

Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational



### RF EXPOSURE EVALUATION

# SPECIFIC ABSORPTION RATE

### **SAR TEST REPORT**

**FOR** 

# **VERTEX STANDARD CO., LTD.**

### PORTABLE FM UHF PTT RADIO TRANSCEIVER

### Model(s)

VX-P821-G8-5, VX-P824-G8-5, VX-P829-G8-5 VX-P871-G8-5, VX-P874-G8-5, VX-P879-G8-5

| IDENTIFIER(S)    | FCC ID: K6610584821  | IC ID: 511B-10584821 |
|------------------|----------------------|----------------------|
| Test Standard(s) | FCC OET Bulletin 65, | Supplement C (01-01) |
| and Procedure(s) | Industry Canada      | RSS-102 Issue 2      |

**Test Report Serial Number** 

073106K66-T765-S90U

**Test Report Revision Number** 

**Revision 1.0 (Initial Release)** 

### **Test Location**

Celltech Compliance Testing & Engineering Lab
(Celltech Labs Inc.)
1955 Moss Court
Kelowna, BC
Canada
V1Y 9L3



Certificate No. 2470.01

### **Test Report Prepared By:**

Cheri Frangiadakis Test Report Writer Celltech Labs Inc.

### **Test Report Reviewed By:**

Jonathan Hughes General Manager Celltech Labs Inc.

| Company:         | Verte    | ex Standard Co., Ltd.                                                                                                             | K66′ | 10584821 | IC ID:     | 511B-10584821 | Fred | μ: 3 | 380 - 450 MHz   |  |  |
|------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|------|----------|------------|---------------|------|------|-----------------|--|--|
| Model(s):        |          | 821-G8-5, VX-P824-G8-<br>871-G8-5, VX-P874-G8-                                                                                    |      |          | Portable I | FM UHF P      | er   | 15   | Vertex Standard |  |  |
| 2006 Celltech La | abs Inc. | This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 1 of 65 |      |          |            |               |      |      |                 |  |  |



> Report Issue Date August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)

RF Exposure Category Specific Absorption Rate



Occupational

Report Revision No.

Revision 1.0

## **DECLARATION OF COMPLIANCE** SAR RF EXPOSURE EVALUATION

#### **Test Location**

#### **CELLTECH LABS INC.**

Testing and Engineering Services

1955 Moss Court Kelowna, B.C. Canada V1Y 9L3

Phone: 250-448-7047 Fax: 250-448-7046 e-mail: info@celltechlabs.com web site: www.celltechlabs.com

**Company Information** 

**VERTEX STANDARD CO., LTD.** 

4-8-8 Nakameguro, Meguro-Ku

Tokyo 153-8644

Japan

FCC IDENTIFIER: IC IDENTIFIER:

Model(s):

K6610584821 511B-10584821

> VX-P821-G8-5, VX-P824-G8-5, VX-P829-G8-5, VX-P871-G8-5, VX-P874-G8-5, VX-P879-G8-5

Test Requirement(s): Test Procedure(s):

FCC 47 CFR §2.1093; Health Canada Safety Code 6 FCC OET Bulletin 65, Supplement C (Edition 01-01)

Industry Canada RSS-102 Issue 2

**Device Classification: Device Description:** 

Licensed Non-Broadcast Transmitter Held to Face (TNF)

Portable FM UHF PTT Radio Transceiver

Modulation Type:

FM (UHF)

380 - 450 MHz

Transmit Frequency Range:

Max. RF Output Power Measured:

4.7 Watts (36.7 dBm) Conducted (380 MHz) 5.1 Watts (37.1 dBm) Conducted (415 MHz) 5.4 Watts (37.3 dBm) Conducted (450 MHz) External Whip (P/N: ATU-6A1)

Antenna Type(s) Tested:

Battery Type(s) Tested:

Lithium-ion 7.4 V 1150 mAh (P/N: FNB-V86LI) Lithium-ion 7.4 V 2000 mAh (P/N: FNB-V87LI) Lithium-ion 7.4 V 3000 mAh (P/N: FNB-V92LI)

Lithium-ion 7.4 V 3000 mAh - Intrinsically Safe (P/N: FNB-V92LIIS)

Alkaline 1.5 V 2850 mAh (Duracell Procell AA x6)

Alkaline Battery Case (P/N: FBA-34)

**Body-Worn Accessories Tested:** 

Plastic Belt-Clip with Metal Spring (P/N: CLIP-820) Leather Case with Belt-Loop (P/N: LCC-820) Speaker-Microphone (P/N: MH-65B7A)

**Audio Accessories Tested:** Max. SAR Level(s) Evaluated:

Face-held: 3.55 W/kg (1g) - 50% Duty Cycle Body-worn: 7.77 W/kg (1g) - 50% Duty Cycle

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 2 for the Occupational / Controlled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer's recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

**Test Report Approved By:** Sean Johnston

> SAR Lab Manager Celltech Labs Inc.



| Company:         | Verte    | ex Standard Co., Ltd.                          |                                                                                                                                   |  |            |          | 0584821 IC ID: 511B-10584821 |     |   |                |  |
|------------------|----------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|------------|----------|------------------------------|-----|---|----------------|--|
| Model(s):        |          | 821-G8-5, VX-P824-G8-<br>871-G8-5, VX-P874-G8- |                                                                                                                                   |  | Portable I | FM UHF P | TT Radio Transceiv           | ver | V | ertex Standard |  |
| 2006 Celltech La | ıbs Inc. | This document is not to be                     | This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 2 of 65 |  |            |          |                              |     |   |                |  |



Report Issue Date
August 30, 2006

APPENDIX F - PROBE CALIBRATION \_\_\_\_\_

<u>Test Report Serial No.</u> 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



65

| TABLE OF CONTENTS                                 |    |
|---------------------------------------------------|----|
| 1.0 INTRODUCTION                                  | 4  |
| 2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)        | 4  |
| 3.0 SAR MEASUREMENT SYSTEM                        | 5  |
| 4.0 MEASUREMENT SUMMARY                           | 6  |
| MEASUREMENT SUMMARY (CONT.)                       | 7  |
| 5.0 DETAILS OF SAR EVALUATION                     | 8  |
| 6.0 EVALUATION PROCEDURES                         | 9  |
| 7.0 SYSTEM PERFORMANCE CHECK                      | 10 |
| 8.0 SIMULATED EQUIVALENT TISSUES                  | 11 |
| 9.0 SAR SAFETY LIMITS                             | 11 |
| 10.0 ROBOT SYSTEM SPECIFICATIONS                  |    |
| 11.0 PROBE SPECIFICATION (ET3DV6)                 | 13 |
| 12.0 SIDE PLANAR PHANTOM                          |    |
| 13.0 VALIDATION PLANAR PHANTOM                    | 13 |
| 14.0 DEVICE HOLDER                                | 13 |
| 15.0 TEST EQUIPMENT LIST                          | 14 |
| 16.0 MEASUREMENT UNCERTAINTIES                    | 15 |
| MEASUREMENT UNCERTAINTIES (CONT.)                 | 16 |
| 17.0 REFERENCES                                   | 17 |
| APPENDIX A - SAR MEASUREMENT DATA                 | 18 |
| APPENDIX B - SYSTEM PERFORMANCE CHECK DATA        | 36 |
| APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS | 39 |
| APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS     |    |
| APPENDIX E - SYSTEM VALIDATION                    | 64 |

|   | Company:         | Verte                                                                                                  | x Standard Co., Ltd.                           | FCC ID: | FCC ID: K6610584821 |            | IC ID: 511B-10584821 |                    | Fre    | q.:     | 380 - 450 MHz   |
|---|------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|---------|---------------------|------------|----------------------|--------------------|--------|---------|-----------------|
| Ī | Model(s):        |                                                                                                        | 321-G8-5, VX-P824-G8-<br>371-G8-5, VX-P874-G8- | -,      |                     | Portable I | FM UHF P             | TT Radio Transceiv | /er    | 12      | Vertex Standard |
| Г | 2006 Colltook La | Itaah Laba Ina. This decument is not to be reproduced in whole or in part without the prior written no |                                                |         |                     |            |                      |                    | tooh L | aba Ina | Dogo 2 of 65    |



Report Issue Date August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s) Specific Absorption Rate

Report Revision No. Revision 1.0 RF Exposure Category

Occupational



Certificate No. 2470.01

### 1.0 INTRODUCTION

This measurement report demonstrates compliance of the Vertex Standard Co., Ltd. Models: VX-P821-G8-5, VX-P824-G8-5, VX-P829-G8-5, VX-P871-G8-5, VX-P874-G8-5, VX-P879-G8-5 Portable FM UHF PTT Radio Transceiver FCC ID: K6610584821 with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C (Edition 01-01) (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

# 2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)

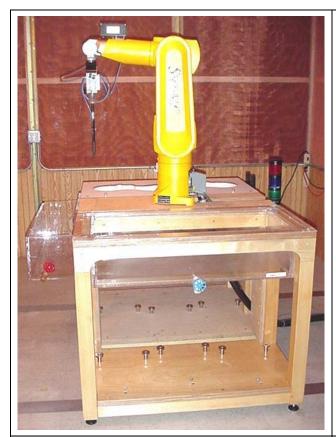
| Test Requirement(s)                                               |                        | 47 CFR §2.1093 |               |                     |                    |
|-------------------------------------------------------------------|------------------------|----------------|---------------|---------------------|--------------------|
| rest Requirement(s)                                               |                        | H              | ealth Canada  | Safety Code 6       |                    |
| Test Procedure(s)                                                 |                        | FCC OET        | Bulletin 65,  | Supplement C (0     | 1-01)              |
| rest riocedure(s)                                                 |                        | Indu           | stry Canada   | RSS-102 Issue 2     |                    |
| FCC Device Classification                                         | Licer                  | nsed Non-E     | Broadcast Tra | ansmitter Held to I | Face (TNF)         |
| IC Device Classification                                          |                        | Land Mo        | bile Radio T  | ransmitter (RSS-1   | 119)               |
| Device Description                                                |                        | Portable       | e FM UHF PT   | TT Radio Transce    | iver               |
| RF Exposure Category                                              |                        | Occup          | ational / Con | trolled Environme   | nt                 |
| FCC IDENTIFIER                                                    |                        |                | K6610         | 584821              |                    |
| IC IDENTIFER                                                      |                        |                | 511B-10       | 0584821             |                    |
| Model(s)                                                          | VX-P821-G8-            | 5              | VX-P          | 824-G8-5            | VX-P829-G8-5       |
| model(3)                                                          | VX-P871-G8-            | VX-P879-G8-5   |               |                     |                    |
| Test Sample Serial No.                                            | 610                    | 00003          |               | F                   | Production Unit    |
| Modulation Type                                                   |                        |                |               |                     |                    |
| Transmit Frequency Range                                          |                        |                | 380 - 4       | 50 MHz              |                    |
|                                                                   | 4.7 Watts              | dBm            | 380 MHz       | Conducted           |                    |
| Max. RF Output Power Measured                                     | 5.1 Watts              | 37.1           | dBm           | 415 MHz             | Conducted          |
|                                                                   | 5.4 Watts              | 37.3           | dBm           | 450 MHz             | Conducted          |
|                                                                   | Lithium-ion            |                | 7.4 V         | 1150 mAh            | P/N: FNB-V86LI     |
|                                                                   | Lithium-ion            |                | 7.4 V         | 2000 mAh            | P/N: FNB-V87LI     |
| Battery Type(s) Tested                                            | Lithium-ion            |                | 7.4 V         | 3000 mAh            | P/N: FNB-V92LI     |
|                                                                   | Lithium-ion Intrinsica | ally Safe      | 7.4 V         | 3000 mAh            | P/N: FNB-V92LIIS   |
|                                                                   | Alkaline Batteries (   | 6x AA)         | 9 V           | 2850 mAh            | P/N: FBA-34 (Case) |
| Antenna Type(s) Tested                                            | External Whi           | р              | Leng          | th: 166 mm          | P/N: ATU-6A1       |
| Body-Worn Accessories Tested                                      | Belt-Cli               | p (Plastic v   | vith Metal Sp | ring)               | P/N: CLIP-820      |
| Body World Addessories Tested                                     | Leat                   | P/N: LCC-820   |               |                     |                    |
| Audio Accessories Tested                                          | ;                      | Speaker-M      | icrophone     |                     | P/N: MH-65B7A      |
|                                                                   |                        | P/N: MH-50D7A  |               |                     |                    |
| Additional Audio Accessories<br>(Additional Testing Not Required) | Subme                  | P/N: MH-66A7A  |               |                     |                    |
|                                                                   | Subme                  | rsible Spea    | aker-Microph  | one                 | P/N: MH-66B7A      |

| Company:                                                                                                                                                  | Verte | x Standard Co., Ltd.                           | FCC ID: | K66 | 10584821 | IC ID:   | 511B-10584821      | Freq.: | 380 - 450 MHz   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|---------|-----|----------|----------|--------------------|--------|-----------------|
| Model(s):                                                                                                                                                 |       | 821-G8-5, VX-P824-G8-<br>871-G8-5, VX-P874-G8- | -,      |     | Portable | FM UHF P | TT Radio Transceiv | /er    | Vertex Standard |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 4 of 65 |       |                                                |         |     |          |          |                    |        |                 |

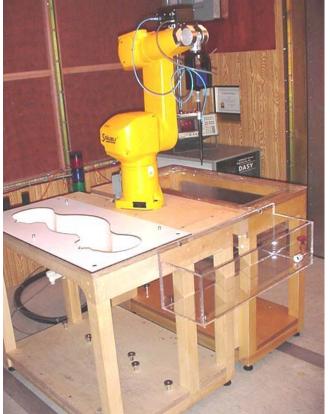


Report Issue Date
August 30, 2006

<u>Test Report Serial No.</u> 073106K66-T765-S90U


<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational




### 3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.



DASY4 SAR Measurement System with Plexiglas validation phantom



DASY4 SAR Measurement System with Plexiglas side planar phantom

| ĺ | Company:         | Verte    | ex Standard Co., Ltd. FCC ID:                                                                                 |                                                                                                                                  |  | 10584821 | IC ID: | Free | q.: ; | 380 - 450 MHz |                 |  |  |
|---|------------------|----------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|----------|--------|------|-------|---------------|-----------------|--|--|
|   | Model(s):        |          | P821-G8-5, VX-P824-G8-5, VX-P829-G8-5<br>P871-G8-5, VX-P874-G8-5, VX-P879-G8-5 Portable FM UHF PTT Radio Tran |                                                                                                                                  |  |          |        |      | ver   | 12            | /ertex Standard |  |  |
| Ī | 2006 Celltech La | ibs Inc. | This document is not to be                                                                                    | his document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 5 of 65 |  |          |        |      |       |               |                 |  |  |



Report Issue Date
August 30, 2006

### Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational





Certificate No. 2470.01

# 4.0 MEASUREMENT SUMMARY

|            |                |          |         | FAC                                                                                                                                                                                                                                                                                                         | CE-HEL        | D S    | AR      | EVAL                       | JAT                  | ION RE                   | SULTS           |           |                              |                       |                         |  |
|------------|----------------|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|---------|----------------------------|----------------------|--------------------------|-----------------|-----------|------------------------------|-----------------------|-------------------------|--|
| Freq.      | Chan.          | Test     | Ante    | nna                                                                                                                                                                                                                                                                                                         | Battery       | , Туре | )       | Separa<br>Distar<br>to Pla | ice                  | Cond.<br>Power<br>Before | Measur<br>1g (V |           | SAR<br>Drift<br>During       | with                  | d SAR<br>droop<br>N/kg) |  |
| (MHz)      | Onan.          | Mode     | Туј     | oe                                                                                                                                                                                                                                                                                                          |               |        |         | Phant                      | om                   | Test                     | Duty            | Cycle     | Test                         | Duty                  | Cycle                   |  |
|            |                |          |         | _                                                                                                                                                                                                                                                                                                           | Туре          | m      | Ah      | cm                         |                      | Watts                    | 100%            | 50%       | dB                           | 100%                  | 50%                     |  |
| 415        | Mid            | CW       | Wh      | nip                                                                                                                                                                                                                                                                                                         | Li-ion        | 11     | 50      | 2.5                        |                      | 5.1                      | 5.50            | 2.75      | -0.379                       | 6.00                  | 3.00                    |  |
| 415        | Mid            | CW       | Wh      | nip                                                                                                                                                                                                                                                                                                         | Li-ion        | 20     | 000     | 2.5                        |                      | 5.1                      | 5.92            | 2.96      | -0.574                       | 6.76                  | 3.38                    |  |
| 415        | Mid            | CW       | Wh      | nip                                                                                                                                                                                                                                                                                                         | Li-ion        | 30     | 000     | 2.5                        |                      | 5.1                      | 6.28            | 3.14      | -0.531                       | 7.10                  | 3.55                    |  |
| 415        | Mid            | CW       | Wr      | nip                                                                                                                                                                                                                                                                                                         | Li-ion IS     | 30     | 000     | 2.5                        |                      | 5.1                      | 6.34            | 3.17      | -0.436                       | 7.01                  | 3.50                    |  |
| 415        | Mid            | CW       | Wh      | nip .                                                                                                                                                                                                                                                                                                       | Alkaline 2850 |        |         | 2.5                        |                      | 5.1                      | 2.75            | 1.38      | -0.848                       | 3.34                  | 1.67                    |  |
| ANSI / IEE | E C95.1 1      | 999 - SA | FETY LI | МІТ                                                                                                                                                                                                                                                                                                         | BRAIN: 8      | 3.0 W/ | /kg (a  | veraged                    | over                 | 1 gram)                  | Coi             |           | Spatial Peal<br>Exposure / C | eak<br>/ Occupational |                         |  |
| Te         | est Date       |          |         | August 21, 2006 Relative Humidity 32                                                                                                                                                                                                                                                                        |               |        |         |                            |                      |                          |                 | %         |                              |                       |                         |  |
| Measure    | ed Fluid T     | уре      |         | 450 MHz Brain                                                                                                                                                                                                                                                                                               |               |        |         |                            | Atmospheric Pressure |                          |                 |           | 101.1                        | kPa                   |                         |  |
| Dielect    | ric Const      | IEEE '   | Γarget  | t Measured Dev                                                                                                                                                                                                                                                                                              |               |        | viation | A                          | Ambient Te           | mperature                |                 | 23.8      |                              | °C                    |                         |  |
|            | ε <sub>r</sub> |          | 43.5    | <u>+</u> 5%                                                                                                                                                                                                                                                                                                 | 43.8          | }      | +(      | 0.7%                       |                      | Fluid Tem                | perature        |           | 23.5                         |                       | °C                      |  |
|            | ductivity      |          | IEEE '  | Γarget                                                                                                                                                                                                                                                                                                      | Measu         | red    | Dev     | viation                    |                      | Fluid [                  | Depth           |           | ≥ 15                         | cm                    |                         |  |
| σ(         | (mho/m)        |          | 0.87    | <u>+</u> 5%                                                                                                                                                                                                                                                                                                 | 0.87          | •      | 0       | .0%                        | ρ (Kg/m³)            |                          |                 | 1000      |                              |                       |                         |  |
|            |                |          | 1.      |                                                                                                                                                                                                                                                                                                             | ed measur     |        |         |                            |                      |                          |                 |           | ditions descrion of the D    |                       |                         |  |
|            |                |          | 2.      | SAR e                                                                                                                                                                                                                                                                                                       |               | for th | e low   | and high                   |                      |                          |                 |           | ere ≥ 3 dB b<br>ET Bulletin  |                       |                         |  |
|            | lete/s)        |          | 3.      | the rac                                                                                                                                                                                                                                                                                                     |               | oled o | down t  | to room to                 |                      |                          |                 |           | er the area so               |                       |                         |  |
| r          | lote(s)        |          | 4.      |                                                                                                                                                                                                                                                                                                             |               |        |         |                            |                      |                          |                 |           | e SAR evalu<br>above test d  |                       | re added                |  |
|            |                |          | 5.      | to the measured SAR levels to report scaled SAR results as shown in the above test data table.  The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods. |               |        |         |                            |                      |                          |                 |           |                              |                       |                         |  |
|            |                |          | 6.      | The dielectric parameters of the simulated tissue mixture were measured prior to the SAR evaluations using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C).                                                                                                          |               |        |         |                            |                      |                          |                 |           |                              |                       |                         |  |
|            |                |          | 7.      | The SA                                                                                                                                                                                                                                                                                                      | AR evalua     | tions  | were p  | performe                   | d with               | in 24 hours              | of the syst     | em perfoi | mance chec                   | k.                    |                         |  |

| Company:                                                                                                                                                  | Verte | x Standard Co., Ltd.                           | FCC ID: | K66 | 10584821 | IC ID:   | 511B-10584821      | Freq.: | 380 - 450 MHz   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|---------|-----|----------|----------|--------------------|--------|-----------------|--|--|
| Model(s):                                                                                                                                                 |       | 821-G8-5, VX-P824-G8-<br>871-G8-5, VX-P874-G8- | -,      |     | Portable | FM UHF P | TT Radio Transceiv | ver S  | Vertex Standard |  |  |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 6 of 65 |       |                                                |         |     |          |          |                    |        |                 |  |  |



Report Issue Date
August 30, 2006

<u>Test Report Serial No.</u> 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational



# **MEASUREMENT SUMMARY (CONT.)**

|                |           |              |                 |        |                                                                                                                                                                                                 | BOD      | Y-WOF     | RN SA      | R EV        | /ALUA                  | TION RES                                       | SULTS                            |         |                           |                      |                                |               |                                  |
|----------------|-----------|--------------|-----------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|------------|-------------|------------------------|------------------------------------------------|----------------------------------|---------|---------------------------|----------------------|--------------------------------|---------------|----------------------------------|
| Freq.<br>(MHz) | Chan.     | Test<br>Mode | Antenna<br>Type | В      | attery Ty                                                                                                                                                                                       | pe       |           | Acces      | sories      |                        | Separation<br>Distance<br>to Planar<br>Phantom | Cond.<br>Power<br>Before<br>Test | 1       | Measured SAR<br>1g (W/kg) |                      | SAR<br>Drift<br>During<br>Test | 1g (\<br>with | d SAR<br>W/kg)<br>droop<br>Cycle |
|                |           |              |                 | Ту     | oe I                                                                                                                                                                                            | mAh      | Body-     | -worn      | Aı          | udio                   | cm                                             | Watts                            | 100     |                           | 50%                  | dB                             | 100%          | 50%                              |
| 415            | Mid       | CW           | Whip            | Li-i   | on ·                                                                                                                                                                                            | 1150     | Belt-     | ·Clip      | Spea        | ker-Mic                | 1.1                                            | 5.1                              | 8.1     | 7                         | 4.09                 | -0.330                         | 8.81          | 4.41                             |
| 415            | Mid       | CW           | Whip            | Li-i   | on 2                                                                                                                                                                                            | 2000     | Belt-     | ·Clip      | Spea        | ker-Mic                | 1.1                                            | 5.1                              | 8.8     | 3                         | 4.42                 | -0.361                         | 9.60          | 4.80                             |
| 415            | Mid       | CW           | Whip            | Li-i   | on :                                                                                                                                                                                            | 3000     | Belt-     | Clip       | Spea        | ker-Mic                | 1.0                                            | 5.1                              | 11.     | 0                         | 5.50                 | -0.304                         | 11.8          | 5.90                             |
| 415            | Mid       | CW           | Whip            | Li-io  | n IS                                                                                                                                                                                            | 3000     | Belt-     | ·Clip      | Spea        | ker-Mic                | 1.0                                            | 5.1                              | 10.4    | 4                         | 5.20                 | -0.414                         | 11.4          | 5.72                             |
| 415            | Mid       | CW           | Whip            | Alka   | line 2                                                                                                                                                                                          | 2850     | Belt-     | ·Clip      | Spea        | ker-Mic                | 0.7                                            | 5.1                              | 5.3     | 8                         | 2.69                 | -0.861                         | 6.56          | 3.28                             |
| 415            | Mid       | CW           | Whip            | Li-i   | on ·                                                                                                                                                                                            | 1150     | Leathe    | r Case     | Spea        | ker-Mic                | 1.0                                            | 5.1                              | 14.     | 4                         | 7.20                 | -0.330                         | 15.5          | 7.77                             |
| 415            | Mid       | CW           | Whip            | Li-i   | on 2                                                                                                                                                                                            | 2000     | Leathe    | r Case     | Spea        | ker-Mic                | 1.0                                            | 5.1                              | 13.4    | 4                         | 6.70                 | -0.421                         | 14.8          | 7.38                             |
| 380            | Low       | CW           | Whip            | Li-i   | on '                                                                                                                                                                                            | 1150     | Leathe    | r Case     | Speaker-Mic |                        | 1.0                                            | 4.7                              | 12.     | 5                         | 6.25                 | -0.366                         | 13.6          | 6.80                             |
| 450            | High      | CW           | Whip            | Li-i   | on '                                                                                                                                                                                            | 1150     | Leathe    | r Case     | Spea        | ker-Mic                | 1.0                                            | 5.4                              | 10.     | 6                         | 5.30 -0.386 11.6 5.8 |                                |               | 5.80                             |
| ,              | ANSI / IE | EE C95.      | 1 1999 - S      | AFETY  | LIMIT                                                                                                                                                                                           |          | В         | ODY: 8.    | 0 W/kg      | (averaged over 1 gram) |                                                |                                  |         | Con                       |                      | patial Peak<br>posure / O      | onal          |                                  |
|                | Test      | Date         |                 |        | Д                                                                                                                                                                                               | ugust    | 22, 2006  |            |             |                        | Relative Hu                                    | midity                           | •       |                           |                      | 33                             |               | %                                |
| M              | easured   | Fluid Ty     | /pe             |        | 4                                                                                                                                                                                               | 450 MH   | lz Body   |            |             | Atmospheric Pressure   |                                                |                                  |         |                           |                      | 101.5                          |               | kPa                              |
| С              | ielectric | Consta       | nt              | IEEE ' | Target                                                                                                                                                                                          | Me       | asured    | Devia      | ation       | ,                      | Ambient Tem                                    | perature                         |         |                           |                      | 23.0                           |               | °C                               |
|                | 8         | êr .         |                 | 56.7   | <u>+</u> 5%                                                                                                                                                                                     |          | 56.7 0.0% |            |             |                        | Fluid Tempe                                    | rature                           |         |                           |                      | 23.0                           |               | °C                               |
|                | Condu     | ıctivity     |                 | IEEE ' | Target                                                                                                                                                                                          | Mea      | asured    | Devia      | ation       |                        | Fluid Depth                                    |                                  |         |                           | ≥ 15                 |                                |               |                                  |
|                | σ (ml     | no/m)        |                 | 0.94   | <u>+</u> 5%                                                                                                                                                                                     | (        | 0.94      | 0.0        | )%          | ρ ( <b>Kg</b> /m³)     |                                                |                                  |         | 1000                      |                      |                                |               |                                  |
|                |           |              |                 | 1.     |                                                                                                                                                                                                 |          |           |            |             |                        | the DUT tes<br>mum SAR loc                     |                                  |         |                           |                      |                                |               | etailed                          |
|                |           |              | _               | 2.     |                                                                                                                                                                                                 | tion fo  | r the low |            |             |                        | d channel (50<br>optional per F                |                                  |         |                           |                      |                                |               |                                  |
|                |           |              |                 | 3.     | The lo                                                                                                                                                                                          |          | •         | nnels we   | ere eva     | luated in              | the worst-cas                                  | e battery i                      | body-   | -wor                      | n accesso            | ory configur                   | ation mea     | asured                           |
|                | Not       | e(s)         |                 | 4.     |                                                                                                                                                                                                 | ooled c  | lown to r |            |             |                        | a fully charge<br>ne battery was               |                                  |         |                           |                      |                                |               |                                  |
|                | 1101      | (3)          |                 | 5.     | The power droops measured by the DASY4 system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above test data table. |          |           |            |             |                        |                                                |                                  |         | to the                    |                      |                                |               |                                  |
|                |           |              |                 | 6.     |                                                                                                                                                                                                 |          |           |            |             |                        | was performe<br>Plots) for SAR                 |                                  |         |                           |                      |                                |               | kimum-                           |
|                |           |              |                 | 7.     |                                                                                                                                                                                                 |          |           |            |             |                        | sured prior to<br>were consister               |                                  |         |                           |                      | paramete                       | check a       | ind the                          |
|                |           |              |                 | 8.     | The di                                                                                                                                                                                          | electric | paramet   | ters of th | ne simu     | lated tiss             | ue mixture we                                  | re measu                         | red pri | or to                     | the SAR              | evaluations                    | s using a     | n ALS-                           |
|                |           |              |                 | 9.     | PR-DIEL Dielectric Probe Kit and an HP 8753E1 Network Analyzer (see Appendix C).                                                                                                                |          |           |            |             |                        |                                                |                                  |         |                           |                      |                                |               |                                  |

| Company:         | Verte    | ex Standard Co., Ltd.                                                                                   | FCC ID: | K66 | 10584821 | IC ID:   | 511B-10584821      | Fre | q.: 3 | 380 - 450 MHz  |
|------------------|----------|---------------------------------------------------------------------------------------------------------|---------|-----|----------|----------|--------------------|-----|-------|----------------|
| Model(s):        |          | 821-G8-5, VX-P824-G8-<br>871-G8-5, VX-P874-G8-                                                          |         |     | Portable | FM UHF P | TT Radio Transceiv | /er | 15    | ertex Standard |
| 2006 Celltech La | abs Inc. | This document is not to be reproduced in whole or in part without the prior written permission of Cellt |         |     |          |          |                    |     |       | Page 7 of 65   |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



Certificate No. 2470.01

### 5.0 DETAILS OF SAR EVALUATION

The Vertex Standard Co., Ltd. Models: VX-P821-G8-5, VX-P824-G8-5, VX-P829-G8-5, VX-P871-G8-5, VX-P874-G8-5, VX-P879-G8-5 Portable FM UHF PTT Radio Transceiver FCC ID: K6610584821 was compliant for localized Specific Absorption Rate (Occupational / Controlled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

### Test Configuration(s)

- The DUT was evaluated in a face-held configuration with the front of the radio placed parallel to the outer surface of the planar phantom. A 2.5 cm separation distance was maintained between the front side of the DUT and the outer surface of the planar phantom.
- 2. The DUT was evaluated in a body-worn configuration with the back of the radio placed parallel to the outer surface of the planar phantom. The attached Belt-Clip accessory (P/N: CLIP-820) was touching the planar phantom and provided a separation distance from the back of the DUT and the outer surface of the planar phantom (the actual separation distance varied depending on the thickness of the battery type under test see test data table on page 7 for measured belt-clip separation distances).
- 3. The DUT was tested in a body-worn configuration with the radio placed inside the Leather Case with Belt-Loop accessory (P/N: LCC-820). The back of the radio was placed facing parallel to the outer surface of the planar phantom. The back of the Leather Case with Belt-Loop accessory was touching the outer surface of the planar phantom and provided a 1.0 cm separation distance between the back of the DUT and the outer surface of the planar phantom.
- The DUT was evaluated for body-worn SAR with the speaker-microphone accessory connected to the audio port.

### **Test Modes & Power Settings**

- 5. The DUT was tested at maximum power in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 6. The conducted power levels were measured prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046.
- 7. The area scan evaluation was performed with a fully charged battery. After the area scan was completed the radio was cooled down to room temperature and the battery was replaced with a fully charged battery prior to the zoom scan evaluation.
- 8. The power drift of the DUT during the SAR evaluations was measured by the DASY4 system.

### **Test Conditions**

- 9. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter checks and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- 10. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C).
- 11. The SAR evaluations were performed within 24 hours of the system performance check.



Report Issue Date
August 30, 2006

# Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

REVISION 1.0

RF Exposure Category

Occupational



Certificate No. 2470.01

### 6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
  - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

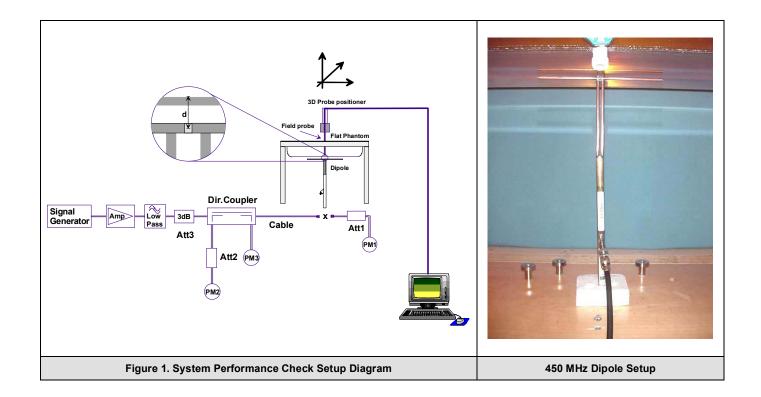
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.



Report Issue Date
August 30, 2006

<u>Test Report Serial No.</u> 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0


RF Exposure Category
Occupational



### 7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed using a planar phantom with a 450 MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±10% (see Appendix B for system performance check test plot).

|                                                                                                                                                                                                                                                 | SYSTEM PERFORMANCE CHECK EVALUATION |                |       |      |                |       |                           |                |       |      |               |                |                |        |                  |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|-------|------|----------------|-------|---------------------------|----------------|-------|------|---------------|----------------|----------------|--------|------------------|-------|
| Test                                                                                                                                                                                                                                            | Equiv.<br>Tissue                    | SAR 1          |       |      |                |       | Conductivity<br>σ (mho/m) |                |       | ρ 3  | Amb.<br>Temp. | Fluid<br>Temp. | Fluid<br>Depth | Humid. | Barom.<br>Press. |       |
| Date                                                                                                                                                                                                                                            | Freq.<br>MHz                        | IEEE<br>Target | Meas. | Dev. | IEEE<br>Target | Meas. | Dev.                      | IEEE<br>Target | Meas. | Dev. | (Kg/m³)       | (°C)           | (°C)           | (cm)   | (%)              | (kPa) |
| 8/21/06 Brain 1.23 ±10% 1.27 3.3%                                                                                                                                                                                                               |                                     |                |       | 3.3% | 43.5 ±5%       | 43.8  | +0.7%                     | 0.87 ±5%       | 0.87  | 0.0% | 1000          | 23.8           | 23.5           | ≥ 15   | 32               | 101.1 |
| Note(s):  The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods. |                                     |                |       |      |                |       |                           |                |       |      |               |                |                |        |                  |       |



| Company:                                                                                                                                                   | Verte                                                                                | ex Standard Co., Ltd. | FCC ID: | K66 | 10584821 | IC ID:   | 511B-10584821      | Freq.: | 380 - 450 MHz   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|---------|-----|----------|----------|--------------------|--------|-----------------|
| Model(s):                                                                                                                                                  | VX-P821-G8-5, VX-P824-G8-5, VX-P829-G8-5<br>VX-P871-G8-5, VX-P874-G8-5, VX-P879-G8-5 |                       |         |     | Portable | FM UHF P | TT Radio Transceiv | ver 💙  | Vertex Standard |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 10 of 65 |                                                                                      |                       |         |     |          |          |                    |        |                 |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Occupational

Report Revision No.

Revision 1.0



### 8.0 SIMULATED EQUIVALENT TISSUES

The 450MHz brain and body simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The fluid was prepared according to standardized procedures, and measured for dielectric parameters (permittivity and conductivity).

|             | SIMULATED TISSUE MIXTURES     |                |  |  |  |  |  |  |  |  |  |
|-------------|-------------------------------|----------------|--|--|--|--|--|--|--|--|--|
| INGREDIENT  | 450 MHz Brain                 | 450 MHz Body   |  |  |  |  |  |  |  |  |  |
| INOREDIENT  | System Check & DUT Evaluation | DUT Evaluation |  |  |  |  |  |  |  |  |  |
| Water       | 38.56 %                       | 52.00 %        |  |  |  |  |  |  |  |  |  |
| Sugar       | 56.32 %                       | 45.65 %        |  |  |  |  |  |  |  |  |  |
| Salt        | 3.95 %                        | 1.75 %         |  |  |  |  |  |  |  |  |  |
| HEC         | 0.98 %                        | 0.50 %         |  |  |  |  |  |  |  |  |  |
| Bactericide | 0.19 %                        | 0.10 %         |  |  |  |  |  |  |  |  |  |

### 9.0 SAR SAFETY LIMITS

|                                                                  | SAR (                                                          | (W/kg)                                                 |
|------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|
| EXPOSURE LIMITS                                                  | (General Population /<br>Uncontrolled Exposure<br>Environment) | (Occupational /<br>Controlled Exposure<br>Environment) |
| Spatial Average (averaged over the whole body)                   | 0.08                                                           | 0.4                                                    |
| Spatial Peak (averaged over any 1 g of tissue)                   | 1.60                                                           | 8.0                                                    |
| Spatial Peak<br>(hands/wrists/feet/ankles<br>averaged over 10 g) | 4.0                                                            | 20.0                                                   |

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



# **10.0 ROBOT SYSTEM SPECIFICATIONS**

| <u>Specifications</u>          |                                                                                  |
|--------------------------------|----------------------------------------------------------------------------------|
| Positioner:                    | Stäubli Unimation Corp. Robot Model: RX60L                                       |
| Repeatability:                 | 0.02 mm                                                                          |
| No. of axis:                   | 6                                                                                |
| Data Acquisition Electronic (D | AE) System                                                                       |
| Cell Controller                |                                                                                  |
| Processor:                     | AMD Athlon XP 2400+                                                              |
| Clock Speed:                   | 2.0 GHz                                                                          |
| Operating System:              | Windows XP Professional                                                          |
| Data Converter                 |                                                                                  |
| Features:                      | Signal Amplifier, multiplexer, A/D converter, and control logic                  |
| Software:                      | Measurement Software: DASY4, V4.7 Build 44                                       |
| Contware.                      | Postprocessing Software: SEMCAD, V1.8 Build 171                                  |
| Connecting Lines:              | Optical downlink for data and status info. Optical uplink for commands and clock |
| DASY4 Measurement Server       |                                                                                  |
| Function:                      | Real-time data evaluation for field measurements and surface detection           |
| Hardware:                      | PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM                             |
| Connections:                   | COM1, COM2, DAE, Robot, Ethernet, Service Interface                              |
| E-Field Probe                  |                                                                                  |
| Model:                         | ET3DV6                                                                           |
| Serial No.:                    | 1387                                                                             |
| Construction:                  | Triangular core fiber optic detection system                                     |
| Frequency:                     | 10 MHz to 6 GHz                                                                  |
| Linearity:                     | $\pm 0.2$ dB (30 MHz to 3 GHz)                                                   |
| Phantom(s)                     |                                                                                  |
| Evaluation Phantom             |                                                                                  |
| Type:                          | Side Planar Phantom                                                              |
| Shell Material:                | Plexiglas                                                                        |
| Bottom Thickness:              | 2.0 mm ± 0.1 mm                                                                  |
| Outer Dimensions:              | 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)                 |
| Validation Phantom (≤ 450MHz   | z)                                                                               |
| Type:                          | Planar Phantom                                                                   |
| Shell Material:                | Plexiglas                                                                        |
| Bottom Thickness:              | 6.2 mm ± 0.1 mm                                                                  |
| Outer Dimensions:              | 86.0 cm (L) x 39.5 cm (W) x 21.8 cm (H)                                          |

| Company:                                                                                                                                     | Verte | x Standard Co., Ltd.                           | FCC ID: | K66′ | 10584821 | IC ID:           | 511B-10584821 | Freq.: | 380 - 450 MHz |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|---------|------|----------|------------------|---------------|--------|---------------|
| Model(s):                                                                                                                                    |       | 321-G8-5, VX-P824-G8-<br>371-G8-5, VX-P874-G8- |         |      |          |                  |               |        |               |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |       |                                                |         |      |          | c. Page 12 of 65 |               |        |               |



Dimensions:

Date(s) of Evaluation August 21-22, 2006

Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.0

REVISION 1.0

RF Exposure Category

Occupational



Certificate No. 2470.01

# 11.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity:  $\pm$  0.2 dB

(30 MHz to 3 GHz)

Directivity:  $\pm$  0.2 dB in brain tissue (rotation around probe axis)

 $\pm$  0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range:  $5 \mu W/g$  to > 100 mW/g; Linearity:  $\pm$  0.2 dB

Surface Detect:  $\pm$  0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of mobile phone



ET3DV6 E-Field Probe

### 12.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.



Plexiglas Side Planar Phantom

### 13.0 VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted to the table of the DASY4 compact system.



Validation Planar Phantom

### 14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.



Device Holder

| Company:                                                               | Verte | ex Standard Co., Ltd.                          | FCC ID: | K66      | 10584821          | IC ID:             | 511B-10584821             | Free     | 380 - 450 MHz   |               |
|------------------------------------------------------------------------|-------|------------------------------------------------|---------|----------|-------------------|--------------------|---------------------------|----------|-----------------|---------------|
| Model(s):                                                              |       | 821-G8-5, VX-P824-G8-<br>871-G8-5, VX-P874-G8- |         | Portable | FM UHF P          | TT Radio Transceiv | /er                       | 12       | Vertex Standard |               |
| 2006 Colltoch Labe Inc. This document is not to be reproduced in whole |       |                                                |         |          | or in part withou | ut the prior w     | ritton permission of Call | toch I c | he Inc          | Page 13 of 65 |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category

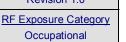
Occupational



# **15.0 TEST EQUIPMENT LIST**

|      | TEST EQUIPMENT                           | ASSET NO. | SERIAL NO.  |       | TE      | CALIBRATION |  |
|------|------------------------------------------|-----------|-------------|-------|---------|-------------|--|
| USED | DESCRIPTION                              | ACCET NO. | OLIVIAL NO. | CALIB | RATED   | DUE DATE    |  |
| х    | Schmid & Partner DASY4 System            | -         | -           |       | -       | -           |  |
| х    | -DASY4 Measurement Server                | 00158     | 1078        | N     | /A      | N/A         |  |
| х    | -Robot                                   | 00046     | 599396-01   | N     | /A      | N/A         |  |
| х    | -DAE4                                    | 00019     | 353         | 21Jı  | un06    | 21Jun07     |  |
|      | -DAE3                                    | 00018     | 370         | 08Fe  | eb06    | 08Feb07     |  |
| х    | -ET3DV6 E-Field Probe                    | 00016     | 1387        | 16M   | ar06    | 16Mar07     |  |
|      | -EX3DV4 E-Field Probe                    | 00125     | 3547        | 14Fe  | eb06    | 14Feb07     |  |
|      | -300MHz Validation Dipole                | 00023     | 135         | 250   | ct05    | 25Oct06     |  |
| х    | -450MHz Validation Dipole                | 00024     | 136         | 250   | ct05    | 25Oct06     |  |
|      | 925MHz Validation Dipole                 | 00022     | 411         | Brain | 28Mar06 | 28Mar07     |  |
|      | -835MHz Validation Dipole                | 00022     | 411         | Body  | 27Mar06 | 27Mar07     |  |
|      | 000M Iz Volidation Dinals                | 00000     | 054         | Brain | 06Jun06 | 06Jun07     |  |
|      | -900MHz Validation Dipole                | 00020     | 054         | Body  | 06Jun06 | 06Jun07     |  |
|      | 1900MH = Volidation Dinale               | 00024     | 247         | Brain | 08Jun06 | 08Jun07     |  |
|      | -1800MHz Validation Dipole               | 00021     | 247         | Body  | 09Jun06 | 09Jun07     |  |
|      | 4000MH= Validation Dinala                | 00000     | 454         | Brain | 09Jun06 | 09Jun07     |  |
|      | -1900MHz Validation Dipole               | 00032     | 151         | Body  | 12Jun06 | 12Jun07     |  |
|      | OAFONILL Validation Dinala               | 00005     | 450         | Brain | 20Sep05 | 20Sep06     |  |
|      | -2450MHz Validation Dipole               | 00025     | 150         | Body  | 24Apr06 | 24Apr07     |  |
|      | -5800MHz Validation Dipole               | 00126     | 1031        | Brain | 15Mar06 | 15Mar07     |  |
|      | -SAM Phantom V4.0C                       | 00154     | 1033        | N     | /A      | N/A         |  |
|      | -Barski Planar Phantom                   | 00155     | 03-01       | N     | /A      | N/A         |  |
| х    | -Plexiglas Side Planar Phantom           | 00156     | 161         | N     | /A      | N/A         |  |
| х    | -Plexiglas Validation Planar Phantom     | 00157     | 137         | N     | /A      | N/A         |  |
| х    | ALS-PR-DIEL Dielectric Probe Kit         | 00160     | 260-00953   | N     | /A      | N/A         |  |
|      | Gigatronics 8652A Power Meter            | 00110     | 1835801     | 12A   | pr06    | 12Apr07     |  |
| х    | Gigatronics 8652A Power Meter            | 00007     | 1835272     | 03Fe  | eb06    | 03Feb07     |  |
|      | Gigatronics 80701A Power Sensor          | 00011     | 1833542     | 03Fe  | eb06    | 03Feb07     |  |
|      | Gigatronics 80701A Power Sensor          | 00012     | 1834350     | 128   | ep05    | 12Sep06     |  |
| х    | Gigatronics 80701A Power Sensor          | 00013     | 1833713     | 03Fe  | eb06    | 03Feb07     |  |
| х    | Gigatronics 80701A Power Sensor          | 00014     | 1833699     | 07S   | ep05    | 07Sep06     |  |
| х    | HP 8753ET Network Analyzer               | 00134     | US39170292  | 18A   | pr06    | 18Apr07     |  |
|      | HP 8648D Signal Generator                | 00005     | 3847A00611  | N     | /A      | N/A         |  |
|      | Rohde & Schwarz SMR40 Signal Generator   | 00006     | 100104      | 06A   | pr06    | 06Apr07     |  |
| х    | Amplifier Research 5S1G4 Power Amplifier | 00106     | 26235       | N     | /A      | N/A         |  |

| Company:                                                                                                                                              | Verte | x Standard Co., Ltd.                           | FCC ID: | K66 | 10584821                                | IC ID:            | 511B-10584821 | Freq.: | 380 - 450 MHz |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|---------|-----|-----------------------------------------|-------------------|---------------|--------|---------------|--|
| Model(s):                                                                                                                                             |       | 821-G8-5, VX-P824-G8-<br>871-G8-5, VX-P874-G8- | -,      |     | PORTADIE FIVITIEF PLI RADIO TRANSCEIVER |                   |               |        |               |  |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 14. |       |                                                |         |     |                                         | nc. Page 14 of 65 |               |        |               |  |




Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.0





# **16.0 MEASUREMENT UNCERTAINTIES**

| UNCERTAINTY BUDGET FOR DEVICE EVALUATION |                      |                             |             |          |                                 |                                    |  |  |  |  |  |
|------------------------------------------|----------------------|-----------------------------|-------------|----------|---------------------------------|------------------------------------|--|--|--|--|--|
| Error Description                        | Uncertainty Value ±% | Probability<br>Distribution | Divisor     | ci<br>1g | Uncertainty<br>Value<br>±% (1g) | V <sub>i</sub> or V <sub>eff</sub> |  |  |  |  |  |
| Measurement System                       |                      |                             |             |          |                                 |                                    |  |  |  |  |  |
| Probe calibration                        | 4.0                  | Normal                      | 1           | 1        | 4.0                             | oc                                 |  |  |  |  |  |
| Axial isotropy of the probe              | 4.7                  | Rectangular                 | 1.732050808 | 0.7      | 1.9                             | ∞                                  |  |  |  |  |  |
| Spherical isotropy of the probe          | 9.6                  | Rectangular                 | 1.732050808 | 0.7      | 3.9                             | $\infty$                           |  |  |  |  |  |
| Spatial resolution                       | 0                    | Rectangular                 | 1.732050808 | 1        | 0.0                             | $\infty$                           |  |  |  |  |  |
| Boundary effects                         | 1                    | Rectangular                 | 1.732050808 | 1        | 0.6                             | ∞                                  |  |  |  |  |  |
| Probe linearity                          | 4.7                  | Rectangular                 | 1.732050808 | 1        | 2.7                             | ∞                                  |  |  |  |  |  |
| Detection limit                          | 1                    | Rectangular                 | 1.732050808 | 1        | 0.6                             | ∞                                  |  |  |  |  |  |
| Readout electronics                      | 0.3                  | Normal                      | 1           | 1        | 0.3                             | ∞                                  |  |  |  |  |  |
| Response time                            | 0.8                  | Rectangular                 | 1.732050808 | 1        | 0.5                             | ∞                                  |  |  |  |  |  |
| Integration time                         | 2.6                  | Rectangular                 | 1.732050808 | 1        | 1.5                             | ∞                                  |  |  |  |  |  |
| RF ambient conditions                    | 3                    | Rectangular                 | 1.732050808 | 1        | 1.7                             | ∞                                  |  |  |  |  |  |
| Mech. constraints of robot               | 0.4                  | Rectangular                 | 1.732050808 | 1        | 0.2                             | ∞                                  |  |  |  |  |  |
| Probe positioning                        | 2.9                  | Rectangular                 | 1.732050808 | 1        | 1.7                             | œ                                  |  |  |  |  |  |
| Extrapolation & integration              | 1                    | Rectangular                 | 1.732050808 | 1        | 0.6                             | $\infty$                           |  |  |  |  |  |
| Test Sample Related                      |                      |                             |             |          |                                 |                                    |  |  |  |  |  |
| Device positioning                       | 2.9                  | Normal                      | 1           | 1        | 2.9                             | 12                                 |  |  |  |  |  |
| Device holder uncertainty                | 3.6                  | Normal                      | 1           | 1        | 3.6                             | 8                                  |  |  |  |  |  |
| Power drift                              | 5                    | Rectangular                 | 1.732050808 | 1        | 2.9                             | ∞                                  |  |  |  |  |  |
| Phantom and Setup                        |                      | _                           |             |          |                                 |                                    |  |  |  |  |  |
| Phantom uncertainty                      | 4                    | Rectangular                 | 1.732050808 | 1        | 2.3                             | ∞                                  |  |  |  |  |  |
| Liquid conductivity (target)             | 5                    | Rectangular                 | 1.732050808 | 0.64     | 1.8                             | × ×                                |  |  |  |  |  |
| Liquid conductivity (measured)           | 2.5                  | Normal                      | 1           | 0.64     | 1.6                             | ∞                                  |  |  |  |  |  |
| Liquid permittivity (target)             | 5                    | Rectangular                 | 1.732050808 | 0.6      | 1.7                             | ∞                                  |  |  |  |  |  |
| Liquid permittivity (measured)           | 2.5                  | Normal                      | 1           | 0.6      | 1.5                             | ∞                                  |  |  |  |  |  |
| Combined Standard Uncertain              | <u> </u>             |                             | •           |          | 9.88                            |                                    |  |  |  |  |  |
| Expanded Uncertainty (k=2)               | •                    |                             |             |          | 19.77                           |                                    |  |  |  |  |  |

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



# **MEASUREMENT UNCERTAINTIES (CONT.)**

| UNCERTAINTY BUDGET FOR SYSTEM VALIDATION |                            |                             |             |          |                                 |                                    |  |  |  |  |  |
|------------------------------------------|----------------------------|-----------------------------|-------------|----------|---------------------------------|------------------------------------|--|--|--|--|--|
| Error Description                        | Uncertainty<br>Value<br>±% | Probability<br>Distribution | Divisor     | ci<br>1g | Uncertainty<br>Value<br>±% (1g) | V <sub>i</sub> or V <sub>eff</sub> |  |  |  |  |  |
| Measurement System                       |                            |                             |             |          |                                 |                                    |  |  |  |  |  |
| Probe calibration                        | 4.0                        | Normal                      | 1           | 1        | 4.0                             | ∞                                  |  |  |  |  |  |
| Axial isotropy of the probe              | 4.7                        | Rectangular                 | 1.732050808 | 1        | 2.7                             | ∞                                  |  |  |  |  |  |
| Spherical isotropy of the probe          | 0                          | Rectangular                 | 1.732050808 | 1        | 0.0                             | ∞                                  |  |  |  |  |  |
| Spatial resolution                       | 0                          | Rectangular                 | 1.732050808 | 1        | 0.0                             | ∞                                  |  |  |  |  |  |
| Boundary effects                         | 1                          | Rectangular                 | 1.732050808 | 1        | 0.6                             | ∞                                  |  |  |  |  |  |
| Probe linearity                          | 4.7                        | Rectangular                 | 1.732050808 | 1        | 2.7                             | ∞                                  |  |  |  |  |  |
| Detection limit                          | 1                          | Rectangular                 | 1.732050808 | 1        | 0.6                             | ∞                                  |  |  |  |  |  |
| Readout electronics                      | 0.3                        | Normal                      | 1           | 1        | 0.3                             | ∞                                  |  |  |  |  |  |
| Response time                            | 0                          | Rectangular                 | 1.732050808 | 1        | 0.0                             | ∞                                  |  |  |  |  |  |
| Integration time                         | 0                          | Rectangular                 | 1.732050808 | 1        | 0.0                             | ∞                                  |  |  |  |  |  |
| RF ambient conditions                    | 3                          | Rectangular                 | 1.732050808 | 1        | 1.7                             | ∞                                  |  |  |  |  |  |
| Mech. constraints of robot               | 0.4                        | Rectangular                 | 1.732050808 | 1        | 0.2                             | ∞                                  |  |  |  |  |  |
| Probe positioning                        | 2.9                        | Rectangular                 | 1.732050808 | 1        | 1.7                             | ∞                                  |  |  |  |  |  |
| Extrapolation & integration              | 1                          | Rectangular                 | 1.732050808 | 1        | 0.6                             | ∞                                  |  |  |  |  |  |
| Test Sample Related                      |                            |                             |             |          |                                 |                                    |  |  |  |  |  |
| Dipole Positioning                       | 2                          | Normal                      | 1.732050808 | 1        | 1.2                             | ∞                                  |  |  |  |  |  |
| Power & Power Drift                      | 4.7                        | Normal                      | 1.732050808 | 1        | 2.7                             | ∞                                  |  |  |  |  |  |
| Phantom and Setup                        |                            |                             |             |          |                                 |                                    |  |  |  |  |  |
| Phantom uncertainty                      | 4                          | Rectangular                 | 1.732050808 | 1        | 2.3                             | ∞                                  |  |  |  |  |  |
| Liquid conductivity (target)             | 5                          | Rectangular                 | 1.732050808 | 0.64     | 1.8                             | ∞                                  |  |  |  |  |  |
| Liquid conductivity (measured)           | 2.5                        | Normal                      | 1           | 0.64     | 1.6                             | ∞                                  |  |  |  |  |  |
| Liquid permittivity (target)             | 5                          | Rectangular                 | 1.732050808 | 0.6      | 1.7                             | ∞                                  |  |  |  |  |  |
| Liquid permittivity (measured)           | 2.5                        | Normal                      | 1           | 0.6      | 1.5                             | ∞                                  |  |  |  |  |  |
| Combined Standard Uncertainty            | v                          |                             |             |          | 7.93                            |                                    |  |  |  |  |  |
| Expanded Uncertainty (k=2)               |                            |                             |             |          | 15.87                           |                                    |  |  |  |  |  |

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

REVISION 1.0

RF Exposure Category

Occupational



Certificate No. 2470.01

### 17.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [5] IEEE Standard 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category
Occupational



### **APPENDIX A - SAR MEASUREMENT DATA**



Report Issue Date
August 30, 2006

<u>Test Report Serial No.</u> 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



Date Tested: 08/21/2006

### Face-Held SAR - Li-ion Battery (1150 mAh) - Mid Channel - 415 MHz

DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

Ambient Temp: 23.8°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 32%

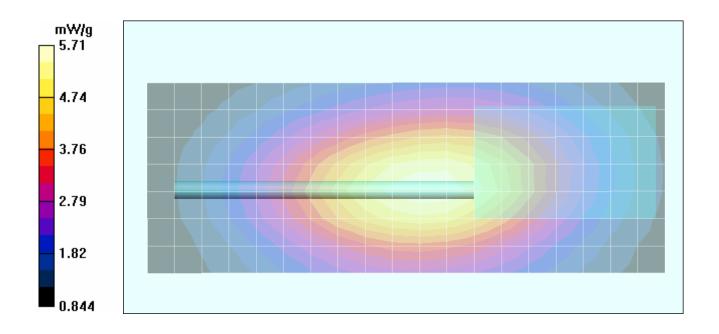
Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1

RF Conducted Power: 5.1 Watts (Conducted) 7.4V 1150mAh Li-ion Battery Pack (P/N: FNB-V86LI)

Medium: HSL450 ( $\sigma$  = 0.87 mho/m;  $\varepsilon_r$  = 43.8;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.4, 7.4, 7.4); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

### Face-Held SAR - 2.5 cm Separation Distance to Planar Phantom - Mid Channel


Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Face-Held SAR - 2.5 cm Separation Distance to Planar Phantom - Mid Channel Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 78.3 V/m; Power Drift = -0.379 dB

Peak SAR (extrapolated) = 8.50 W/kg

SAR(1 g) = 5.50 mW/g; SAR(10 g) = 3.96 mW/g





Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



Certificate No. 2470.01

Date Tested: 08/21/2006

### Face-Held SAR - Li-ion Battery (2000 mAh) - Mid Channel - 415 MHz

DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

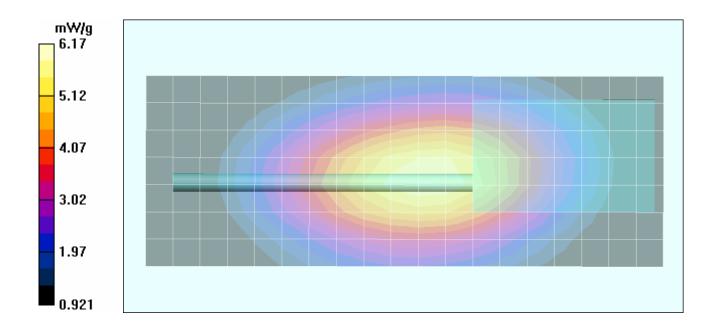
Ambient Temp: 23.8°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 32%

Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1

RF Conducted Power: 5.1 Watts (Conducted) 7.4V 2000mAh Li-ion Battery Pack (P/N: FNB-V87LI)

Medium: HSL450 ( $\sigma$  = 0.87 mho/m;  $\varepsilon_r$  = 43.8;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.4, 7.4, 7.4); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


### Face-Held SAR - 2.5 cm Separation Distance to Planar Phantom - Mid Channel

Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

**Face-Held SAR - 2.5 cm Separation Distance to Planar Phantom - Mid Channel Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 83.2 V/m; Power Drift = -0.574 dB

Peak SAR (extrapolated) = 9.22 W/kg

SAR(1 g) = 5.92 mW/g; SAR(10 g) = 4.24 mW/g



| Company:         | Verte                                                                                                                                        | ex Standard Co., Ltd.                          | FCC ID: | K6610584821 |          | IC ID:   | 511B-10584821      | Freq.: | 380 - 450 MHz      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------|-------------|----------|----------|--------------------|--------|--------------------|
| Model(s):        |                                                                                                                                              | 321-G8-5, VX-P824-G8-<br>371-G8-5, VX-P874-G8- |         |             | Portable | FM UHF P | TT Radio Transceiv | /er    | Vertex Standard    |
| 2006 Celltech La | 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                                                |         |             |          |          |                    |        | Inc. Page 20 of 65 |



Report Issue Date August 30, 2006

### Test Report Serial No. 073106K66-T765-S90U

Description of Test(s) Specific Absorption Rate Report Revision No. Revision 1.0

RF Exposure Category Occupational



Date Tested: 08/21/2006

### Face-Held SAR - Li-ion Battery (3000 mAh) - Mid Channel - 415 MHz

DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

Ambient Temp: 23.8°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 32%

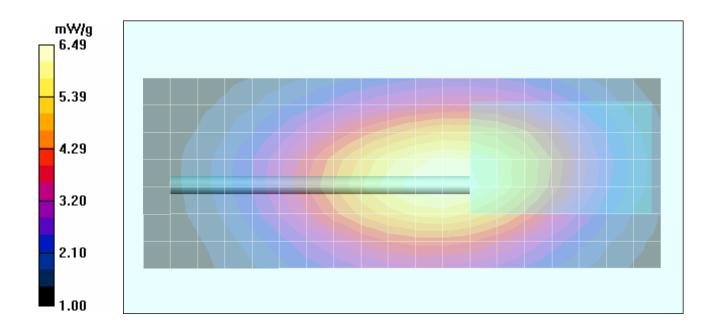
Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1

RF Conducted Power: 5.1 Watts (Conducted) 7.4V 3000mAh Li-ion Battery Pack (P/N: FNB-V92LI)

Medium: HSL450 ( $\sigma$  = 0.87 mho/m;  $\varepsilon_r$  = 43.8;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.4, 7.4, 7.4); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

### Face-Held SAR - 2.5 cm Separation Distance to Planar Phantom - Mid Channel


Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Face-Held SAR - 2.5 cm Separation Distance to Planar Phantom - Mid Channel Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 84.8 V/m; Power Drift = -0.531 dB

Peak SAR (extrapolated) = 9.65 W/kg

SAR(1 g) = 6.28 mW/g; SAR(10 g) = 4.52 mW/g





Report Issue Date
August 30, 2006

<u>Test Report Serial No.</u> 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



Date Tested: 08/21/2006

### Face-Held SAR - Li-ion Battery (3000 mAh IS) - Mid Channel - 415 MHz

DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

Ambient Temp: 23.8°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 32%

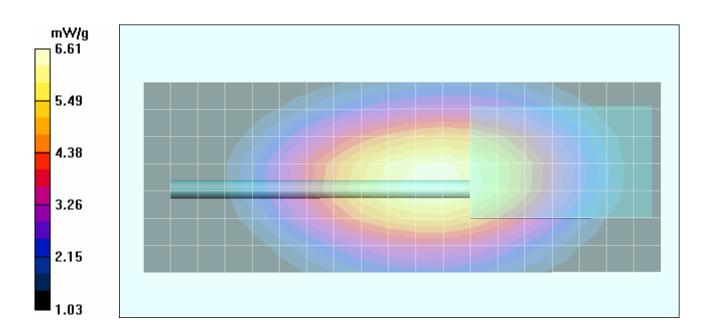
Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1

RF Conducted Power: 5.1 Watts (Conducted)

7.4V 3000mAh Li-ion Battery Pack (P/N: FNB-V92LIIS)

Medium: HSL450 ( $\sigma$  = 0.87 mho/m;  $\varepsilon_r$  = 43.8;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.4, 7.4, 7.4); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


### Face-Held SAR - 2.5 cm Separation Distance to Planar Phantom - Mid Channel

Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

**Face-Held SAR - 2.5 cm Separation Distance to Planar Phantom - Mid Channel Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 85.5 V/m; Power Drift = -0.436 dB

Peak SAR (extrapolated) = 9.77 W/kg

SAR(1 g) = 6.34 mW/g; SAR(10 g) = 4.57 mW/g

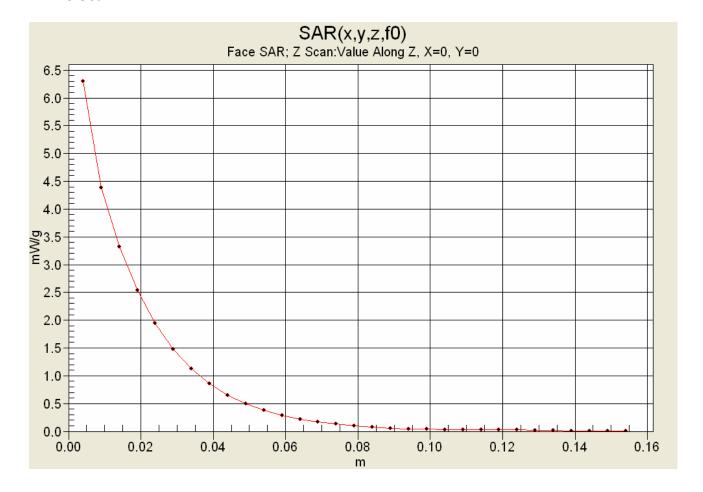




Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate


Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



### **Z-Axis Scan**



| Company:                                                                                                                                         | Verte | ex Standard Co., Ltd.                          | FCC ID: | K6610584821 |          | IC ID:             | 511B-10584821      | Freq.:          | 380 - 450 MHz |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|---------|-------------|----------|--------------------|--------------------|-----------------|---------------|
| Model(s):                                                                                                                                        |       | 321-G8-5, VX-P824-G8-<br>371-G8-5, VX-P874-G8- |         | Portable    | FM UHF P | TT Radio Transceiv | /er                | Vertex Standard |               |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Pag |       |                                                |         |             |          |                    | Inc. Page 23 of 65 |                 |               |



> Report Issue Date August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s) Specific Absorption Rate

Report Revision No. Revision 1.0 RF Exposure Category

Occupational



Date Tested: 08/21/2006

### Face-Held SAR - Alkaline Battery (2850 mAh) - Mid Channel - 415 MHz

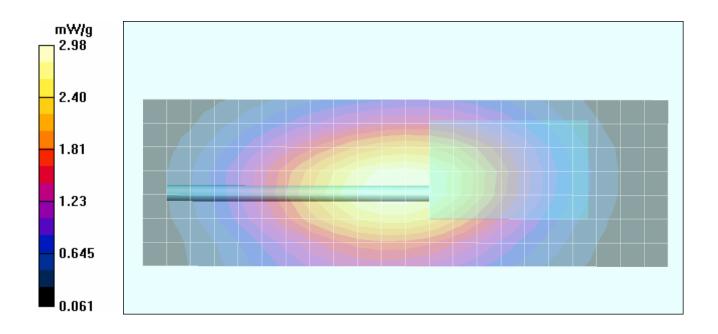
DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

Ambient Temp: 23.8°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 32%

Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1 RF Conducted Power: 5.1 Watts (Conducted) 9V 2850mAh Alkaline Battery Pack (P/N: FBA-34)

Medium: HSL450 ( $\sigma$  = 0.87 mho/m;  $\varepsilon_r$  = 43.8;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.4, 7.4, 7.4); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Face-Held SAR - 2.5 cm Separation Distance to Planar Phantom - Mid Channel

Area Scan (8x23x1): Measurement grid: dx=15mm, dy=15mm

Face-Held SAR - 2.5 cm Separation Distance to Planar Phantom - Mid Channel Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 56.8 V/m; Power Drift = -0.848 dB

Peak SAR (extrapolated) = 4.25 W/kg

SAR(1 g) = 2.75 mW/g; SAR(10 g) = 1.98 mW/g





Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



Date Tested: 08/22/2006

### Body-Worn SAR - Li-ion Battery (1150 mAh) - Mid Channel - 415 MHz

DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

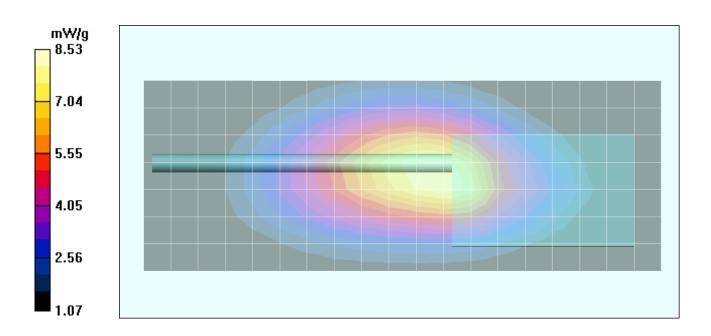
Body-Worn Accessory: Belt-Clip (P/N: CLIP-820); Audio Accessory: Speaker-Microphone (P/N: MH-65B7A)

Ambient Temp: 23.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1 RF Conducted Power: 5.1 Watts (Conducted) 7.4V 1150mAh Li-ion Battery Pack (P/N: FNB-V86LI) Medium: ( $\sigma$  = 0.94 mho/m;  $\epsilon_r$  = 56.7;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.3, 7.3, 7.3); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 1.1 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm


Body-Worn SAR - 1.1 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 90.1 V/m; Power Drift = -0.330 dB

Peak SAR (extrapolated) = 12.7 W/kg

SAR(1 g) = 8.17 mW/g; SAR(10 g) = 5.77 mW/g



| Company:                                                                                                                                                | Verte | ex Standard Co., Ltd.                          | FCC ID: | K6610584821 |          | IC ID:             | 511B-10584821      | Freq.:          | 380 - 450 MHz |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|---------|-------------|----------|--------------------|--------------------|-----------------|---------------|
| Model(s):                                                                                                                                               |       | 321-G8-5, VX-P824-G8-<br>371-G8-5, VX-P874-G8- |         | Portable    | FM UHF P | TT Radio Transceiv | /er                | Vertex Standard |               |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 1997. |       |                                                |         |             |          |                    | Inc. Page 25 of 65 |                 |               |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



Date Tested: 08/22/2006

### Body-Worn SAR - Li-ion Battery (2000 mAh) - Mid Channel - 415 MHz

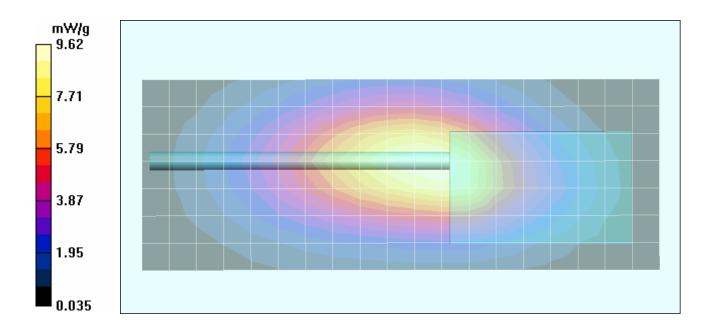
DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

Body-Worn Accessory: Belt-Clip (P/N: CLIP-820); Audio Accessory: Speaker-Microphone (P/N: MH-65B7A)

Ambient Temp: 23.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1 RF Conducted Power: 5.1 Watts (Conducted) 7.4V 2000mAh Li-ion Battery Pack (P/N: FNB-V87LI) Medium: ( $\sigma$  = 0.94 mho/m;  $\epsilon_r$  = 56.7;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.3, 7.3, 7.3); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Body-Worn SAR - 1.1 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn SAR - 1.1 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 95.3 V/m; Power Drift = -0.361 dB

Peak SAR (extrapolated) = 13.8 W/kg

SAR(1 g) = 8.83 mW/g; SAR(10 g) = 6.27 mW/g





Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



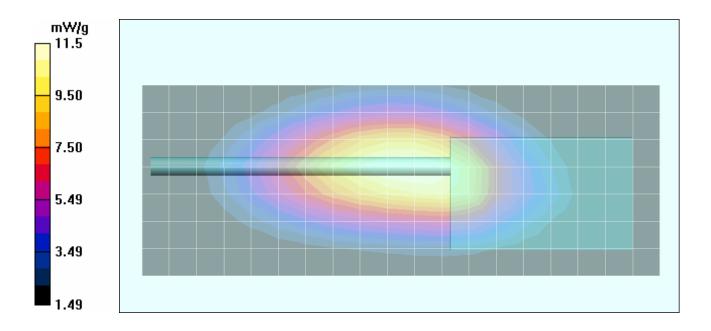
Date Tested: 08/22/2006

### Body-Worn SAR - Li-ion Battery (3000 mAh) - Mid Channel - 415 MHz

DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

Body-Worn Accessory: Belt-Clip (P/N: CLIP-820); Audio Accessory: Speaker-Microphone (P/N: MH-65B7A)

Ambient Temp: 23.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.5 kPa; Humidity: 33%


Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1 RF Conducted Power: 5.1 Watts (Conducted) 7.4V 3000mAh Li-ion Battery Pack (P/N: FNB-V92LI) Medium: ( $\sigma$  = 0.94 mho/m;  $\epsilon_r$  = 56.7;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.3, 7.3, 7.3); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 1.0 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn SAR - 1.0 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 102.7 V/m; Power Drift = -0.304 dB Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 11.0 mW/g; SAR(10 g) = 7.77 mW/g



| Company:                                                                                                                                                | Verte | ex Standard Co., Ltd.                          | FCC ID: | K6610584821 |          | IC ID:             | 511B-10584821      | Freq.:          | 380 - 450 MHz |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|---------|-------------|----------|--------------------|--------------------|-----------------|---------------|
| Model(s):                                                                                                                                               |       | 321-G8-5, VX-P824-G8-<br>371-G8-5, VX-P874-G8- |         | Portable    | FM UHF P | TT Radio Transceiv | ver 📄              | Vertex Standard |               |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 1997. |       |                                                |         |             |          |                    | Inc. Page 27 of 65 |                 |               |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



Date Tested: 08/22/2006

### Body-Worn SAR - Li-Ion Battery (3000 mAh IS) - Mid Channel - 415 MHz

DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

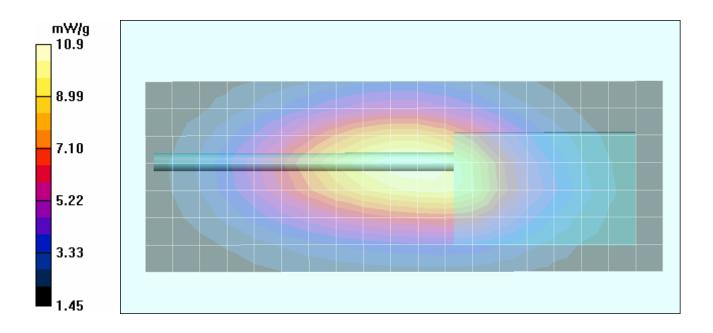
Body-Worn Accessory: Belt-Clip (P/N: CLIP-820); Audio Accessory: Speaker-Microphone (P/N: MH-65B7A)

Ambient Temp: 23.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1

RF Conducted Power: 5.1 Watts (Conducted)

7.4V 3000mAh IS Li-ion Battery Pack (P/N: FNB-V92LIIS) Medium: ( $\sigma$  = 0.94 mho/m;  $\epsilon_r$  = 56.7;  $\rho$  = 1000 kg/m<sup>3</sup> )


- Probe: ET3DV6 SN1387; ConvF(7.3, 7.3, 7.3); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 1.0 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn SAR - 1.0 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 102.8 V/m; Power Drift = -0.414 dB

Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 7.35 mW/g



| Company:         | Verte                                                                                                                                             | tex Standard Co., Ltd. FCC ID: K661                                        |  | 10584821 | IC ID: | 511B-10584821 | Freq.: | 380 - 450 MHz |                 |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|----------|--------|---------------|--------|---------------|-----------------|
| Model(s):        |                                                                                                                                                   | 21-G8-5, VX-P824-G8-5, VX-P829-G8-5<br>71-G8-5, VX-P874-G8-5, VX-P879-G8-5 |  |          |        |               |        |               | Vertex Standard |
| 2006 Celltech La | tech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 28 of 65 |                                                                            |  |          |        |               |        |               |                 |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



Date Tested: 08/22/2006

### Body-Worn SAR - Alkaline Battery (2850 mAh) - Mid Channel - 415 MHz

DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

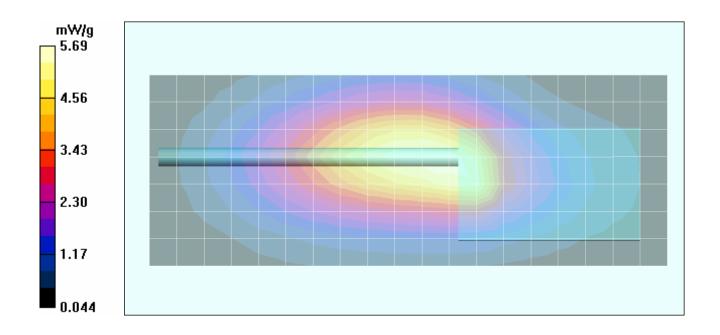
Body-Worn Accessory: Belt-Clip (P/N: CLIP-820); Audio Accessory: Speaker-Microphone (P/N: MH-65B7A)

Ambient Temp: 23.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1 RF Conducted Power: 5.1 Watts (Conducted) 9.0V 2850mAh Alkaline Battery Pack (P/N: FBA-34) Medium: ( $\sigma$  = 0.94 mho/m;  $\epsilon_r$  = 56.7;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.3, 7.3, 7.3); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 0.7 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm


Body-Worn SAR - 0.7 cm Belt-Clip Separation Distance to Planar Phantom - Mid Channel

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 79.0 V/m; Power Drift = -0.861 dB

Peak SAR (extrapolated) = 9.02 W/kg

SAR(1 g) = 5.38 mW/g; SAR(10 g) = 3.68 mW/g





Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



Date Tested: 08/22/2006

### Body-Worn SAR - Li-ion Battery (1150 mAh) - Mid Channel - 415 MHz

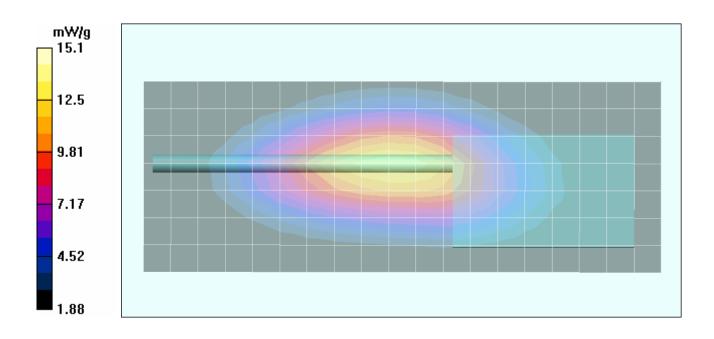
DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

Body-Worn Accessory: Leather Case (P/N: LCC-820); Audio Accessory: Speaker-Microphone (P/N: MH-65B7A)

Ambient Temp: 23.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1 RF Conducted Power: 5.1 Watts (Conducted) 7.4V 1150mAh Li-ion Battery Pack (P/N: FNB-V86LI) Medium: ( $\sigma$  = 0.94 mho/m;  $\epsilon_r$  = 56.7;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.3, 7.3, 7.3); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Body-Worn SAR - 1.0 cm Leather Case Separation Distance to Planar Phantom - Mid Channel Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn SAR - 1.0 cm Leather Case Separation Distance to Planar Phantom - Mid Channel Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 109.7 V/m; Power Drift = -0.330 dB

Peak SAR (extrapolated) = 23.3 W/kg

SAR(1 g) = 14.4 mW/g; SAR(10 g) = 9.93 mW/g



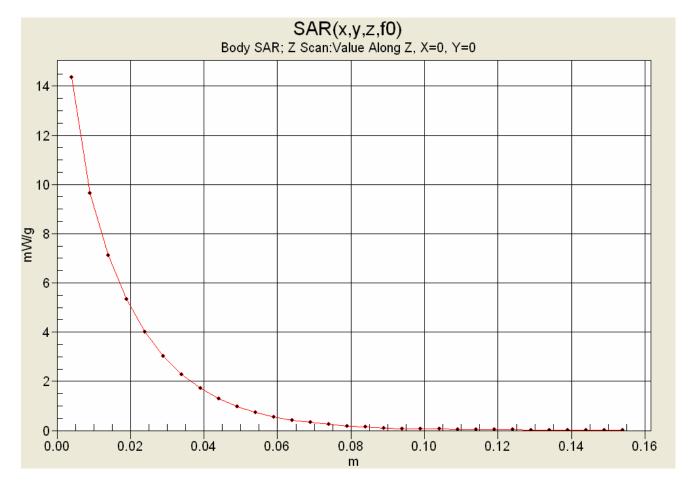
| Company:                                                                     | Verte | ex Standard Co., Ltd.                          | FCC ID:                               | K6610584821 |                   | IC ID:         | 511B-10584821             | Freq     | .: 3   | 880 - 450 MHz |
|------------------------------------------------------------------------------|-------|------------------------------------------------|---------------------------------------|-------------|-------------------|----------------|---------------------------|----------|--------|---------------|
| Model(s):                                                                    |       | 821-G8-5, VX-P824-G8-<br>871-G8-5, VX-P874-G8- | Portable FM UHF PTT Radio Transceiver |             |                   |                | Vertex Standard           |          |        |               |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in |       |                                                |                                       |             | or in part withou | ut the prior w | ritten permission of Cell | tech Lab | s Inc. | Page 30 of 65 |



Report Issue Date
August 30, 2006

<u>Test Report Serial No.</u> 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate


Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



# **Z-Axis Scan**

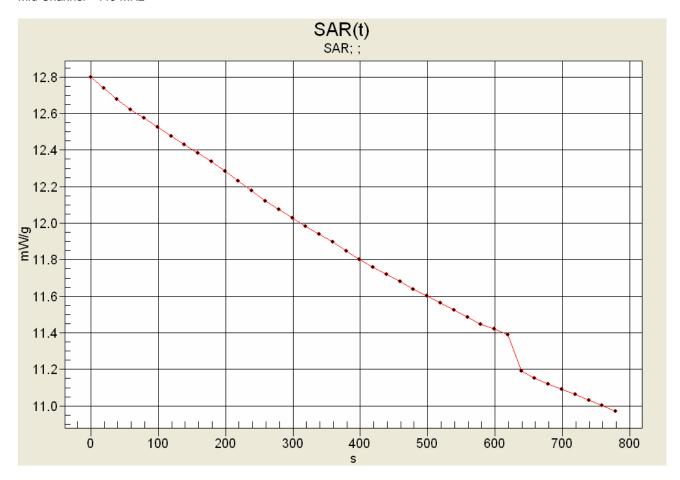


| Company:                                                                                                                                         | Verte | ex Standard Co., Ltd.                          | FCC ID: | K6610584821 |          | IC ID:             | 511B-10584821      | Freq.:          | 380 - 450 MHz |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|---------|-------------|----------|--------------------|--------------------|-----------------|---------------|
| Model(s):                                                                                                                                        |       | 321-G8-5, VX-P824-G8-<br>371-G8-5, VX-P874-G8- |         | Portable    | FM UHF P | TT Radio Transceiv | /er                | Vertex Standard |               |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Pag |       |                                                |         |             |          |                    | Inc. Page 31 of 65 |                 |               |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U


<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational



### **SAR-versus-Time Power Droop Evaluation**

Body-Worn Configuration with Leather Case Accessory 1150 mAh Li-ion Battery Pack (P/N: FNB-V86LI) Mid Channel - 415 MHz



Max. SAR: 12.7979 mW/g

Min. SAR: 10.9715 mW/g (-0.669 dB) SAR after 340s: 11.939 mW/g (-0.302 dB)

(340s = Zoom Scan Duration) (780s = Area Scan Duration)

| Company:         | Verte                                                                                                                                                      | ex Standard Co., Ltd. FCC ID: K |                                                                          | K66 | 6610584821 IC I |  | 511B-10584821 | Freq.: | 380 - 450 MHz |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------|-----|-----------------|--|---------------|--------|---------------|
| Model(s):        |                                                                                                                                                            |                                 | I-G8-5, VX-P824-G8-5, VX-P829-G8-5<br>I-G8-5, VX-P874-G8-5, VX-P879-G8-5 |     |                 |  |               |        |               |
| 2006 Celltech La | 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 32 of 65 |                                 |                                                                          |     |                 |  |               |        |               |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



Date Tested: 08/22/2006

### Body-Worn SAR - Li-ion Battery (2000 mAh) - Mid Channel - 415 MHz

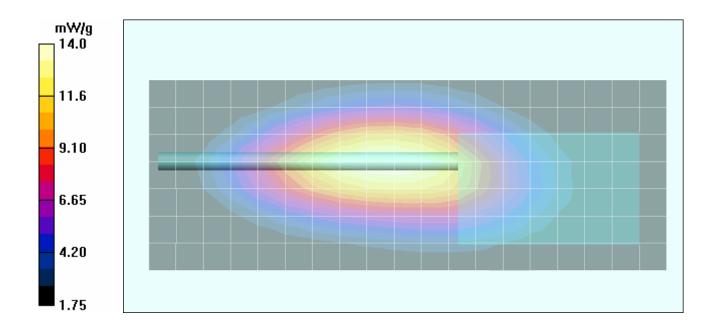
DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

Body-Worn Accessory: Leather Case (P/N: LCC-820); Audio Accessory: Speaker-Microphone (P/N: MH-65B7A)

Ambient Temp: 23.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Communication System: FM UHF Frequency: 415 MHz; Duty Cycle: 1:1 RF Output Power: 5.1 Watts (Conducted)

7.4V 2000mAh Li-ion Battery Pack (P/N: FNB-V87LI) Medium: M450 ( $\sigma$  = 0.94 mho/m;  $\epsilon_r$  = 56.7;  $\rho$  = 1000 kg/m³)


- Probe: ET3DV6 SN1387; ConvF(7.3, 7.3, 7.3); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161

SAR(1 g) = 13.4 mW/g; SAR(10 g) = 9.28 mW/g

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 1.0 cm Leather Case Separation Distance to Planar Phantom - Mid Channel Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn SAR - 1.0 cm Leather Case Separation Distance to Planar Phantom - Mid Channel Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 106.7 V/m; Power Drift = -0.421 dB Peak SAR (extrapolated) = 21.7 W/kg



| Company:                                                                                                                                          | Verte | ex Standard Co., Ltd.                          | FCC ID:  | K6610584821 |                    | IC ID: | 511B-10584821      | Freq.: | 380 - 450 MHz |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|----------|-------------|--------------------|--------|--------------------|--------|---------------|
| Model(s):                                                                                                                                         |       | 321-G8-5, VX-P824-G8-<br>371-G8-5, VX-P874-G8- | Portable | FM UHF P    | TT Radio Transceiv | /er    | Vertex Standard    |        |               |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page |       |                                                |          |             |                    |        | Inc. Page 33 of 65 |        |               |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational



Date Tested: 08/22/2006

### Body-Worn SAR - Li-ion Battery (1150 mAh) - Low Channel - 380 MHz

DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

Body-Worn Accessory: Leather Case (P/N: LCC-820); Audio Accessory: Speaker-Microphone (P/N: MH-65B7A)

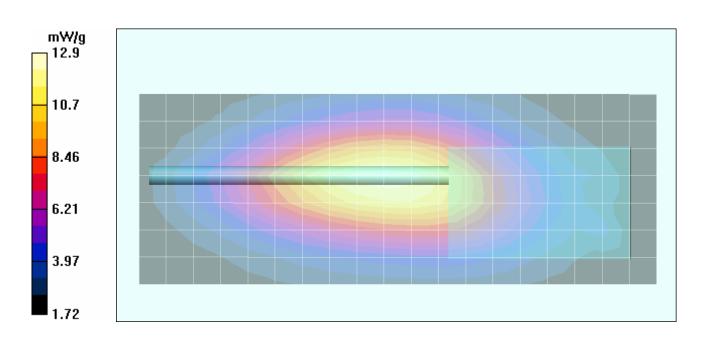
Ambient Temp: 23.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Communication System: FM UHF Frequency: 380 MHz; Duty Cycle: 1:1 RF Conducted Power: 4.7 Watts (Conducted)

7.4V 1150mAh Li-ion Battery Pack (P/N: FNB-V86LI) Medium:  $(\sigma = 0.94 \text{ mho/m}; \epsilon_r = 56.7; \rho = 1000 \text{ kg/m}^3)$ 

- Probe: ET3DV6 SN1387; ConvF(7.3, 7.3, 7.3); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 1.0 cm Leather Case Separation Distance to Planar Phantom - Low Channel Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm


Body-Worn SAR - 1.0 cm Leather Case Separation Distance to Planar Phantom - Low Channel

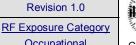
**Zoom Scan** (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 110.5 V/m; Power Drift = -0.366 dB

Peak SAR (extrapolated) = 19.6 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 8.91 mW/g






| Date(s) of Evaluation |
|-----------------------|
| August 21-22, 2006    |

Report Issue Date August 30, 2006

### Test Report Serial No. 073106K66-T765-S90U

Description of Test(s) Specific Absorption Rate Report Revision No. Revision 1.0





Occupational Certificate No. 2470.01

Date Tested: 08/22/2006

### Body-Worn SAR - Li-ion Battery (1150 mAh) - High Channel - 450 MHz

DUT: Vertex Model: VX-829-G8-5; Type: Portable FM UHF PTT Radio Transceiver; Serial: 61000003

Body-Worn Accessory: Leather Case (P/N: LCC-820); Audio Accessory: Speaker-Microphone (P/N: MH-65B7A)

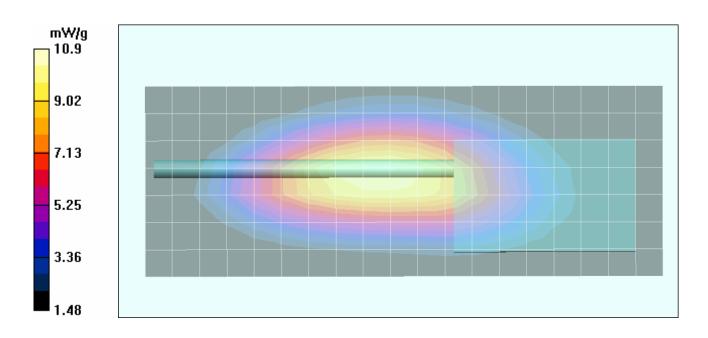
Ambient Temp: 23.0°C; Fluid Temp: 23.0°C; Barometric Pressure: 101.5 kPa; Humidity: 33%

Communication System: FM UHF Frequency: 450 MHz; Duty Cycle: 1:1 RF Conducted Power: 5.4 Watts (Conducted) 7.4V 1150mAh Li-ion Battery Pack (P/N: FNB-V86LI) Medium: ( $\sigma = 0.94 \text{ mho/m}$ ;  $\varepsilon_r = 56.7$ ;  $\rho = 1000 \text{ kg/m}^3$ )

- Probe: ET3DV6 SN1387; ConvF(7.3, 7.3, 7.3); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-Worn SAR - 1.0 cm Leather Case Separation Distance to Planar Phantom - High Channel Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 10.4 mW/g


Body-Worn SAR - 1.0 cm Leather Case Separation Distance to Planar Phantom - High Channel

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 99.2 V/m; Power Drift = -0.386 dB

Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 7.4 mW/g



| Company:                                                                                                                                            | Verte | ex Standard Co., Ltd.                          | FCC ID: | K6610584821 |          | IC ID:             | 511B-10584821      | Freq.:          | 380 - 450 MHz |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|---------|-------------|----------|--------------------|--------------------|-----------------|---------------|
| Model(s):                                                                                                                                           |       | 321-G8-5, VX-P824-G8-<br>371-G8-5, VX-P874-G8- |         | Portable    | FM UHF P | TT Radio Transceiv | ver 📄              | Vertex Standard |               |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 1 |       |                                                |         |             |          |                    | Inc. Page 35 of 65 |                 |               |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category
Occupational



# **APPENDIX B - SYSTEM PERFORMANCE CHECK DATA**



Report Issue Date August 30, 2006 Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Revision 1.0

RF Exposure Category
Occupational



Date Tested: 08/21/2006

#### System Performance Check (Brain) - 450 MHz Dipole

DUT: Dipole 450 MHz; Type: D450V2; Serial: 136; Validation: 10/25/2005

Ambient Temp: 23.8°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 32%

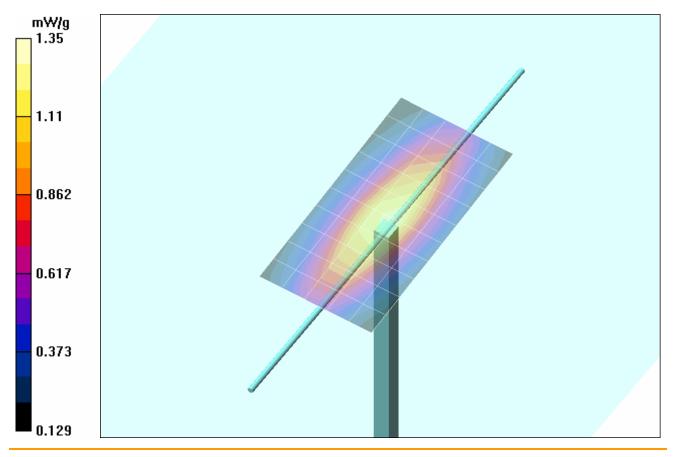
Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 ( $\sigma$  = 0.87 mho/m;  $\varepsilon_r$  = 43.8;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 - SN1387; ConvF(7.4, 7.4, 7.4); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
   Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### 450 MHz Dipole - System Performance Check/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm

#### 450 MHz Dipole - System Performance Check/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 2.25 W/kg

SAR(1 g) = 1.27 mW/g; SAR(10 g) = 0.814 mW/g

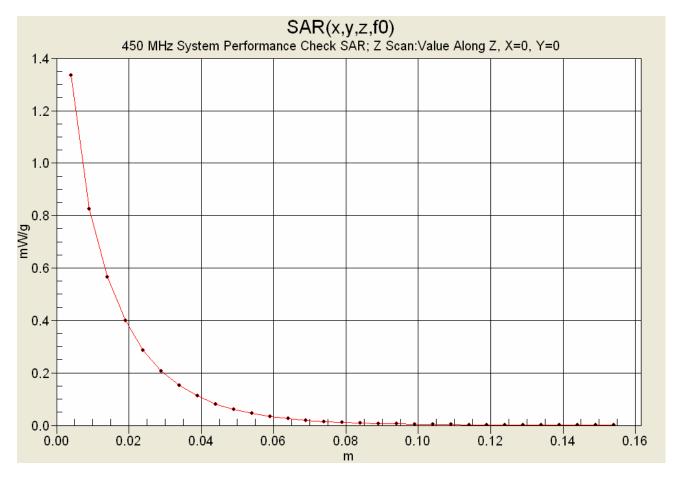




Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate


Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



#### **Z-Axis Scan**



| Company:                                                                                                                                     | Verte | ex Standard Co., Ltd. FCC ID: K661                                             |  | 10584821 | IC ID:     | 511B-10584821     | Freq.:             | 380 - 450 MHz |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------|--|----------|------------|-------------------|--------------------|---------------|-----------------|
| Model(s):                                                                                                                                    |       | P821-G8-5, VX-P824-G8-5, VX-P829-G8-5<br>P871-G8-5, VX-P874-G8-5, VX-P879-G8-5 |  |          | Portable I | FM UHF P          | TT Radio Transceiv | /er           | Vertex Standard |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |       |                                                                                |  |          |            | nc. Page 38 of 65 |                    |               |                 |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category

Occupational



## **APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS**



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational



## 450 MHz System Performance Check & DUT Evaluation (Brain)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Mon 21/Aug/2006
Frequency (GHz)

FCC\_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC\_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test\_e Epsilon of UIM
Test\_s Sigma of UIM

| , | ******* | ****** | ******  | ****** | ****** |
|---|---------|--------|---------|--------|--------|
|   | Freq    | FCC_eH | IFCC_sl | Test_e | Test_s |
|   | 0.3500  | 44.70  | 0.87    | 46.34  | 0.78   |
|   | 0.3600  | 44.58  | 0.87    | 45.95  | 0.79   |
|   | 0.3700  | 44.46  | 0.87    | 45.70  | 0.80   |
|   | 0.3800  | 44.34  | 0.87    | 45.55  | 0.80   |
|   | 0.3900  | 44.22  | 0.87    | 44.99  | 0.82   |
|   | 0.4000  | 44.10  | 0.87    | 45.12  | 0.83   |
|   | 0.4100  | 43.98  | 0.87    | 45.05  | 0.84   |
|   | 0.4200  | 43.86  | 0.87    | 44.78  | 0.84   |
|   | 0.4300  | 43.74  | 0.87    | 44.38  | 0.86   |
|   | 0.4400  | 43.62  | 0.87    | 44.33  | 0.86   |
|   | 0.4500  | 43.50  | 0.87    | 43.75  | 0.87   |
|   | 0.4600  | 43.45  | 0.87    | 43.76  | 0.88   |
|   | 0.4700  | 43.40  | 0.87    | 43.76  | 0.89   |
|   | 0.4800  | 43.34  | 0.87    | 43.22  | 0.90   |
|   | 0.4900  | 43.29  | 0.87    | 43.47  | 0.90   |
|   | 0.5000  | 43.24  | 0.87    | 42.87  | 0.92   |
|   | 0.5100  | 43.19  | 0.87    | 43.00  | 0.92   |
|   | 0.5200  | 43.14  | 0.88    | 42.48  | 0.94   |
|   | 0.5300  | 43.08  | 0.88    | 42.69  | 0.95   |
|   | 0.5400  | 43.03  | 0.88    | 42.52  | 0.95   |
|   | 0.5500  | 42.98  | 0.88    | 42.12  | 0.96   |



Report Issue Date
August 30, 2006

Test Report Serial No. 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational



## 450 MHz DUT Evaluation (Body)

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
Tue 22/Aug/2006
Frequency (GHz)

Frequency (GHz)
FCC\_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC\_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC\_eB FCC Limits for Body Epsilon FCC\_sB FCC Limits for Body Sigma Test\_e Epsilon of UIM Test\_s Sigma of UIM

| *******             | ******* | ****** | *******  | ****** |
|---------------------|---------|--------|----------|--------|
| Freq                | FCC_eB  | FCC_sE | 3 Test_e | Test_s |
| 0.3500              | 57.70   | 0.93   | 58.69    | 0.86   |
| 0.3600              | 57.60   | 0.93   | 58.70    | 0.87   |
| 0.3700              | 57.50   | 0.93   | 58.21    | 0.88   |
| 0.3800              | 57.40   | 0.93   | 58.01    | 0.89   |
| 0.3900              | 57.30   | 0.93   | 57.80    | 0.90   |
| 0.4000              | 57.20   | 0.93   | 57.88    | 0.90   |
| 0.4100              | 57.10   | 0.93   | 57.91    | 0.91   |
| 0.4200              | 57.00   | 0.94   | 57.43    | 0.92   |
| 0.4300              | 56.90   | 0.94   | 57.26    | 0.93   |
| 0.4400              | 56.80   | 0.94   | 57.18    | 0.93   |
| <mark>0.4500</mark> | 56.70   | 0.94   | 56.73    | 0.94   |
| 0.4600              | 56.66   | 0.94   | 56.97    | 0.95   |
| 0.4700              | 56.62   | 0.94   | 56.83    | 0.95   |
| 0.4800              | 56.58   | 0.94   | 56.35    | 0.97   |
| 0.4900              | 56.54   | 0.94   | 56.48    | 0.96   |
| 0.5000              | 56.51   | 0.94   | 56.10    | 0.98   |
| 0.5100              | 56.47   | 0.94   | 56.00    | 0.99   |
| 0.5200              | 56.43   | 0.95   | 55.98    | 1.00   |
| 0.5300              | 56.39   | 0.95   | 55.70    | 1.00   |
| 0.5400              | 56.35   | 0.95   | 55.83    | 1.01   |
| 0.5500              | 56.31   | 0.95   | 55.72    | 1.01   |
|                     |         |        |          |        |



Report Issue Date
August 30, 2006

<u>Test Report Serial No.</u> 073106K66-T765-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
Occupational



# **APPENDIX E - SYSTEM VALIDATION**

| Company:                                                                                                                                                | Verte                                                                                                                             | ex Standard Co., Ltd. FCC ID: K |  | K66 | 10584821 | 84821 IC ID: 511B-10 |  | Freq.: | 380 - 450 MHz |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|-----|----------|----------------------|--|--------|---------------|
| Model(s):                                                                                                                                               | Model(s): VX-P821-G8-5, VX-P824-G8-5, VX-P829-G8-5 VX-P871-G8-5, VX-P874-G8-5, VX-P879-G8-5 Portable FM UHF PTT Radio Transceiver |                                 |  |     |          |                      |  |        |               |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 64 of |                                                                                                                                   |                                 |  |     |          | ic. Page 64 of 65    |  |        |               |

Document Issue No.:

Validation Dipole:

SV450B-102505-R1.1

450 MHz

## **450 MHz SYSTEM VALIDATION DIPOLE**

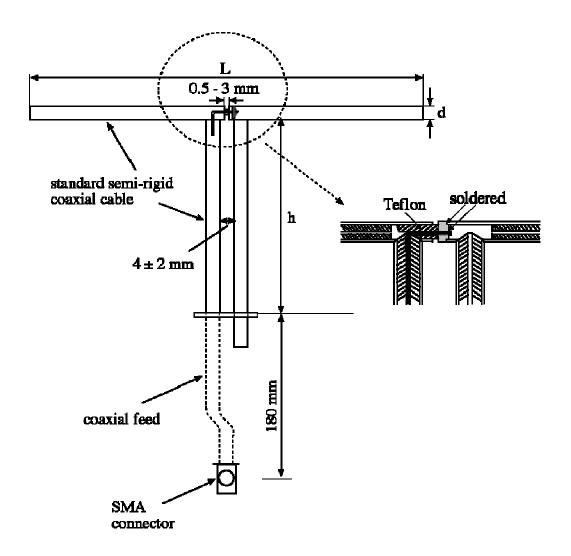
| Type:                | 450 MHz Validation Dipole |
|----------------------|---------------------------|
| Asset Number:        | 00024                     |
| Serial Number:       | 136                       |
| Place of Validation: | Celltech Labs Inc.        |
| Date of Validation:  | October 25, 2005          |

Celltech Labs Inc. hereby certifies that the system validation was performed on the date indicated above.

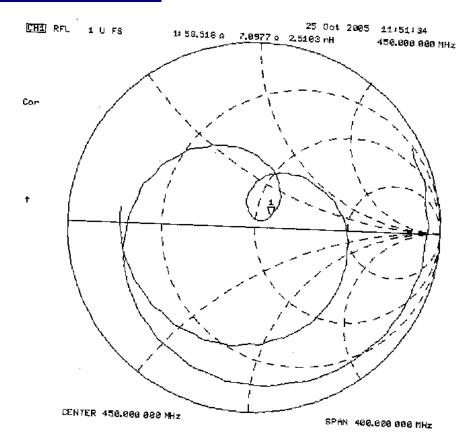
Validated by:

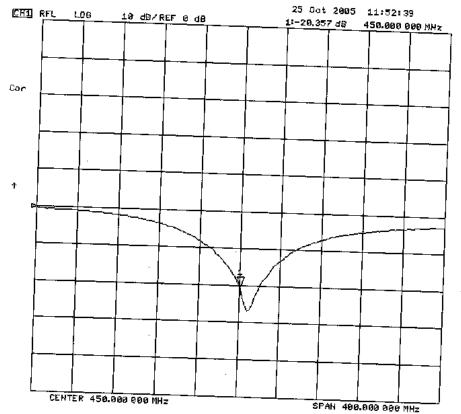
Approved by: Spencer Watson




#### 1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 450MHz  $Re{Z} = 58.518\Omega$ 


 $\text{Im}\{Z\} = 7.0977\Omega$ 

Return Loss at 450MHz -20.357dB



# 2. Validation Dipole VSWR Data

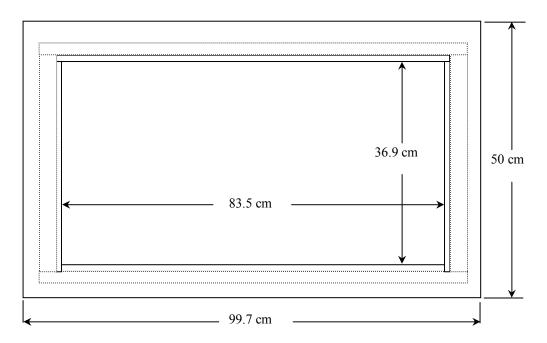


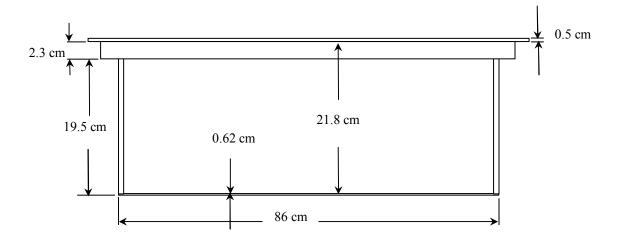


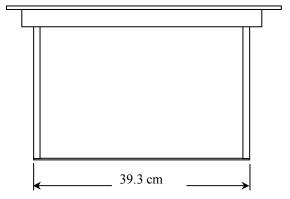


# 3. Validation Dipole Dimensions

| Frequency (MHz) | L (mm) | h (mm) | d (mm) |
|-----------------|--------|--------|--------|
| 300             | 420.0  | 250.0  | 6.2    |
| 450             | 288.0  | 167.0  | 6.2    |
| 835             | 161.0  | 89.8   | 3.6    |
| 900             | 149.0  | 83.3   | 3.6    |
| 1450            | 89.1   | 51.7   | 3.6    |
| 1800            | 72.0   | 41.7   | 3.6    |
| 1900            | 68.0   | 39.5   | 3.6    |
| 2000            | 64.5   | 37.5   | 3.6    |
| 2450            | 51.8   | 30.6   | 3.6    |
| 3000            | 41.5   | 25.0   | 3.6    |


#### 4. Validation Phantom


The validation phantom was constructed using relatively low-loss tangent Plexiglas material. The inner dimensions of the phantom are as follows:


Length: 83.5 cm Width: 36.9 cm Height: 21.8 cm

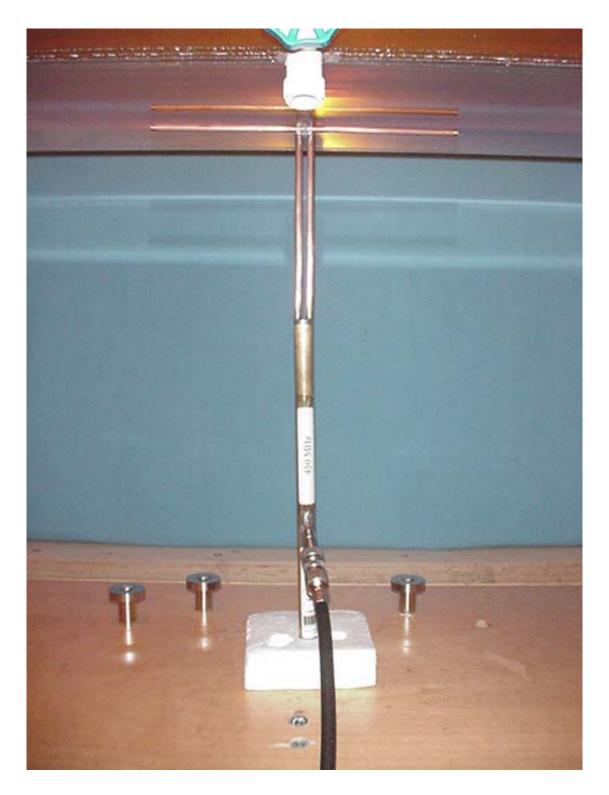
The bottom section of the validation phantom is constructed of  $6.2 \pm 0.1$ mm Plexiglas.

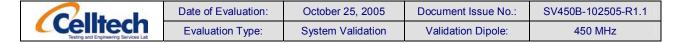
# 5. Dimensions of Plexiglas Planar Phantom











# 6. 450 MHz System Validation Setup





# 7. 450 MHz Validation Dipole Setup





#### **8. Measurement Conditions**

The planar phantom was filled with 450 MHz brain tissue simulant:

Relative Permittivity: 43.2 (-0.7% deviation from target)

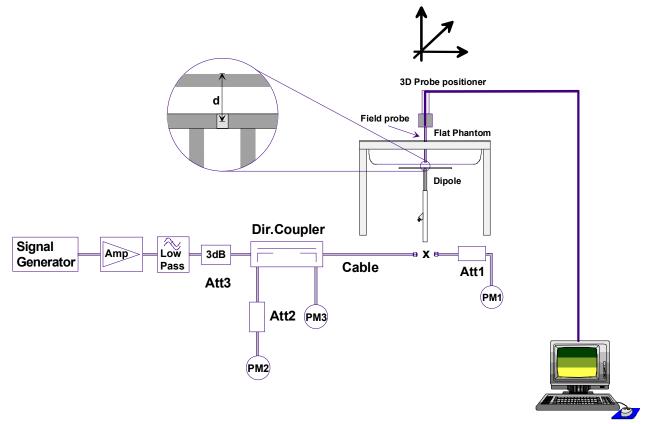
Conductivity: 0.84 mho/m (-3.4% deviation from target)

Fluid Temperature: 22.5 °C Fluid Depth:  $\geq$  15.0 cm

**Environmental Conditions:** 

Ambient Temperature: 23.5 °C Humidity: 34 % Barometric Pressure: 101.4 kPa

The 450 MHz brain tissue simulant consisted of the following ingredients:


| Ingredient                                       | Percentage by weight                                                  |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Water                                            | 38.56%                                                                |  |  |
| Sugar                                            | 56.32%                                                                |  |  |
| Salt                                             | 3.95%                                                                 |  |  |
| HEC                                              | 0.98%                                                                 |  |  |
| Dowicil 75                                       | 0.19%                                                                 |  |  |
| 450 MHz Target Dielectric<br>Parameters at 22 °C | $\varepsilon_{\rm r}$ = 43.5 (+/- 5%)<br>$\sigma$ = 0.87 S/m (+/- 5%) |  |  |



| Date of Evaluation: | October 25, 2005  | Document Issue No.: | SV450B-102505-R1.1 |
|---------------------|-------------------|---------------------|--------------------|
| Evaluation Type:    | System Validation | Validation Dipole:  | 450 MHz            |

#### 9. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.



First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.



| Date of Evaluation: | October 25, 2005  | Document Issue No.: | SV450B-102505-R1.1 |
|---------------------|-------------------|---------------------|--------------------|
| Evaluation Type:    | System Validation | Validation Dipole:  | 450 MHz            |

## 10. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

| Validation<br>Measurement | SAR @ 0.25W<br>Input averaged<br>over 1g | SAR @ 1W<br>Input averaged<br>over 1g | SAR @ 0.25W<br>Input averaged<br>over 10g | SAR @ 1W<br>Input averaged<br>over 10g | Peak SAR @ 0.25W Input |
|---------------------------|------------------------------------------|---------------------------------------|-------------------------------------------|----------------------------------------|------------------------|
| Test 1                    | 1.24                                     | 4.96                                  | 0.800                                     | 3.200                                  | 1.31                   |
| Test 2                    | 1.24                                     | 4.96                                  | 0.798                                     | 3.192                                  | 1.31                   |
| Test 3                    | 1.24                                     | 4.96                                  | 0.798                                     | 3.192                                  | 1.31                   |
| Test 4                    | 1.24                                     | 4.96                                  | 0.799                                     | 3.196                                  | 1.31                   |
| Test 5                    | 1.24                                     | 4.96                                  | 0.799                                     | 3.196                                  | 1.31                   |
| Test 6                    | 1.24                                     | 4.96                                  | 0.799                                     | 3.196                                  | 1.31                   |
| Test 7                    | 1.24                                     | 4.96                                  | 0.801                                     | 3.204                                  | 1.31                   |
| Test 8                    | 1.24                                     | 4.96                                  | 0.802                                     | 3.208                                  | 1.31                   |
| Test 9                    | 1.25                                     | 5.00                                  | 0.807                                     | 3.228                                  | 1.31                   |
| Test 10                   | 1.25                                     | 5.00                                  | 0.806                                     | 3.224                                  | 1.31                   |
| Average                   | 1.24                                     | 4.97                                  | 0.801                                     | 3.204                                  | 1.31                   |

The results have been normalized to 1W (forward power) into the dipole.

| @ 1 W<br>averag | et SAR<br>att Input<br>ged over<br>n (W/kg) | Measured SAR<br>@ 1 Watt Input<br>averaged over<br>1 gram (W/kg) | Deviation<br>from<br>Target<br>(%) | Target SAR<br>@ 1 Watt Input<br>averaged over<br>10 grams (W/kg) |         | Measured SAR<br>@ 1 Watt Input<br>averaged over<br>10 grams (W/kg) | Deviation<br>from<br>Target<br>(%) |
|-----------------|---------------------------------------------|------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------|---------|--------------------------------------------------------------------|------------------------------------|
| 4.90            | +/- 10%                                     | 4.97                                                             | +1.4%                              | 3.30                                                             | +/- 10% | 3.204                                                              | -2.9%                              |



#### 450 MHz System Validation (Brain) - October 25, 2005

Dipole: 450 MHz; Model: D450V2; Serial: 136

Ambient Temp: 23.5 °C; Fluid Temp: 22.5 °C; Barometric Pressure: 101.4 kPa; Humidity: 34%

Communication System: CW

Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 ( $\sigma$  = 0.84 mho/m;  $\varepsilon_r$  = 43.2;  $\rho$  = 1000 kg/m<sup>3</sup>)

- Probe: ET3DV6 SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

**450 MHz System Validation/Area Scan (6x11x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.27 mW/g

450 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.3 V/m; Power Drift = -0.025 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.800 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.1 V/m; Power Drift = 0.004 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.798 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.0 V/m; Power Drift = 0.014 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.798 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.0 V/m; Power Drift = 0.040 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.799 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.0 V/m; Power Drift = 0.014 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.799 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

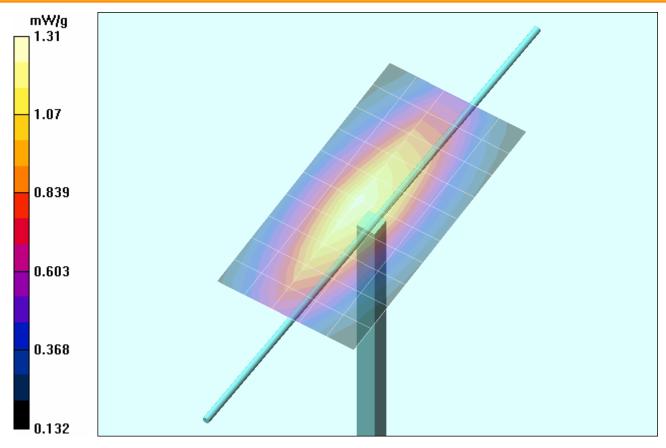
Reference Value = 39.1 V/m; Power Drift = 0.016 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.799 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

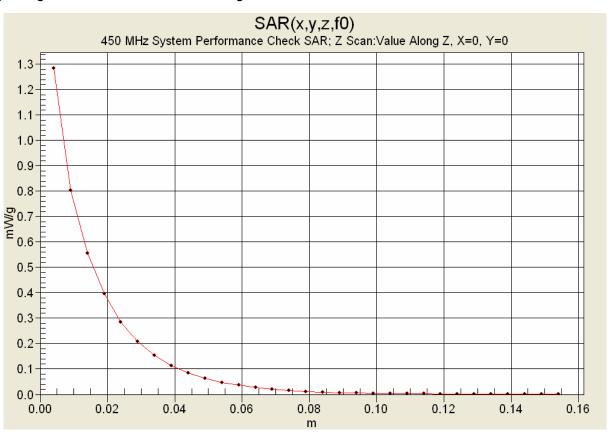
Reference Value = 39.1 V/m; Power Drift = 0.008 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.801 mW/g Maximum value of SAR (measured) = 1.31 mW/g

450 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.6 V/m; Power Drift = -0.031 dB SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.802 mW/g Maximum value of SAR (measured) = 1.31 mW/g


450 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.2 V/m; Power Drift = 0.016 dB SAR(1 g) = 1.25 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.31 mW/g


450 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.2 V/m; Power Drift = -0.010 dB SAR(1 g) = 1.25 mW/g; SAR(10 g) = 0.806 mW/g Maximum value of SAR (measured) = 1.31 mW/g





1 g average of 10 measurements: 1.24 mW/g 10 g average of 10 measurements: 0.801 mW/g





| Date of Evaluation: | October 25, 2005  | Document Issue No.: | SV450B-102505-R1.1 |
|---------------------|-------------------|---------------------|--------------------|
| Evaluation Type:    | System Validation | Validation Dipole:  | 450 MHz            |

#### 11. Measured Fluid Dielectric Parameters

#### System Validation (Brain) - 450 MHz Dipole

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Tue 25/Oct/2005 12:07:39

Frequency (GHz) Freq

FCC\_eH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC\_sH FCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test\_e Epsilon of UIM Test\_s

Sigma of UIM

| Freq   | FCC el | HFCC sh | Test e | Test s |
|--------|--------|---------|--------|--------|
| 0.3500 | 44.70  | 0.87    | 46.08  | 0.7567 |
| 0.3600 | 44.58  | 0.87    | 45.12  | 0.7628 |
| 0.3700 | 44.46  | 0.87    | 45.10  | 0.7809 |
| 0.3800 | 44.34  | 0.87    | 45.43  | 0.7839 |
| 0.3900 | 44.22  | 0.87    | 43.97  | 0.7737 |
| 0.4000 | 44.10  | 0.87    | 43.78  | 0.7898 |
| 0.4100 | 43.98  | 0.87    | 43.52  | 0.8094 |
| 0.4200 | 43.86  | 0.87    | 43.40  | 0.8252 |
| 0.4300 | 43.74  | 0.87    | 43.32  | 0.8299 |
| 0.4400 | 43.62  | 0.87    | 43.32  | 0.8412 |
| 0.4500 | 43.50  | 0.87    | 43.20  | 0.8371 |
| 0.4600 | 43.45  | 0.87    | 42.91  | 0.8381 |
| 0.4700 | 43.40  | 0.87    | 42.76  | 0.8474 |
| 0.4800 | 43.34  | 0.87    | 42.33  | 0.8578 |
| 0.4900 | 43.29  | 0.87    | 42.63  | 0.8839 |
| 0.5000 | 43.24  | 0.87    | 42.19  | 0.8784 |
| 0.5100 | 43.19  | 0.87    | 41.77  | 0.8958 |
| 0.5200 | 43.14  | 0.88    | 41.64  | 0.8896 |
| 0.5300 | 43.08  | 0.88    | 41.13  | 0.9037 |
| 0.5400 | 43.03  | 0.88    | 40.85  | 0.9328 |
| 0.5500 | 42.98  | 0.88    | 40.94  | 0.9272 |



Report Issue Date
August 30, 2006

<u>Test Report Serial No.</u> 073106K66-T765-S90U

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.0

RF Exposure Category
Occupational



# **APPENDIX F - PROBE CALIBRATION**

|                                                                                                                                                           | Company:  | Verte | ex Standard Co., Ltd.                                                              | FCC ID: | K66 | 10584821      | IC ID:   | 511B-10584821      | Freq | .: 3 | 880 - 450 MHz  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|------------------------------------------------------------------------------------|---------|-----|---------------|----------|--------------------|------|------|----------------|
|                                                                                                                                                           | Model(s): |       | X-P821-G8-5, VX-P824-G8-5, VX-P829-G8-5<br>X-P871-G8-5, VX-P874-G8-5, VX-P879-G8-5 |         |     | Portable l    | FM UHF P | TT Radio Transceiv | /er  | 15 V | ertex Standard |
| 2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 65 of 6 |           |       |                                                                                    |         |     | Page 65 of 65 |          |                    |      |      |                |

## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

C

S

Client Celitech Labs

Certificate No: ET3-1387\_Mar06

# CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1387

Calibration procedure(s) QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date: March 16, 2006

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID#             | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration  |
|----------------------------|-----------------|-------------------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 3-May-05 (METAS, No. 251-00466)           | May-06                 |
| Power sensor E4412A        | MY41495277      | 3-May-05 (METAS, No. 251-00466)           | May-06                 |
| Power sensor E4412A        | MY41498087      | 3-May-05 (METAS, No. 251-00466)           | May-06                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 11-Aug-05 (METAS, No. 251-00499)          | Aug-06                 |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 3-May-05 (METAS, No. 251-00467)           | May-06                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 11-Aug-05 (METAS, No. 251-00500)          | Aug-06                 |
| Reference Probe ES3DV2     | SN: 3013        | 2-Jan-06 (SPEAG, No. ES3-3013_Jan06)      | Jan-07                 |
| DAE4                       | SN: 654         | 2-Feb-06 (SPEAG, No. DAE4-654_Feb06)      | Feb-07                 |
| Secondary Standards        | ID#             | Check Date (in house)                     | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (SPEAG, in house check Nov-05)   | In house check: Nov-07 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (SPEAG, in house check Nov-05)  | In house check: Nov 06 |
|                            | Name            | Function                                  | Signature              |
| Calibrated by:             | Katja Pokovic   | Technical Manager                         | Mir llef               |
|                            |                 |                                           | 1. 4                   |
| Approved by:               | Niels Kuster    | Quality Manager                           | 118                    |
| I .                        |                 |                                           |                        |

Issued: March 16, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

**Swiss Calibration Service** 

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z DCP diode compression point  $\phi$  rotation around probe axis

Polarization  $\vartheta$   $\vartheta$  rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

#### Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

#### **Methods Applied and Interpretation of Parameters:**

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

# Probe ET3DV6

SN:1387

Manufactured:

**September 21, 1999** 

Last calibrated:

March 18, 2005

Recalibrated:

March 16, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1387\_Mar06

Page 3 of 9

# **DASY - Parameters of Probe: ET3DV6 SN:1387**

| Sensitivity in Free | e Space <sup>A</sup> | Diode C                    | ompression <sup>®</sup> | 3            |  |
|---------------------|----------------------|----------------------------|-------------------------|--------------|--|
| NormX               | <b>1.62</b> ± 10.1%  | $\mu$ V/(V/m) <sup>2</sup> | DCP X                   | <b>92</b> mV |  |
| NormY               | <b>1.72</b> ± 10.1%  | μ <b>V/(V/m)</b> ²         | DCP Y                   | <b>92</b> mV |  |

NormZ 1.72 ± 10.1%  $\mu V/(V/m)^2$  DCP Z

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

# **Boundary Effect**

TSL 900 MHz Typical SAR gradient: 5 % per mm

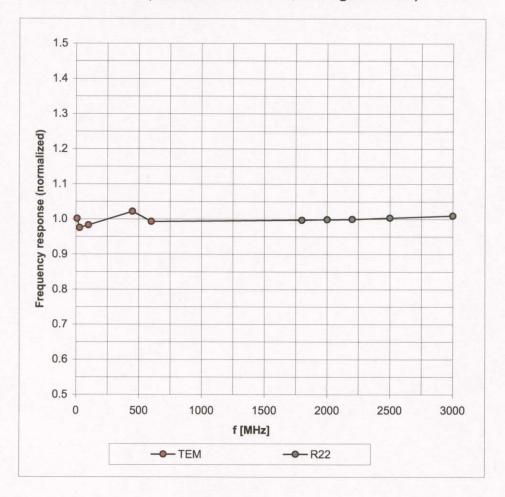
| Sensor Center to      | 3.7 mm                       | 4.7 mm |     |
|-----------------------|------------------------------|--------|-----|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 9.3    | 5.0 |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.1    | 0.2 |

#### Sensor Offset

Probe Tip to Sensor Center

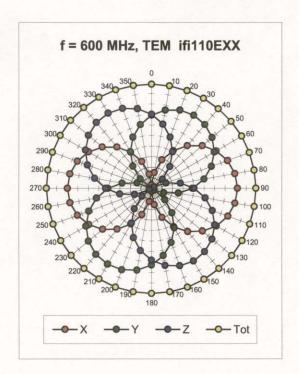
2.7 mm

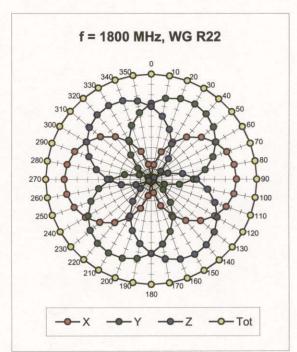
92 mV

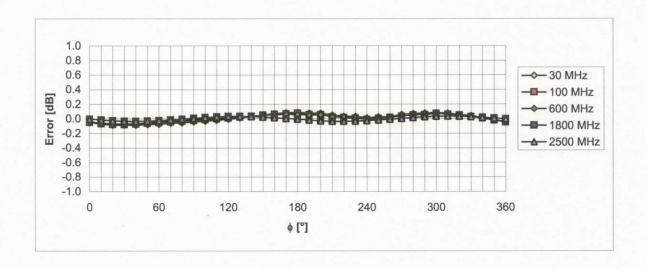

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>&</sup>lt;sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 8).

<sup>&</sup>lt;sup>B</sup> Numerical linearization parameter: uncertainty not required.


# Frequency Response of E-Field

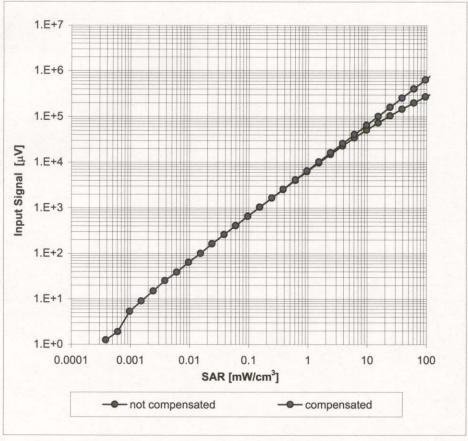

(TEM-Cell:ifi110 EXX, Waveguide: R22)

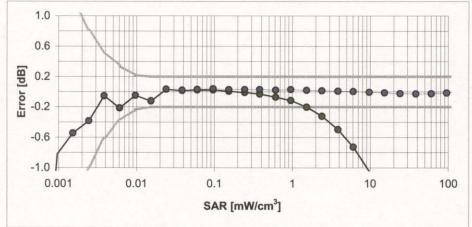



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

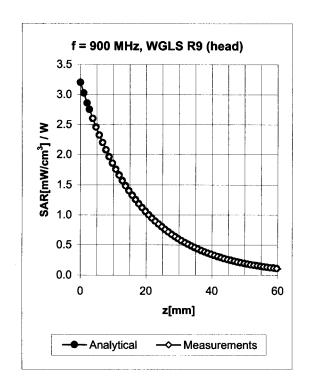


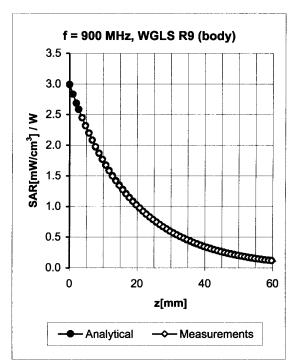



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

# Dynamic Range f(SAR<sub>head</sub>)


(Waveguide R22, f = 1800 MHz)

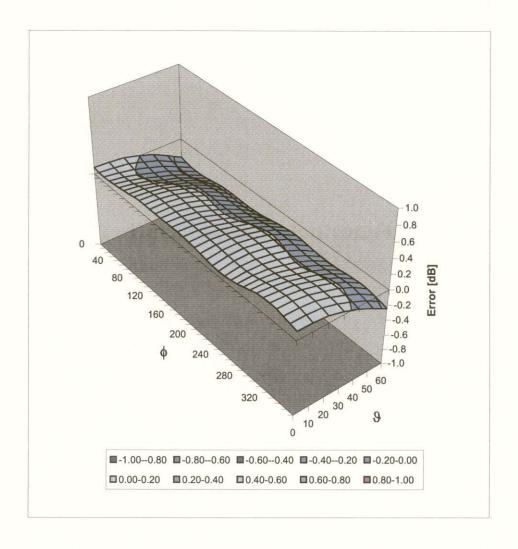





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

# **Conversion Factor Assessment**






| f [MHz] | Validity [MHz] <sup>c</sup> | TSL  | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty  |
|---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------|
| 900     | ± 50 / ± 100                | Head | 41.5 ± 5%    | 0.97 ± 5%    | 0.62  | 1.86  | 6.35 ± 11.0% (k=2) |
| 900     | ± 50 / ± 100                | Body | 55.0 ± 5%    | 1.05 ± 5%    | 0.59  | 1.97  | 6.04 ± 11.0% (k=2) |

<sup>&</sup>lt;sup>c</sup> The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

# **Deviation from Isotropy in HSL**

Error (φ, θ), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

# **Additional Conversion Factors**

for Dosimetric E-Field Probe

| Type:                   | ET3DV6         |
|-------------------------|----------------|
| Serial Number:          | 1387           |
| Place of Assessment:    | Zurich         |
| Date of Assessment:     | March 18, 2006 |
| Probe Calibration Date: | March 16, 2006 |

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

# Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

|                           | `     | ,              |                                       |
|---------------------------|-------|----------------|---------------------------------------|
| $150 \pm 50 \text{ MHz}$  | ConvF | $8.6 \pm 10\%$ | $\varepsilon_r = 52.3 \pm 5\%$        |
|                           |       |                | $\sigma = 0.76 \pm 5\% \text{ mho/m}$ |
|                           |       |                | (head tissue)                         |
|                           |       |                |                                       |
| $150 \pm 50 \text{ MHz}$  | ConvF | $8.2 \pm 10\%$ | $\varepsilon_{\rm r} = 61.9 \pm 5\%$  |
|                           |       |                | $\sigma = 0.80 \pm 5\% \text{ mho/m}$ |
|                           |       |                | (body tissue)                         |
|                           |       |                |                                       |
| $300 \pm 50 \text{ MHz}$  | ConvF | $7.8 \pm 9\%$  | $\varepsilon_{\rm r} = 45.3 \pm 5\%$  |
|                           |       |                | $\sigma = 0.87 \pm 5\% \text{ mho/m}$ |
|                           |       |                | (head tissue)                         |
|                           |       |                |                                       |
| $450 \pm 50 \text{ MHz}$  | ConvF | $7.4 \pm 8\%$  | $\varepsilon_r = 43.5 \pm 5\%$        |
|                           |       |                | $\sigma = 0.87 \pm 5\% \text{ mho/m}$ |
|                           |       |                | (head tissue)                         |
|                           |       |                |                                       |
| $450 \pm 50 \text{ MHz}$  | ConvF | $7.3 \pm 8\%$  | $\varepsilon_r = 56.7 \pm 5\%$        |
|                           |       |                | $\sigma = 0.94 \pm 5\% \text{ mho/m}$ |
|                           |       |                | (body tissue)                         |
|                           |       |                |                                       |
| $750 \pm 50 \text{ MHz}$  | ConvF | $6.6 \pm 7\%$  | $\varepsilon_r = 41.8 \pm 5\%$        |
|                           |       |                | $\sigma = 0.89 \pm 5\% \text{ mho/m}$ |
|                           |       |                | (head tissue)                         |
|                           |       |                |                                       |
| $750 \pm 50 \text{ MHz}$  | ConvF | $6.4 \pm 7\%$  | $\varepsilon_r = 55.4 \pm 5\%$        |
|                           |       |                | $\sigma = 0.96 \pm 5\% \text{ mho/m}$ |
|                           |       |                | (body tissue)                         |
|                           |       |                |                                       |
| $1925 \pm 50 \text{ MHz}$ | ConvF | $5.0 \pm 7\%$  | $\varepsilon_r = 39.8 \pm 5\%$        |
|                           |       |                | $\sigma = 1.48 \pm 5\% \text{ mho/m}$ |
|                           |       |                | (head tissue)                         |
|                           |       |                |                                       |
| $1925 \pm 50 \text{ MHz}$ | ConvF | $4.7 \pm 7\%$  | $\varepsilon_r = 53.2 \pm 5\%$        |
|                           |       |                | $\sigma = 1.60 \pm 5\% \text{ mho/m}$ |
|                           |       |                | (body tissue)                         |
|                           |       |                |                                       |

# Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1. Please see also Section 4.7 of the DASY4 Manual.