KTL Test Report:	9R02023
Applicant:	WiLAN Inc. 300-801 Manning Road, NE Calgary, Alberta T2E 8J5
Equipment Under Test: (E.U.T.)	OFDM 300-24
In Accordance With:	FCC Part 15, Subpart C Direct Sequence Transmitters 2400-2483.5 MHz
Tested By:	KTL Ottawa Inc. 3325 River Road, R.R. 5 Ottawa, Ontario K1V 1H2
Authorized By:	K. Carr, Technologist
Date:	
Total Number of Pages:	34

Table Of Contents

Section 1.	Summary Of Test Results	
	General Equipment Specification	
Section 3.	Powerline Conducted Emissions	7
Section 4.	Occupied Bandwidth	11
Section 5.	Peak Power Output	16
Section 6.	Spurious Emissions (Antenna Conducted)	18
Section 7.	Spurious Emissions (Radiated)	22
Section 8.	Transmitter Power Density	26
Section 9.	Processing Gain	30
Section 10	. Test Equipment List	31
Annex A	Block Diagrams	A1

Section 1.	Summary	Of Test Results				
Manufacturer:		WiLAN Inc.				
Model No.:		W-OFDM 300-24				
Serial No.:		W700007				
Date Received	In Laboratory:	December 2, 1999				
KTL Identifica	ation No.:	Item #1				
General:	All measuren	nents are traceable to	nationa	al standards.		
	ith FCC Part 15, Subpa	ple of the equipment fourt C, Paragraph 15.247	-	urpose of demonstrating rect Sequence Spread		
	New Submission			Production Unit		
	Class II Permissive Cl	hange		Pre-Production Unit		
	Equipment Code			Family Listing		
	THIS TEST REPORT	RELATES ONLY TO T	THE ITE	M(S) TESTED.		
THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TES SPECIFICATIONS HAVE BEEN MADE. See "Summary of Test Data".						
		NATVŲ				
	NVL	AP LAB CODE: 100	0351-0			
TESTED BY:	Glen Westwell, Technolog	gist	DA	TE:		
KTL Ottawa Inc. auth	orizes the above named company t	o reproduce this report provided it i	s reproduce	d in its entirety and for use by the company's		

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. KTL Ottawa Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

EQUIPMENT: OFDM 300-24

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	RESULT
Powerline Conducted Emissions	15.207 (a)	48 dBμV	Complies
Occupied Bandwidth	15.247 (a)(2)	≥500 kHz	Complies
Peak Power Output	15.247 (b)	1 watt	Complies
Spurious Emissions	15.247 (c)	-20 dBc	Complies
(Antenna Conducted)			
Spurious Emissions	15.247 (c)	Table	Complies
(Radiated)		15.209 (a)	
Transmitter Power Density	15.247 (d)	≤ +8 dBm	Complies
Processing Gain	15.247 (e)	≥ 10 dB	To Be Supplied By
			Customer

Footnotes For N/A's:

Test Conditions:

Indoor Temperature: 20 °C

Humidity: 25 %

Outdoor Temperature: 5.5 °C

Humidity: 31 %

EQUIPMENT: OFDM 300-24

Section 2. General Equipment Specification

Transmitter

Power Input: 120 VAC/60 Hz, 240 VAC/50 Hz

Frequency Range: 2415 – 2465 MHz

Tunable Bands: 1

Number of Channels: 3

6 dB Bandwidth: 14.3 MHz

Type of Modulation Combined Direct Sequence Spread Spectrum & Wide Band

Orthogonal Frequency Division Multiplexing

(W-OFDM)

Data Rate: 30 Mbps

Internal / External Data Source: Internal

Emissions Designator: 23M2F1D

Output Impedance: 50 ohms

RF Power Output (Rated): 20 dBm

Power Output Adjustment Capability: None

EQUIPMENT: OFDM 300-24

Theory of Operation

The I.WILL 300-24 Access Point (300-24) is the first Wi-LAN product based on the Wide-Band Orthogonal Frequency Division Multiplexing (W-OFMD) technology. With a peak data rate of 30 Mbps in 25 MHz of bandwidth. The Dynamic Time Allocation technique allocates variable time slots to busy stations when needed. Valuable bandwidth is not wasted allocated time to idle stations.

The 300-24 operates in the 2.4 - 2.4835 GHz license-exempt ISM band allowing you to provide wireless networking connectivity at a fraction of the wire, cable or fibre networking costs. The user can manager, configure and monitor the entire wireless network through the RS-232 management port, SNMP or telnet.

The I.WILL 300-24 Access Point (300-24) is a multi-point product that allows wireless connection of remote computers or LAN segments at signaling rates up to 30 Mbps. The unit is self-contained and easy to use. You do not need installation disks or software drivers to get started. The user connects the 300-24 to each LAN segment.

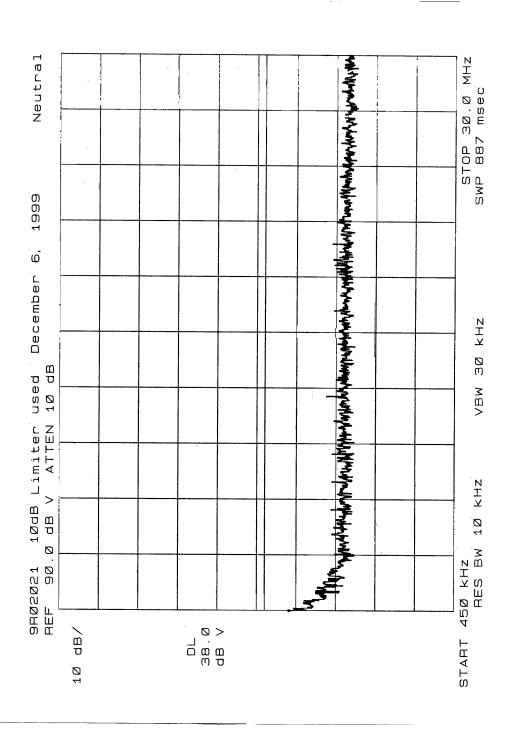
W-OFDM

Wide-band Orthogonal Frequency Division Multiplexing. A transmission scheme that encodes data inside a radio frequency signal. OFDM sends a high-speed signal concurrently on different frequencies. This allows for very efficient use of bandwidth and provides for robust communications that can transmit through interference such as occurring noise and stray and reflecting signals, that can encumber radio communications.

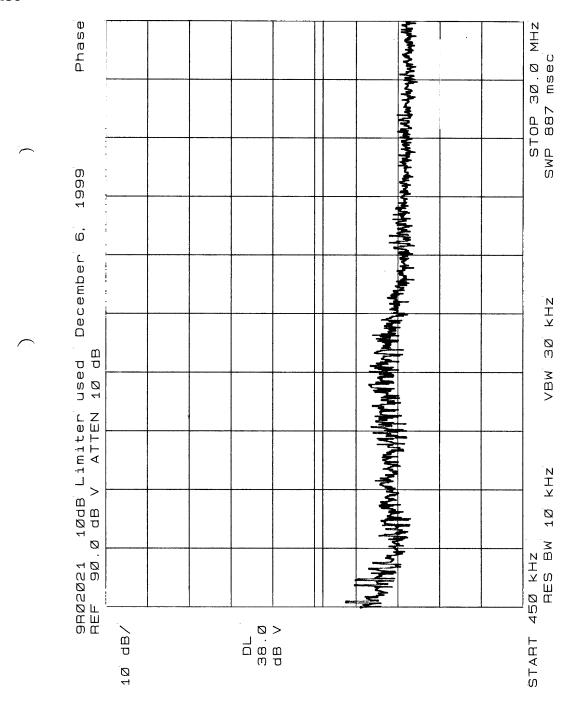
EQUIPMENT: OFDM 300-24

Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

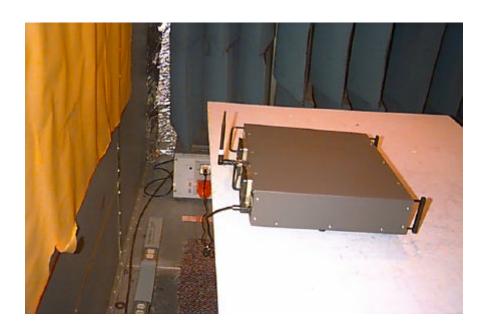

TESTED BY: Glen Westwell DATE: December 6, 1999

Test Results: Complies. See attached graph.


Measurement Data: See attached graph.

Conductor	Frequency (MHz)	CISPR (dBµV)	Average (dBµV)
Neutral	0.450	37.2	36.3
Phase	0.675	32.4	31.2
	1.54	29.6	24.4
	1.84	31.8	28.1

Phase



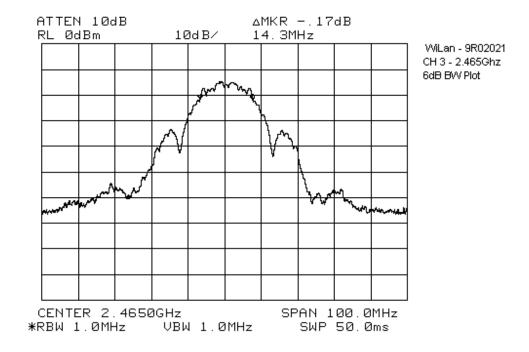
Conducted Photographs

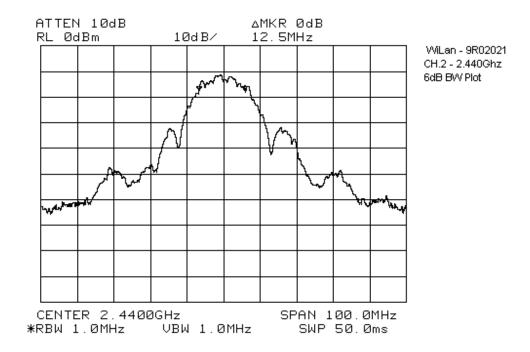
Front View

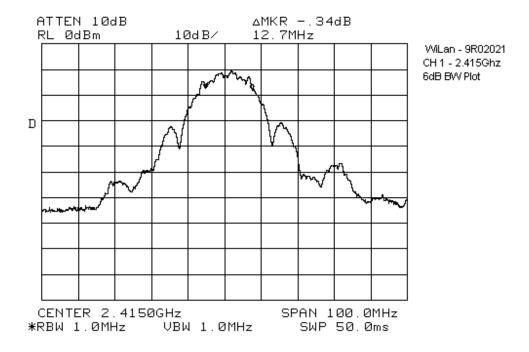
Side View

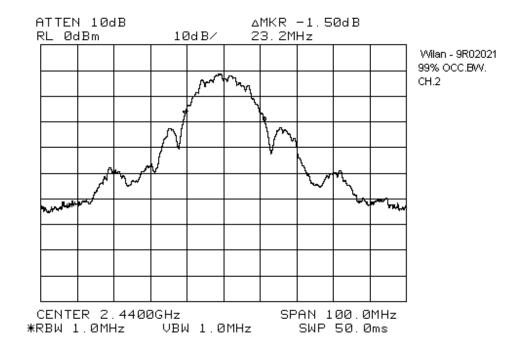
EQUIPMENT: OFDM 300-24

Section 4. Occupied Bandwidth

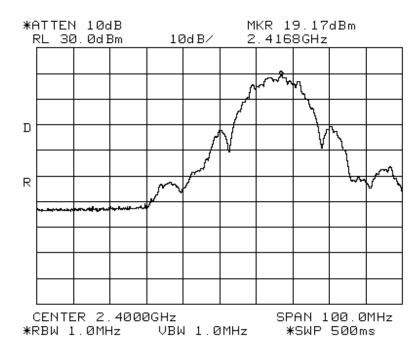

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)


TESTED BY: Glen Westwell DATE: December 3, 1999


Test Results: Complies. The 6 dB bandwidth is 14.3 MHz.


See attached graph.

Measurement Data: See attached graph.

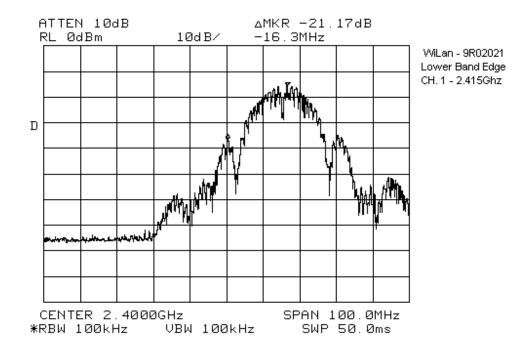


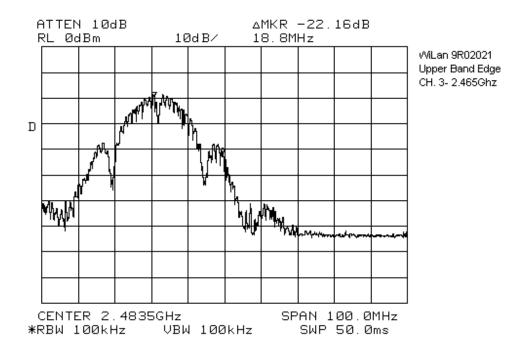
KTL Ottawa

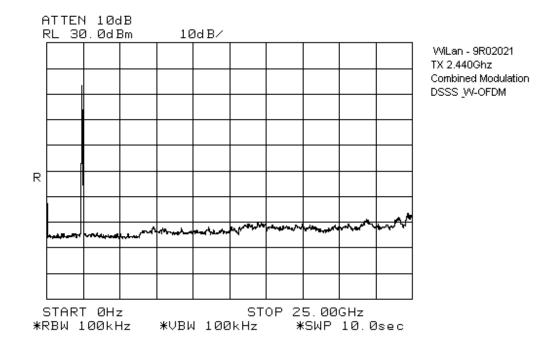
FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9R02023

Section 5.	Peak Power Output	
NAME OF TEST: Per	ak Power Output	PARA. NO.: 15.247 (b)
TESTED BY: Glen W	estwell estwell	DATE: December 3, 1999
Test Results:	Complies. The maximu 0.082 watts	m peak power output of the transmitter is
Measurement Data:	Detachable antenna? If yes, state the type of antenna port: N-Type	Yes No No non-standard connector used at the

EQUIPMENT: OFDM 300-24


Section 6. Spurious Emissions (Antenna Conducted)


NAME OF TEST: Spurious Emissions (Antenna Conducted) PARA. NO.: 15.247(c)


TESTED BY: Glen Westwell DATE: December 3, 1999

Test Results: Complies.

Measurement Data: See attached graphs.

EQUIPMENT: OFDM 300-24

Section 7. Spurious Emissions (Radiated)

NAME OF TEST: Spurious Emissions (Radiated) PARA. NO.: 15.247(c)

TESTED BY: Glen Westwell DATE: December 7, 1999

Test Results: Complies. The worst-case emission level is 49.7 dBμV/m @ 3m

at 7320MHz. This is 4.3 dB below the specification limit.

Measurement Data: See attached graphs.

Test Data - Radiated Emissions (PEAK)

Test Dis			nge: ower	_	ceiver: 8564		BW MHz	Detector: Peak			
Freq. (MHz)	Ant. *	Pol. (V/H)	Ant. HGT. (m)	Table (deg.)	RCVD Signal (dBµV/m)	Ant. Factor (dB)**	Amp. Gain (dB)***	Duty Cycle Corr.	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Channel	1: Fun	damenta	ıl								
2415		V			81.8	31.4			113.2	131.0	17.8
2415		Н			86.0	31.4			117.4	131.0	13.6
Channel	1: Ha	rmonics									
4830		V			60.1	38.5	-44.1		54.5	74.0	19.5
4830		Н			62.4	38.5	-44.1		56.8	74.0	17.2
7245		V			59.2	44.6	-42.3		61.5	74.0	12.5
7245		Н			61.3	44.6	-42.3		63.6	74.0	10.4
Channel	2: Fu	ndamenta	al								
2440		V			76.2	31.3			107.5	131.0	23.5
2440		Н			85.8	31.3			117.1	131.0	13.9
Channel	2: Ha	rmonics									
4880		V			62.3	38.7	-44.3		56.7	74.0	17.3
4880		Н			61.3	38.7	-44.3		55.7	74.0	18.3
7350		V			64.9	44.8	-42.2		67.5	74.0	6.5
7350		Н			60.3	44.8	-42.2		62.9	74.0	11.1
Channel	3: Fu	ndament	al								
2465		V			72.3	31.4			103.7	131.0	27.3
2465		Н			82.3	31.4			113.7	131.0	17.3
Channel	3: Ha	rmonics									
4930		V			56.8	38.9	-44.4		51.3	74.0	22.7
4930		Н			63.0	38.9	-44.4		57.5	74.0	16.5
7395		V			49.2	44.9	-42.1		52.0	74.0	22.0
7395		Н			51.8	44.9	-42.1		54.6	74.0	19.4

Notes:

B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

- * Re-measured using dipole antenna.
- ** Includes cable loss when amplifier is not used.
- *** Includes cable loss.
- () Denotes failing emission level.

No emissions detected above 7395 MHz. The spectrum analyzer noise floor was 20 dB below the limit.

Test Data - Radiated Emissions (AVERAGE)

Test Dis			nge: ower		ceiver: 8564		RBW 1 MHz		Detector: Peak		
Freq. (MHz)	Ant.	Pol. (V/H)	Ant. HGT. (m)	Table (deg.)	RCVD Signal (dBµV/m)	Ant. Factor (dB)**	Amp. Gain (dB)***	Duty Cycle Corr.	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Channel	1: Har	monics -	- Restrict	ed Band	S						
4830		V			42.8	38.5	-44.1		37.2	54.0	16.8
4830		Н			44.2	38.5	-44.1		38.6	54.0	15.4
Channel	2: Har	monics -	- Restrict	ed Band	s						
4880		V			46.2	38.7	-44.3		40.6	54.0	13.4
4880		Н			47.8	38.7	-44.3		42.2	54.0	11.8
7320		V			47.1	44.8	-42.2		49.7	54.0	4.3
7320		Н			41.3	44.8	-42.2		43.9	54.0	10.1
Channel	3: Har	monics -	- Restrict	ed Band	s						
4930		V			41.2	38.9	-44.4		35.7	54.0	18.3
4930		Н			47.3	38.9	-44.4		41.8	54.0	12.2
7395		V			35.0	44.9	-42.2		37.8	54.0	16.2
7395		Н			38.2	44.9	-42.2		41.0	54.0	13.0

Notes:

B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

- * Re-measured using dipole antenna.
- ** Includes cable loss when amplifier is not used.
- *** Includes cable loss.
- () Denotes failing emission level.

No emissions detected above 7395 MHz. The spectrum analyzer noise floor was >20 dB below the limit.

Radiated Photographs

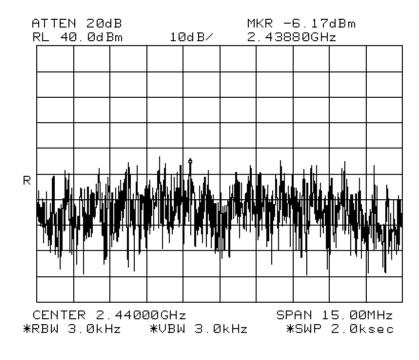
Front View

Side View

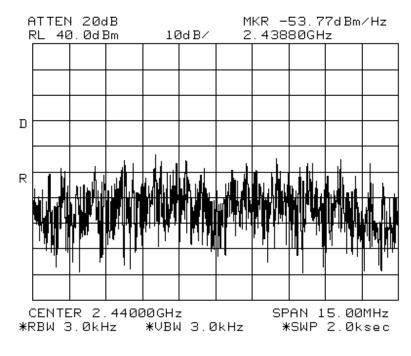
KTL Ottawa

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9R02023

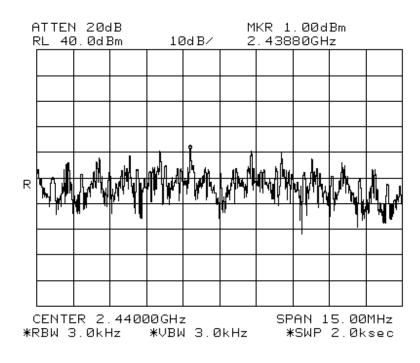
EQUIPMENT: OFDM 300-24


Section 8. Transmitter Power Density

NAME OF TEST: Transmitter Power Density PARA. NO.: 15.247(d)


TESTED BY: Glen Westwell DATE: December 6, 1999

Test Results: Complies.


Measurement Data: See attached graphs.

WiLan - 9R02021 Spectral Power Density Marker Noise"on" Marker Peaked

WiLan - 9R02021 Spectral Power Density Marker Noise"on"

WiLan - 9R02021 Power Spectral Density 30dB Attenuation TX to S/A

KTL Ottawa

FCC PART 15, SUBPART C DIRECT SEQUENCE TRANSMITTERS PROJECT NO.: 9R02023

EQUIPMENT: OFDM 300-24

Section 9. Processing Gain

NAME OF TEST: Processing Gain PARA. NO.: 15.247(e)

TESTED BY: To Be Supplied By Customer DATE:

Test Results: Complies. The processing gain of the system is _____ dB.

Measurement Data: See attached data.

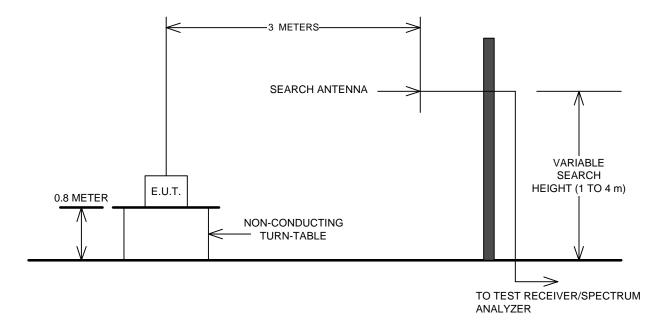
BER: S/N_{out}: J/S Ratio: L_{sys}:

Section 10. Test Equipment List

CAL	EQUIPMENT	MANUFACTURER	MODEL	SERIAL	LAST CAL.	NEXT CAL.
CYCLE						
1 Year	Spectrum Analyzer	Hewlett Packard	8564E	3846A01407	May 31/99	May 31/00
1 Year	Spectrum Analyzer	Hewlett Packard	8565E	FA000981	June 16/99	June 16/00
1 Year	Spectrum Analyzer-1	Hewlett Packard	8566B	2311A02238	Nov. 6/99	Nov. 6/00
1 Year	Spectrum Analyzer	Hewlett Packard	8566B	2314A04759	Nov. 6/99	Nov. 6/00
	Display-1					
1 Year	Quasi-peak adapter-1	Hewlett-Packard	85650A	2043A00302	Nov. 11/99	Nov. 11/00
1 Year	Attenuator	Narda	768-10	9709	Oct. 8/99	Oct. 8/00
1 Year	Attenuator	Narda	776B-20	FA001400	Oct. 15/99	Oct. 15/00
1 Year	LISN	Rohde & Schwarz	ESH2-Z5	890485/017	Aug. 24/99	Aug. 24/00
1 Year	Receiver	Rohde & Schwarz	ESH3	872079/053	Oct. 5/99	Oct. 5/00
2 Year	Horn Antenna	EMCO #2	3115	4336	Nov. 11/99	Nov. 11/00
1 Year	Low Noise Amplifier	Avantek	AWT-8035	1005	Sept. 20/99	Sept. 20/00
1 Year	Plotter	Hewlett Packard	7550A	FA001129	NCR	NCR

NA: Not Applicable NCR: No Cal Required COU: CAL On Use

ANNEX A


EQUIPMENT: OFDM 300-24

ANNEX A BLOCK DIAGRAMS

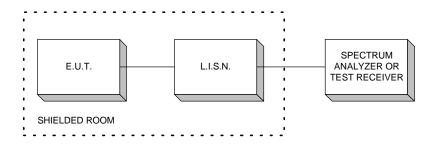
ANNEX A

EQUIPMENT: OFDM 300-24

Test Site For Radiated Emissions

Below 1 GHz

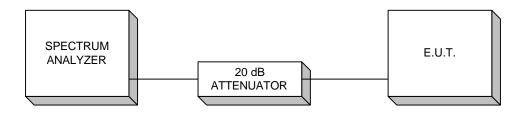
Peak detector. RBW = 100 kHz


Above 1 GHz For Peak Emission Levels

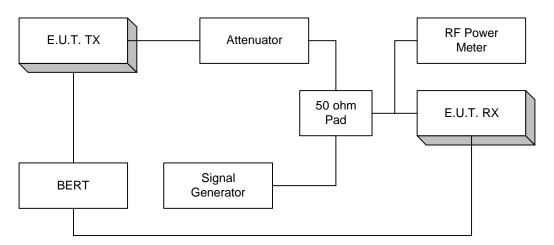
Peak detector RBW = 1 MHz VBW = >RBW

Above 1 GHz For Average Emission Levels

Peak detector RBW = 1 MHz VBW = 10 Hz


Conducted Emissions

ANNEX A


EQUIPMENT: OFDM 300-24

Transmitter Power Density & Peak Power At Antenna Terminals

If the E.U.T. has an integral (non-detachable) antenna, the above test is performed as a radiated measurement and the result is reported as EIRP.

Processing Gain

NOTE: This is a typical setup. The setup may vary slightly since many devices have BER test functions built into the device.