

APPLICATION FOR VERIFICATION On Behalf of Superior Electronics Corporation

SPLIT-SERIES KEYPAD Model No.: SK-4131-SPKQ

FCC ID: K4E4131SPKQ

Prepared for Address	:	Superior Electronics Corporation No. 10, Lane 31, Chongde St., Sinyi District, Taipei City 110. Taiwan
Prepared by Address	:	Accurate Technology Co., Ltd. F1, Bldg. A&D, Changyuan New Material Port, Keyuan Rd., Science & Industry Park, Nanshan District, Shenzhen 518057, P.R. China
		Tel: +86-755-26503290

Fax: +86-755-26503396

Report No.	:	ATE20161145
Date of Test	:	June 17, 2016
Date of Report	:	June 17, 2016

TABLE OF CONTENTS

Description

Page

Test Report Declaration

1.	TES	T RESULTS SUMMARY	4
2.	GEN	VERAL INFORMATION	5
	2.1.	Description of Device (EUT)	
	2.2.	Special Accessory and Auxiliary Equipment	
	2.3.	Description of Test Facility	
	2.4.	Measurement Uncertainty	6
3.	POV	VER LINE CONDUCTED MEASUREMENT	7
	3.1.	For Power Line Conducted Emission	7
	3.2.	The Emission Limit	
	3.3.	Power Line Conducted Emission Measurement Results	7
4.	RAD	DIATED EMISSION MEASUREMENT	8
	4.1.	For Radiated Emission Measurement	8
	4.2.	TEST CONFIGURATION	8
	4.3.	Block Diagram of Test Setup	
	4.4.	Radiated Emission Limit	
	4.5.	EUT Configuration on Measurement	
	4.6.	Operating Condition of EUT	
	4.7.	Test Procedure	
	4.8.	Radiated Emission Noise Measurement Result	
5.	ANT	TENNA REQUIREMENT	
	5.1.	The Requirement	
	5.2.	Antenna Construction	10

Test Report Declaration

Applicant& address	:	Superior Electronics Corporation No. 10, Lane 31, Chongde St., Sinyi District, Taipei City 110. Taiwan
Manufacturer& address	:	Superior Electronics Corporation No. 10, Lane 31, Chongde St., Sinyi District, Taipei City 110. Taiwan
Product	:	SPLIT-SERIES KEYPAD
Model No.	:	SK-4131-SPKQ
Trade name	:	N/A

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C 15.207&15.209 FCC/ANSI C63.4-2014

The device described above is tested by Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both radiated and conducted emissions. The measurement results are contained in this test report and Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Accurate Technology Co., Ltd.

Date of Test :	June 17, 2016
Date of Report :	June 17, 2016
Prepared by :	BobWarg
	(Bob Wang, Engineer)
Approved & Authorized Signer :	(Sean Liu, Manager)

1. TEST RESULTS SUMMARY

Test Items	Test Standard	Test Results
Power Line Conducted Emission	FCC Part 15.207	N/A (Battery power supply)
Radiated Emission	FCC Part 15.209	Pass

Remark: "N/A" means "Not applicable".

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

The submitted sample is a SPLIT-SERIES KEYPAD. The sample is powered by DC 12-24V.

		SPLIT-SERIES KEYPAD
Frequency	:	125KHz
Number of Channels	:	1
Modulation Type :		GFSK
Type of Antenna :		Internal Antenna
Max antenna gain	:	0dBi
Power Supply	:	DC 12-24V

2.2. Special Accessory and Auxiliary Equipment

N/A

2.3.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen, May 10, 2004
		Listed by FCC The Registration Number is 253065 Listed by FCC The Registration Number is 752051
		Listed by Industry Canada The Registration Number is 5077A-1 Listed by Industry Canada The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee for Laboratories The Certificate Registration Number is L3193
Name of Firm Site Location		Accurate Technology Co., Ltd. F1, Bldg. A&D, Changyuan New Material Port, Keyuan Rd., Science & Industry Park, Nanshan District, Shenzhen 518057, P.R. China

2.4.Measurement Uncertainty

Conducted emission expanded uncertainty	:	U=2.23dB, k=2
Power disturbance expanded uncertainty		U=2.92dB, k=2
Radiated emission expanded uncertainty	:	U=3.08dB, k=2
(9kHz-30MHz) Radiated emission expanded uncertainty		U=4.42dB, k=2
(30MHz-1000MHz)	•	0-4.420D, K-2
Radiated emission expanded uncertainty	:	U=4.06dB, k=2
(Above 1GHz)		

3. POWER LINE CONDUCTED MEASUREMENT

3.1. For Power Line Conducted Emission

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
1.	Test Receiver	Rohde & Schwarz	ESCS30	100307	Jan. 9, 2016	1 Year	
2.	L.I.S.N.	Schwarzbeck	NLSK8126	8126431	Jan. 9, 2016	1 Year	
3.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100815	Jan. 9, 2016	1 Year	
4.	50Ω Coaxial	Anritsu Corp	MP59B	620028393	Jan. 9, 2016	1 Year	
4.	Switch			3			
Expanded Uncertainty: U= 2.23dB, k=2							

3.2. The Emission Limit

3.2.1.Conducted Emission Measurement Limits According to Section 15.107(a)

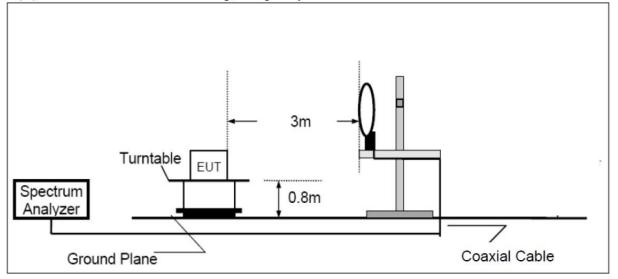
Frequency	Limit dB(μV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	60.0	50.0			

* Decreases with the logarithm of the frequency.

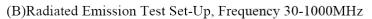
3.3. Power Line Conducted Emission Measurement Results

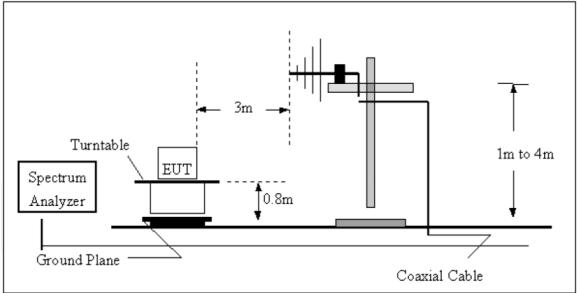
N/A

Because of battery power supply.


4. RADIATED EMISSION MEASUREMENT

ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.			
						Interval			
1.	Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 9, 2016	1 Year			
2.	Test Receiver	Rohde &	ESCS30	100307	Jan. 9, 2016	1 Year			
		Schwarz							
3.	Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 14, 2016	1 Year			
4.	Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 14, 2016	1 Year			
5.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 14, 2016	1 Year			
6.	50 Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan. 9, 2016	1 Year			
12.	Pre-Amplifier	Rohde & Schwarz	CBLU11835	3791	Jan. 9, 2016	1 Year			
			40-01						
Expar	nded Uncertainty (9k	Hz-30MHz): U=3.0)8dB, k=2						
	Expanded Uncertainty (30MHz-1000MHz): U=4.42dB, k=2								
Expar	nded Uncertainty (Ab	ove 1GHz): U=4.0	6dB, k=2						


4.1.For Radiated Emission Measurement


4.2.TEST CONFIGURATION

(A)Radiated Emission Test Set-Up, Frequency below 30MHz

4.3.Block Diagram of Test Setup

4.3.1. Block diagram of connection between the EUT and simulators

DC Mains EUT

4.4.Radiated Emission Limit

Frequency	Field Strength Limitation		Field Strength Limitation at 3m Measurement Dist		
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)	
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80	
0.490 - 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40	
1.705 - 30.00	30	30m	100* 30	20log 30 + 40	
30.0 - 88.0	100	3m	100	20log 100	
88.0 - 216.0	150	3m	150	20log 150	
216.0 - 960.0	200	3m	200	20log 200	
Above 960.0	500	3m	500	20log 500	

Limit: 2400/125=19.2uV/m@300m

Distance Correction Factor=40log(test distance/specific distance)

4.5.EUT Configuration on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.6.Operating Condition of EUT

4.6.1.Setup the EUT and simulator as shown as Section 4.2.

4.6.2.Turn on the power of all equipment.

4.6.3.Let the EUT work in test mode and measure it.

4.7.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10:2013 on radiated emission measurement.

From 9kHz to 30MHz at distance 3m The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

From 30MHz to 1000MHz at distance 3m The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The final measurement will be performed with an EMI Receiver set to Quasi Peak detector for the frequency bands 9kHz to 90kHz and 110 to 490 kHz where an average detector will be used according to Section 15.209(d)(2).

The final level, expressed in dBuV/m, is arrived at by taking the reading from the EMI receiver(Level dBuV) and adding the antenna correction factor and cable loss factor(Factor dB) to it. This result then has to be compared with the relevant FCC limit.The resolution bandwidth during the measurement is as follows: 9kHz – 150kHz: ResBW:200Hz 150kHz – 30MHz: ResBW:9kHz

The bandwidth of the EMI test receiver (R&S ESCS30) is set at 120kHz from 30MHz to 1000MHz.

4.8.Radiated Emission Noise Measurement Result

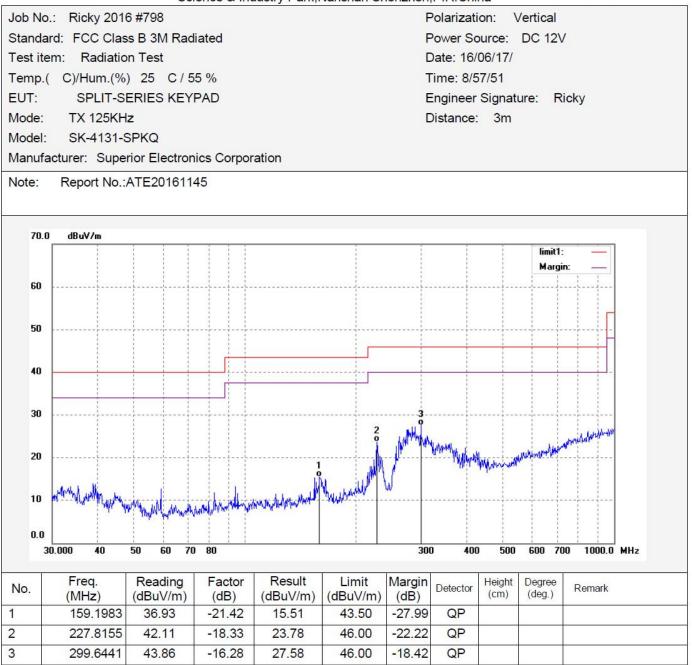
PASS.

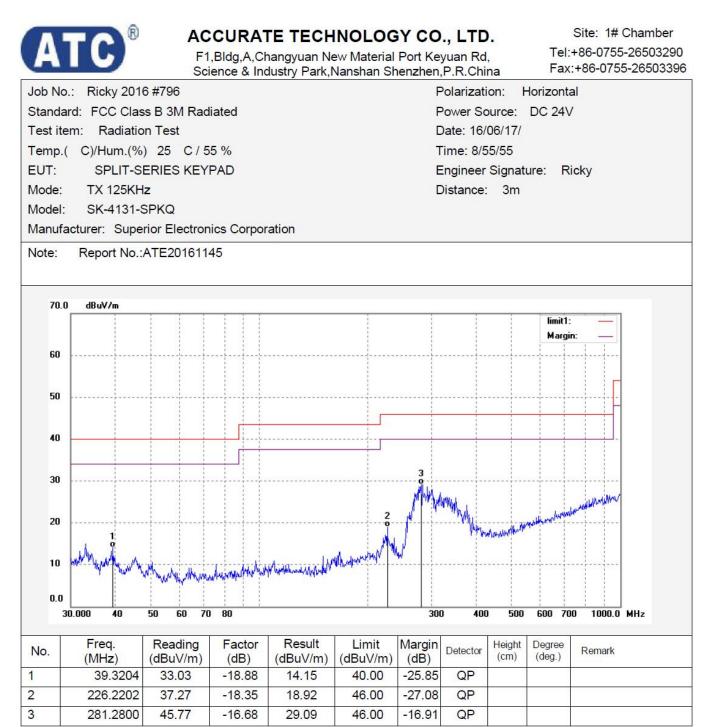
From 9 kHz to 30MHz (DC 12V)

Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity (H/V)	Factors (dBµV/m)	Limit (dBµV/m)	Margin (dB)
0.125	72.56	147	Н	-56.36	105.7	-33.14
2.02	36.24	34	Н	-54.15	69.5	-33.26
14.25	38.77	210	Н	-53.01	69.5	-30.73
0.125	73.27	220	V	-56.36	105.7	-32.43
3.68	43.50	320	V	-51.27	69.5	-26.00
17.35	35.57	54	V	-51.25	69.5	-33.93

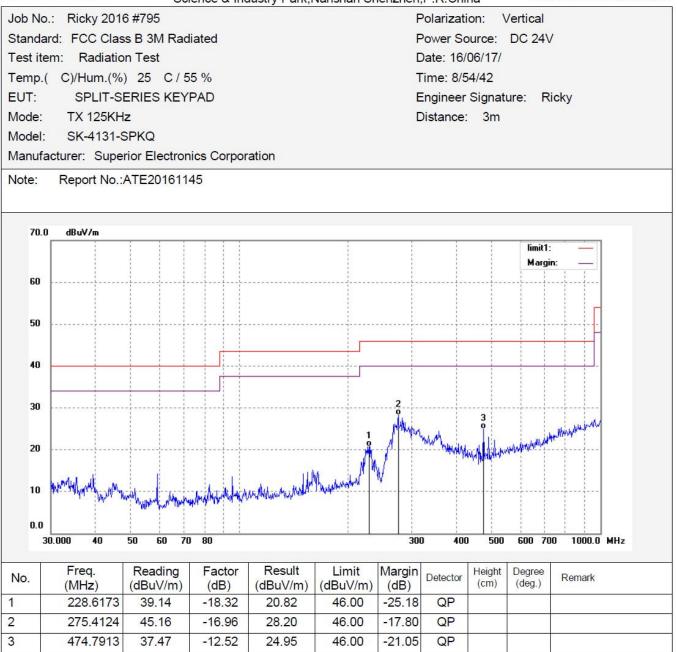
From 9 kHz to 30MHz (DC 24V)

Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity (H/V)	Factors (dBµV/m)	Limit (dBµV/m)	Margin (dB)
0.125	69.04	41	Н	-56.77	105.7	-36.66
2.02	40.84	154	Н	-54.32	69.5	-28.66
14.25	36.55	222	Н	-52.16	69.5	-32.95
0.125	71.50	75	V	-56.01	105.7	-34.20
3.68	42.95	290	V	-53.12	69.5	-26.55
17.35	35.71	259	V	-51.31	69.5	-33.79


Part 15 Section 15.31(f)(2) (9kHz-30MHz) Limit at 3m=Limit at 300m-40*log(300(m)/3(m)) Limit at 3m=Limit at 30m-40*log(30(m)/3(m))

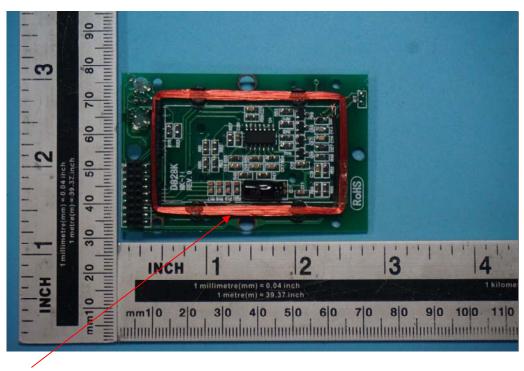

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396



ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396


5. ANTENNA REQUIREMENT

5.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna