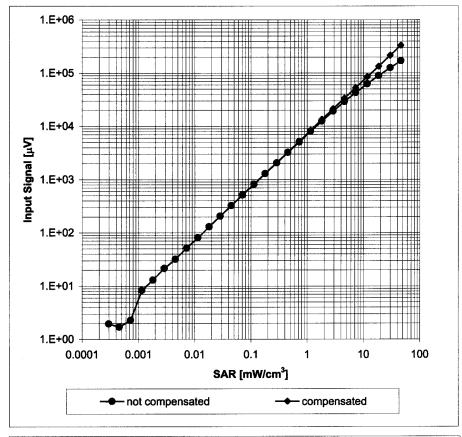

Frequency Response of E-Field

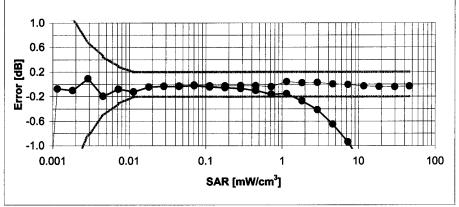

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

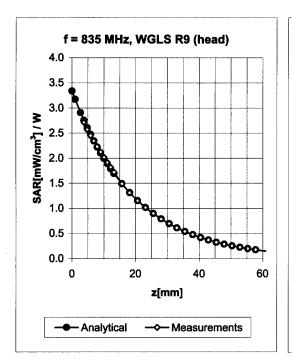
Receiving Pattern (ϕ), ϑ = 0°

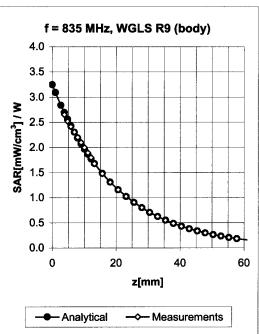




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

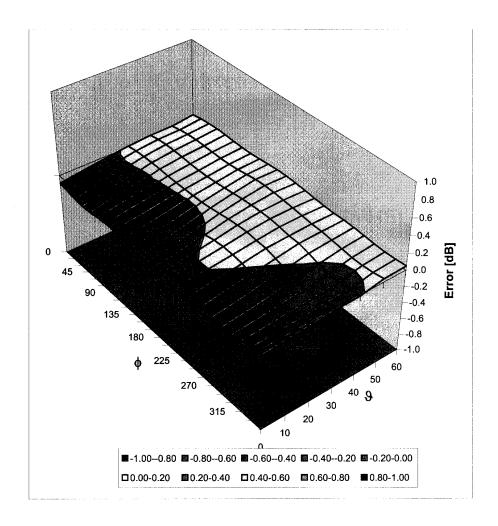
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty	
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.34	1.75	7.66	± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	$0.90 \pm 5\%$	0.32	3.52	6.54	± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	$0.94 \pm 5\%$	0.28	1.77	8.27	± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.36	3.31	6.39	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)