

ADDENDUM TO FC03-053

FOR THE

WIRELESS NETWORK TRANSMITTER, LIBRA 5800

FCC PART 15 SUBPART C SECTIONS 15.207, 15.209 AND 15.247 AND RSS 210

COMPLIANCE

DATE OF ISSUE: SEPTEMBER 23, 2003

PREPARED FOR:

PREPARED BY:

Wi-Lan Inc. 2891 Sunridge Way N.E. Calgary, AB P1Y7K7 Canada Mary Ellen Clayton CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

P.O. No.: 104704 W.O. No.: 80992 Date of test: August 8 - September 12, 2003

Report No.: FC03-053A

This report contains a total of 61 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 61 Report No: FC03-053A

TABLE OF CONTENTS

Administrative Information	4
Summary of Results	5
Conditions for Compliance	6
Approvals	
Equipment Under Test (EUT) Description	7
FCC 15.31(e) Voltage Variation	7
FCC 15.31(m) Number Of Channels	
FCC 15.33(a) Frequency Ranges Tested	7
FCC 15.35 Analyzer Bandwidth Settings	7
FCC 15.203 Antenna Requirements	
FCC 15.205 Restricted Bands	8
Eut Operating Frequency	8
Equipment Under Test	8
Peripheral Devices	8
Measurement Uncertainty	8
Report of Measurements	9
Table 1: FCC 15.207 Six Highest Conducted Emission Levels	9
Table 2: FCC 15.209 Six Highest Radiated Emission Levels: 30 MHz - 1 GHz	z 10
Table 3: FCC 15.209 Six Highest Radiated Emission Levels: 1-40 GHz	11
FCC 15.247(a)(2) 6 dB Bandwidth Plots	12
Table 4: FCC 15.247(b)(3) Peak Output Power	15
Table 5: FCC 15.247(c) Six Highest Spurious Emission Levels: 30 MHz - 1 GHz	16
Table 6: FCC 15.247(c) Six Highest Spurious Emission Levels - 1-40 GHz	17
FCC 15.247(c) Band Edge Plots	18
Table 7: FCC 15.247(d) Peak Power Spectral Density	20
FCC 15.247(d) Peak Power Spectral Density	21
RSS 210 26 dB Bandwidth Plots	24
MPE Calculations	27
Temperature And Humidity During Testing	28
EUT Setup	28
Correction Factors	28
Table A: Sample Calculations	28
Test Instrumentation and Analyzer Settings	29
Spectrum Analyzer Detector Functions	29
Peak	29
Quasi-Peak	29
Average	29
EUT Testing	30
Mains Conducted Emissions	30
Antenna Conducted Emissions	30
Radiated Emissions	.30

Page 2 of 61 Report No: FC03-053A

Transmitter Characteristics	31
FCC 15.247(a)(2) Bandwidth – Direct Sequence	31
FCC 15.247(b) Peak Output Power	
FCC 15.247(d) Peak Power Spectral Density	
Appendix A: Test Setup Photographs	
Photograph Showing Direct Connect	
Photograph Showing Mains Conducted Emissions	
Photograph Showing Mains Conducted Emissions	
Photograph Showing Radiated Emissions	
Photograph Showing Radiated Emissions	
Appendix B: Test Equipment List	
Appendix C: Measurement Data Sheets	

Page 3 of 61 Report No: FC03-053A

ADMINISTRATIVE INFORMATION

DATE OF TEST:	August 8 - September 12, 2003
DATE OF RECEIPT:	August 8, 2003
PURPOSE OF TEST:	To demonstrate the compliance of the Wireless Network Transmitter, Libra 5800 with the requirements for FCC Part 15 Subpart C Sections 15.207, 15.209 and 15.247 and RSS 210 devices. Addendum A is to revise the frequency range tested.
TEST METHOD:	ANSI C63.4 (1992) and RSS 212
MANUFACTURER:	Wi-Lan Inc. 2891 Sunridge Way N.E. Calgary, AB P1Y7K7 Canada
REPRESENTATIVE:	Ian Guldberg
TEST LOCATION:	CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

SUMMARY OF RESULTS

As received, the Wi-Lan Inc. Wireless Network Transmitter, Libra 5800 was found to be fully compliant with the following standards and specifications:

United States	Canada
PART 15.247	RSS 210
15.247(a)(1)	6.2.2(o)(a1)
15.247(a)(1)(i)	6.2.2(o)(a2)
15.247(b)(2)	
15.247(a)(1)(ii)	6.2.2(o)(a3)
15.247(a)(1)(iii)	
15.247(b)(1)	
15.247(b)(3)	
15.247(b)(3)(i)	
15.247(b)(3)(ii)	
15.247(b)(3)(iii)	
15.247(d)	
15.247(b)(1)	6.2.2(o)(b)
15.247(b)(3)	
15.247(b)(3)(i)	
15.247(b)(3)(ii)	
15.247(b)(3)(iii)	
15.247(d)	
15.247(e)	
15.247(f)	6.2.2(o)(c)
15.247(c)	6.2.2(o)(e)(1)
15.203	6.2.2(o)(e)(2)
NA	6.2.2(d)
15.247(a)(2)	NA
15.247(b)(4)	NA
15.203	5.5
15.205	6.3
15.207	6.6
15.209	6.2.1
ANSI C63.4 (1992) method	RSS 212 method
FCC Site No. 90477	Industry of Canada File No. IC 3082-B

Page 5 of 61 Report No: FC03-053A

CONDITIONS FOR COMPLIANCE

Modifications to EUT: DC power line has 3 turns with Steward P/N 28A2024-0A2 clipon ferrite.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

Joyce Walker, Quality Assurance Administrative

Manager

Randy Clark, EMC Engineer

Mike Wilkinson, Lab Manager

Page 6 of 61 Report No: FC03-053A

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was a production unit.

FCC 15.31(e) Voltage Variations

FREQUENCY MHz	CORRECTED READING dBµV/m 85%	CORRECTED READING dBµV/m 100%	CORRECTED READING dBµV/m 115%	SPEC LIMIT dBµV/m
5819	135.8	135.8	135.8	137
5729	136.1	136.1	136.1	137
5775	135.8	135.8	135.8	137

Test Method: ANSI C63.4 (1992)

Spec Limit: FCC Part 15 Subpart C Section 15.247(b)(3)/15.31(e)

Test Distance: No Distance

FCC 15.31(m) Number Of Channels

This device was tested on three channels.

FCC 15.33(a) Frequency Ranges Tested

15.207 Conducted: 150 kHz – 30 MHz 15.209/15.247 Radiated: 30 MHz – 40 GHz

FCC SECTION 15.35: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE									
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING						
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz						
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz						
RADIATED EMISSIONS	1000 MHz	40 GHz	1 MHz						

FCC 15.203 Antenna Requirements

The antenna is an external and removeable but must be professionally installed; therefore the EUT complies with Section 15.203 of the FCC rules.

Page 7 of 61 Report No: FC03-053A

FCC 15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

Eut Operating Frequency

The EUT was tested at 5730 MHz, 5775 MHz and 5820 MHz.

EQUIPMENT UNDER TEST

Wireless Network Transmitter Ethernet AC/DC Adapter & Inserter

Manuf: Wi-Lan Manuf: Wi-Lan / ENG Model: Libra 5800 Model: 57-24-1000D

Serial: CKC080803-001 Serial: NA FCC ID: pending FCC ID: DoC

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

<u>Power Supply</u> <u>Laptop Power Supply</u>

Manuf: Wi-Lan Manuf: Toshiba Model: NA Model: PA2444U Serial: CKC080803-002 Serial: 0007A0742953

FCC ID: NA FCC ID: NA

Laptop

Manuf: Toshiba

Model: PS277U-6M9J0 Serial: 80857659U

FCC ID: DoC

MEASUREMENT UNCERTAINTY

TEST	HIGHEST UNCERTAINTY
Radiated Emissions	+/- 2.94 dB
Conducted Emissions	+/- 1.56 dB

Note: Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Statements of compliance are based on the nominal values only.

Page 8 of 61 Report No: FC03-053A

REPORT OF MEASUREMENTS

The following tables report the six highest worst case levels recorded during the tests performed on the EUT. All readings taken are peak readings unless otherwise noted. The data sheets from which these tables were compiled are contained in Appendix C.

Table 1: FCC 15.207 Six Highest Conducted Emission Levels									
FREQUENCY MHz	METER READING dBμV	COR Lisn dB	RECTION dB	ON FACT Cable dB	ORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
0.150001	63.8	0.1		0.1		64.0	66.0	-2.0	BQ
0.150100	64.6	0.2		0.1		64.9	66.0	-1.1	WQ
28.666510	43.6	1.5		0.3		45.4	50.0	-4.6	В
29.331480	42.6	2.2		0.3		45.1	50.0	-4.9	W
29.694690	43.4	1.7		0.3		45.4	50.0	-4.6	В
29.997370	43.5	1.7		0.3		45.5	50.0	-4.5	В

Test Method: ANSI C63.4 (1992) NOTES: Q = Quasi Peak Reading

Spec Limit: FCC Part 15 Subpart C Section 15.207 B = Black Lead W = White Lead

COMMENTS: EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Frequency Range Investigated: 150kHz - 30MHz. QP margins are listed to the QP spec limit. All other margins are listed to the Average limit. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz. EUT is transmitting at the center channel. Modifications to EUT: DC power line has 3 turns with Steward P/N 28A2024-0A2 clipon ferrite.

Page 9 of 61 Report No: FC03-053A

Table 2: FCC 15.209 Six Highest Radiated Emission Levels: 30 MHz - 1 GHz									
FREQUENCY MHz	METER READING dBμV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	ORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
31.330	42.7	17.2	-27.3	0.7		33.3	40.0	-6.7	Н
31.357	48.8	17.2	-27.3	0.7		39.4	40.0	-0.6	VQ
32.022	48.7	16.8	-27.3	0.7		38.9	40.0	-1.1	VQ
76.360	51.3	6.4	-27.2	1.4		31.9	40.0	-8.1	V
76.680	51.9	6.4	-27.2	1.4		32.5	40.0	-7.5	V
78.030	52.6	6.5	-27.2	1.5		33.4	40.0	-6.6	V

Test Method: ANSI C63.4 (1992)

Spec Limit: FCC Part 15 Subpart C Section 15.209

Test Distance: 3 Meters

NOTES: H = Horizontal Polarization

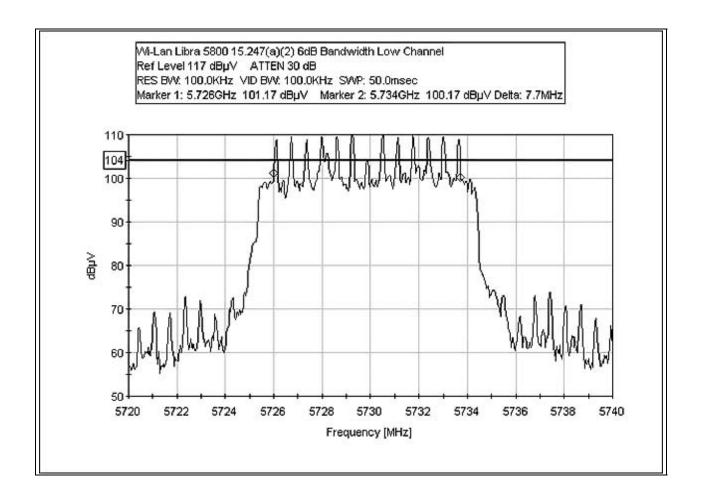
V = Vertical Polarization Q = Quasi Peak Reading

COMMENTS: EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Frequency Range Investigated: 30 - 1000MHz. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz. Data reprentative of all high middle and low transmit channels. Modifications to EUT: DC power line has 3 turns with Steward P/N 28A2024-0A2 clipon ferrite.

Page 10 of 61 Report No: FC03-053A

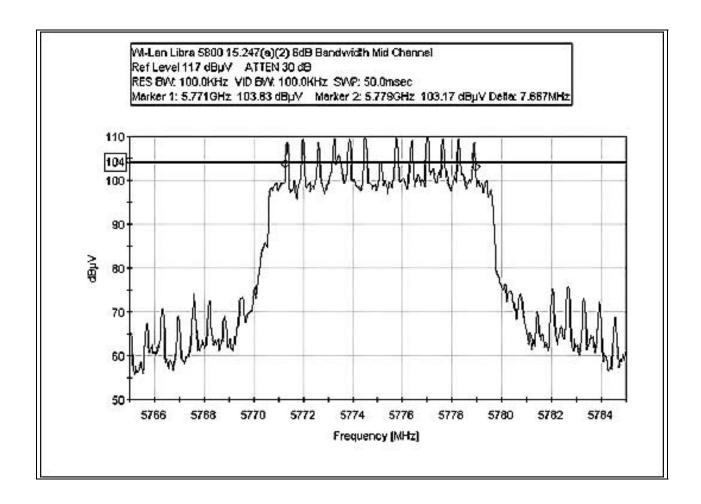
Table 3: FCC 15.209 Six Highest Radiated Emission Levels: 1-40 GHz										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION Amp	ON FACT Cable dB	ORS dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES	
5690.250	23.9	34.6	-34.7	17.6		41.4	54.0	-12.6	V	
5893.250	30.3	34.4	-34.8	18.0		47.9	54.0	-6.1	V	
11547.340	7.9	38.2	-34.7	28.5		39.9	54.0	-14.1	Н	
11547.350	10.8	38.2	-34.7	28.5		42.8	54.0	-11.2	V	
17321.020	-2.3	41.7	-33.2	38.8		45.0	54.0	-9.0	V	
17321.030	-5.0	41.7	-33.2	38.8		42.3	54.0	-11.7	Н	

Test Method: ANSI C63.4 (1992) NOTES: H = Horizontal Polarization
Spec Limit: FCC Part 15 Subpart C Section 15.209 V = Vertical Polarization

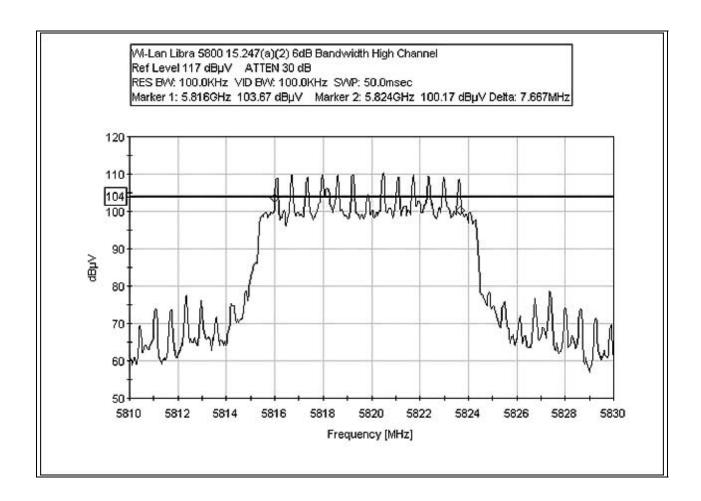

Test Distance: 3 Meters

COMMENTS: EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Frequency Range Investigated: 1 - 40GHz. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz. Data reprentative of all high middle and low transmit channels. Modifications to EUT: DC power line has 3 turns with Steward P/N 28A2024-0A2 clipon ferrite. Readings from the second harmonic and above represent ambient noise floor levels.

Page 11 of 61 Report No: FC03-053A


FCC 15.247(a)(2) 6 dB BANDWIDTH LOW CHANNEL

Page 12 of 61 Report No: FC03-053A


FCC 15.247(a)(2) 6 dB BANDWIDTH MID CHANNEL

Page 13 of 61 Report No: FC03-053A

FCC 15.247(a)(2) 6 dB BANDWIDTH HIGH CHANNEL

Page 14 of 61 Report No: FC03-053A

Table 4: FCC 15.247(b)(3) Peak Output Power									
FREQUENCY MHz	METER READING dBµV	COR Att dB	RECTIO Corr dB	ON FACT Cable dB	ORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
5729.700	119.8	10.0	5.8	0.5		136.1	137.0	-0.9	N

Test Method: ANSI C63.4 (1992) NOTES: N = No Polarization

Spec Limit: FCC Part 15 Subpart C Sections 15.247(b)(3)

COMMENTS: EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Equipment is transmitting at its maximum power output setting. Frequency Range Investigated: Carrier. RBW = 2MHz VBW = 3MHz. The bandwidth of the measuring reciever is adjusted for the emissions bandwidth as follows: The 6dB bandwidth is 7.7MHz, the RBW used is 3MHz, therefore a correction factor is used as defined by CF = 10 * LOG (BW1/BW2) In this case, the correction factor is 10 * LOG (7.7 / 2.0) = 5.8dB. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz. Temperature 73°F, Humidity 56%.

Conducted Power Output.

Channel (MHz)	Power Output (dBm)	Limit (dBm)	Results
5730	29.1	30	Pass
5775	28.8	30	Pass
5820	28.8	30	Pass

EIRP is calculated based on 23dBi antenna gain

Channel (MHz)	Power Output (dBm)	EIRP (dBm)
5730	29.1	52.1
5775	28.8	51.8
5820	28.8	51.8

Page 15 of 61 Report No: FC03-053A

Table 5: FCC 15.247(c) Six Highest Spurious Emission Levels: 30 MHz - 1 GHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION DE LA COMPANION DE LA	ON FACT	TORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
73.117	32.8	0.0				32.8	105.4	-72.6	N-1
495.934	32.5	0.0				32.5	105.4	-72.9	N-3
569.988	32.5	0.0				32.5	105.4	-72.9	N-3
637.308	32.8	0.0				32.8	105.4	-72.6	N-1
862.834	32.8	0.0				32.8	105.4	-72.6	N-3
996.634	32.7	0.0				32.7	105.4	-72.7	N-2

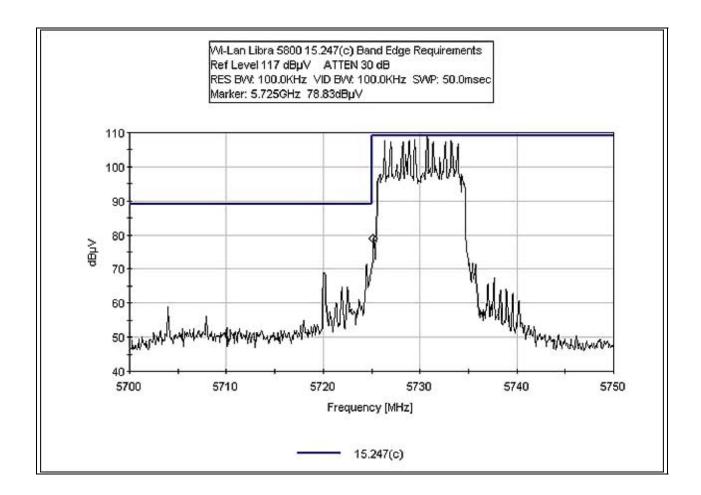
Test Method: ANSI C63.4 (1992) NOTES: N = No PolarizationSpec Limit: FCC Part 15 Subpart C Section 15.47(c) 1 = 5730 MHz

2 = 5820 MHz3 = 5820 MHz

COMMENTS: EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Low, Mid and High Channels Selected. Frequency Range Investigated: 30 - 1000 MHz. No EUT emissions detected within 20dB of the limit in this frequency range. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz.

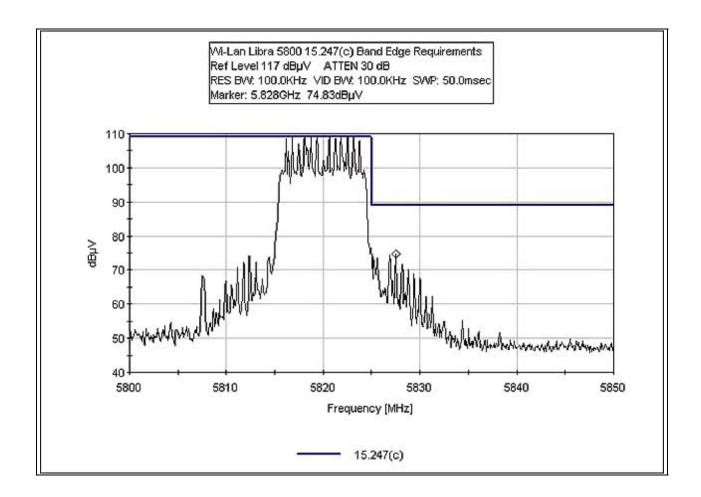
Page 16 of 61 Report No: FC03-053A

Table 6: FCC 15.247(c) Six Highest Spurious Emission Levels - 1-40 GHz									
FREQUENCY MHz	METER READING dBμV	CORRECTION FACTORS Ant Cable dB dB dB dB		CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES		
5722.500	72.8	10.0		0.5		83.3	105.4	-22.1	N-1
5826.833	75.3	10.0		0.5		85.8	105.4	-19.6	N-2
5827.500	76.7	10.0		0.5		87.2	105.4	-18.2	N-2
5827.667	77.2	10.0		0.5		87.7	105.4	-17.7	N-2
5828.833	72.5	10.0		0.5		83.0	105.4	-22.4	N-2
11640.590	76.5	10.2		1.0		87.7	105.4	-17.7	N-2


Test Method: ANSI C63.4 (1992) NOTES: N = No PolarizationSpec Limit: FCC Part 15 Subpart C Sections 15.247(c) 1 = 5730 MHz2 = 5820 MHz

COMMENTS: EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Low. Mid and High Channels Selected. Frequency Range Investigated: 1-40GHz. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz.

Page 17 of 61 Report No: FC03-053A


FCC 15.247(c) BAND EDGE PLOT LOW

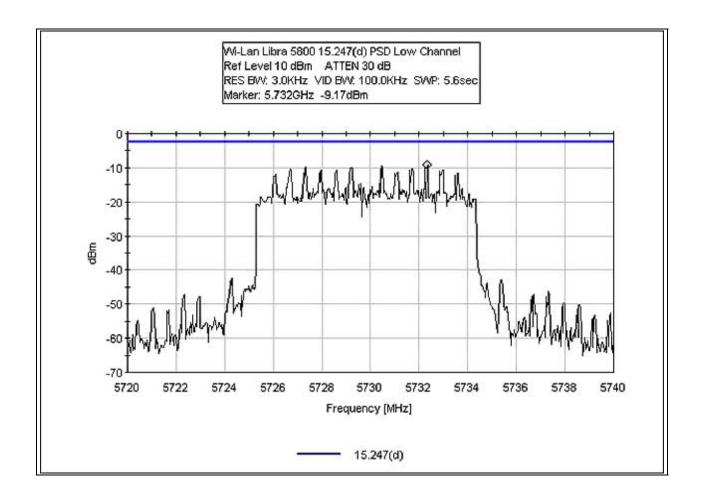
Page 18 of 61 Report No: FC03-053A

FCC 14.247(c) BAND EDGE PLOT HIGH

Page 19 of 61 Report No: FC03-053A

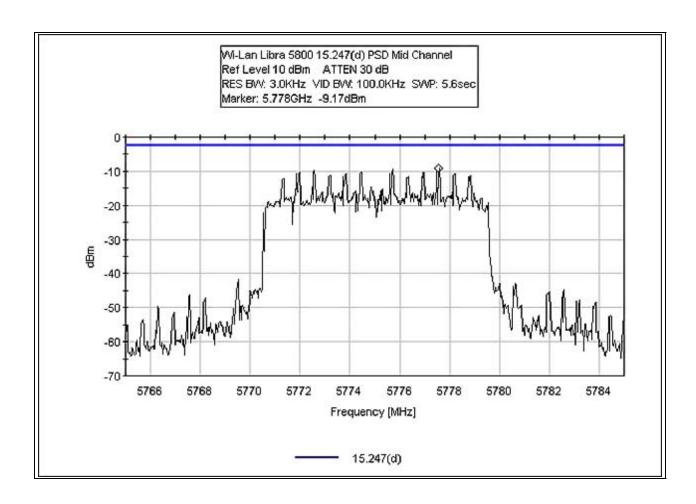
Table 7: FCC 15.247(d) Peak Power Spectral Density									
FREQUENCY MHz	METER READING dBµV	COR Att dB	dB	ON FACT Cable dB	TORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES
5732.333	-9.2	10.0		0.5		1.3	8.0	-6.7	N
5777.567	-9.2	10.0		0.5		1.3	8.0	-6.7	N
5822.300	-9.0	10.0		0.5		1.5	8.0	-6.5	N

Test Method: ANSI C63.4 (1992) NOTES: N = No Polarization


Spec Limit: FCC Part 15 Subpart C Sections 15.247(d)

COMMENTS: EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Equipment is transmitting at its maximum power output setting. Frequency Range Investigated: Carrier. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz.

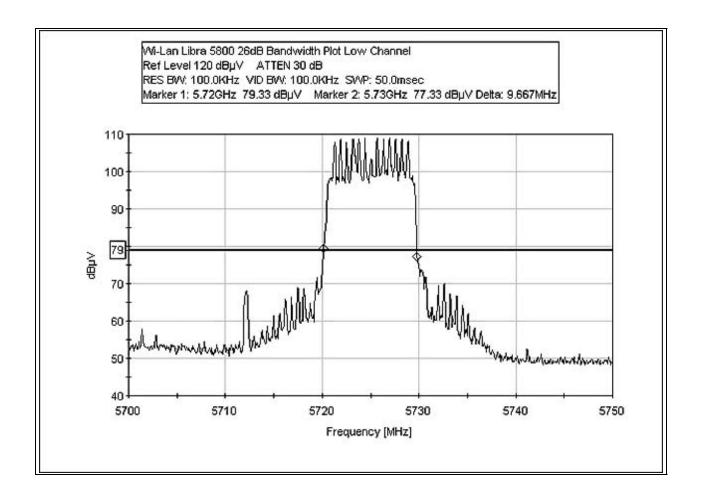
Page 20 of 61 Report No: FC03-053A


FCC 15.247(d) PEAK POWER SPECTRAL DENSITY LOW CHANNEL

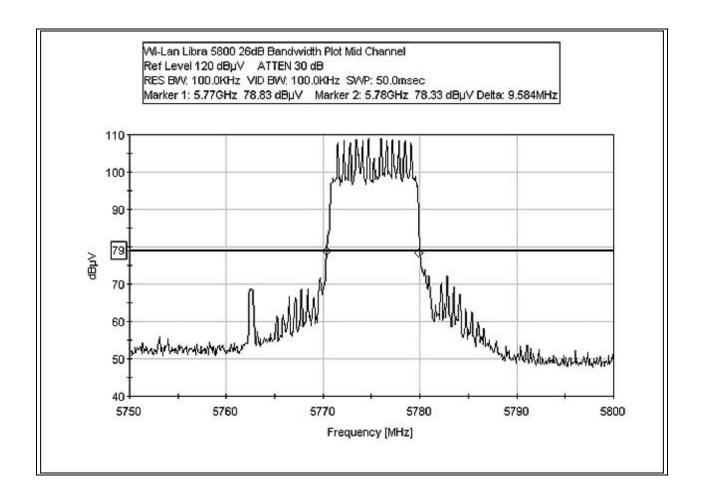
Page 21 of 61 Report No: FC03-053A

FCC 15.247(d) PEAK POWER SPECTRAL DENSITY MID CHANNEL

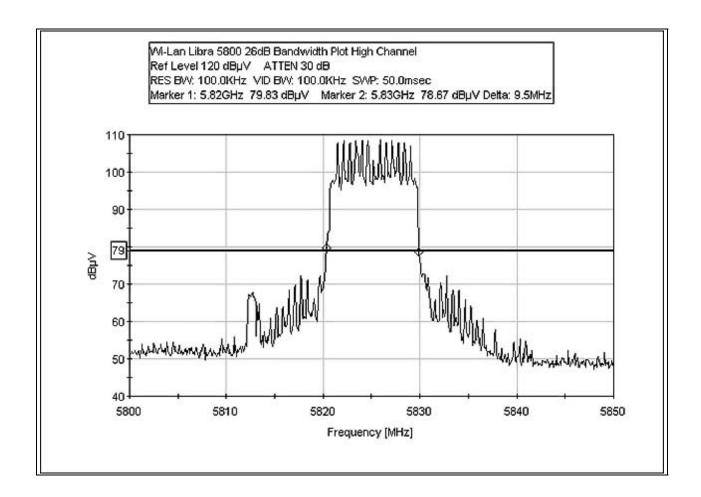
Page 22 of 61 Report No: FC03-053A


FCC 15.247(d) PEAK POWER SPECTRAL DENSITY HIGH CHANNEL

Page 23 of 61 Report No: FC03-053A


RSS 210 26 dB BANDWIDTH PLOT LOW CHANNEL

Page 24 of 61 Report No: FC03-053A


RSS 210 26 dB BANDWIDTH PLOT MID CHANNEL

Page 25 of 61 Report No: FC03-053A

RSS 210 26 dB BANDWIDTH HIGH CHANNEL

Page 26 of 61 Report No: FC03-053A

Maximum Permissible Exposure Calculations

Date of Report: September 12, 2003

Calculations prepared for: Calculations prepared by:

Randal Clark

Wi-Lan Inc. CKC Laboratories, Inc.

5473A Clouds Rest Road Mariposa, CA 95338

Model Number: Libra 5800

Fundamental Operating Frequency: 5.725-5.825 GHz

Maximum Rated Output Power: 30.0 dBm Measured Output Power: 29.1 dBm

Calculation of measured EIRP is based on the use of a 23dBi gain antenna. The measured output power is 29.1dBm + 23dBi = 52.1 dBm (EIRP). MPE calculations are based on EIRP output power.

Power Output and Operating Frequency Information used for these calculations were from: CKC Laboratories, Test Report #

MPE Limit in accordance with 1.1310(b): Limits for general population/uncontrolled exposure

MPE Limit =
$$1 \text{ (mW/cm}^2)$$

EIRP (mW)	Distance (cm)	Power Density (mW/cm ²)	Result
162181.01	113.6	1	Pass

PowerDensity
$$(mW/cm^2) = \frac{EIRP}{4\pi d^2}$$
 Given: **EIRP** in mW and **d** in cm

As can be seen from the MPE results, this device passes the limits specified in 1.1310 at a distance of 1.2 meters and at a output power of 52.1dBm (EIRP). Users and installers must be provided with appropriate antenna installation instructions and transmitter operating conditions to satisfy RF exposure compliance.

Page 27 of 61 Report No: FC03-053A

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAI	TABLE A: SAMPLE CALCULATIONS						
	Meter reading	$(dB\mu V)$					
+	Antenna Factor	(dB)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	$(dB\mu V/m)$					

Page 28 of 61 Report No: FC03-053A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the EUT. For frequencies from 30 to 1000 MHz, the biconilog antenna was used. The horn antenna was used for frequencies above 1000 MHz. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

Page 29 of 61 Report No: FC03-053A

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

The LISNs used were $50~\mu\text{H}\text{-/+}50$ ohms. Above 150~kHz, a $0.15~\mu\text{F}$ series capacitor was added in-line prior to connecting the analyzer to restore the proper impedance for the range. A 30~to~50 second sweep time was used for automated measurements in the frequency bands of 150~kHz to 500~kHz, and 500~kHz to 30~kHz. All readings within 20~dB of the limit were recorded, and those within 6~dB of the limit were examined with additional measurements using a slower sweep time.

Antenna Conducted Emissions

For measuring the signal strength on the RF output port of the EUT, the spectrum analyzer was connected directly to the EUT. The sweep time of the analyzer was adjusted so that the spectrum analyzer readings were always in a calibrated range. All readings within 20 dB of the limit were recorded.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. For frequencies exceeding 1000 MHz, the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

Page 30 of 61 Report No: FC03-053A

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable as needed. The test engineer maximized the readings with respect to the table rotation and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

TRANSMITTER CHARACTERISTICS

FCC 15.247(a)(2) Bandwidth Measurements (Direct Sequence)

The fundamental frequency was kept within the permitted band 5725-5850 MHz. The minimum 6dB bandwidth was at least 500 kHz. Refer to the following occupied bandwidth plots.

FCC 15.247(b) Peak Output Power

Frequency of Transmitter: 5725-5850 MHz

The RF conducted test was measured using a direct connection between the antenna port of the transmitter and the spectrum analyzer, through suitable attenuation. The resolution bandwidth was adjusted to greater than the 6 dB bandwidth of the emissions.

FCC 15.247(b)(3) If the transmitting antenna of directional gain greater than 6 dBi was used, except as shown in sections 15.247(b)(3)(i), (ii) & (iii), the peak output power was reduced below the stated values in paragraphs (b)(1) or (b)(2) of section 15.247, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC 15.247(d) Peak Power Spectral Density

The peak power spectral density conducted from the EUT to the antenna was not greater than 8 dm in any 3 kHz band during any time interval of continuous transmission.

Page 31 of 61 Report No: FC03-053A

APPENDIX A TEST SETUP PHOTOGRAPHS

Page 32 of 61 Report No: FC03-053A

PHOTOGRAPH SHOWING DIRECT CONNECT

Page 33 of 61 Report No: FC03-053A

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View

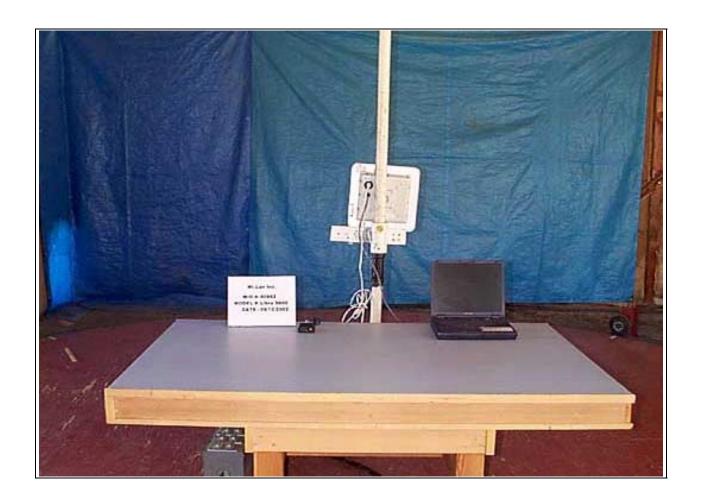
Page 34 of 61 Report No: FC03-053A

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Side View

Page 35 of 61 Report No: FC03-053A

PHOTOGRAPH SHOWING RADIATED EMISSIONS



Radiated Emissions - Front View

Page 36 of 61 Report No: FC03-053A

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

Page 37 of 61 Report No: FC03-053A

APPENDIX B

TEST EQUIPMENT LIST

Description	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Antenna, Biconilog	01991	Chase	CBL6111C	2456	12/13/02	12/12/04
Antennna, Horn 18-26GHz	02046	ARA	MWH-1826/B	1005	7/1/03	6/30/04
Power Stat	02037	Superior Electric	126	N/A	5/1/03	4/30/04
Spectrum Analyzer, 9kHz to 26.5 GHz	02111	НР	8593EM	3624A00159	5/12/03	5/11/05
Antennna, Horn 1-18GHz	00656	EMCO	3115	9307-4085	4/25/03	4/24/05
HF Cable, 2 foot	P01527	WL Gore	6011305-004	149047	4/10/03	4/9/04
HF Cable, 25 foot	P01353	Huber+Suhner		90148405	1/21/04	1/21/04
HF Cable, 35 foot	P01352	Huber+Suhner		90148402	1/21/03	1/21/04
Spectrum Analyzer	01406	HP	8564E	3623A00539	6/27/02	6/26/04
Antennna, Horn 26-40GHz	01414	HP	84125-80008	942126-003	7/12/02	7/11/04
Preamp	99	HP	8447D	1937A02604	3/7/03	3/7/04
			8028-50-TS-	901235 &		
LISN	374	Solar	24-BNC	903750	7/8/03	7/8/05

Page 38 of 61 Report No: FC03-053A

APPENDIX C MEASUREMENT DATA SHEETS

Page 39 of 61 Report No: FC03-053A

Customer: Wi-Lan Inc.

Specification: FCC 15.207 - AVE

Work Order #: 80992 Date: 09/12/2003
Test Type: Conducted Emissions Time: 12:01:46
Equipment: Wireless Network Transmitter Sequence#: 17

Manufacturer: Wi-Lan Tested By: Randal Clark Model: Libra 5800 120V 60Hz

S/N: CKC080803-001

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Network	Wi-Lan	Libra 5800	CKC080803-001
Transmitter*			
Ethernet AC/DC Adapter &	Wi-Lan / ENG	57-24-1000D	NA
Incartor			

Support Devices:

Function Manufacturer	Model #	S/N	
-----------------------	---------	-----	--

Test Conditions / Notes:

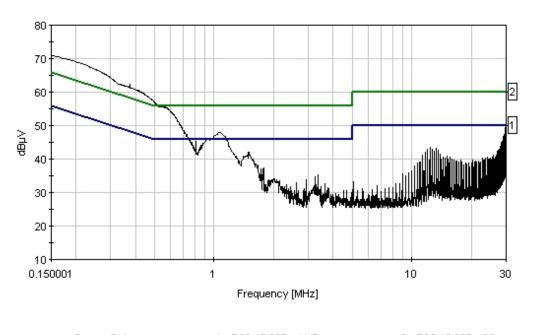
EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Frequency Range Investigated: 150kHz - 30MHz. QP margins are listed to the QP spec limit. All other margins are listed to the Average limit. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz. EUT is transmitting at the center channel. Modifications to EUT: DC power line has 3 turns with Steward P/N 28A2024-0A2 clipon ferrite.

Transducer Legend:

T1=Cable & Cap (Bench)	T2=LISN-00374BK SN235

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	150.001k	63.8	+0.1	+0.1			+0.0	64.0	66.0	-2.0	Black
	QP										
2	29.997M	43.5	+0.3	+1.7			+0.0	45.5	50.0	-4.5	Black
3	28.667M	43.6	+0.3	+1.5			+0.0	45.4	50.0	-4.6	Black
4	29.695M	43.4	+0.3	+1.7			+0.0	45.4	50.0	-4.6	Black
5	29.642M	43.1	+0.3	+1.6			+0.0	45.0	50.0	-5.0	Black
6	28.336M	43.2	+0.3	+1.4			+0.0	44.9	50.0	-5.1	Black
7	29.647M	42.4	+0.3	+1.6			+0.0	44.3	50.0	-5.7	Black
8	29.668M Ave	42.0	+0.3	+1.7			+0.0	44.0	50.0	-6.0	Black
٨	29.668M	47.3	+0.3	+1.7			+0.0	49.3	50.0	-0.7	Black

Page 40 of 61 Report No: FC03-053A



10	28.005M	42.0	+0.3	+1.4	+0.0	43.7	50.0	-6.3	Black
11	29.939M	41.7	+0.3	+1.7	+0.0	43.7	50.0	-6.3	Black
12	12.336M	43.0	+0.2	+0.4	+0.0	43.6	50.0	-6.4	Black
13	13.318M	42.5	+0.2	+0.4	+0.0	43.1	50.0	-6.9	Black
14	27.664M	41.4	+0.3	+1.3	+0.0	43.0	50.0	-7.0	Black
15	12.005M	42.4	+0.2	+0.3	+0.0	42.9	50.0	-7.1	Black
16	12.677M	42.3	+0.2	+0.4	+0.0	42.9	50.0	-7.1	Black
17	29.966M	40.7	+0.3	+1.7	+0.0	42.7	50.0	-7.3	Black
18	29.331M Ave	40.4	+0.3	+1.6	+0.0	42.3	50.0	-7.7	Black
^	29.331M	45.5	+0.3	+1.6	+0.0	47.4	50.0	-2.6	Black
20	29.000M Ave	40.0	+0.3	+1.6	+0.0	41.9	50.0	-8.1	Black
^	29.000M	45.0	+0.3	+1.6	+0.0	46.9	50.0	-3.1	Black
22	150.001k Ave	33.3	+0.1	+0.1	+0.0	33.5	56.0	-22.5	Black
^	150.001k	70.8	+0.1	+0.1	+0.0	71.0	56.0	+15.0	Black
24	809.939k Ave	14.0	+0.0	+0.1	+0.0	14.1	46.0	-31.9	Black
^	809.939k	45.3	+0.0	+0.1	+0.0	45.4	46.0	-0.6	Black
26	1.058M Ave	13.7	+0.0	+0.0	+0.0	13.7	46.0	-32.3	Black
^	1.058M	47.9	+0.0	+0.0	+0.0	47.9	46.0	+1.9	Black
<u> </u>									

Page 41 of 61 Report No: FC03-053A

CKC Laboratories Date: 09/12/2003 Time: 12:01:46 Wi-Lan Inc. WO#: 80992 FCC 15.207 - AVE Test Lead: Black 120V 60Hz Sequence#: 17 Wi-Lan M/N Libra 5800

Customer: Wi-Lan Inc.
Specification: FCC 15.207 - QP

Work Order #: 80992 Date: 09/12/2003
Test Type: Conducted Emissions Time: 12:32:28
Equipment: Wireless Network Transmitter Sequence#: 18

Manufacturer: Wi-Lan Tested By: Randal Clark Model: Libra 5800 120V 60Hz

S/N: CKC080803-001

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Network	Wi-Lan	Libra 5800	CKC080803-001
Transmitter*			
Ethernet AC/DC Adapter &	Wi-Lan / ENG	57-24-1000D	NA
Inserter			

Support Devices:

Function Manufacturer	Model #	S/N	
-----------------------	---------	-----	--

Test Conditions / Notes:

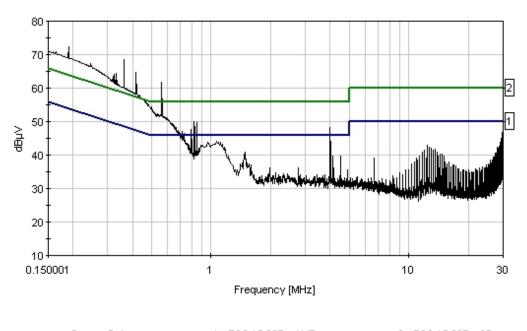
EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Frequency Range Investigated: 150kHz - 30MHz. QP margins are listed to the QP spec limit. All other margins are listed to the Average limit. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz. EUT is transmitting at the center channel. Modifications to EUT: DC power line has 3 turns with Steward P/N 28A2024-0A2 clipon ferrite.

Transducer Legend:

T1=Cable & Cap (Bench)	T2=LISN-00374WH SN750

ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: White		
Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
150.100k	64.6	+0.1	+0.2			+0.0	64.9	66.0	-1.1	White
QP										
150.100k	70.8	+0.1	+0.2			+0.0	71.1	56.0	+15.1	White
29.331M	42.6	+0.3	+2.2			+0.0	45.1	50.0	-4.9	White
1.489M	40.8	+0.0	+0.2			+0.0	41.0	46.0	-5.0	White
							•••			
4.506M	39.4	+0.1	+0.3			+0.0	39.8	46.0	-6.2	White
20.00714	41.2	.0.2	. 0. 1			. 0. 0	40.7	50.0		XX 71 '.
28.99/M	41.3	+0.3	+2.1			+0.0	43.7	50.0	-6.3	White
4 14534	20.2	.0.1	.0.2			. 0. 0	20.6	16.0	<i>C</i> 1	XX71. '4 .
4.145M	39.2	+0.1	+0.3			+0.0	39.6	46.0	-6.4	White
12 226M	42.2	+0.2	.0.5			+0.0	42.0	50.0	7.1	White
12.330W	42.2	+0.2	+0.5			+0.0	42.9	30.0	-/.1	willte
28 667M	40.3	+0.3	+2.1			100	12.7	50.0	7.3	White
20.007W	40.3	+0.3	+∠.1			+0.0	42.7	50.0	-7.3	w ilite
	Freq MHz 150.100k QP	Freq MHz Rdng dBμV 150.100k QP 64.6 150.100k 70.8 29.331M 42.6 1.489M 40.8 4.506M 39.4 28.997M 41.3 4.145M 39.2 12.336M 42.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq MHz Rdng dBμV T1 dB dB T2 dB 150.100k 64.6 +0.1 +0.2 2P 150.100k 70.8 +0.1 +0.2 29.331M 42.6 +0.3 +2.2 1.489M 40.8 +0.0 +0.2 4.506M 39.4 +0.1 +0.3 28.997M 41.3 +0.3 +2.1 4.145M 39.2 +0.1 +0.3 12.336M 42.2 +0.2 +0.5	Freq Rdng T1 T2 MHz dBμV dB dB dB 150.100k 64.6 +0.1 +0.2 P 150.100k 70.8 +0.1 +0.2 29.331M 42.6 +0.3 +2.2 1.489M 40.8 +0.0 +0.2 4.506M 39.4 +0.1 +0.3 28.997M 41.3 +0.3 +2.1 4.145M 39.2 +0.1 +0.3 12.336M 42.2 +0.2 +0.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq MHz Rdng dBμV T1 dB dB dB dB dB dB Dist dB dB dB dB 150.100k 64.6 +0.1 +0.2 +0.0 +0.0 150.100k 70.8 +0.1 +0.2 +0.0 +0.0 29.331M 42.6 +0.3 +2.2 +0.0 +0.0 1.489M 40.8 +0.0 +0.2 +0.2 +0.0 +0.0 4.506M 39.4 +0.1 +0.3 +0.3 +0.0 +0.0 28.997M 41.3 +0.3 +2.1 +0.0 +0.0 4.145M 39.2 +0.1 +0.3 +0.3 +0.0 +0.0 12.336M 42.2 +0.2 +0.5 +0.5 +0.0	Freq MHz Rdng dBμV T1 dB dB dB dB dB dB Dist Table dBμV Corr dBμV 150.100k 64.6 +0.1 +0.2 +0.0 64.9 150.100k 70.8 +0.1 +0.2 +0.0 71.1 29.331M 42.6 +0.3 +2.2 +0.0 45.1 1.489M 40.8 +0.0 +0.2 +0.0 41.0 4.506M 39.4 +0.1 +0.3 +0.0 39.8 28.997M 41.3 +0.3 +2.1 +0.0 43.7 4.145M 39.2 +0.1 +0.3 +0.0 39.6 12.336M 42.2 +0.2 +0.5 +0.0 42.9	Freq MHz Rdng MHz T1 T2 dB μV Dist dB μV Corr dB μV Spec dB μV 150.100k 64.6 +0.1 +0.2 +0.0 64.9 66.0 29.331M 42.6 +0.3 +2.2 +0.0 45.1 50.0 1.489M 40.8 +0.0 +0.2 +0.0 41.0 46.0 4.506M 39.4 +0.1 +0.3 +2.1 +0.0 39.8 46.0 28.997M 41.3 +0.3 +2.1 +0.0 43.7 50.0 4.145M 39.2 +0.1 +0.3 +0.0 39.6 46.0 12.336M 42.2 +0.2 +0.5 +0.0 42.9 50.0	Freq MHz Rdng MHz T1 dBμV T2 dBμV Dist dBμV dB dB dB Corr dBμV Spec dBμV dBμV Margin dBμV dB dB 150.100k 150.100k 2P 64.6 +0.1 +0.2 +0.0 64.9 66.0 -1.1 150.100k 70.8 +0.1 +0.2 +0.0 71.1 56.0 +15.1 29.331M 42.6 +0.3 +2.2 +0.0 45.1 50.0 -4.9 1.489M 40.8 +0.0 +0.2 +0.0 41.0 46.0 -5.0 4.506M 39.4 +0.1 +0.3 +0.3 +2.1 +0.0 39.8 46.0 -6.2 28.997M 41.3 +0.3 +2.1 +0.0 43.7 50.0 -6.3 4.145M 39.2 +0.1 +0.3 +0.3 +0.0 39.6 46.0 -6.4 12.336M 42.2 +0.2 +0.5 +0.5 +0.0 42.9 50.0 -7.1

Page 43 of 61 Report No: FC03-053A



10 29.666M Ave	39.6	+0.3	+2.2	+0.0	42.1	50.0	-7.9	White
^ 29.666M	44.4	+0.3	+2.2	+0.0	46.9	50.0	-3.1	White
12 150.100k Ave	40.8	+0.1	+0.2	+0.0	41.1	56.0	-14.9	White
13 189.997k	37.7	+0.0	+0.1	+0.0	37.8	54.0	-16.2	White
Ave ^ 189.997k	72.4	+0.0	+0.1	+0.0	72.5	54.0	+18.5	White
15 791.759k	20.2	+0.0	+0.1	+0.0	20.3	46.0	-25.7	White
Ave ^ 791.759k	47.6	+0.0	+0.1	+0.0	47.7	46.0	+1.7	White
17 3.985M	19.3	+0.1	+0.3	+0.0	19.7	46.0	-26.3	White
Ave ^ 3.985M	47.8	+0.1	+0.3	+0.0	48.2	46.0	+2.2	White
19 362.708k	22.0	+0.1	+0.2	+0.0	22.3	48.7	-26.4	White
Ave ^ 362.708k	68.3	+0.1	+0.2	+0.0	68.6	48.7	+19.9	White
21 822.665k	19.4	+0.0	+0.1	+0.0	19.5	46.0	-26.5	White
Ave ^ 822.665k	50.0	+0.0	+0.1	+0.0	50.1	46.0	+4.1	White
23 562.690k	19.3	+0.1	+0.1	+0.0	19.5	46.0	-26.5	White
Ave ^ 562.690k	61.5	+0.1	+0.1	+0.0	61.7	46.0	+15.7	White
25 1.068M Ave	18.5	+0.0	+0.2	+0.0	18.7	46.0	-27.3	White
^ 1.068M	43.9	+0.0	+0.2	+0.0	44.1	46.0	-1.9	White
27 417.249k Ave	19.9	+0.1	+0.2	+0.0	20.2	47.5	-27.3	White
^ 417.249k	64.3	+0.1	+0.2	+0.0	64.6	47.5	+17.1	White
29 4.025M Ave	17.9	+0.1	+0.3	+0.0	18.3	46.0	-27.7	White
^ 4.025M	43.8	+0.1	+0.3	+0.0	44.2	46.0	-1.8	White

Page 44 of 61 Report No: FC03-053A

CKC Laboratories Date: 09/12/2003 Time: 12:32:28 Wi-Lan Inc. WO#: 80992 FCC 15.207 - QP Test Lead: White 120V 60Hz Sequence#: 18 Wi-Lan M/N Libra 5800

——— Sweep Data ———— 1 - FCC 15.207 - AVE ———— 2 - FCC 15.207 - QP

Customer: Wi-Lan Inc. Specification: FCC 15.209

Work Order #:80992Date:09/12/2003Test Type:Radiated ScanTime:13:23:13Equipment:Wireless Network TransmitterSequence#:11

Manufacturer: Wi-Lan Tested By: Randal Clark

Model: Libra 5800 S/N: CKC081303-003

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Network	Wi-Lan	Libra 5800	CKC081303-003
Transmitter*			

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Wi-Lan		CKC080803-002
Laptop Power Supply	Toshiba	PA2444U	0007A0742953
Laptop	Toshiba	PS277U-6M9J0	80857659U

Test Conditions / Notes:

EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Frequency Range Investigated: 30 - 1000MHz. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz. Data reprentative of all high middle and low transmit channels. Modifications to EUT: DC power line has 3 turns with Steward P/N 28A2024-0A2 clipon ferrite.

Transducer Legend:

Transaucer Legena.	
T1=Bilog Site B	T2=Amp - S/N 604
T3=Cable - 10 Meter	

Mea	surement Data:	R	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m \\$	dB	Ant
	1 31.357M	48.8	+17.2	-27.3	+0.7		+0.0	39.4	40.0	-0.6	Vert
	QP										
	^ 31.347M	52.4	+17.2	-27.3	+0.7		+0.0	43.0	40.0	+3.0	Vert
	3 32.022M	48.7	+16.8	-27.3	+0.7		+0.0	38.9	40.0	-1.1	Vert
	QP										
	^ 31.987M	49.5	+16.8	-27.3	+0.7		+0.0	39.7	40.0	-0.3	Vert
	5 78.030M	52.6	+6.5	-27.2	+1.5		+0.0	33.4	40.0	-6.6	Vert
	6 31.330M	42.7	+17.2	-27.3	+0.7		+0.0	33.3	40.0	-6.7	Horiz
	7 76.680M	51.9	+6.4	-27.2	+1.4		+0.0	32.5	40.0	-7.5	Vert
	8 76.360M	51.3	+6.4	-27.2	+1.4		+0.0	31.9	40.0	-8.1	Vert

Page 46 of 61 Report No: FC03-053A

9	32.000M	41.6	+16.8	-27.3	+0.7	+0.0	31.8	40.0	-8.2	Horiz
10	34.330M	40.9	+15.6	-27.3	+0.8	+0.0	30.0	40.0	-10.0	Horiz
11	73.730M	49.0	+6.1	-27.2	+1.4	+0.0	29.3	40.0	-10.7	Vert
12	107.360M	47.3	+10.0	-27.2	+1.6	+0.0	31.7	43.5	-11.8	Vert
13	110.960M	46.4	+10.3	-27.2	+1.6	+0.0	31.1	43.5	-12.4	Vert
14	109.660M	46.4	+10.2	-27.2	+1.6	+0.0	31.0	43.5	-12.5	Vert
15	111.680M	46.1	+10.3	-27.2	+1.6	+0.0	30.8	43.5	-12.7	Vert
16	108.710M	46.0	+10.1	-27.2	+1.6	+0.0	30.5	43.5	-13.0	Vert
17	112.360M	45.0	+10.4	-27.2	+1.7	+0.0	29.9	43.5	-13.6	Vert
18	79.960M	44.9	+6.7	-27.2	+1.5	+0.0	25.9	40.0	-14.1	Vert
19	113.330M	44.2	+10.5	-27.2	+1.7	+0.0	29.2	43.5	-14.3	Vert
20	33.250M	34.1	+16.2	-27.3	+0.8	+0.0	23.8	40.0	-16.2	Horiz
21	65.330M	42.6	+5.9	-27.2	+1.2	+0.0	22.5	40.0	-17.5	Vert
22	114.330M	40.7	+10.5	-27.2	+1.7	+0.0	25.7	43.5	-17.8	Vert
23	66.360M	41.9	+5.8	-27.2	+1.2	+0.0	21.7	40.0	-18.3	Vert
24	115.330M	38.8	+10.6	-27.2	+1.7	+0.0	23.9	43.5	-19.6	Vert
25	145.060M	37.8	+10.6	-27.0	+1.9	+0.0	23.3	43.5	-20.2	Vert
26	149.630M	37.8	+10.4	-27.0	+1.9	+0.0	23.1	43.5	-20.4	Vert
27	67.530M	39.7	+5.8	-27.2	+1.3	+0.0	19.6	40.0	-20.4	Vert
28	150.610M	37.7	+10.4	-27.0	+1.9	+0.0	23.0	43.5	-20.5	Vert
29	129.030M	36.3	+11.1	-27.2	+1.7	+0.0	21.9	43.5	-21.6	Horiz
30	148.010M	36.5	+10.5	-27.0	+1.9	+0.0	21.9	43.5	-21.6	Vert
31	116.030M	36.8	+10.6	-27.2	+1.7	+0.0	21.9	43.5	-21.6	Vert
1										

Page 47 of 61 Report No: FC03-053A

32	126.650M	36.0	+11.2	-27.2	+1.7	+0.0	21.7	43.5	-21.8	Horiz
33	64.510M	38.3	+5.9	-27.3	+1.2	+0.0	18.1	40.0	-21.9	Vert
34	122.980M	35.3	+11.1	-27.2	+1.7	+0.0	20.9	43.5	-22.6	Horiz
35	124.650M	34.8	+11.2	-27.2	+1.7	+0.0	20.5	43.5	-23.0	Horiz

Page 48 of 61 Report No: FC03-053A

Customer: Wi-Lan Inc. Specification: FCC 15.209

Work Order #: 80992 Date: 09/12/2003
Test Type: Radiated Scan Time: 14:41:10
Equipment: Wireless Network Transmitter Sequence#: 12

Manufacturer: Wi-Lan Tested By: Randal Clark

Model: Libra 5800 S/N: CKC081303-003

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Network	Wi-Lan	Libra 5800	CKC081303-003
Transmitter*			
Ethernet AC/DC Adapter &	wi-Lan / ENG	57-24-1000D	NA
Inserter			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Power Supply	Toshiba	PA2444U	0007A0742953
Laptop	Toshiba	PS277U-6M9J0	80857659U

Test Conditions / Notes:

EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Frequency Range Investigated: 1 - 40GHz. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz. Data reprentative of all high middle and low transmit channels. Modifications to EUT: DC power line has 3 turns with Steward P/N 28A2024-0A2 clipon ferrite. Readings from the second harmonic and above represent ambient noise floor levels.

Transducer Legend:

T1=Amp - S/N 301	T2=Horn AN 00656 1-18 GHz (Mariposa)
T3=Cable HF P01527	T4=Cable 35' Blue SMA CKC P1352
T5=Cable 25' blue SMA ANP01353	

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	5893.250M	30.3	-34.8	+34.4	+0.6	+9.0	+0.0	47.9	54.0	-6.1	Vert
			+8.4								
2	17321.020M	-2.3	-33.2	+41.7	+1.1	+19.4	+0.0	45.1	54.0	-8.9	Vert
			+18.3								
3	11547.350M	10.8	-34.7	+38.2	+0.9	+14.4	+0.0	42.8	54.0	-11.2	Vert
			+13.2								
4	17321.030M	-5.0	-33.2	+41.7	+1.1	+19.4	+0.0	42.3	54.0	-11.7	Horiz
			+18.3								
5	5690.250M	23.9	-34.7	+34.6	+0.6	+8.8	+0.0	41.4	54.0	-12.6	Vert
			+8.2								
6	11547.340M	7.9	-34.7	+38.2	+0.9	+14.4	+0.0	39.9	54.0	-14.1	Horiz
			+13.2								

Page 49 of 61 Report No: FC03-053A

Customer: Wi-Lan Inc. Specification: 15.247(b)(3)

 Work Order #:
 80992
 Date:
 08/12/2003

 Test Type:
 Antenna Terminals
 Time:
 14:38:29

Equipment: Wireless Network Transmitter Sequence#: 1

Manufacturer: Wi-Lan Tested By: Randal Clark

Model: Libra 5800 S/N: CKC080803-001

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Network	Wi-Lan	Libra 5800	CKC080803-001
Transmitter*			

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Wi-Lan		CKC080803-002
Laptop Power Supply	Toshiba	PA2444U	0007A0742953
Laptop	Toshiba	PS277U-6M9J0	80857659U

Test Conditions / Notes:

EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Equipment is transmitting at its maximum power output setting. Frequency Range Investigated: Carrier. RBW = 2MHz VBW = 3MHz. The bandwidth of the measureing receiver is adjusted for the emissions bandwidth as follows: The 6dB bandwidth is 7.7MHz, the RBW used is 3MHz, therefore a correction factor is used as defined by CF = 10 * LOG (BW1/BW2). In this case, the correction factor is 10 * LOG (7.7 / 2.0) = 5.8dB. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz. Temperature 73°F, Humidity 56%.

Transducer Legend:

Transaucer Legena.	
T1=Att 10dB AN02139	T2=CABLE - HF Kit ANP04292
T3=BW Correction Factor	

Measu	Measurement Data: Reading listed by			ted by ma	nargin. Test Distance: None						
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	5729.700M	119.8	+10.0	+0.5	+5.8		+0.0	136.1	137.0	-0.9	None
2	5729.667M	119.8	+10.0	+0.5	+5.8		+0.0	136.1	137.0	-0.9	None
									-15% Non	ninal	
									Voltage		
3	5729.600M	119.8	+10.0	+0.5	+5.8		+0.0	136.1	137.0	-0.9	None
									+15% Nor	ninal	
									Voltage		
4	5775.066M	119.5	+10.0	+0.5	+5.8		+0.0	135.8	137.0	-1.2	None
									-15% Non	ninal	
									Voltage		
5	5775.066M	119.5	+10.0	+0.5	+5.8		+0.0	135.8	137.0	-1.2	None
									+15% Nor	ninal	
									Voltage		

Page 50 of 61 Report No: FC03-053A

6 5819.800M	119.5	+10.0	+0.5	+5.8	+0.0 135.8 137.0 -1.2 None
					-15% Nominal
					Voltage
7 5819.733M	119.5	+10.0	+0.5	+5.8	+0.0 135.8 137.0 -1.2 None
					+15% Nominal
					Voltage
8 5819.667M	119.5	+10.0	+0.5	+5.8	+0.0 135.8 137.0 -1.2 None
9 5774.900M	119.5	+10.0	+0.5	+5.8	+0.0 135.8 137.0 -1.2 None

Page 51 of 61 Report No: FC03-053A

Customer: Wi-Lan Inc.
Specification: 15.247(c)

 Work Order #:
 80992
 Date:
 08/12/2003

 Test Type:
 Antenna Terminals
 Time:
 4:13:34 PM

Equipment: Wireless Network Transmitter Sequence#: 6

Manufacturer: Wi-Lan Tested By: Randal Clark

Model: Libra 5800 S/N: CKC080803-001

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Network	Wi-Lan	Libra 5800	CKC080803-001
Transmitter*			

Support Devices:

II			
Function	Manufacturer	Model #	S/N
Power Supply	Wi-Lan		CKC080803-002
Laptop Power Supply	Toshiba	PA2444U	0007A0742953
Laptop	Toshiba	PS277U-6M9J0	80857659U

Test Conditions / Notes:

EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Low Channel Selected. Frequency Range Investigated: 30 - 1000 MHz. No EUT emissions detected within 20dB of the limit in this frequency range. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz.

Transducer Legend:

Measur	rement Data:	Reading listed by margin.			Test Distance: None						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	73.117M	32.8					+0.0	32.8	105.4	-72.6	None
2	637.308M	32.8					+0.0	32.8	105.4	-72.6	None
3	132.945M	32.0					+0.0	32.0	105.4	-73.4	None
4	472.564M	31.8					+0.0	31.8	105.4	-73.6	None
5	33.512M	31.3					+0.0	31.3	105.4	-74.1	None

Page 52 of 61 Report No: FC03-053A

Customer: Wi-Lan Inc.
Specification: 15.247(c)

 Work Order #:
 80992
 Date:
 08/12/2003

 Test Type:
 Antenna Terminals
 Time:
 4:18:06 PM

Equipment: Wireless Network Transmitter Sequence#: 7

Manufacturer: Wi-Lan Tested By: Randal Clark

Model: Libra 5800 S/N: CKC080803-001

Equipment Under Test (* = EUT):

Equipment Citate: 2 cst (201).			
Function	Manufacturer	Model #	S/N	
Wireless Network	Wi-Lan	Libra 5800	CKC080803-001	
Transmitter*				

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Wi-Lan		CKC080803-002
Laptop Power Supply	Toshiba	PA2444U	0007A0742953
Laptop	Toshiba	PS277U-6M9J0	80857659U

Test Conditions / Notes:

EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Mid Channel Selected. Frequency Range Investigated: 30 - 1000 MHz. No EUT emissions detected within 20dB of the limit in this frequency range. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz.

Transducer Legend:

Measur	rement Data:	Re	Reading listed by margin.				Test Distance: None				
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	862.834M	32.8					+0.0	32.8	105.4	-72.6	None
2	478.824M	32.5					+0.0	32.5	105.4	-72.9	None
3	495.934M	32.5					+0.0	32.5	105.4	-72.9	None
4	569.988M	32.5					+0.0	32.5	105.4	-72.9	None
5	157.161M	32.3					+0.0	32.3	105.4	-73.1	None
6	81.431M	31.8					+0.0	31.8	105.4	-73.6	None
7	38.603M	31.7					+0.0	31.7	105.4	-73.7	None

Page 53 of 61 Report No: FC03-053A

Customer: Wi-Lan Inc.
Specification: 15.247(c)

Work Order #: 80992 Date: 08/12/2003 Test Type: Antenna Terminals Time: 4:24:37 PM

Equipment: Wireless Network Transmitter Sequence#: 8

Manufacturer: Wi-Lan Tested By: Randal Clark

Model: Libra 5800 S/N: CKC080803-001

Equipment Under Test (* = EUT):

Equipment Citate: 2 cst (201).			
Function	Manufacturer	Model #	S/N	
Wireless Network	Wi-Lan	Libra 5800	CKC080803-001	
Transmitter*				

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Wi-Lan		CKC080803-002
Laptop Power Supply	Toshiba	PA2444U	0007A0742953
Laptop	Toshiba	PS277U-6M9J0	80857659U

Test Conditions / Notes:

EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. High Channel Selected. Frequency Range Investigated: 30 - 1000 MHz. No EUT emissions detected within 20dB of the limit in this frequency range. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz.

Transducer Legend:

Measur	rement Data:	Reading listed by margin.				Test Distance: None					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	996.634M	32.7					+0.0	32.7	105.4	-72.7	None
2	201.038M	32.2					+0.0	32.2	105.4	-73.2	None
3	65.932M	32.0					+0.0	32.0	105.4	-73.4	None
4	432.082M	31.8					+0.0	31.8	105.4	-73.6	None
5	53.314M	31.7					+0.0	31.7	105.4	-73.7	None

Page 54 of 61 Report No: FC03-053A

Customer: Wi-Lan Inc.
Specification: 15.247(c)

 Work Order #:
 80992
 Date:
 08/12/2003

 Test Type:
 Antenna Terminals
 Time:
 15:48:39

Equipment: Wireless Network Transmitter Sequence#: 4

Manufacturer: Wi-Lan Tested By: Randal Clark

Model: Libra 5800 S/N: CKC080803-001

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Network	Wi-Lan	Libra 5800	CKC080803-001
Transmitter*			

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	Wi-Lan		CKC080803-002	
Laptop Power Supply	Toshiba	PA2444U	0007A0742953	
Laptop	Toshiba	PS277U-6M9J0	80857659U	

Test Conditions / Notes:

EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Low Channel Selected. Frequency Range Investigated: 1-40GHz. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz.

Transducer Legend:

T1=Att 10dB AN02139 T2=CABLE - HF Kit ANP04292
--

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	st Distance	e: None		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	5722.500M	72.8	+10.0	+0.5			+0.0	83.3	105.4	-22.1	None
2	5723.333M	71.5	+10.0	+0.5			+0.0	82.0	105.4	-23.4	None
3	5717.667M	67.5	+10.0	+0.5			+0.0	78.0	105.4	-27.4	None
4	5997.667M	67.2	+10.0	+0.5			+0.0	77.7	105.4	-27.7	None
5	5716.333M	67.0	+10.0	+0.5			+0.0	77.5	105.4	-27.9	None
6	11460.170M	66.0	+10.2	+1.0			+0.0	77.2	105.4	-28.2	None
7	6005.343M	66.7	+10.0	+0.5			+0.0	77.2	105.4	-28.2	None
8	6031.667M	63.3	+10.0	+0.5			+0.0	73.8	105.4	-31.6	None
9	5964.333M	62.3	+10.0	+0.5			+0.0	72.8	105.4	-32.6	None

Page 55 of 61 Report No: FC03-053A

10 24737.860M	60.8	+10.5	+1.3	+0.0	72.6	105.4	-32.8	None
11 24037.940M	58.5	+10.6	+1.1	+0.0	70.2	105.4	-35.2	None
12 11462.140M	57.8	+10.2	+1.0	+0.0	69.0	105.4	-36.4	None
13 37759.580M	54.0	+12.7	+2.2	+0.0	68.9	105.4	-36.5	None
14 39987.980M	49.3	+17.7	+1.9	+0.0	68.9	105.4	-36.5	None
15 5704.000M	57.5	+10.0	+0.5	+0.0	68.0	105.4	-37.4	None
16 37502.450M	52.3	+12.8	+2.4	+0.0	67.5	105.4	-37.9	None
17 21938.190M	55.5	+10.6	+1.2	+0.0	67.3	105.4	-38.1	None
18 17501.670M	55.0	+10.4	+1.0	+0.0	66.4	105.4	-39.0	None
19 19666.330M	54.5	+10.5	+1.1	+0.0	66.1	105.4	-39.3	None
20 2605.271M	55.2	+9.9	+0.2	+0.0	65.3	105.4	-40.1	None
21 2857.594M	55.0	+10.0	+0.3	+0.0	65.3	105.4	-40.1	None
22 11141.980M	53.3	+10.2	+0.9	+0.0	64.4	105.4	-41.0	None
23 1744.469M	53.7	+9.9	+0.2	+0.0	63.8	105.4	-41.6	None
24 7271.352M	53.2	+10.1	+0.5	+0.0	63.8	105.4	-41.6	None
25 5709.167M	52.8	+10.0	+0.5	+0.0	63.3	105.4	-42.1	None
26 1329.195M	52.7	+10.0	+0.2	+0.0	62.9	105.4	-42.5	None
27 9004.790M	52.3	+10.1	+0.5	+0.0	62.9	105.4	-42.5	None
28 6210.552M	52.3	+10.0	+0.5	+0.0	62.8	105.4	-42.6	None
29 31034.740M	49.5	+10.8	+2.1	+0.0	62.4	105.4	-43.0	None
30 26135.550M	49.0	+10.7	+1.4	+0.0	61.1	105.4	-44.3	None
31 3118.854M	50.8	+9.9	+0.3	+0.0	61.0	105.4	-44.4	None
32 5685.833M	50.0	+10.0	+0.4	+0.0	60.4	105.4	-45.0	None

Page 56 of 61 Report No: FC03-053A

Customer: Wi-Lan Inc. Specification: 15.247(c)

 Work Order #:
 80992
 Date:
 08/12/2003

 Test Type:
 Antenna Terminals
 Time:
 15:37:26

Equipment: Wireless Network Transmitter Sequence#: 3

Manufacturer: Wi-Lan Tested By: Randal Clark

Model: Libra 5800 S/N: CKC080803-001

Equipment Under Test (* = EUT):

) ·		
Function	Manufacturer	Model #	S/N
Wireless Network	Wi-Lan	Libra 5800	CKC080803-001
Transmitter*			

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Wi-Lan		CKC080803-002
Laptop Power Supply	Toshiba	PA2444U	0007A0742953
Laptop	Toshiba	PS277U-6M9J0	80857659U

Test Conditions / Notes:

EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Mid Channel Selected. Frequency Range Investigated: 1-40GHz. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz.

Transducer Legend:

T1=Att 10dB AN02139 T2=CABLE - HF Kit ANP04292
--

Measureme	nt Data:	Rea	ding liste	d by maı	gin.		Test	Distance:	None		
# F	Freq R	dng	T1	T2			Dist	Corr	Spec	Margin	Polar
N	ЛHz dE	βμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1 1155	0.750M	71.5	+10.2	+1.0			+0.0	82.7	105.4	-22.7	None
2 5998	3.829M	67.0	+10.0	+0.5			+0.0	77.5	105.4	-27.9	None
3 5992	2.000M	66.7	+10.0	+0.5			+0.0	77.2	105.4	-28.2	None
4 6027	7.000M	63.2	+10.0	+0.5			+0.0	73.7	105.4	-31.7	None
5 5964	1.333M	62.5	+10.0	+0.5			+0.0	73.0	105.4	-32.4	None
6 2496	7.340M	59.2	+10.5	+1.5			+0.0	71.2	105.4	-34.2	None
7 2591	9.680M	58.7	+10.6	+1.5			+0.0	70.8	105.4	-34.6	None
8 3990	3.810M	49.7	+17.5	+1.9			+0.0	69.1	105.4	-36.3	None
9 3738	6.260M	52.8	+12.6	+2.5			+0.0	67.9	105.4	-37.5	None

Page 57 of 61 Report No: FC03-053A

10 21961.140M	55.7	+10.6	+1.2	+0.0	67.5	105.4	-37.9	None
11 17491.810M	55.3	+10.4	+1.0	+0.0	66.7	105.4	-38.7	None
12 22993.800M	54.7	+10.5	+1.0	+0.0	66.2	105.4	-39.2	None
13 2611.501M	54.8	+9.9	+0.2	+0.0	64.9	105.4	-40.5	None
14 6560.078M	53.5	+10.0	+0.5	+0.0	64.0	105.4	-41.4	None
15 2019.117M	53.5	+10.0	+0.2	+0.0	63.7	105.4	-41.7	None
16 7224.248M	52.8	+10.1	+0.5	+0.0	63.4	105.4	-42.0	None
17 1291.211M	52.8	+10.0	+0.2	+0.0	63.0	105.4	-42.4	None
18 31034.740M	49.8	+10.8	+2.1	+0.0	62.7	105.4	-42.7	None
19 26213.010M	50.3	+10.7	+1.4	+0.0	62.4	105.4	-43.0	None
20 3188.679M	50.8	+10.0	+0.3	+0.0	61.1	105.4	-44.3	None

Page 58 of 61 Report No: FC03-053A

Customer: Wi-Lan Inc.
Specification: 15.247(c)

 Work Order #:
 80992
 Date:
 08/12/2003

 Test Type:
 Antenna Terminals
 Time:
 15:32:36

Equipment: Wireless Network Transmitter Sequence#: 2

Manufacturer: Wi-Lan Tested By: Randal Clark

Model: Libra 5800 S/N: CKC080803-001

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless Network	Wi-Lan	Libra 5800	CKC080803-001
Transmitter*			

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	Wi-Lan		CKC080803-002	
Laptop Power Supply	Toshiba	PA2444U	0007A0742953	
Laptop	Toshiba	PS277U-6M9J0	80857659U	

Test Conditions / Notes:

EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. Transmitter is set to maximum output power. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. High Channel Selected. Frequency Range Investigated: 1-40GHz. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz.

Transducer Legend:

T1=Att 10dB AN02139	T2=CABLE - HF Kit ANP04292

Measu	rement Data:	ata: Reading listed by margin.			Test Distance: None						
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	11640.590M	76.5	+10.2	+1.0			+0.0	87.7	105.4	-17.7	None
2	5827.667M	77.2	+10.0	+0.5			+0.0	87.7	105.4	-17.7	None
3	5827.500M	76.7	+10.0	+0.5			+0.0	87.2	105.4	-18.2	None
4	5826.833M	75.3	+10.0	+0.5			+0.0	85.8	105.4	-19.6	None
5	5828.833M	72.5	+10.0	+0.5			+0.0	83.0	105.4	-22.4	None
6	5829.333M	71.0	+10.0	+0.5			+0.0	81.5	105.4	-23.9	None
7	5989.057M	66.7	+10.0	+0.5			+0.0	77.2	105.4	-28.2	None
8	5998.000M	66.3	+10.0	+0.5			+0.0	76.8	105.4	-28.6	None
9	5831.500M	62.8	+10.0	+0.5			+0.0	73.3	105.4	-32.1	None

Page 59 of 61 Report No: FC03-053A

10 24703.430M	59.2	+10.5	+1.3	+0.0	71.0	105.4	-34.4	None
11 25885.260M	58.0	+10.6	+1.5	+0.0	70.1	105.4	-35.3	None
12 21926.720M	55.7	+10.6	+1.2	+0.0	67.5	105.4	-37.9	None
13 36998.970M	52.2	+12.5	+2.7	+0.0	67.4	105.4	-38.0	None
14 5834.500M	56.3	+10.0	+0.5	+0.0	66.8	105.4	-38.6	None
15 19643.380M	55.2	+10.5	+1.1	+0.0	66.8	105.4	-38.6	None
16 17294.800M	55.2	+10.4	+1.1	+0.0	66.7	105.4	-38.7	None
17 14792.690M	54.8	+10.3	+0.7	+0.0	65.8	105.4	-39.6	None
18 2859.152M	55.0	+10.0	+0.3	+0.0	65.3	105.4	-40.1	None
19 12974.370M	54.0	+10.3	+0.8	+0.0	65.1	105.4	-40.3	None
20 1880.177M	53.0	+9.9	+0.2	+0.0	63.1	105.4	-42.3	None
21 7450.349M	52.5	+10.1	+0.5	+0.0	63.1	105.4	-42.3	None
22 1296.424M	52.7	+10.0	+0.2	+0.0	62.9	105.4	-42.5	None
23 31170.290M	48.5	+10.7	+2.0	+0.0	61.2	105.4	-44.2	None
24 5858.500M	50.7	+10.0	+0.5	+0.0	61.2	105.4	-44.2	None
25 26135.550M	49.0	+10.7	+1.4	+0.0	61.1	105.4	-44.3	None
26 3240.484M	50.3	+10.0	+0.3	+0.0	60.6	105.4	-44.8	None

Page 60 of 61 Report No: FC03-053A

Customer: Wi-Lan Inc.
Specification: 15.247(d)

 Work Order #:
 80992
 Date:
 08/12/2003

 Test Type:
 Antenna Terminals
 Time:
 13:09:20

Equipment: Wireless Network Transmitter Sequence#: 5
Manufacturer: Wi-Lan Tested By: Randal Clark

Model: Libra 5800 S/N: CKC080803-001

Equipment Under Test (* = EUT):

Equipment Citaer 10.	SV (- 12 C 1).		
Function	Manufacturer	Model #	S/N
Wireless Network	Wi-Lan	Libra 5800	CKC080803-001
Transmitter*			

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Wi-Lan		CKC080803-002
Laptop Power Supply	Toshiba	PA2444U	0007A0742953
Laptop	Toshiba	PS277U-6M9J0	80857659U

Test Conditions / Notes:

EUT is a wireless network base station transmitter. EUT is transmitting continuously on a set channel. The frequencies chosen for the upper and lower channels are such that the channel is as close to the band edge as practical. Equipment is transmitting at its maximum power output setting. Frequency Range Investigated: Carrier. Channel Selections are as follows: Low Channel = 5730 MHz, Mid Channel = 5775 MHz, High Channel = 5820 MHz.

Transducer Legend:

T1=Att 10dB AN02139	T2=CABLE - HF Kit ANP04292

Measurement Data:		Reading listed by margin.		Test Distance: None							
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	5822.300M	-9.0	+10.0	+0.5			+0.0	1.5	8.0	-6.5	None
2	5777.567M	-9.2	+10.0	+0.5			+0.0	1.3	8.0	-6.7	None
3	5732.333M	-9.2	+10.0	+0.5			+0.0	1.3	8.0	-6.7	None

Page 61 of 61 Report No: FC03-053A