

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

BWS 5000 REV.OA HARDWARE FUNCTIONAL DESCRIPTION

APPROVALS:

Position	NAME	SIGNATURE	DATE
Originator 1	Steve Jang		
Originator 2	Chad Gilbertson		
Project Manager	Rashed Hayder		
System Architect	Shane Rogers		
Software	Brian Geichen		
Advance Technology	Shawn Taylor		

Classification:

RELEASE:

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

MODIFICATION RECORD:

VERSION	NAME	REASON	DATE
OA	Chad Gilbertson Steve Jang	Started from BWS 3000 S-BOX 0B - updated RF section with Radia chipset - remove section on AP Full Duplex - updated power control and monitoring - updated RF calibration attenuator - updated RF control - updated power supply (voltage rail adjust) - updated introduction, two board from three - updated RS-232	Feb 14,2003

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

Notice of Copyright and Proprietary Rights

This document contains proprietary information, which is the exclusive property of *Wi-LAN, Inc.* No part of this work may be reproduced or transmitted in any form or by any means, except as permitted by written license agreement with *Wi-LAN, Inc.*

Information in this document is provided *as is* without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. In no event will *Wi-LAN, Inc.* be liable to any party for any direct, indirect, special or other consequential damages for any use of this document or any attachment to it, including, without limitation, any lost profits, business interruption, or otherwise, even if *Wi-LAN, Inc.* is expressly advised of the possibility of such damages.

The information contained in this document is subject to change without notice, and does not represent a commitment on the part of *Wi-LAN, Inc.* Although the information and material contained in this document are believed to be accurate and complete, this document and attached material may contain technical inaccuracies or typographical errors.

Any attached system diagrams, hardware schematics, technical descriptions, or software listings are for information purposes only. Reproduction in whole or in part to create working hardware or software is strictly prohibited, except as permitted by written license agreement with *Wi-LAN*, *Inc.*

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

Table of Contents

1	Scope	5
2	Introduction	
3	Digital Engine Board	5
3.1	Scope	5
3.2	Power Supply	
3.3	Clocks	
3.4	Reset and Power Management	8
3.5	Thermal Management	
3.6	MPC855 Microprocessor	9
3.7	RS-232 Interface	14
3.8	FPGA Programming	14
3.9	RF Power Control and Monitoring	
3.10	RF E ² PROM Write Protect	15
3.11	RF Synthesizer Configuration	15
3.12	Modulator/Demodulator PLL Configuration	15
3.13	RF Calibration Attenuator	15
3.14	RF Control	
3.15	fc	16
3.16	Ethernet Transceiver	
3.17	CPLD	17
3.18	Hardware Revision Identification	17
3.19	MPC/DSP Bus Switch	18
3.20	Digital Signal Processor	18
3.21	Xilinx XC2V10004FG - FPGA	21
3.22	Digital Engine Board/RF Board Interface Connector	23
3.23	JTAG Boundary Scan	25
3.24	Logic Analyzer Interface	26
4	RF Board	26
4.1	Scope	26
4.2	Transmitter Path	27
4.3	Front End Filter and Switch	28
4.4	Receiver Path	29
4.5	Local Oscillators	
4.6	Block Diagram	30

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

1 Scope

1.1.1 The Hardware Functional Description document provide details on how the BWS 5000 operates at a functional level.

2 Introduction

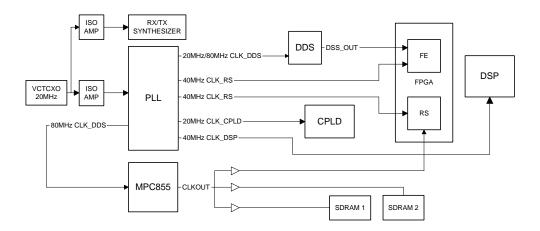

- 2.1.1 The BWS 5000 system is a wireless communication network designed for providing broadband internet access to users. Libra allow users to communicate to the base station (AP). The Libra is the CPE (customer premise equipment).
- 2.1.2 Libra is a single unit, cost reduced solution to replace the IDU and ODU CPE. It uses the same chassis as the ODU CPE and utilizes the integrated antenna. Libra is designed for outdoor use.
- 2.1.3 Libra consists of two boards.
 - 1). Digital Engine Board
 - a). Receives user data from RJ-45 processes data using Wi-Lan's proprietary W-OFDM scheme and sends digital baseband data to the RF board for modulation and transmission.
 - b). Receives digital baseband data from the RF board and extracts user data, which is sent to the RJ-45.
 - 2). RF Board
 - a). Converts transmit data from the Digital Engine Board to analog baseband for modulation at IF. Modulated IF signal is shifted to RF and transmited.
 - b). Receives RF signal and shifts signal to IF. IF signal is demodulated to obtain analog baseband, which is converted to digital data to be sent to the Digital Engine Board for unpacking.

3 Digital Engine Board

- 3.1 Scope
 - 3.1.1 This section provides the principles of operation for the DE Board.
 - 3.1.2 In this section, reference is made to the block diagram.

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

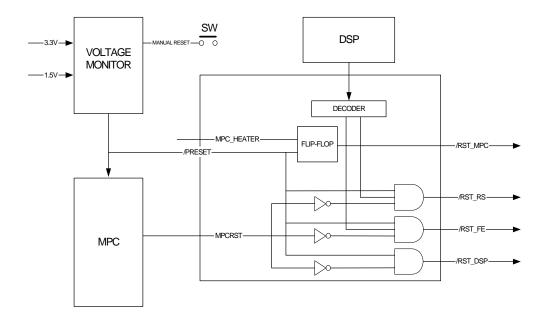
Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002


- 3.2 Power Supply
 - 3.2.1 Power supply input is rated 28VDC @ 1.5A under full load.
 - 3.2.2 Power is supplied through the RJ-45 Ethernet connector.
 - 1). Pins 4 and 5 28VDC
 - 2). Pins 7 and 8 Ground
 - 3.2.3 The 28VDC is pre-regulated down to 15VDC by a 3A switching regulator where it feeds multiple switching regulators
 - 1). 3.3V Digital I/O and MPC Core
 - 2). 5V Digital
 - 3). 1.5V FPGA and DSP Core
 - 4). -5V Analog
 - 5). +7V Analog (Regulated to +5V by LDO post regulators)
 - 3.2.4 The 15V supply is also used for the power amplifiers on the RF board
 - 3.2.5 The 28VDC is regulated down to 4.4V by a 3A switching regulator to supply power for the MPC and FPGA heaters.

3.3 Clocks

- 3.3.1 A 20MHz VCTCXO is the main clock source for LIBRA. The 20MHz clock is split into two signals with isolation amplifiers. One clock is fed to the RF board and other to the PLL. The isolation prevents digital switching noise from entering the RF and high frequency from entering the digital circuit. On the RF board, the 20MHz clock is used as a source for the receive and transmit synthesizer. The PLL provides 80MHz clocks for the MPC and 20/80MHz for the DDS. It also generates 40MHz clocks for the FPGA (RS and FE) and 20MHz for the CPLD.
- 3.3.2 The VCTCXO frequency is centered on 20MHz and is adjustable ±10ppm by the AFC function in the DSP. The AFC adjusts the VCTCXO frequency such that error in the receive data from the access point is minimized.
- 3.3.3 The MPC bus runs at 40MHz, half the 80MHz input clock. The 40MHz clock from the MPC is provided on the signal CLKOUT which is used to drive the SDRAM and RS. The CLKOUT signal is buffered with a zero delay buffer for each device.

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002



3.4 Reset and Power Management

- 3.4.1 Power up reset is controlled by a voltage monitoring supervisor, which hold all devices at reset until the 3.3V I/O and 1.5V core supplies are up. If the voltage levels were to fall below a threshold value of 88%, the voltage monitoring supervisor will reset the devices. These devices include MPC, DSP and FPGA (RS and FE).
- 3.4.2 After power-up reset has been completed, the MPC boots-up and holds the DSP and FPGA (RS and FE) in reset state through signal MPCRST via the CPLD. Reset signals for DSP, FE, RS and IF are provided by the CPLD. After the MPC loads the FPGA, it releases the MPCRST signal, which releases the DSP and IF. The MPC loads the DSP image through the host port interface. The DSP boots-up and holds the FE and RS in reset state until it is fully initialized. The FE and RS are released from reset.
- 3.4.3 If the CPLD detects the thermostat calling for heat on the MPC during power reset, the CPLD holds the MPC in reset state for 3 minutes or until the thermostat reaches setpoint. At this point, the MPC case temperature is within spec at which it is allowed to boot-up. If the thermostat calls for heat on the MPC after power reset, the MPC continue to run but the MPC heater turns on.

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

3.5 Thermal Management

- 3.5.1 The MPC855T and FPGA devices are rated with minimum operating temperature of 5°C. A temperature controller/sensor placed near the MPC device controls separate IC heaters for the MPC and FPGA. Heaters is Minco type HK5583, 0.012" thick pad heater with self-adhesive backing to be applied to the device. Approximately 4 watts of heat will be applied to each device. Each heater is connected to the board with a 2-pin header.
- 3.5.2 A temperature sensor is connected to the MPC I²C bus to allow the MPC to monitor the ambient temperature inside the enclosure. This will allow the MPC to reduce through-put or shutdown at high temperatures to reduce heat dissipation.

3.6 MPC855 Microprocessor

3.6.1 MPC855

The MPC855 Power QUICC is a versatile one-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications, excelling particularly in communications and networking products. The MPC855 PowerQUICC integrates two processing blocks. One block is the Embedded PowerPC Core and the second block is a Communication Processor Module (CPM). The CPM supports 10/100BASE Ethernet. The processor has a large number of I/O pins which can be used as user I/Os, serial ports, I²C bus, SPI (serial peripheral interface), interrupts and DMA.

3.6.2 Functional Description

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

- 1). Interfaces to flash memory (16-bit data bus), SDRAM and SRAM (both 32-bit data bus)
- 2). Interfaces to DSP XBUS to communicate with DSP
- 3). CPM interfaces to Ethernet Transceiver (MAC)
- 4). Reed Solomon Interface
 - a). IDMA interface for sending and receiving data
 - b). Optional memory interface (RD/nWR, /MOE, WE)
- 5). RS-232 terminal interface to provide menu driven user interface for Libra configuration and monitoring.
- 6). Configures RF Synthesizer and SA1630PLL during startup.
- 7). Detects RF Synthesizer lockout
- 8). Enables transmit and receive RF amplifiers after successful configuration of RF and IF PLL Synthesizer, preset RF transmit power and lock detect..
- 9). Read temperature enclosure air temperature from temperature sensor.
- 10). Load program image into FPGA
- 11). Releases DSP and FPGA after boot-up.

3.6.3 I/O Pin Assignment

Signal	Size	Description	Type	Location
EXT_Int6	1	DSP Interrupt Input	Output	PA0
FPGA_DIN	1	FPGA Program Data in	Output	PA1
FPGA_CLK	1	FPGA Program Clk	Output	PA2
FPGA_DONE	1	FPGA Program Done	Input	PA3
/DRQ1_MPC	1	MPC RS	Output	PA4
TX_SYNC_IN	1	AP Duplex – Receive	Input	PA5
TX_SYNC_OUT	1	AP Duplex - Transmit	Output	PA6
FPGA_PROG	1	FPGA Program Prog	Output	PA7
LED_Fail	1	LED On if MPC Fail	Output	PA8
LED_OK	1	Flashing LED - MPC OK	Output	PA9
FPGA_INI	1	FPGA Program Initialize	Input	PA10
SYNENR	1	RF Receive Synthesizer Enable	Output	PA11
SYNDAT	1	RF Synthesizer Data	Output	PA12
TX_SYNC_DRV	1	AP duplex - Transceiver Mode	Output	PA13
SYNCLK	1	RF Synthesizer Clk	Output	PA14
SYNENT	1	RF Transmit Synthesizer Enable	Output	PA15
XRDY	1	DSP Expansion Port Ready	Input	PB14
/M_TRSTE	1	Ethernet Tranceiver Rx High Impedance	Output	PB15
/M_RESET	1	Ethernet Tranceiver Reset	Output	PB16
RF_AMP_EN	1	Enable RF RX/TX Amp	Output	PB17
VPEN	1	Flash VPEN Write Protect	Output	PB18
CKE	1	SDRAM Clock Enable	Output	PB19
MPCRST	1	MPC Reset Signal to Peripheral	Output	PB20
PLL_STRB	1	IF PLL Strobe	Output	PB21
PLL_DATA	1	IF PLL Data	Output	PB22

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

PLL_CLK	1	IF PLL Clock	Output	PB23
RX	1	RS-232 Rx	Input	PB24
TX	1	RS-232 Tx	Output	PB25
CSCL	1	I ² C Clock	Output	PB26
CSDA	1	I ² C Data	I/O	PB27
MISO	1	SPI Serial Output	Output	PB28
MOSI	1	SPI Serial Input	Input	PB29
SPICK	1	SPI Clock	Output	PB30
DDS_FQ_UP	1	High-Speed DDS Data Store	Output	PB31
/RF_MEM_WP	1	RF Board E ² PROM Write Protect	Output	PC4
/SDACK1	1	MPC RS	Output	PC5
LD	1	RF Synthesizer Lock Detect	Input	PC6
/SDACK2	1	MPC RS	Output	PC7
ANT_A_B	1	Antenna Select	Input	PC8
DDS_FSYNC	1	DDS Data Configuration Enable	Output	PC9
SW_TXRX	1	Communication Mode	Input	PC10
CAL_EN	1	Enable Calibration of IRC1332	I/O	PC11
TP	1	Test Point	I/O	PC12
TP	1	Test Point	I/O	PC13
/DREQ1	1	MPC RS	Output	PC14
/DREQ0	1	MPC RS	Input	PC15

3.6.4 Interrupt Assignment

IRQx	Signal	Device	Description
0	/IRQ0		Not Used
1	/IRQ1	DSP	IRQ request from XBUS
2	/IRQ2	RS	RS Encoder IDMA
3	/IRQ3	RS	RD Decoder IDMA
4	/IRQ4	DSP	IRQ request from DSP CLKR0
5	/IRQ5	AP Full	AP Full Duplex – TX_SYNC_IN
		Duplex	
6	/IRQ6	DSP	IRQ request from DSP RSX0

3.6.5 Memory Map

CSx	Signal	Device	Address	Size	Width	Description
0	/CS0	Flash	FC000000- FC7FFFF	8Mbyte	16 bit	
1	/CS1	Bus Sw	100000000- 10007FFF	4 byte	32 bit	Bus Switch between XBUS DSP/Data Bus MPC
2	/CS2	RS	20000000	4 byte	32 bit	RS Buffer
3	/CS3					Not Used

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

4	/CS4	SDRAM	FE000000- FFFFFFF	32Mbyte	32 bit	Not Used
5	/CS5					Select SRAM
6	/CS6	CPLD	00080000 0008000F-	16 byte	8 bit	Address Expansion
7	/CS7					Not Used

3.6.6 Hardware Reset Configuration

 The hard reset configuration word is sampled from the data bus. These bits determine the default values of the corresponding bits in the SIUMCR, IMMR, and MSR

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Field	EARB	IIP		-	В	PS	-	IS	SB	DB	GC	DBI	PC	EB	DF	-
Default	0	1	0	0	1	0	0	0	1	1	1	0	0	0	1	0

Hard Reset Configuration Word

Hard Reset Configuration Word Field Description

Bits	Name	Value	Description
0	EARB	0	External arbitration. Defines the initial value for ACR[EARB]. 0: Internal arbitration is performed.
1	IIP	1	Initial interrupt prefix. Defines the initial value of the MSR[IP] which defines the interrupt table location. If IIP is cleared (default), the MSR[IP] initial value is one; If it is set to one, the MSR[IP] initial value is zero.
2-3	-	0	Reserved for future use and should be allowed to float.
4-5	BPS	10	Boot port size. Defines the port size of the boot device. 00: 32-bit port size 01: 8-bit port size 10: 16-bit port size 11: Reserved
6	-	0	Reserved for future use and should be allowed to float.
7-8	ISB	01	Initial internal space base select. Defines the initial value of the IMMR bits 0-15 and determines the base address of the internal memory space. 00 0x00000000 01 0x00F00000 10 0xFF000000 11 0xFFF00000
9-10	DBGC	11	Debug pin configuration. Configures the operation of the following signals: 11 IP_B[0-1]/IWP[0-1]/VFLS[0-1] functions as VFLS[0-1] IP_B3/IWP2/VF2 functions as VF2 IP_B4/LWP0/VF0 functions as VF0

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

Bits	Name	Value	Description
			IP_B5/LWP1/VF1 functions as VF1 OP2/MODCK1//STS functions as /STS ALE_B/DSCK/AT1 functions as AT1 IP_B2/AT2 functions as AT2 IP_B6/DSD1/AT0 functions as AT0 IP_B7//PTR/AT3 functions as AT3 OP3/MODCK2/DSDO functions as OP3
11-12	DBPC	00	Debug port pins configuration. Determines the active pins for the development port. 00 ALE_B/DSCK/AT1, IP_B6/DSDI/AT0, OP3/MODCK2/DSDO and IP_B7//PTR/AT3 function as defined by DBGC TCK/DSCK functions as DSCK TDI/DSDI functions as DSDI TDO/DSDO functions as DSDO 01 ALE_B/DSCK/AT1, IP_B6/DSDI/AT0, OP3/MODCK2/DSDO, and IP_B7//PTR/AT3 function as defined by DBGC TCK/DSCK functions as TCK TDI/DSDI functions as TDI TDO/DSDO functions as TDI
13-14	EBDF	01	External bus division factor. Defines the frequency division factor between GCLK1/GCLK2 and GCLK1_50/GCLK2_50. CLKOUT is similar to GCLK2_50 and GCLK1_50 are use by the system inerface unit and memory controller to interface with the external system. 00 Full speed bus 01 Half speed bus 10 Reserved 11 Reserved
15	-	0	Reserved for future use and should be allowed to float.

3.6.7 Memory

1). SDRAM

a). The 256Mbit of SDRAM configured as 8Mbit x 32bits is used for program execution and data storage. SDRAM clock is generated by CLKOUT signal from the MPC, which is buffered by a zero delay buffer. To minimize buffer delays, user programmable machine B (UPMB) is used implement the MPC interface to the SDRAM. To optimize on cost, two 2Mbit x 16 bits x 4 bank SDRAM ICs will be used to implement the 256Mbit of memory.

- b). Micron MT48LC8M16A2 or equivalent
- c). Signal CKE, MPC PB19 is assigned as clock enable
- 2). Flash

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

- a). 32Mbit of flash memory upgradeable to 64 configured as 2Mbit x 16 bits is used for mass storage. This includes program images for MPC, DSP and FPGA.
- b). Intel type E28F320J3A or equivalent, 56-pin.
- c). Signal VPEN, MPC PB18 is used for write protection.

3.7 RS-232 Interface

- 3.7.1 An RS-232 interface connects to a terminal port to provide a menu driven user interface for Libra configuration and monitoring.
- 3.7.2 SMC 1 on the MPC is connected to a RS-232 transceiver to provide a RS-232 port.
- 3.7.3 The RS-232 port connector has 5-pins.
 - 1). Transmit
 - 2). Receive
 - 3). Ground
 - 4). SED
- 3.7.4 Only transmit, receive and ground are required for a terminal interface.
- 3.8 FPGA Programming
 - 3.8.1 MPC loads FPGA image from flash during startup.
 - 3.8.2 The following signals are required to load the FPGA
 - 1). FPGA_DIN PA1
 - 2). FPGA CLK PA2
 - 3). FPGA DONE PA3
 - 4). FPGA PROG PA7
 - 5). FPGA INI PA10
- 3.9 RF Power Control and Monitoring
 - 3.9.1 RF output power must be consistent with specifications to meet EDSI requirements.
 - 3.9.2 Transmit power is user settable in the radio configuration up to a maximum of
 - 3.9.3 Transmit power is controlled by transmit power attenuator. Signals to this attenuator are TXPWR[0:4], 5-bit binary controlled by the MPC.
 - 3.9.4 Power Monitoring
 - Transmit power control is done by a close loop feedback control scheme.
 To perform feedback control, the actual transmit power is measured by a power detector in the RF circuit.
 - 2). The sinusoidal output signal is converted to a DC voltage using a precision rectifier circuit is minimal filtering. This signal TX_POWER is fed to a serial 10-bit ADC which is controlled by the DSP.
 - 3). To achieve consistent power measurements for each superframe, the data must be consistent. Since training symbols are always consistent the output signal is measured only when training symbols are being transmitted. The DSP will only sample the ADC during transmission of training symbols.

Business Group:	Hardware				
DOCUMENT #:	5720-0090-0B-SA				
Version #:	0				
DATE:	Oct 17,2002				

4). Width of PWR_MEASURE signal would correspond with duration of training symbols which are as follows

a).	10MHz bandwidth	$27\mu S \times 5 = 135\mu S$
b).	5MHz bandwidth	$54\mu S \times 5 = 270\mu S$
c).	3MHz bandwidth (128FFT)	$49\mu S \times 5 = 245\mu S$

- 5). Sampling capability of the 10-bit ADC is 500KSPS or 2µS per sample
- 6). The DSP communicates to the ADC via SPI interface.
- 7). The DSP sends the power measurements to the MPC.
- 8). The MPC averages the power measurements and adjust the TXPWR attenuator until transmit power is consistent with the user setting.
- 3.10 RF E²PROM Write Protect
 - 3.10.1 A write protect signal, /RF_MEM_WP protects the E²PROM from accidental erasure.
- 3.11 RF Synthesizer Configuration
 - 3.11.1 During power-up, the MPC writes configuration data to the frequency synthesizer on the RF board
 - 3.11.2 Signals required for SYNTHESIZER_CONFIG are:
 - 1). SYNENT: Enable transmit synthesizer
 - 2). SYNENR: Enable receive synthesizer
 - 3). SYNDAT: Synthesizer configuration data
 - 4). SYNCLK: Clock for sending Synthesizer configuration data
- 3.12 Modulator/Demodulator PLL Configuration
 - 3.12.1 During power-up, the MPC writes PLL configuration data to the SA1630 modulator/demodulator
 - 3.12.2 Signals required for SA1630_PLL_CONFIG are:
 - 1). PLL STRB
 - 2). PLL DATA
 - PLL_CLK
- 3.13 RF Calibration Attenuator
 - 3.13.1 The RF calibration attenuator adjust the attenuation on both the transmit and receive chain for different frequencies due to non-linearity.
 - 3.13.2 Since the system is half duplex, only one calibration attenuator is required by placing it in the common TX/RX path.
 - 3.13.3 During board calibration, each receive and transmit channel must be calibrated for each channel so that output power is consistent with the same input by adjustment to the RF calibration attenuator. The transmit and receive attenuator values for each channel are stored in flash memory.
 - 3.13.4 During each system transition from receive to transmit mode, the RF calibration attenuator must be set with the transmit attenuator setting. Also, during each system transition from transmit to receive mode, the RF calibration attenuator must be set with the receive attenuator setting. Because the transition is so quick, the RF calibration attenuator setting is controlled by the CPLD.
 - 3.13.5 During startup, the MPC loads the RF calibration attenuator settings into two registers in the CPLD, one for receive and other for transmit. The CPLD sets the

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

attenuator control signals from the registers depending on transmit or receive mode.

3.14 RF Control

- 3.14.1 LD (Lockout Detect)
 - 1). This signal is active when the RF Synthesizer detects a lockout condition.
- 3.14.2 RF AMP EN
 - RF_AMP_EN enables transmit and receive power amplifiers on the RF board. It is active once the MPC has set the RF attenuator (RF_ATTEN[0:4], transmit power (TXPWR[0:4] and the RF Synthesizer is not in lockout condition. It is disabled if lockout is detected.
- 3.14.3 TX EN
 - 1). TX_EN enables the transmit amplifier if system is in transmit mode, RF_AMP_EN and lock detect is active.
- 3.14.4 RX EN
 - RX_EN enables the receive amplifier if system is in receive mode, RF_AMP_EN and lock detect is active. RX_EN is delayed by 3µS after system goes into receive mode.
- 3.14.5 ANT_A_B_SW (Antenna Select)
 - The ANT_A_B_SW signal allows the MPC to select one of two antennas for the future Vine capability. The signal originates from the MPC as ANT_A_B. ANT_A_B_SW is a synchronized version of ANT_A_B with SW_RXTX.
 - a). If ANT_A_B goes high, ANT_A_B SW goes high during the next SW_RXTX low to high transition.
 - b). If ANT_A_B goes low, ANT_A_B SW goes low during the next SW_RXTX high to low transition.

- $3.15 I^2C$
 - 3.15.1 The I²C interface communicates with the RF E²PROM and temperature sensor.
 - 3.15.2 RF Board Calibration Memory
 - 1). Serial E²PROM
 - 2). Address: 1
 - 3.15.3 Temperature Sensor
 - 1). DE Board: Address 3
 - 2). RF Board: Address 0
- 3.16 Ethernet Transceiver
 - 3.16.1 Ethernet signals come into Libra through the 8-pin DIN connector and goes through an Ethernet isolation transformer. The secondary of the transformer interfaces to the Ethernet transceiver. The Ethernet transceiver supports a MAC interface for 10/100Base-TX operation and interfaces to the MAC module of the MPC855 via the MII interface. The two signal serial management signals are interfaced to the parallel general-purpose I/O port (Port C) of the MPC855 processor.
 - 3.16.2 The Ethernet transceiver will be operating in half duplex mode.

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

- 3.16.3 LED Status indicators will be provided on the PCB for the following:
 - 1). Transmit
 - 2). Receive
 - 3). Link
 - 4). Duplex
 - 5). Collision
 - 6). Speed
- 3.17 CPLD
 - 3.17.1 Xilinx XC9575XL

The CPLD used is a Xilinx XC9575XL with 75 macrocells, 1600 gates and 72 user I/O pins. The CPLD provide discrete logic support in a number of areas to eliminate the need for glue logic.

- 3.17.2 Functional Description
 - 1). MPC I/O Expansion
 - a). RF_ATTEN[0:4] Address: 00080000H Bits: MD29-M31
 - b). TXPWR[0:4] Address: 00080001H Bits: MD29:MD31
 - c). HDW_REV[0:5] Address: 00080002H Bits: MD28:MD31
 - MPC hardware reset configuration
 During power up reset, the hardware reset configuration is applied to the MPC data bus where it is read by the MPC. The appropriate logic is applied to the MPC databus by the CPLD.
 - 3). MPC reads CPLD revision from CPLD
 - 4). Resets MPC, DSP, RS, FE and DDS based on MPCRST and power reset signals.
 - 5). Provides logic to set the MPC into JTAG mode via JTAG jumper mode.
 - 6). Provide TX_EN signal for enabling transmit power amplifier and RX_EN signal for enabling receive power amplifier. Transmit power amplifier is enabled when Libra is in transmit mode (SW_TXRX=0), transmit power set, RF synthesizer configured and not in lockout mode. Receive power amplifier is enabled when Libra is in receive mode (SW_TXRX=1), transmit power set, RF synthesizer configured and not in lockout mode. TX_EN = RF_AMP_EN and /SW_TXRX RX EN = RF AMP EN and SW TXRX
 - 7). Read MPC heater status and holds MPC in reset during power up if heater is calling for heat.
 - 8). Provides antenna select signal ANT_A_B_SW. This signal is control by the MPC ANT_A_B but synchronized with SW_RXTX.
- 3.18 Hardware Revision Identification
 - 3.18.1 The hardware revision of the DE board is encoded by a 6-bit binary code. The bits are set by pull-up and pull-down resistors on 6 inputs on the CPLD. The revision code is read by the MPC and sent to the DSP and FPGA. By knowing the hardware revision, software can determine which functions are supported. The revision is changed when hardware changes on the board affect MPC, DSP or FPGA software.

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

3.19 MPC/DSP Bus Switch

3.19.1 The MPC 32-bit data bus is connected to the DSP X-Bus via 32-pole bus switch. The bus switch is open during DSP boot-up where it can read the boot configuration on the X-Bus provided by pull-up and pull-down resistors. After boot-up, the bus switch is closed by /CS1 on the MPC.

3.20 Digital Signal Processor

3.20.1 Functional Description

- 1). Texas Instrument TMS320C6204B, fixed point
- 2). Modulates error encoded data from the RS and demodulates data from the FE
- 3). Determines channel estimations
- 4). Splits data for each sub-carrier
- 5). DSP is no longer involved in setting DDS frequency to user set bandwidth via CPLD.
- 6). AFC function interfaces to DAC and adjusts VCTCXO
- 7). Interfaces to FPGA through 32-bit data bus
- 8). Interfaces to MPC through expansion bus
- 9). Operates at 160MHz, 40MHz input x 4
- 10). DSP is no longer involved in FPGA programming
- 11). DSP holds RS and FE in reset after boot-up via I/O pins instead of CPLD.
- 12). Controls RF transmit power

3.20.2 DSP Memory Map

Address Range (Hex)	Size (byte)	Description (MAP1)	
0000 0000 - 00FF FFFF	4M	Internal Program memory	
0040 0000 - 013F FFFF [0040 0000 - 0047 FFFF]	16M 512K	External memory interface nCE0 to F.E. FPGA memory	
0180 0000 - 019F FFFF	2M	Internal peripheral registers	
01A0 0000 - 01FF FFFF	6M	Internal peripheral bus reserved	
0200 0000 - 02FF FFFF 0200 0000 - 0207 FFFF	16M 512K	External memory interface nCE2 to R-S FPGA memory	
0300 0000 - 03FF FFFF	16M	External memory interface nCE3 to VCTCXO	

3.20.3 Pin Assignments

	•		
Pin Name	Net Name	Description	
EA[212]	EA[212]	Address bus	
ED[310]	ED[310]	Data bus	
/CE0	/CE0	Chip select for FE	
/CE1	/CE1	Not Used (Previously Chip select for CPLD)	
/CE2	/CE2	Chip select for RS	
/CE3	/CE3	Not Used (Previously Chip select for CPLD to control AFC	

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

Pin Name	Net Name	Description		
		DAC)		
/ARE	/ARE	Asynchronous memory read enable for FPGA, CPLD		
/AOE	/AOE	Asynchronous memory out enable for FPGA, CPLD		
/AWE	/AWE	Asynchronous memory write enable for FPGA, CPLD		
DR1		Not Used		
FSR1	LD14	LED14 and power measurement ADC enable		
CLKR1		Not Used		
DX1	S_DIN	Serial data input for AFC DAC		
FSX1	/S_SYNC	Synchronous signal for SED		
CLKX1	S_CLK	Clock for SED.		
DX0	LD13	LED13 and power measurement ADC CLK		
FSX0	/IRQ6	/IRQ6 to MPC		
CLKX0	/IRQ4	/IRQ4 MPC		
CLKR0		DSPRST_FE (Resets Front End)		
FSR0		DSPRST_RS (Resets Reed Solomon)		
CLKS0		Not Used		
DR0	ADC_Data	Power measurement ADC data		
EXT_INT4	EXT_INT4	External interrupt4 from FE		
EXT_INT5	EXT_INT5	External interrupt5 from RS		
EXT_INT6	EXT_INT5	External interrupt6 from MPC855		
EXT_INT7	EXT_INT7	External interrupt7 from RS		
EMU0		Emulation pin0 for JTAG		
EMU1		Emulation pin1 for JTAG		
TCK	dsp_TCK	JTAG clock		
/TRST	dsp_/TRST	JTAG reset		
TDO	dsp_TDO	JTAG data out		
TDI	dsp_TDI	JTAG data input		
/XCS	/CS1	Chip select for host interface from MPC855		
XCNTL	MA29	Control signal selects between XBD and XBISA register from MPC855		
XW/R	RD/Nwr	Read/Write of expansion bus from MPC855		
TOUT0	/IRQ1	Interrupt request for host interface to MPC855		
XD[310]	XD[310]	Expansion data bus for interfacing with MPC855		
XRDY	XRDY	Ready to receive data from host		

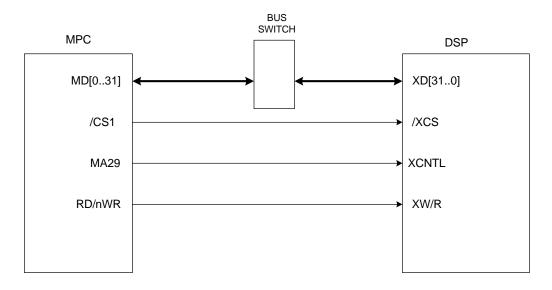
3.20.4 Boot Configuration Control via Expansion Bus

Boot Configuration word

31	30	29	28	27	26	24	23	22	20	19	18		16
rsv	N	1TYPE	XCE3	Rsvd	MTYP	PΕ	rsvd	MTY	PE	rsv	MTYP	E XCE)
d					XCE2			XCE	1	d			
15	14	13	12	11	10	9	8	7	6	5	4		0
rsvd	·	BLP	RW	HMO	XAR	FM	LEN	rsvd BOOTMOD		DE			
		OL	POL	D	В	OD	D						

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

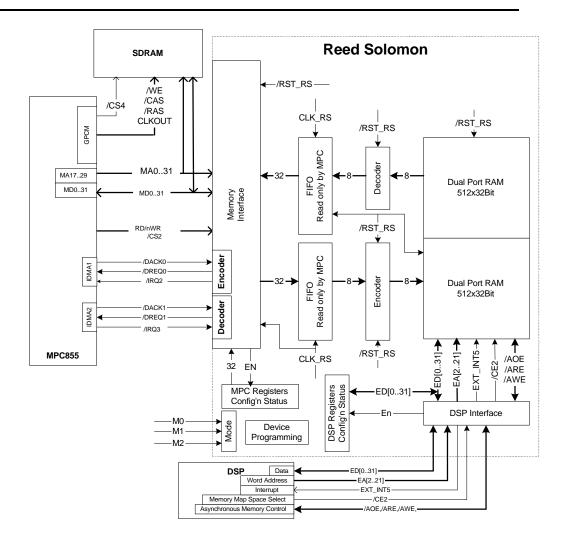
Description of Boot Configuration


Name	Value	Description	
		Memory type	
MTYPE0/1/2/3	010	010: 32-bit wide asynchronous interface	
		101: 32-bit wide FIFO interface	
		other: reserved	
		Determines polarity of the XBLAST signal when the DSP	
BLPOL	0	is a slave on the expansion bus.	
		0: XBLAST is active low.	
		1: XBLAST is active high.	
		Determines polarity of expansion bus read/write signal.	
RWPOL	1	0: XR/W. Write is active-high.	
		1: XW/R. Read is active-high.	
		Host mode (status in XB HPIC)	
HMODE	0	0: external host interface operates in asynchronous slave	
		mode.	
		1: external host interface is in synchronous master/slave	
		mode.	
		Expansion bus arbiter (status in XBGC)	
XARB	0	0: Internal expansion bus arbiter is disabled	
		1: Internal expansion bus arbiter is enabled	
FMOD	0	FIFO mode (status in XBGC)	
	1	Little endian mode	
LEND	(JP32)	0: system operates in big endian mode.	
		1: system operrates in little endian mode	
		Dictates the boot-mode of the device, including host port	
		boot, ROM boot, memory map selection.	
		00xxx: Host-port interface	
BOOTMODE[4:0]	00111	01xxx: 8-bit ROM with default timings	
		10xxx: 16-bit ROM with default timings.	
		11xxx: 32-bit ROM with default timings.	

3.20.5 Expansion Bus

The expansion bus host port is used to interface the MPC data bus to the DSP in asynchronous mode.

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002


3.21 Xilinx XC2V10004FG - FPGA

3.21.1 Reed Solomon (RS)

- 1). Functional Description
 - a). Interfaces to the MPC via IDMA and optional memory type
 - b). Receives transmit data from the MPC and encode error code
 - c). Receives receive data from DSP and decode error code
 - d). Transmit and receive data are stored in asynchronous memory

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

3.21.2 Front End (FE)

- 1). Functional Description
 - a). Transmit

FE receives modulated data from the DSP and applies FFT to convert data from frequency to time domain. Generates training symbols and package with data to form superframe in digital baseband.

- b). Receive
 - FE receives digital baseband data from the ADC on the RF board and extracts modulated data. Inverse FFT is applied to the data converting it from time to frequency domain and the data is sent to the DSP for demodulation.
- c). Generates transmit and receive clocks from DDS. The output frequency of the DDS is set to the sampling rate set by the MPC.

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

- d). AGC (Automatic Gain Control) function adjusts strength of receive signal through receive IF attenuator on RF board.
- 2). RF Board ADC and DAC Interface
 - a). TX_DATA[0:9] Transmit Data 10-bit interleaved I and Q
 - b). SEL_TXD Transmit I/Q Data Select c). TX_CLK Transmit Clock d). RX_D_I[0:9] Receive Data 10-bit I e). RX_Q_I[0:9] Receive Data 10-bit Q
 - f). RX_CLK Receive Clock
 - g). AGC[0:5] AGC (Attenuator control bits)
 h). SW_TXRX Transmit or Receive Mode
- 3). Interfaces to DSP data and address bus asynchronously
- 3.22 Digital Engine Board/RF Board Interface Connector
 - 3.22.1 This connector interfaces the DE and RF board. The connector is a male 3 x 32, 96-pin DIN 41612, IEC 603-2 industry standard connector.
 - 3.22.2 Connector pinout is as shown in the table below

Signal	Pin	Description	Туре
SW_TXRX	A1	Tx/Rx Switch	Output
PLL_STRB	B1	SA1630 PLL Strobe	Output
PLL_DATA	A2	SA1630 PLL Data	Output
PLL_CLK	B2	SA1630 PLL Clock	Output
TXPWR0	A3	IF Tx Attenuator Bit 0	Output
TXPWR1	В3	IF Tx Attenuator Bit 1	Output
TXPWR2	A4	IF Tx Attenuator Bit 2	Output
TXPWR3	B4	IF Tx Attenuator Bit 3	Output
TXPWR4	A5	IF Tx Attenuator Bit 4	Output
NC	B5	No Connection	
AGC0	A6	IF Rx Attenuator Bit 0	Output
AGC1	В6	IF Rx Attenuator Bit 1	Output
AGC2	A7	IF Rx Attenuator Bit 2	Output
AGC3	B7	IF Rx Attenuator Bit 3	Output
AGC4	A8	IF Rx Attenuator Bit 4	Output
AGC5	B8	IF Rx Attenuator Bit 5	Output
RX_D_Q0	A9	Rx Data I Bit 0	Input
RX_D_Q1	B9	Rx Data I Bit 1	Input
RX_D_Q2	A10	Rx Data I Bit 2	Input
RX_D_Q3	B10	Rx Data I Bit 3	Input
RX_D_Q4	A11	Rx Data I Bit 4	Input
RX_D_Q5	B11	Rx Data I Bit 5	Input
RX_D_Q6	A12	Rx Data I Bit 6	Input
RX_D_Q7	B12	Rx Data I Bit 7	Input
RX_D_Q8	A13	Rx Data I Bit 8	Input

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

Signal	Pin	Description	Туре
RX_D_Q9	B13	Rx Data I Bit 9	Input
RX_CLK	A14	Rx Data Clock	Output
RX_D_I0	B14	Rx Data Q Bit 0	Input
RX_D_I1	A15	Rx Data Q Bit 1	Input
RX_D_I2	B15	Rx Data Q Bit 2	Input
RX_D_I3	A16	Rx Data Q Bit 3	Input
RX_D_I4	B16	Rx Data Q Bit 4	Input
RX_D_I5	A17	Rx Data Q Bit 5	Input
RX_D_I6	B17	Rx Data Q Bit 6	Input
RX_D_I7	A18	Rx Data Q Bit 7	Input
RX_D_I8	B18	Rx Data Q Bit 8	Input
RX_D_I9	A19	Rx Data Q Bit 9	Input
TX_DATA0	B19	Tx Data IQ Bit 0	Output
TX_DATA1	A20	Tx Data IQ Bit 1	Output
TX_DATA2	B20	Tx Data IQ Bit 2	Output
TX_DATA3	A21	Tx Data IQ Bit 3	Output
TX_DATA4	B21	Tx Data IQ Bit 4	Output
TX_DATA5	A22	Tx Data IQ Bit 5	Output
TX_DATA6	B22	Tx Data IQ Bit 6	Output
TX_DATA7	A23	Tx Data IQ Bit 7	Output
TX_DATA8	B23	Tx Data IQ Bit 8	Output
TX_DATA9	A24	Tx Data IQ Bit 9	Output
TX_CLK	B24	Tx Data Clock	Output
SEL_TXD	A25	Tx Data I/Q Select	Output
SYNENT	B25	RF Transmit Synthesizer Enable	Output
SYNENR	A26	RF Receive Synthesizer Enable	Output
SYNDAT	B26	RF Synthesizer Data	Output
SYNCLK	A27	RF Synthesizer Clk	Output
LD	B27	RF Synthesizer Lockout Detect	Input
TX_EN	A28	Enable RF TX Amp	Output
RX_EN	B28	Enable RF RX Amp	Output
RF_ATTEN0	A29	RF Field Calibration Attenuator Bit 0	Output
RF_ATTEN1	B29	RF Field Calibration Attenuator Bit 1	Output
RF_ATTEN2	A30	RF Field Calibration Attenuator Bit 2	Output
RF_ATTEN3	B30	RF Field Calibration Attenuator Bit 3	Output
RF_ATTEN4	A31	RF Field Calibration Attenuator Bit 4	Output
TX_POWER	B31	Transmit Power Level	Analog
REF_FREQ	A32	20MHz Clock	Output
DGND	B32	Digital Ground	Power
+10V	C1	+10V (Power Amp)	Power
AGND	C2	Analog Ground	Power
+10V	C3	+10V (Power Amp)	Power

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

Signal	Pin	Description	Туре
AGND	C4	Analog Ground	Power
+10V	C5	+10V (Power Amp)	Power
AGND	C6	Analog Ground	Power
+10V	C7	+10V (Power Amp)	Power
AGND	C8	Analog Ground	Power
+7V	C9	+10V (Power Amp)	Power
AGND	C10	Analog Ground	Power
+7V	C11	+7V Analog (RF and IF)	Power
AGND	C12	Analog Ground	Power
+7V	C13	+7V Analog (RF and IF)	Power
DGND	C14	Digital Ground	Power
+5VDIG	C15	+5V Digital	Power
DGND	C16	Digital Ground	Power
+5VDIG	C17	+5V Digital	Power
DGND	C18	Digital Ground	Power
+5VDIG	C19	+5V Digital	Power
DGND	C20	Digital Ground	Power
-5V	C21	-5V Analog	Power
DGND	C22	Digital Ground	Power
-5V	C23	-5V Analog	Power
DGND	C24	Digital Ground	Power
3.3V	C25	3.3V Digital	Power
DGND	C26	Digital Ground	Power
3.3V	C27	3.3V Digital	Power
NC	C28	No Connection	
NC	C29	No Connection	
NC	C30	No Connection	
CSDA	C31	I ² C Data	I/O
CSCL	C32	I ² C Clock	Output

3.23 JTAG Boundary Scan

3.23.1 Some devices support JTAG boundary scans. A JTAG chain is implemented on these devices to support JTAG testing during manufacturing. The JTAG controller can access all devices through the main JTAG connector.

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

- 3.23.2 Devices supporting JTAG
 - 1). MPC855
 - 2). DSP
 - 3). FPGA
 - 4). CPLD
- 3.23.3 Hardware will be in place to set each device into JTAG boundary scan mode when required.
- 3.24 Logic Analyzer Interface
 - 3.24.1 Logic analyzer interfaces will be required for debugging.
 - 3.24.2 Interface connector is a 38-pin MICTOR receptacle, AMP 2-767004-2 or equivalent.
 - 3.24.3 Interface Signals
 - 1). MPC address bus
 - 2). MPC data bus
 - 3). MPC signals
 - 4). DSP address bus and signals
 - 5). DSP data bus
 - 6). FE and RS FPGA signals
 - 3.24.4 Pinout to the 38-pin MICTOR receptacle should support Agilent Logic Analyzer for the specific device.

4 RF Board

- 4.1 Scope
 - 4.1.1 This section provides the principles of operation for the RF Board.
 - 4.1.2 Block diagram.
 - 4.1.3 The RF board operates in Time-Division-Duplex mode.

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

4.2 Transmitter Path

The transmitter path converts the data from DE to an RF signal in the 5.8 GHz range and amplifies this signal to the desired output level. Prime requirements are preservation of signal linearity; and reduction of spurious signals.

4.2.1 DAC and Baseband

- In transmit mode, the DE generates a single interleaved (I and Q) digital bus streams that are passed to RF board through DE/RF Connector. The digital-to-analog (DAC) converts the data stream into independent I and Q analog data streams. DAC is a dual 10-Bit, 40MSPS with 2x Interpolation Filters optimized for low distortion performance.
- 2). From this point the two signals are sent to a pair of baseband amplifier chains one for I channel, one for Q channel. The I and Q amplifier chains are electrically identical so for sake of simplicity only the I channel will be explained here.
- 3). The I signal is delivered through high-speed operational amplifier to 5-pole elliptic type low pass filter.
- 4). After filtering, the I signal then passes through another op-amp. This amplifier also serves as a buffer isolating the filter from the following modulator stage.

4.2.2 Mod/De-Mod, 1st IF Attenuators, Filters and Mixer and Switch

- 1). The I and Q signals are then passed to an IF quadrature modulator/demodulator. (RC1332)
- 2). The IF attenuator and IF BPF and Mixer are common to both the transmit and receive paths
- 3). Attenuator is a 5bit, GaAs IV FET digital attenuator that provides between 0 and 15.5 dB of attenuation in 0.5 dB steps. It consists of 5 step attenuators with values of 0.5; 1; 2; 4 and 8 dB. It operates under control from the DE and is used to set the set the overall gain during factory calibration; and to provide temperature compensation.
- 4). The Mixer will convert the 1st IF (374 MHz) to the 2nd IF (915 MHz) and vise versa.
- 5). IF Switch is a low-cost SPDT GaAs IC that switches the IF signal to either the transmit or receive path.

4.2.3 TX 2nd IF

- 1). IF Amp 1 and 2 are SiGe monolithic amplifiers that provide gain at 915 MHz with good linearity.
- A digital attenuator is not required in this section as it is built into the RC1332
- 3). xx dB resistive attenuator is used to set the IF level into the mixer and provide a good impedance match to the mixer.

4.2.4 Mixer

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

 Mixer is a monolithic GaAs double-balanced mixer. It was selected due to its high dynamic input signal range, small size and zero DC bias requirements. It requires at least 13 dBm of local oscillator power to achieve its conversion loss and linearity performance.

4.2.5 1st RF Amplifier and Bandpass Filter

- 1). 1st RF Amplifier provides approximately 15 dB of gain at 5.8GHz.
- 2). RF Bandpass Filter is a three pole ceramic filter that is primarily used to attenuate the Local Oscillator and image frequencies.

4.2.6 2nd RF Amplifier

1). 2nd RF Amplifier provides approximately 20 dB of gain. In order to minimize spurious emissions during receive mode, the amplifier is only biased when RF Board is in transmit mode. Bias is provided through the Power Switch. Control of this switch comes from the DE. The time constant of Power Switch is selected to provide an adequately low time constant with the gate-source capacitance of the PMOS switch, while minimizing power dissipation.

4.2.7 RF Power Amplifier

- RF Power Amplifier is a non-matched GaAs FET that provides 11 dB of gain with a 1-dB compression point of 36 dBm. As with all other active components in the transmitter chain, it is sufficiently back off from compression to achieve the required intermodulation performance. However, as the most costly device in the line-up it is the dominant source of intermodulation products.
- 2). Power Amplifier is biased to a drain voltage of 8V and drain current of 1400 mA typical. In order to minimize spurious emissions during receive mode, the amplifier is only biased when RF Board is in transmit mode. This also greatly reduces the average power consumption.

4.2.8 Driver and PA Bias Control

 The primary function if this circuitry is to ensure the discrete RF Power Amplifier is properly biased in transmit mode, that the bias is removed when not in the transmit mode, and that response time from transmit to receive and receive to transmit is sufficiently small to allow the desired turn-around time.

4.3 Front End Filter and Switch

4.3.1 Front End Filter

1). The Front End Filter is a 3-pole ceramic filter that provides attenuation of unwanted signals.

4.3.2 Switch

1). The Switch is a DPDT switch that switches the TX or RX to one of two antenna ports. This a hardware requirement for implementation of VINE.

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

4.4 Receiver Path

The receiver path converts the RF signal in the 5.8 GHz range to an IF signal and demodulates this signal to the desired output level. Prime requirements are preservation of signal linearity, and rejection of out-of-band spurious signals.

4.4.1 RF LNAs and RF Bandpass Filters

- 1). LNA 1 is a monolithic GaAs amplifier with a gain of approximately 13 dB and a noise figure of about 1.3 dB. BPF 1 is a 3-pole ceramic filter that provides additional attenuation of unwanted signals.
- 2). LNA 2 is a monolithic GaAs amplifier with a gain of approximately 19 dB.
- 3). Amplifiers LNA 1 and LNA 2 are turned off when the RF Board is in transmit mode. Turning off the amplifiers has two benefits. First, it avoids saturation of the amplifiers when transmitter power is present. This reduces the amount of time it takes for the gain to stabilize when the RF Board switches from receive to transmit. Second, it eliminates a potential parasitic feedback path whereby some transmit energy gets coupled to the receiver mixer, down-converted to IF, gets back into the transmit IF and then up-converted in the transmitter. Under certain circumstances it is possible for the transmitter and receiver to oscillate in this condition, but in any event there is a strong potential for undesired transmitter spurious emissions.

4.4.2 Mixer

- Mixer is a monolithic GaAs double-balanced mixer. It was selected due to its high dynamic input signal range, small size and zero DC bias requirements. It requires at least 13 dBm of local oscillator power to achieve its conversion loss and linearity performance.
- 4.4.3 IF Filter and 1st IF Amplifier
 - 1). Band Pass Filter reduces the level of local oscillator signal in the IF path.
 - 2). 1st IF Amplifier is a Si monolithic amplifier that has good gain and linearity at 925 MHz, but little gain at 5.8 GHz and above.
 - 3). Fixed attenuator is used to provide the optimum level to the 2nd IF amplifier.

4.4.4 2nd IF Amplifier, Filter and Switches

- 2nd IF Amplifier is a high-gain, high linearity amplifier that is the final stage of amplification of the receiver. It has sufficient output drive capability to meet the output power requirements while overcoming the loss in the IF attenuators and filters.
- 2). LC low-pass filter provides further rejection of the receiver local oscillator and image frequencies.
- 3). IF Switch is a low-cost SPDT GaAs IC that switches the IF signal to either the transmit or receive path.

Business Group:	Hardware
DOCUMENT #:	5720-0090-0B-SA
Version #:	0
DATE:	Oct 17,2002

4.5 Local Oscillators

The RF Board requires 3 LO frequencies. One RF LO and 2 IF LO's. The 1st IF LO is included in the RC1332.

4.5.1 Voltage Controlled Oscillators

1). The 2nd IF LO will be around 540 MHz and the RF LO will be in the 2.4 to 2.5 GHz range. The output level of the VCO's is between 0 and 5 dBm, and the tuning sensitivity is between 30 and 50 MHz/V.

4.5.2 Buffer Amplifier and Splitter

- The output of the RF VCO is doubled, buffered and split to feed both the RX and TX mixers.
- 2). The output of the IF VCO is buffered and will feed the mixer in the common IF path.

4.5.3 Doubler

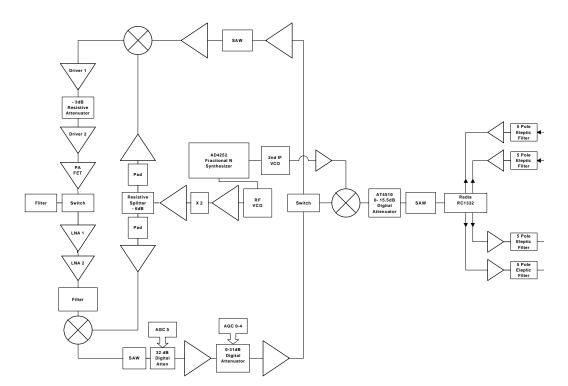
- 1). The RF LO is doubled from 2.4 to 4.8 GHz by the Hittite HMC189 frequency doubler.
- 2). The doubling function degrades the phase noise by approximately 6dB.

4.5.4 PLL Synthesizer

1). PLL Synthesizer is the Analog Devices AD4252 fractional N synthesizer capable of operating to a maximum input frequency of 3 GHz. *Its* detection sensitivity is much better if operated at a 3.3 V supply, so the 5 V supply is dropped by dual diode and resistor. It has a programmable charge-pump output current.

4.5.5 Loop Filter

1). The charge-pump output of the PLL is filtered to provide the desired reference attenuation, phase noise and dynamic characteristics.


4.5.6 Lock Detect Circuit

 When the synthesizer is locked an LED is illuminated. The transmit and receive lock-detect signals are diode-ANDed. If either synthesizer goes out of lock, the combined lock-detect output goes high. This combined signal is fed to the DE, which disables the transmitter if it determines that either synthesizer is unlocked.

4.6 Block Diagram

BUSINESS GROUP:	Hardware
DOCUMENT #:	5720-0090-0B-SA
VERSION #:	0
DATE:	Oct 17,2002

