APPLICATION FOR VERIFICATION On Behalf of
 Superior Electronics Corporation.
 Access Control Keypad with Proximity Card Reader Model No.: SK-1131-SPQ

FCC ID: K4E1131SPQ

Prepared for	$:$	Superior Electronics Corporation. Address
	$:$No. 10, Lane 31, Chongde St., Sinyi District. Taipei City 110. Taiwan	
Prepared by	$:$	Accurate Technology Co., Ltd.
Address	$:$F1, Bldg. A\&D, Changyuan New Material Port, Keyuan Rd., Science \& Industry Park, Nanshan District, Shenzhen 518057, P.R. China	

Tel: +86-755-26503290
Fax: +86-755-26503396

Report No. : ATE20150270
Date of Test : Feb 03, 2015-Mar 14, 2015
Date of Report : Mar 14, 2015

TABLE OF CONTENTS

Description Page
Test Report Declaration

1. TEST RESULTS SUMMARY 4
2. GENERAL INFORMATION 5
2.1. Description of Device (EUT) 5
2.2. Special Accessory and Auxiliary Equipment 5
2.3. Description of Test Facility 6
2.4. Measurement Uncertainty 6
3. POWER LINE CONDUCTED MEASUREMENT 7
3.1. For Power Line Conducted Emission 7
3.2. Power Line Conducted Emission Measurement Limits (Class B)7
3.3. Power Line Conducted Emission Measurement Results 7
4. RADIATED EMISSION MEASUREMENT 8
4.1. For Radiated Emission Measurement 8
4.2. TEST CONFIGURATION 8
4.3. Block Diagram of Test Setup 9
4.4. Radiated Emission Limit 9
4.5. EUT Configuration on Measurement 9
4.6. Operating Condition of EUT 10
4.7. Test Procedure 10
4.8. Radiated Emission Noise Measurement Result 10
5. ANTENNA REQUIREMENT 14
5.1. The Requirement 14
5.2. Antenna Construction 14

Test Report Declaration

 address	Superior Electronics Corporation No. 10, Lane 31, Chongde St., Sinyi District. Taipei City 110. Taiwan
Manufacturer\&	$:$Superior Electronics Corporation No. 10, Lane 31, Chongde St., Sinyi District. Taipei City 110.
address	Taiwan
Product	$:$ Access Control Keypad with Proximity Card Reader
Model No.	$:$
SK-1131-SPQ	

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C 15.207\&15.209 FCCIANSI C63.4-2014

The device described above is tested by Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both radiated and conducted emissions. The measurement results are contained in this test report and Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Accurate Technology Co., Ltd.

Date of Test :
Date of Report :

Prepared by :

Approved \& Authorized Signer :

(Sean Liu, Manager)

1. TEST RESULTS SUMMARY

Test Items	Test Standard	Test Results
Power Line Conducted Emission	FCC Part 15.207	N/A
Radiated Emission	FCC Part 15.209	Pass

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

The submitted sample is a Access Control Keypad with Proximity Card Reader. The sample is powered by DC 12 V .

		Access Control Keypad with Proximity Card Reader
Frequency	$:$	125 KHz
Number of Channels	$:$	1
Modulation Type	$:$	ASK
Type of Antenna	$:$	Internal Antenna
Max antenna gain	$:$	0 dBi
Power Supply	$:$	DC 12V

2.2.Special Accessory and Auxiliary Equipment

N/A

2.3.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen, May 10, 2004
Listed by FCC
The Registration Number is 253065 Listed by FCC
The Registration Number is 752051
Listed by Industry Canada
The Registration Number is 5077A-1
Listed by Industry Canada
The Registration Number is 5077A-2
Accredited by China National Accreditation Committee for Laboratories
The Certificate Registration Number is L3193
Name of Firm : Accurate Technology Co., Ltd.
Site Location : F1, Bldg. A\&D, Changyuan New Material Port, Keyuan Rd., Science \& Industry Park, Nanshan District, Shenzhen 518057, P.R. China

2.4.Measurement Uncertainty

Conducted emission expanded uncertainty : $\mathrm{U}=2.23 \mathrm{~dB}, \mathrm{k}=2$
Power disturbance expanded uncertainty : $\mathrm{U}=2.92 \mathrm{~dB}, \mathrm{k}=2$
Radiated emission expanded uncertainty : U=3.08dB, k=2
(9kHz-30MHz)
Radiated emission expanded uncertainty : U=4.42dB, k=2
(30MHz-1000MHz)
Radiated emission expanded uncertainty : $\mathrm{U}=4.06 \mathrm{~dB}, \mathrm{k}=2$
(Above 1GHz)

3. POWER LINE CONDUCTED MEASUREMENT

3.1. For Power Line Conducted Emission

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde \& Schwarz	ESCS30	100307	Jan. 11, 2015	1 Year
2.	L.I.S.N.	Schwarzbeck	NLSK8126	8126431	Jan. 11, 2015	1 Year
3.	Pulse Limiter	Rohde \& Schwarz	ESH3-Z2	100815	Jan. 11, 2015	1 Year
4.	So 2 Coaxial Switch	Anritsu Corp	MP59B	620028393 3	Jan. 11, 2015	1 Year

3.2. Power Line Conducted Emission Measurement Limits (Class B)

Frequency MHz	Limits $\mathrm{dB}(\mu \mathrm{V})$	
	Quasi-peak Level	Average Level
$0.15-0.50$	$66-56^{*}$	$56-46^{*}$
$0.50-5.00$	56	46
$5.00-30.0$	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.
2. The lower limit shall apply at the transition frequencies.
3.3. Power Line Conducted Emission Measurement Results

There are not any AC ports. Therefore, the test is not applicable and skipped.

4. RADIATED EMISSION MEASUREMENT

4.1.For Radiated Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2015	1 Year
2.	Test Receiver	Rohde \& Schwarz	ESCS30	100307	Jan. 11, 2015	1 Year
3.	Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2015	1 Year
4.	Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2015	1 Year
5.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2015	1 Year
6.	50 Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan. 11, 2015	1 Year
12.	Pre-Amplifier	Rohde \& Schwarz	$\begin{aligned} & \text { CBLU11835 } \\ & 40-01 \end{aligned}$	3791	Jan. 11, 2015	1 Year
Expanded Uncertainty ($9 \mathrm{kHz}-30 \mathrm{MHz}$): $\mathrm{U}=3.08 \mathrm{~dB}, \mathrm{k}=2$ Expanded Uncertainty ($30 \mathrm{MHz}-1000 \mathrm{MHz}$): $\mathrm{U}=4.42 \mathrm{~dB}, \mathrm{k}=2$ Expanded Uncertainty (Above 1GHz): U=4.06dB, k=2						

4.2.TEST CONFIGURATION

(A)Radiated Emission Test Set-Up, Frequency below 30MHz

(B)Radiated Emission Test Set-Up, Frequency $30-1000 \mathrm{MHz}$

4.3.Block Diagram of Test Setup

4.3.1. Block diagram of connection between the EUT and simulators
DC Mains \quad EUT

4.4.Radiated Emission Limit

Frequency (MHz)	Field Strength Limitation		Field Strength Limitation at 3m Measurement Dist	
	$(\mathrm{uV} / \mathrm{m})$	Dist	$(\mathrm{uV} / \mathrm{m})$	$(\mathrm{dBuV} / \mathrm{m})$
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{KHz})$	300 m	$10000 * 2400 / \mathrm{F}(\mathrm{KHz})$	$20 \log 2400 / \mathrm{F}(\mathrm{KHz})+80$
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{KHz})$	30 m	$100 * 24000 / \mathrm{F}(\mathrm{KHz})$	$20 \log 24000 / \mathrm{F}(\mathrm{KHz})+40$
$1.705-30.00$	30	30 m	$100^{*} 30$	$20 \log 30+40$
$30.0-88.0$	100	3 m	100	$20 \log 100$
$88.0-216.0$	150	3 m	150	$20 \log 150$
$216.0-960.0$	200	3 m	200	$20 \log 200$
Above 960.0	500	3 m	500	$20 \log 500$

Limit: 2400/125=19.2uV/m@300m
Distance Correction Factor=40log(test distance/specific distance)

4.5.EUT Configuration on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.6.Operating Condition of EUT

4.6.1.Setup the EUT and simulator as shown as Section 4.2.
4.6.2.Turn on the power of all equipment.
4.6.3.Let the EUT work in test mode and measure it.

4.7.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2014 on radiated emission measurement.

From 9 kHz to 30 MHz at distance 3 m The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

From 30 MHz to 1000 MHz at distance 3 m The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The final measurement will be performed with an EMI Receiver set to Quasi Peak detector for the frequency bands 9 kHz to 90 kHz and 110 to 490 kHz where an average detector will be used according to Section 15.209(d)(2).

The final level, expressed in $\mathrm{dBuV} / \mathrm{m}$, is arrived at by taking the reading from the EMI receiver(Level dBuV) and adding the antenna correction factor and cable loss factor(Factor dB) to it. This result then has to be compared with the relevant FCC limit.The resolution bandwidth during the measurement is as follows:
9 kHz - 150kHz: ResBW:200Hz
150kHz - 30MHz: ResBW:9kHz

The bandwidth of the EMI test receiver (R\&S ESCS30) is set at 120 kHz from 30 MHz to 1000 MHz .

4.8.Radiated Emission Noise Measurement Result

PASS.

From 9kHz to 30MHz

Frequency (MHz)	Quasi Peak $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Azimuth	Polarity $(\mathrm{H} / \mathrm{V})$	Factors $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)
0.125	68.14	153	H	-56.36	105.7	-37.56
2.02	40.55	36	H	-54.15	69.5	-28.95
14.25	35.22	205	H	-52.01	69.5	-34.28
0.125	72.14	185	V	-56.36	105.7	-33.56
3.68	42.74	352	V	-53.27	69.5	-26.76
17.35	36.24	15	V	-51.25	69.5	-33.26

Part 15 Section 15.31 (f)(2) ($9 \mathrm{kHz}-30 \mathrm{MHz}$)
Limit at $3 m=$ Limit at $300 m-40 * \log (300(m) / 3(m))$
Limit at $3 m=$ Limit at $30 \mathrm{~m}-40 * \log (30(\mathrm{~m}) / 3(\mathrm{~m})$)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
Science \& Industry Park,Nanshan Shenzhen,P.R.China

Site: 1\# Chamber
Tel:+86-0755-26503290
Fax:+86-0755-26503396

Job No.: carry2015 \#94
Standard: FCC Class B 3M Radiated
Test item: Radiation Test
Temp.(C)/Hum.(\%) 25 C/55 \%
EUT: Access Control Keypad with Proximi
Mode: ON
Model: SK-1131-SPQ
Manufacturer: Superior
Note: Report NO.:ATE20150270

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science \& Industry Park,Nanshan Shenzhen,P.R.China

Site: 1\# Chamber
Tel:+86-0755-26503290
Fax:+86-0755-26503396

5. ANTENNA REQUIREMENT

5.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

