TEST REPORT

FCC SAR Test for certification of K44501102

APPLICANT JVCKENWOOD Corporation

REPORT NO. HCT-SR-2105-FC002

DATE OF ISSUE May. 14, 2021

> **Tested by** Yoon Ho Choi

(signauce)

Technical Manager Yun Jeang Heo

(signature)

HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

TEST REPORT FCC SAR Test for certification	REPORT NO. HCT-SR-2105-FC002 DATE OF ISSUE May. 14, 2021
Applicant	JVCKENWOOD Corporation 1-16-2 Hakusan Midori-ku Yokohama-shi Kanagawa 226-8525 Japan
Equipment Type Model Name	UHF TRANSCEIVER NX-1300-K4, NX-1300-K5, NX-1300-K6
FCC ID	K44501102
Date of Test	Apr. 12, 2021 ~ Apr. 13, 2021
FCC Rule Part(s)	CFR §2.1093
	This device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in FCC KDB procedures and had been tested in accordance with the measurement procedures specified in FCC KDB procedures. I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the standard.

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	May. 14, 2021	Initial Release

CONTENTS

1. Test Regulations	5
2. Test Location	5
3. Information of the EUT	6
4. Output Power Specifications	8
5. Manufacturer's Accessory List	8
6. Introduction	12
7. Description of test equipment	13
8. SAR Measurement Procedure	16
9. Description of Test Position	18
10. RF Exposure Limits	20
11. System Verification	21
12. SAR Test Data Summary	22
13. Measurement Uncertainty	25
14. SAR Test Equipment	26
15. Conclusion	27
16. References	28
Attachment 1. – SAR Test Plots	30
Attachment 2. – Dipole Verification Plots	32
Attachment 3. – SAR Tissue Characterization	37
Attachment 4. – SAR System Validation	38
Attachment 5. – Probe Calibration Data	39
Attachment 6. – Dipole Calibration Data	49

1. Test Regulations

The tests were performed according to the following regulations:

Test Standard	IEEE Standard 1528-2013 & KDB procedures			
Test Method	 FCC KDB Publication 447498 D01 General SAR Guidance v06 FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 FCC KDB Publication 865664 D02 SAR Reporting v01r02 FCC KDB Publication 643646 D01 SAR Test for PTT Radios v01r03 			

2. Test Location

2.1 Test Laboratory

Company Name	HCT Co., Ltd.
Address	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA
Telephone	031-645-6300
Fax.	031-645-6401

3. Information of the EUT

3.1 General Information of the EUT

Model Name NX-1300-K4, NX-1300-K5, NX-1300-K6	
Equipment Type	UHF TRANSCEIVER
FCC ID	K44501102
Applicant	JVCKENWOOD Corporation

3.2 DUT description

* Three type of sample comparison result 7 key with LCD type SAR is high, so the entire test is proceeded.

The Highest Reported SAR (W/Kg)					
	Tx. Frequency (MHz)	Equipment Class	Reported 1g SAR SAR (W/kg)		
Band			Hand-held to Face	Body-Worn Belt clip	
UHF (FCC)	406.1 ~ 470	TNF 4.76 5.66			
Date(s) of Tests:	Apr. 12, 2021 ~ Apr. 13, 2021				

3.3 Attestation of test result of device under test

Note : The Duty Cycle of PTT was 50% applied.

4. Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

4.1 Maximum Output Power

Band	Frequency	Power
UHF	406.1 MHz ~ 470 MHz	5 W (±0.2W)

4.2 Output Average Conducted Power

Frequency (MHz)	Туре	Channel	Power (dBm)
406.15	Analog	1	36.42
422.05	Analog	2	36.38
438.05	Analog	3	36.37
454.05	Analog	4	36.36
460.05	Analog	5	36.35
469.95	Analog	6	36.41

For FCC Band:

Per KDB 447498 D01v06 Page 7 section 6) pages 7-8, the number of channels required to be tested is as follows.

 $F_{high} = 470.0 \text{ MHz}$ $F_{c} = 438.05 \text{ MHz}$

 $F_{Low} = 406.1 \text{ MHz}$

N_c = Round {[100($f_{high} - f_{low}$) / f_c]^{0.5} X (f_c / 100)^{0.2}} = Round {[100(470-406.1) / 438.05]^{0.5} X (438.05/100)^{0.2}} = 6 Therefore, for the frequency band from 406.1 MHz to 470, 5channels are required for testing.

5. Manufacturer's Accessory List

Part Nol.	Description	Accessory Type	Accessory
KRA-23M	UHF Low Profile Helical Antenna (440-490 MHz)		1
KRA-23M3	UHF Low Profile Helical Antenna (400-450 MHz)		2
KRA-27M	UHF Whip Antenna (440-490 MHz)		3
KRA-27M3	UHF Whip Antenna (400-450 MHz)	Antenna	4
KRA-42M	UHF Stubby Antenna (440-490 MHz)		5
KRA-42M3	UHF Stubby Antenna (400-450 MHz)		6
KNB-45L	Li-Ion Battery Pack (1500mAh)		1
KNB-53N	Ni-MH Battery Pack (1400mAh)		2
KNB-29N	Ni-MH Battery Pack (1500mAh)		3
KNB-69L	Li-ion Battery Pack (2450mAh)	Battery	4
KNB-82LC	Li-ion Battery Pack for IS (2,000mAh)		5
KNB-84L	Li-ion Battery Pack (1900mAh)	-	6
KWR-1	Water Resistance Bag		1
KBH-10	Belt Clip (with Radio)	-	2
KLH-187	Nylon Case		3
KLH-178	Leather Case	Carrying	4
KLH-181PC	Leather Case w/ Integral Belt Clip	- Accessories	5
KLH-182PG	Leather Case w/ Swivel Belt Loop	-	6
KLH-6SW	Leather Swivel Belt Loop	-	7
KMC-45D	Speaker Microphone		1
KMC-45	Speaker Microphone	-	2
KMC-21	Compact Speaker Microphone	-	3
KEP-2	25mm Earphone kit for KMC-45	-	4
KHS-10-BH	Heavy-duty headset	-	5
KHS-10-OH	Heavy-duty headset	-	6
KHS-10D-BH	Heavy-duty headset	-	7
KHS-10D-OH	Heavy-duty headset	-	8
KHS-7	Single Muff Headset	-	9
KHS-7A	Single Muff Headset w/in-line PTT	-	10
KHS-8BL	2-Wire Palm Mic w/ Earphone	-	11
KHS-8BE	2-Wire Palm Mic w/ Earphone	-	12
KHS-8NC	2-Wire Palm Mic w/ Earphone, NC	-	13
KHS-9BL	3-Wire Lapel Mic w/ Earphone	-	14
KHS-9BE	3-Wire Lapel Mic w/ Earphone	Microphones &	15
KHS-22	Behind-the-head Headset w/PTT	Audio	16
KHS-22A	Behind the head Headset w/PTT	Accessories	17
KHS-23	2-Wire Palm Mic		18
KHS-25	D-Ring Ear Headset	┥	19
KHS-26	Ear bund In-line PTT Headset	-	20
KHS-27	D-Ring In-line PTT Headset		20
KHS-27A	D-Ring In-line PTT Headset	┥	22
KHS-31	C-Ring Headset	-	23
KHS-31C	C-Ring Headset	-	24
KHS-1	Headset with PTT/VOX	-	25
KHS-21	Headset	-	26
KHS-29F	Headset	-	20
EMC-11	Clip Microphone with Earphone	-	28
KHS-35F	Headset		20
EMC-12	Clip Microphone with Earphone		30
KMC-48GPS	GPS Speaker Microphone		<u> </u>
		1	JI

No.	description	Size (mm)
KNB-45L	Li-Ion Battery Pack (2,000mAh)	WHD 54.0 x 114.7 x 17.7
KNB-53N	Ni-MH Battery Pack (1,400mAh)	WHD 54.0 x 114.7 x 17.7
KNB-29N	Ni-MH Battery Pack (1,500mAh)	WHD 54.0 x 114.7 x 17.7
KNB-69L	Li-ion Battery Pack (2,450mAh)	WHD 54.0 x 114.7 x 21.8
KNB-82LC	Li-ion Battery Pack for IS (2,000mAh)	WHD 54.0 x 114.7 x 17.7
KNB-84L	Li-ion Battery Pack (1,900mAh)	WHD 54.0 x 114.7 x 17.7

* Note: Battery Dimensions

This SAR report is the result of a change test for the addition of a battery Since the additional battery has the biggest capacity of the battery, the Head Face SAR test were performed the Full SAR test and the body worn SAR were evaluated under the thinnest battery .

Battery 1						
Ant. 1	Ant. 2	Ant. 3	Ant. 4	Ant. 5	Ant. 6	
Yes	Yes	Yes	Yes	Yes	Yes	
		Batte	ery 2			
Ant. 1	Ant. 2	Ant. 3	Ant. 4	Ant. 5	Ant. 6	
Yes	Yes	Yes	Yes	Yes	Yes	
		Batte	ery 3			
Ant. 1	Ant. 2	Ant. 3	Ant. 4	Ant. 5	Ant. 6	
Yes	Yes	Yes	Yes	Yes	Yes	
		Batte	ery 4			
Ant. 1	Ant. 2	Ant. 3	Ant. 4	Ant. 5	Ant. 6	
Yes	Yes	Yes	Yes	Yes	Yes	
		Batte	ery 5			
Ant. 1	Ant. 2	Ant. 3	Ant. 4	Ant. 5	Ant. 6	
Yes	Yes	Yes	Yes	Yes	Yes	
	Battery 6					
Ant. 1	Ant. 2	Ant. 3	Ant. 4	Ant. 5	Ant. 6	
Yes	Yes	Yes	Yes	Yes	Yes	

Radio Face Test (Hand-held to Face)

Audio Accessory			Bat	tery		
Audio Accessory	1	2	3	4	5	6
1	No	No	No	No	No	No
2	No	No	No	No	No	No
3	No	No	No	No	No	No
4	No	No	No	No	No	No
5	No	No	No	No	No	No
6	No	No	No	No	No	No
7	No	No	No	No	No	No
8	No	No	No	No	No	No
9	No	No	No	No	No	No
10	No	No	No	No	No	No
11	No	No	No	No	No	No
12	No	No	No	No	No	No
13	No	No	No	No	No	No
14	No	No	No	No	No	No
15	No	No	No	No	No	No
16	No	No	No	No	No	No
17	No	No	No	No	No	No
18	No	No	No	No	No	No
19	No	No	No	No	No	No
20	No	No	No	No	No	No
21	No	No	No	No	No	No
22	No	No	No	No	No	No
23	No	No	No	No	No	No
24	No	No	No	No	No	No
25	No	No	No	No	No	No
26	No	No	No	No	No	No
27	No	No	No	No	No	No
28	No	No	No	No	No	No
29	No	No	No	No	No	No
30	No	No	No	No	No	No
31	Yes	Yes	Yes	Yes	Yes	Yes

Radio Body Test (Body-Worn)

* Manufacture's disclosed accessory listing information provided by Kenwood corporation.

6. Introduction

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$SAR = \frac{d}{d t} \left(\frac{d U}{d m} \right)$$

Figure 1. SAR Mathematical Equation SAR is expressed in units of Watts per Kilogram (W/kg) $SAR = \sigma E^2 / \rho$

Where:

 σ = conductivity of the tissue-simulant material (S/m) ρ = mass density of the tissue-simulant material (kg/m') E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

7. Description of test equipment

7.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.2).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC with Windows XP or Windows 7 is working with SAR Measurement system DASY4 & DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

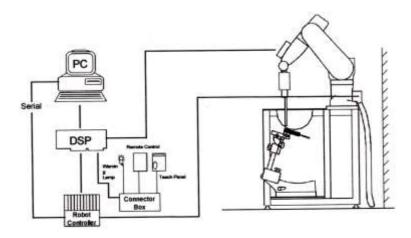


Figure 2. HCT SAR Lab. Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

7.2 ELI Phantom

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG diametric probes and dipoles.

Figure 6.1 ELI Phantom

Shell Thickness Filling Volume Dimensions 2.0 ± 0.2mm approx. 30 liters Major axis: 600 mm, Minor axis: 400 mm

7.3 Device Holder for Transmitters

Device Holder – Mounting Device

In combination with the SAM Phantom, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the EN 50360:2001/A:2001 and FCC KDB specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

7.4 Validation Dipole

The reference dipole should have a return loss better than -20 dB (measured in the setup) at the resonant frequency to reduce the uncertainty in the power measurement.

450 Dipole

	System Validation Dipole							
	ymmetrical dipole with $\lambda/4$ balun. Enables measurement of feedpoint impedance with network analyzer (NWA). Matched for use near flat phantoms filled with tissue simulating liquids.							
Frequency	450 MHz							
Return Loss	> 20 dB at specified validation position							
Power Capability	> 100 W (f < 1GHz), >40 W (f > 1 GHz)							
Dimension	D450V2: dipole length : 272.0 mm ; overall height : 330.0 mm	ĩ						

7.5 Brain & Muscle Tissue Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Frequency (MHz)	30	5	0	1	44	4	50	835	9	00
Recipe source number	3	3	2	2	3	2	4	2	2	4
Ingredients (% by weight)								•	•	
Deionised water	48,30	48,30	53,53	55,12	48,30	48,53	56	50,36	50,31	56
Tween			44,70	43,31		49,51		48,39	48,34	
Oxidised mineral oil							44			44
Diethylenglycol monohexylether										
Triton X-100										
Diacetin	50,00	50,00			50,00					
DGBE										
NaCl	1,60	1,60	1,77	1,57	1,60	1,96		1,25	1,35	
Additives and salt	0,10	0,10			0,10					
Measured dielectric paramete	ers					•		•	•	
¢,'	54,2	53,1	54,54	52,81	51,0	43,29	42,3	41,6	41,0	40,6
or (S/m)	0,75	0,75	0,76	0,76	0,77	0,88	0,84	0,90	0,98	0,98
Temp. (*C)			21	21		21	20	21	21	20
ɛ_temp_liquid _{uncertainty} (%)	0,8	0,1			0,1	0,1		0,04	0,04	
σ_temp_liquid _{uncertainty} (%)	2,8	2,8			2,6	4,2		1,6	1,6	
Target values (from Table 1)				•	•				•	
¢,'	55,0	54	,5	52	2,4	4	3,5	41,5	4	1,5
or (S/m)	0,75	0,	75	0,	76	0	,87	0,90	0,	97

8. SAR Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no more than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the DUT's head and body area and the horizontal grid resolution was depending on the FCC KDB 865664 D01v01r04 table 4-1 & IEEE 1528-2013.
- 2. Based on step, the area of the maximum absorption was determined by sophisticated interpolations routines implemented in DASY software. When an Area Scan has measured all reachable point. DASY system computes the field maximal found in the scanned are, within a range of the maximum. SAR at this fixed point was measured and used as a reference value.
- 3. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB 865664 D01v01r04 table 4-1 and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (reference from the DASY manual.)

a. The data at the surface were extrapolated, since the center of the dipoles is no more than 2.7 mm away from the tip of the probe (it is different from the probe type) and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan. If the value changed by more than 5 %, the SAR evaluation and drift measurements were repeated.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01r04 quoted below.

			≤ 3 GHz	> 3 GHz	
Maximum distance from (geometric center of pr		•	5±1 mm	$^{1}/_{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle normal at the measurer		30°±1°	20 ° ±1°		
			≤ 2 GHz: ≤15 mm 2-3 GHz: ≤12 mm	3-4 GHz: ≤12 mm 4-6 GHz: ≤10 mm	
Maximum area scan Sp.	atial resolu	ution: Δx _{Area,} Δy _{Area}	measurement resolu	rement plane r than the above, the tion must be \leq the dimension of the test one measurement	
Maximum zoom scan S	patial reso	lution: Δx _{zoom} , Δy _{zoom}	≤ 2 GHz: ≤8mm 2-3 GHz: ≤5mm*	3-4 GHz: ≤5 mm* 4-6 GHz: ≤4 mm*	
	uniforn	n grid: Δz _{zoom} (n)	≤ 5 mm	3-4 GHz: ≤4 mm 4-5 GHz: ≤3 mm 5-6 GHz: ≤2 mm	
Maximum zoom scan Spatial resolution normal to phantom surface	graded	Δz _{zoom} (1): between 1 st two Points closest to phantom surface	≤ 4 mm	3-4 GHz: ≤3 mm 4-5 GHz: ≤2.5 mm 5-6 GHz: ≤2 mm	
	grid	∆z _{zoom} (n>1): between subsequent Points	≤1.5·Δz _{zoom} (n-1)		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3-4 GHz: ≥28 mm 4-5 GHz: ≥25 mm 5-6 GHz: ≥22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Description of Test Position

9.1 Body Holster/Belt Clip Configurations

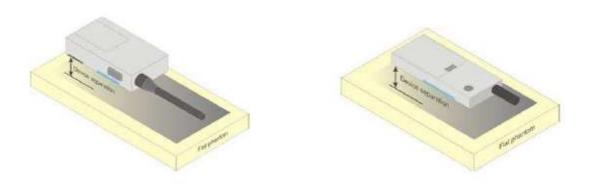
Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"


Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst case positioning is then documented and used to perform Body SAR testing.

9.2 Hand-held to Face device

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 25 mm⁵ between the phantom surface and the device shall be used.

10. RF Exposure Limits

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg)	CONTROLLED ENVIRONMENT Occupational (W/kg)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be mad fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

11. System Verification

11.1 Tissue Verification

The Head simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity.

				Table for Hea	d Tissue Verit	fication						
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (MHz)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε			
			430	0.829	43.796	0.870	43.740	-4.71	0.13			
04/12/2021	22.2	450H	450	0.852	43.160	0.870	43.500	-2.07	-0.78			
			500	0.894	41.873	0.874	43.240	2.29	-3.16			
			430	0.835	43.757	0.870	43.740	-4.02	0.04			
04/13/2021	20.5	21 20.5	20.5 450H).5 450H	0.5 450H	450	0.847	43.410	0.870	43.500	-2.64	-0.21
			500	0.867	41.940	0.874	43.240	-0.80	-3.01			

11.2 System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 450 MHz by using the system Verification kit. (Graphic Plots Attached)

* Input Power: 100 mW

Freq. [MHz]	Date	Probe (S/N)	Dipole (S/N)	Liquid	Amb. Temp. [°C]	Liquid Temp. [°C]	1 W Target SAR _{1g} (SPEAG) [W/kg]	100mW Measured SAR _{1g} [W/kg]	1 W Normalized SAR _{1g} [W/kg]	Deviation [%]	Limit [%]
450	04/12/2021	3302	1007	Head	22.3	22.2	4.76	0.245	4.90	+ 2.94	± 10
450	04/13/2021	3302	1007	Head	20.6	20.5	4.76	0.228	4.56	- 4.20	± 10

11.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the \pm 10 % of the specifications at each frequency band by using the system verification kit. (Graphic Plots Attached)

- Cabling the system, using the verification kit equipment.
- Generate about 100 mW Input level from the signal generator to the Dipole Antenna.
- Dipole antenna was placed below the flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

Note;

SAR Verification was performed according to the FCC KDB 865664 D01v01r04.

12. SAR Test Data Summary

12.1 Hand-held to Face SAR Results

Frequency	Ch.	Tune-Up Limit	Conducted Power	Power Drift	Battery	Antenna	Separation Distance	Measured SAR	50% Duty	Reported SAR	Plot No.
469.95	6	37.2	36.41	-0.29	KNB-69L	KRA-23M	25	5.73	2.87	3.67	-
454.05	4	37.2	36.36	-0.26	KNB-69L	KRA-23M	25	5.11	2.56	3.29	-
469.95	6	37.2	36.41	-0.22	KNB-69L	KRA-27M	25	7.53	3.77	4.75	1
454.05	4	37.2	36.36	-0.26	KNB-69L	KRA-27M	25	6.99	3.50	4.50	-
469.95	6	37.2	36.41	-0.25	KNB-69L	KRA-42M	25	2.43	1.22	1.54	-
406.15	1	37.2	36.42	-0.31	KNB-69L	KRA-23M3	25	4.52	2.26	2.90	-
406.15	1	37.2	36.42	-0.32	KNB-69L	KRA-27M3	25	6.85	3.43	4.41	-
422.05	2	37.2	36.38	-0.29	KNB-69L	KRA-27M3	25	5.63	2.82	3.63	-
438.05	3	37.2	36.37	-0.27	KNB-69L	KRA-27M3	25	3.96	1.98	2.55	-
406.15	1	37.2	36.42	-0.64	KNB-69L	KRA-42M3	25	3.98	1.99	2.76	-
469.95	6	37.2	36.41	-0.47	KNB-45L	KRA-27M	25	6.89	3.45	4.60	-
469.95	6	37.2	36.41	-0.4	KNB-53N	KRA-27M	25	5.52	2.76	3.63	-
469.95	6	37.2	36.41	-0.62	KNB-29N	KRA-27M	25	6.88	3.44	4.76	2
469.95	6	37.2	36.41	-0.17	KNB-82LC	KRA-27M	25	6.31	3.16	3.94	-
469.95	6	37.2	36.41	-0.4	KNB-84L	KRA-27M	25	5.52	2.76	3.63	-
469.95	6	37.2	36.41	-0.07	KNB -29N	KRA-27M	25	0.06	0.03	0.04	*
ANSI/ IEEE C95.1 - 2005 – Safety Limit Spatial Peak Controlled Exposure/ Occupational							Head 8 W/kg (W/kg) Averaged over 1 gram				

* Note : KMC-48GPS

Frequency	Ch.	Tune-Up Limit	Conducted Power	Power Drift	Battery	Antenna	Separation Distance	Measured SAR	50% Duty	Reported SAR	Plot No.
469.95	6	37.2	36.41	-0.24	KNB-45L	KRA-23M	0	6.82	3.41	4.32	-
454.05	4	37.2	36.36	-0.24	KNB-45L	KRA-23M	0	7.53	3.77	4.83	-
469.95	6	37.2	36.41	-0.15	KNB-45L	KRA-27M	0	7.91	3.96	4.91	-
454.05	4	37.2	36.36	-0.43	KNB-45L	KRA-27M	0	7.76	3.88	5.20	-
469.95	6	37.2	36.41	-0.36	KNB-45L	KRA-42M	0	2.95	1.48	1.92	-
406.15	1	37.2	36.42	-0.15	KNB-45L	KRA-23M3	0	4.98	2.49	3.08	-
406.15	1	37.2	36.42	-0.15	KNB-45L	KRA-27M3	0	6.55	3.28	4.06	-
422.05	2	37.2	36.38	-0.14	KNB-45L	KRA-27M3	0	6.38	3.19	3.98	-
438.05	3	37.2	36.37	-0.15	KNB-45L	KRA-27M3	0	4.77	2.39	2.99	-
406.15	1	37.2	36.42	-0.31	KNB-45L	KRA-42M3	0	5.16	2.58	3.32	-
454.05	4	37.2	36.36	-0.24	Knb-69L	KRA-27M	0	8.83	4.42	5.66	3
454.05	4	37.2	36.36	-0.46	Knb-53N	KRA-27M	0	7.73	3.87	5.21	-
454.05	4	37.2	36.36	-0.25	Knb-29N	KRA-27M	0	8.52	4.26	5.48	-
454.05	4	37.2	36.36	-0.22	Knb-82LC	KRA-27M	0	8.19	4.10	5.23	-
454.05	4	37.2	36.36	-0.22	Knb-84L	KRA-27M	0	8.19	4.10	5.23	-
454.05	4	37.2	36.36	-0.32	Knb-69L	KRA-27M	0	0.091	0.05	0.06	*
ANSI/ IEEE C95.1 - 2005 – Safety Limit Spatial Peak Controlled Exposure/ Occupational							Body 8 W/kg (W/kg) Averaged over 1 gram				

12.2 Body-worn Belt clip SAR Results

* Note : KMC-48GPS

12.3 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, FCC KDB Procedure.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v06.
- 6. Test signal call mode is Manual test cord.
- 7. The EUT was tested for face-held SAR with a 2.5 cm separation distance between the front of the EUT and the outer surface of the planer phantom
- 8. The Body-worn SAR evaluation was performed with the Balt-clip body-worn accessory attached to the DUT and touching the outer surface of the planar phantom.
- 9. The adjusted SAR value was calculated by first scaling the SAR value up by the drift. This value was then scaled up based on the difference of the upper end the tolerance (37.2 dBm) and the measured conducted power. The resultant value is then multiplied by 0.5 to give the SAR value at 50% duty cycle.
- 10. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v06. Test Procedures applied in accordance with FCC KDB 643646 D01v01r03.
- 11. Measurement was reduced per KDB 643646 D01v01r03.
- 12. When the SAR for all antennas tested using the default battery is \leq 3.5 W/kg, testing of all other required channels is not necessary.
- 13. When the SAR of an antenna tested on the highest output power using the default battery is >3.5 W/Kg and \leq 4.0 W/Kg, testing of the immediately adjacent channel(s) is not necessary, but testing of other required channels may still be required.
- 14. When the SAR for all antennas tested using the default battery \leq 4.0 W/kg, test additional batteries using the antenna and channel configuration that resulted in the highest SAR.
- 15. When the SAR of an antenna tested on the highest output power channel using the default battery is > 4.0 W/kg and ≤6.0 W/kg, testing of the required immediately adjacent channel(s) is necessary. For the remaining channels that cannot be excluded, this rule may be applied recursively with respect to the highest output power channel among the remaining channels.
- 16. Based on the SAR measured in the body-worn test sequence with default audio accessory, if the SAR for the antenna, body-worn accessory and battery combination(s) applicable to an audio accessory is/are >4.0 W/kg and <6.0 W/kg, test that audio accessory using the highest body-worn SAR combination (antenna, battery and body-worn accessory) and channel configuration previously identified that is applicable to the audio accessory.
- 17. When the SAR of an antenna tested is > 6.0 W/kg, test that battery and antenna combination with the default body-worn and audio accessory on the required immediately adjacent channels.
- 18. If the SAR measured >7.0 W/kg, test that battery, antenna, body-worn and audio accessory combination on all required channels.

13. Measurement Uncertainty

а	с	d	е	f	g	h= cxf/e	i= cxg/e	k
Source of uncertainty	Uncertainty ±%	Probability distribution	Div.	Ci	Ci	Standard Uncertainty	Standard	Vi Or Veff
				(1 g)	(10 g)	± %	± %	
Measurement system						(1 g)	(10 g)	
Probe calibration	6.65	Ν	1	1	1	6.65	6.65	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Axial isotropy	4.70	R	1.73	0.71	0.71	1.92	1.92	00
Hemispherical isotropy	9.60	R	1.73	0.71	0.71	3.92	3.92	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Boundary effect	2.00	R	1.73	1	1	1.15	1.15	00
Linearity	4.70	R	1.73	1	1	2.71	2.71	00
Detection limits	1.00	R	1.73	1	1	0.58	0.58	00
Readout electronics	0.30	N	1	1	1	0.30	0.30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Response time	0.80	R	1.73	1	1	0.46	0.46	00
Integration time	2.60	R	1.73	1	1	1.50	1.50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RF ambient conditions - noise	3.00	R	1.73	1	1	1.73	1.73	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RF ambient conditions - reflections	3.00	R	1.73	1	1	1.73	1.73	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Probe positioner mechanical tolerance	0.80	R	1.73	1	1	0.46	0.46	00
Probe positioning with respect to ohantom shell	6.70	R	1.73	1	1	3.87	3.87	00
Max. SAR Evaluation	4.00	R	1.73	1	1	2.31	2.31	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Test sample related				•				
Test sample positioning	5.51	Ν	1	1	1	5.51	5.51	47
Device holder uncertainity	2.99	Ν	1	1	1	2.99	2.99	5
SAR drift measurement	5.00	R	1.73	1	1	2.89	2.89	00
SAR scaling	0.00	R	1.73	1	1	0.00	0.00	00
Phantom and set-up								
Phantom uncertainty (shape and thickness uncertainty)	7.60	R	1.73	1	1	4.39	4.39	00
Liquid conductivity (measured)	1.54	Ν	1	0.78	0.71	1.20	1.09	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Liquid permittivity (measured)	1.17	N	1	0.23	0.26	0.22	0.25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
iquid conductivity (temperature uncert	2.93	R	1.73	0.78	0.71	1.32	1.20	∞
iquid permittivity (temperature uncerta	0.95	R	1.73	0.23	0.26	0.13	0.14	00
_iquid conductivity - deviation from targ		R	1.73	0.64	0.43	1.85	1.24	00
Liquid permittivity - deviation from targe		R	1.73	0.6	0.49	1.73	1.41	
Combined standard uncertainty	0.00		1.75	0.0	0.70			
Expanded uncertainty		RSS				13.34	13.21	00

14. SAR Test Equipment

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	ELI Phantom	-	N/A	N/A	N/A
HP	SAR System Control PC	-	N/A	N/A	N/A
Staubli	CS8Cspeag-TX60	F/20/0018446/C/001	N/A	N/A	N/A
Staubli	TX60 XLspeag	F/20/0018446/C/001	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D21142608A	N/A	N/A	N/A
Staubli	Light Alignment Sensor	1159	N/A	N/A	N/A
SPEAG	DAE4	1629	08/11/2020	Annual	08/11/2021
SPEAG	E-Field Probe ES3DV3	3302	05/29/2020	Annual	05/29/2021
SPEAG	Dipole D450V2	1007	05/22/2020	Annual	05/22/2021
Agilent	Power Meter E4419B	MY41291386	10/23/2020	Annual	10/23/2021
Agilent	Power Meter N1911A	MY45101406	08/31/2020	Annual	08/31/2021
Agilent	Power Sensor 8481A	SG1091286	10/05/2020	Annual	10/05/2021
Agilent	Power Sensor 8481A	MY41090873	10/05/2020	Annual	10/05/2021
Agilent	Power Sensor N1921A	MY55220026	08/31/2020	Annual	08/31/2021
SPEAG	DAK 3.5	1031	04/28/2020	Annual	04/28/2021
Agilent	Signal Generator N5182A	MY47070230	05/06/2020	Annual	05/06/2021
ROHDE&SCHWARZ	Signal Generator	SMB100A	07/13/2020	Annual	07/13/2021
Agilent	11636B/Power Divider	58698	02/26/2021	Annual	02/26/2022
TESTO	175-H1/Thermometer	44606559906	01/26/2021	Annual	01/26/2022
EMPOWER	RF Power Amplifier	1084	07/01/2020	Annual	07/01/2021
MICRO LAB	LP Filter / LA-15N	10453	10/05/2020	Annual	10/05/2021
WEINSCHEL	30dB Attenuator	CE6106	11/17/2020	Annual	11/17/2021
Apitech	Attenuator (3dB) 18B-03	1	06/04/2020	Annual	06/04/2021
Agilent	Attenuator (20dB) 33340C	18214	03/23/2021	Annual	03/23/2022
Agilent	Directional Bridge	3140A03878	06/08/2020	Annual	06/08/2021
HP	Network Analyzer 8753ES	JP39240221	01/11/2021	Annual	01/11/2022
Agilent	MXA Signal Analyzer N9020A	MY50510407	10/23/2020	Annual	10/23/2021

1. The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the DAK-12 to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

15. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/IEEE C95.1-2005.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

16. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.

[2] ANSI/IEEE C95.1 - 2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 300 GHz, New York: IEEE, Sept. 1992

[3] ANSI/IEEE C 95.1 - 2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, New York: IEEE, 2006

[4 ANSI/IEEE C95.3 - 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: December 2002.

[5] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2013, IEEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.

[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.

[19] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zòrich, Dosimetric Evaluation of the Cellular Phone.

[20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation and procedures – Part 1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), July. 2016..

[21] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) Mar. 2010.

[22] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio Communication Apparatus (All Frequency Band) Issue 5, March 2015.

[23] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Rage from 3 kHz – 300 GHz, 2009

[24] FCC SAR Test procedures for 2G-3G Devices, Mobile Hotspot and UMPC Device KDB 941225 D01.

[25] SAR Measurement Guidance for IEEE 802.11 transmitters, KDB 248227 D01v02r02

[26] SAR Evaluation of Handsets with Multiple Transmitters and Antennas KDB 648474 D03, D04.

[27] SAR Evaluation for Laptop, Notebook, Netbook and Tablet computers KDB 616217 D04.

[28] SAR Measurement and Reporting Requirements for 100 MHz – 6 GHz, KDB 865664 D01, D02.

[29] FCC General RF Exposure Guidance and SAR procedures for Dongles, KDB 447498 D01,D02.

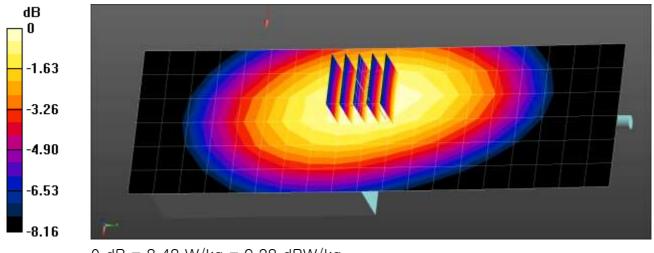
Report No HCT-SR-2105-FC002

Attachment 1. – SAR Test Plots

Test Laboratory:	HCT CO., LTD
EUT Type:	UHF TRANSCEIVER
Liquid Temperature:	22.2 °C
Ambient Temperature:	22.3 ℃
Test Date:	04/12/2021
Plot No.:	1

DUT: NX-1300-K4, NX-1300-K5, NX-1300-K6

Communication System: UID 0, 450 (0); Frequency: 469.95 MHz;Duty Cycle: 1:1 Medium parameters used: f = 470 MHz; σ = 0.866 S/m; ϵ_r = 42.473; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: ES3DV3 SN3302; ConvF(6.41, 6.41, 6.41) @ 469.95 MHz; Calibrated: 2020-05-29
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1629; Calibrated: 2020-08-11
- Phantom: ELI V4.0 (20deg probe tilt)
- Measurement SW: DASY52, Version 52.10 (4)

Hand-held to Face 5ch KNB-69L KRA-27M/Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 8.62 W/kg

Hand-held to Face 5ch KNB-69L KRA-27M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 97.62 V/m; Power Drift = -0.22 dB

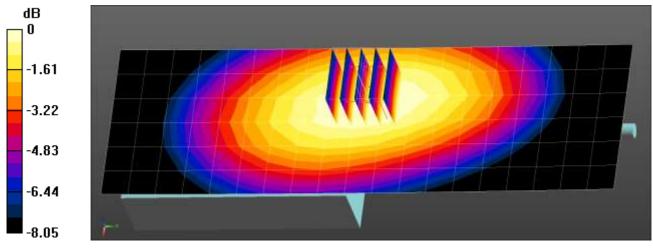
Reference Value = 97.62 V/m; Power Drift = -0.22 c Peak SAR (extrapolated) = 10.7 W/kg SAR(1 g) = 7.53 W/kg; SAR(10 g) = 5.49 W/kg Maximum value of SAR (measured) = 8.48 W/kg

0 dB = 8.48 W/kg = 9.28 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	UHF TRANSCEIVER
Liquid Temperature:	22.2 °C
Ambient Temperature:	22.3 ℃
Test Date:	04/12/2021
Plot No.:	2

DUT: NX-1300-K4, NX-1300-K5, NX-1300-K6

Communication System: UID 0, 450 (0); Frequency: 469.95 MHz;Duty Cycle: 1:1 Medium parameters used: f = 470 MHz; σ = 0.866 S/m; ϵ_r = 42.473; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: ES3DV3 SN3302; ConvF(6.41, 6.41, 6.41) @ 469.95 MHz; Calibrated: 2020-05-29
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1629; Calibrated: 2020-08-11
- Phantom: ELI V4.0 (20deg probe tilt)
- Measurement SW: DASY52, Version 52.10 (4)

Hand-held to Face 6ch KNB-29N KRA-27M/Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.91 W/kg

Hand-held to Face 6ch KNB-29N KRA-27M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

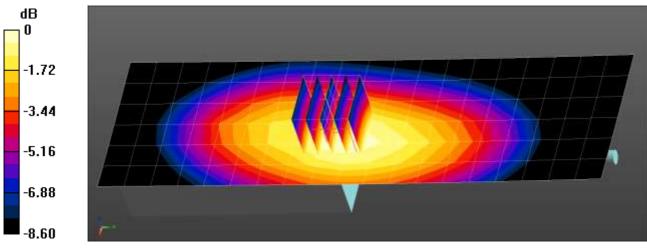
Reference Value = 97.13 V/m; Power Drift = -0.62 dB Peak SAR (extrapolated) = 9.71 W/kg SAR(1 g) = 6.88 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 7.71 W/kg

0 dB = 7.71 W/kg = 8.87 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	UHF TRANSCEIVER
Liquid Temperature:	20.5 ℃
Ambient Temperature:	20.6 °C
Test Date:	04/13/2021
Plot No.:	3

DUT: NX-1300-K4, NX-1300-K5, NX-1300-K6

Communication System: UID 0, 450 (0); Frequency: 454.05 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 454.05 MHz; σ = 0.825 S/m; ϵ_r = 43.229; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: ES3DV3 SN3302; ConvF(6.41, 6.41, 6.41) @ 454.05 MHz; Calibrated: 2020-05-29
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1629; Calibrated: 2020-08-11
- Phantom: ELI V4.0 (20deg probe tilt)
- Measurement SW: DASY52, Version 52.10 (4)

Body-worn Belt clip 4ch KNB-69L KRA-27M/Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.92 W/kg

Body-worn Belt clip 4ch KNB-69L KRA-27M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 109.7 V/m; Power Drift = -0.24 dB Peak SAR (extrapolated) = 13.1 W/kg SAR(1 g) = 8.83 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 10.1 W/kg

0 dB = 10.1 W/kg = 10.04 dBW/kg

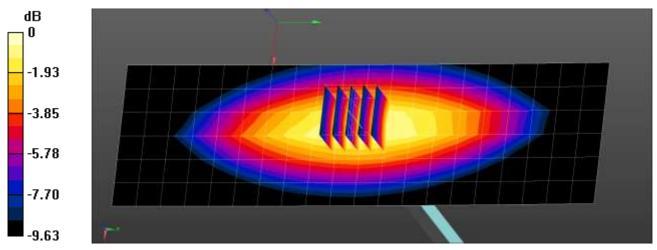
Attachment 2. – Dipole Verification Plots

■ Verification Data (450 Mbz Head)

Test Laboratory:	HCT CO., LTD
Input Power	100 mW
Liquid Temp:	22.2 °C
Test Date:	04/12/2021

DUT: Dipole 450 MHz D450V2; Type: D450V2;

Communication System: UID 0, CW (0); Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; σ = 0.852 S/m; ϵ_r = 43.16; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: ES3DV3 SN3302; ConvF(6.41, 6.41, 6.41) @ 450 MHz; Calibrated: 2020-05-29
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1629; Calibrated: 2020-08-11
- Phantom: ELI V4.0 (20deg probe tilt)
- Measurement SW: DASY52, Version 52.10 (4)

Dipole/450MHz Body Verification/Area Scan (7x21x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.270 W/kg

Dipole/450MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.37 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.385 W/kg SAR(1 g) = 0.245 W/kg; SAR(10 g) = 0.164 W/kg Maximum value of SAR (measured) = 0.286 W/kg

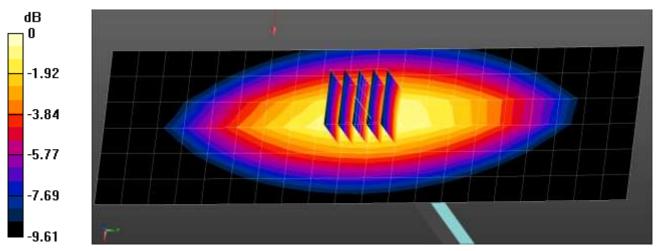
 $^{0 \}text{ dB} = 0.286 \text{ W/kg} = -5.44 \text{ dBW/kg}$

■ Verification Data (450 Mbz Head)

Test Laboratory:	HCT CO., LTD
Input Power	100 mW
Liquid Temp:	20.5 °C
Test Date:	04/13/2021

DUT: Dipole 450 MHz D450V2; Type: D450V2;

Communication System: UID 0, CW (0); Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; σ = 0.82 S/m; ϵ_r = 43.41; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: ES3DV3 SN3302; ConvF(6.41, 6.41, 6.41) @ 450 MHz; Calibrated: 2020-05-29
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1629; Calibrated: 2020-08-11
- Phantom: ELI V4.0 (20deg probe tilt)
- Measurement SW: DASY52, Version 52.10 (4)

Dipole/450MHz Body Verification/Area Scan (7x21x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.251 W/kg

Dipole/450MHz Body Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.08 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.358 W/kg SAR(1 g) = 0.228 W/kg; SAR(10 g) = 0.153 W/kg Maximum value of SAR (measured) = 0.265 W/kg

⁰ dB = 0.265 W/kg = -5.77 dBW/kg

Attachment 3. – SAR Tissue Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Ingredients	Frequency (MHz)
(% by weight)	450
Tissue Type	Head
Water	38.91 %
Salt (NaCl)	3.79 %
Sugar	56.93 %
HEC	0.25 %
Bactericide	0.12 %
Triton X-100	-
DGBE	-
Diethylene glycol hexyl ether	-

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose			
Water:	De-ionized, 16M resistivity	HEC:	Hydroxyethyl Cellulose			
DGBE:	99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]					
Triton X-100(ultra-pure):	Polyethylene glycol mono[4-	(1,1,3,3-tetrame	ethylbutyl)phenyl] ether			

Composition of the Tissue Equivalent Matter

Attachment 4. – SAR System Validation

Per FCC KCB 865664 D02v01r02, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2013 and FCC KDB 865664 D01v01r04. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR			Dro	be			Dielectric	Parameters	CWV	Validatior	ו	Modulati	on Vali	dation
-	Probe	Probe Type	Calib		Dipole		Measured Permittivity	Measured Conductivity	Sensitivity		Probe Isotro py	MOD.	Duty Factor	PAR
-	3302	ES3DV3	Head	450	1007	2021-04-07	43.5	0.87	PASS	PASS	PASS	N/A	N/A	N/A

SAR System Validation Summary 1g

Note;

All measurement were performed using probes calibrated for CW signal only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664 D01v01r04.

Attachment 5. – Probe Calibration Data

	ich, Switzerland		Servizio svizzero di taratura Swiss Calibration Service
coredited by the Swiss Accredite the Swiss Accreditation Servi ultilateral Agreement for the	ice is one of the signatories	to the EA	reditation No.: SCS 0108
lient KCTL (Dymst	ec)	Certificate No:	ES3-3302_May20
CALIBRATION	CEDTIEICATE	A DESCRIPTION OF A DESCRIPTION OF	
ALIBRATION	CERTIFICATE		
Object	ES3DV3 - SN:330	2	
Calibration procedure(s)		A CAL-12.v9, QA CAL-23.v5, QA ure for dosimetric E-field probes	CAL-25.v7
Calibration date:	May 29, 2020		10000
	김 집 이 가지 않는 것 같아. 집 것 같아. 집 집 같이 많이 많이 많이 했다.	el standants, which realize the physical units bability are given on the following pages and	
All calibrations have been cond	lucted in the closed laboratory	facility: environment temperature (22 ± 3)*C a	and humidity < 70%.
	Maria ang ing taong ang ing ing ing ing ing ing ing ing ing i	facility; environment temperature (22 ± 3)°C a	and humidity < 70%.
Calibration Equipment used (M Primary Standards	STE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M Primary Standards Power meter NRP	STE critical for calibration)	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101)	Scheduled Calibration Apr-21
alibration Equipment used (M Primary Standards Power mater NRP Power sensor NRP-Z01	8TE critical for calibration) ID SN: 104778 SN: 103244	Cal Data (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100)	Scheduled Calibration Apr.21 Apr.21
Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-201 Power sensor NRP-201	8TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101)	Scheduled Calibration Apr-21 Apr-21 Apr-21
Calibration Equipment used (M Primary Standards Power mater NRP Power sensor NRP-201 Power sensor NRP-201 Reference 20 dB Attenuator	8TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
Calibration Equipment used (M Primary Standards Power mater NRP Power sensor NRP-201 Power sensor NRP-201 Reference 20 dB Attenuator DAE4	8TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 27-Dec-19 (No. DAE4-660_Dec19)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20
Calibration Equipment used (M Primary Standards Power moter NRP Power sensor NRP-201 Power sensor NRP-201 Reference 20 dB Attenuator DAE4	8TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
Calibration Equipment used (M Primary Standards Power matar NRP Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES30V2	8TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 600 SN: 3013	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 27-Dec-19 (No. DAE4-680_Dec19) 31-Dec-19 (No. ES3-3013_Dec19)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20
Calibration Equipment used (M Primary Standards Power mater NRP Power sensor NRP-201 Power sensor NRP-201 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards	8TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 860 SN: 3013 ID	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03106) 27-Dec-19 (No. DAE4-660_Dec19) 31-Dec-19 (No. ES3-3013_Dec19) Check Date (in house)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check
Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-201 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198	8TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: G041293874	Cai Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 27-Dec-19 (No. DAE4-660_Dec19) 31-Dec-19 (No. ES3-3013_Dec19) Check Date (in house) 06-Apr-16 (in house check Jun-18)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Jun-20
Calibration Equipment used (M Primary Standards Power mater NRP Power sensor NRP-Z01 Power sensor NRP-Z01 Reference 20 dB Attenuator DAE4 Reference Probe ES30V2 Secondary Standards Power meter E44198 Power sensor E4412A	8TE critical for calibration) SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41283874 SN: MY41498067	Cai Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 27-Dec-19 (No. 217-03106) 27-Dec-19 (No. 253-3013, Dec19) 31-Dec-19 (No. ES3-3013, Dec19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	Scheduled Calibration Apr:21 Apr:21 Apr:21 Apr:21 Dec-21 Dec-20 Scheduled Check In house check: Jun-20 In house check: Jun-20
Calibration Equipment used (M Primary Standards Power matar NRP Power sensor NRP-201 Power sensor NRP-201 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E44198 Power sensor E4412A	ID SN: 104778 SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 05245 SN: 660 SN: 3013 ID ID SN: 6841293874 SN: G841293874 SN: 9N: 900110210	Cai Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03108) 27-Dec-19 (No. 217-03108) 27-Dec-19 (No. ES3-3013_Dec19) 31-Dec-19 (No. ES3-3013_Dec19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check Jun-20 In house check Jun-20 In house check Jun-20
Calibration Equipment used (M Primary Standards Power matar NRP Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES30V2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ATE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 3013 ID SN: 3013 ID SN: 660 SN: 3013 ID SN: 00110210 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 27-Dec-19 (No. 217-03106) 27-Dec-19 (No. 253-3013, Dec19) 31-Dec-19 (No. ES3-3013, Dec19) Check Date (In house) 06-Apr-16 (In house check Jun-18) 08-Apr-16 (In house check Jun-18) 08-Apr-16 (In house check Jun-18) 04-Aug-99 (In house check Jun-18)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Checis In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-201 Reference 20 dB Attenuator DAE4 Reference Probe ES30V2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: 104778 SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 05245 SN: 660 SN: 3013 ID ID SN: 6841293874 SN: G841293874 SN: 9N: 900110210	Cai Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03108) 27-Dec-19 (No. 217-03108) 27-Dec-19 (No. ES3-3013_Dec19) 31-Dec-19 (No. ES3-3013_Dec19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check Jun-20 In house check Jun-20 In house check Jun-20
Calibration Equipment used (M Primary Standards Power matar NRP Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES30V2 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ATE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 3013 ID SN: 3013 ID SN: 660 SN: 3013 ID SN: 00110210 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 27-Dec-19 (No. 217-03106) 27-Dec-19 (No. 253-3013, Dec19) 31-Dec-19 (No. ES3-3013, Dec19) Check Date (In house) 06-Apr-16 (In house check Jun-18) 08-Apr-16 (In house check Jun-18) 08-Apr-16 (In house check Jun-18) 04-Aug-99 (In house check Jun-18)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Jun-20 In house check: Jun-20
Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-201 Power sensor NRP-201 Reference 20 dB Attenuator DAE4 Reference Probe ES30V2 Secondary Standards Power meter E44198 Power sensor E4412A RF generator HP 8646C Network Analyzer E8388A	8TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: G841293874 SN: MY41498067 SN: WY41498067 SN: 000110210 SN: US340842U01700 SN: US41080477	Cai Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03106) 27-Dec-19 (No. 217-03106) 27-Dec-19 (No. 247-03106) 27-Dec-19 (No. 253-3013, Dec19) 31-Dec-19 (No. 253-3013, Dec19) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-96 (in house check Jun-18) 31-Mar-14 (in house check Oct-19)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Checis In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Calibration Equipment used (M Primary Standards Power motar NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2	ID SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 002465 SN: 3013 ID SN: 6841293874 SN: WY41498087 SN: 000110210 SN: US542U01700 SN: US41080477 Name	Cai Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 27-Dec-19 (No. 217-03106) 27-Dec-19 (No. ES3-3013, Dec19) 31-Dec-19 (No. ES3-3013, Dec19) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Jun-18) 31-Mar-14 (in house check Oct-19) Function	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Jun-20 In house check: Jun-20

Certificate No: ES3-3302_May20

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst
- Service suisse d'étalonnage C
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glussaly.	
TSL.	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	o rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis.

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, 'IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-

- beld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
 c) IEC 62209-2. "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices
- used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)*, March 2010
- d) KDB 865664, 'SAR Measurement Requirements for 100 MHz to 6 GHz'

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 3 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3302_May20

Page 2 of 9

ES3DV3 - SN:3302

May 29, 2020

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3302

Basic Calibration Parameters

10.00 million and a second	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)2) ^A	1.25	1.35	1.21	± 10.1 %
DCP (mV)"	102.6	101.6	104.9	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Max dev.	Unc ^b (k=2)
0	CW	X	0.0	0.0	1.0	0.00	210.3	± 3.5 %	±4.7 %
		Y	0.0	0.0	1.0		224.7		
		Z	0.0	0.0	1.0	1	213.2	5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁶ The uncertainties of Norm X,Y,Z do not affect the E² field uncertainty inside TSL (see Page 5).
⁶ Numerical linearization parameter: uncertainty not required.
⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3302_May20

Page 3 of 9

ES3DV3-- SN:3302

May 29, 2020

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3302

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (")	74.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3302_May20

Page 4 of 9

ES3DV3-SN:3302

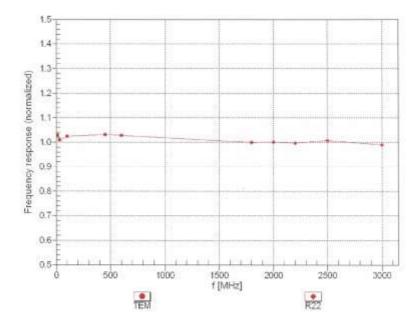
May 29, 2020

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3302

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)*	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^d (mm)	Unc (k=2)
300	45.3	0.87	6.75	6.75	6.75	0.11	1.30	± 13.3 %
450	43.5	0.87	6.41	6.41	6.41	0.17	1.45	± 13.3 %
1640	40.2	1.31	5.08	5.08	5.08	0.44	1.52	± 12.0 %
2000	40.0	1.40	4.81	4.81	4.81	0.50	1.45	± 12.0 %

⁵ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at autoration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessed at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity are spectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ⁶ At frequencies below 3 GHz, the validity of tissue parameters (and o) can be relaxed to ± 10%. If figuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters. It and oj is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target fissue parameters.

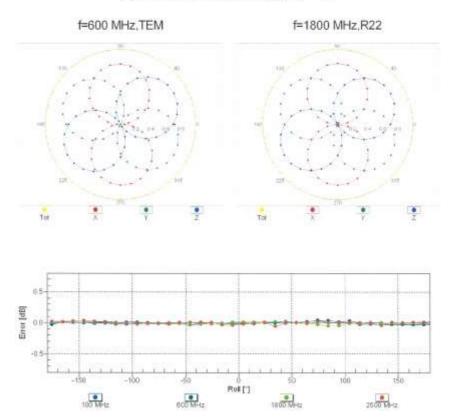

Certificate No: ES3-3302_May20

Page 5 of 9

ES3DV3-- SN:3302

May 29, 2020

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Page 6 of 9

May 29, 2020

ES3DV3- SN:3302

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

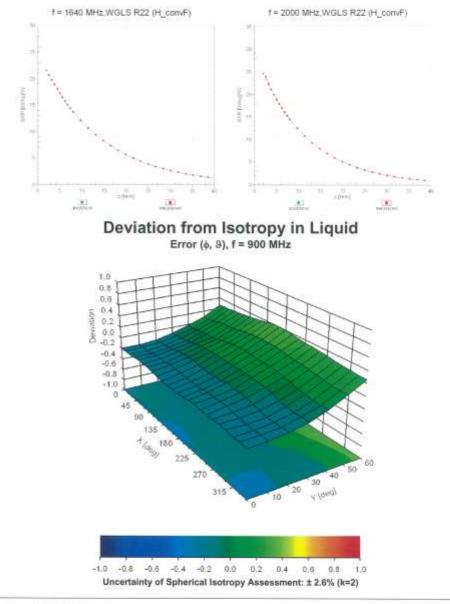
Page 7 of 9

May 29, 2020

ES3DV3- SN:3302

108 105 Input Signal [uv] 104 10 107 10⁰ SAR [mW/cm3] 103 10-2 10-1 101 102 101 not compensated compensated 2 Error [dB] 0 à -2 10-1 SAR [mW/cm3] 10-2 10-1 102 104 not compensated compensated Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Certificate No: ES3-3302_May20

Page 8 of 9

ES3DV3-- SN:3302

May 29, 2020

Conversion Factor Assessment

Certificate No: ES3-3302_May20

Page 9 of 9

Attachment 6. – Dipole Calibration Data

			Swiss Calibration Service
ccredited by the Swiss Accreditation he Swiss Accreditation Service I fultilateral Agreement for the rec	is one of the signatorie	s to the EA	ccreditation No.: SCS 0108
lient HCT (Dymstec)		Certificate No	: D450V2-1007_May20
CALIBRATION C	ERTIFICATE		Contraction and the second
Object	D450V2 - SN: 10	07	Instanting of the second
Calibration procedure(s)	QA CAL-15.v9 Calibration Proce	dure for SAR Validation Sources	below 700 MHz
		곌말	당자 화인자
		78 2	en this
Calibration date:	May 22, 2020	111/191 505	121902 FT I HEM
		11 4 2000	16-16 2020 16 16
		y facility: environment temperature (22 \pm 3)*(C and humidity < 70%.
Calibration Equipment used (M&TE			
Calibration Equipment used (M&TE Primary Standards	E critical for calibration)	y facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101)	C and humidity < 70%. Scheduled Calibration Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291	E critical for calibration) ID # SN: 104778 SN: 103244	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100)	Scheduled Calibration
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101)	Scheduled Calibration Apr-21 Apr-21 Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 02552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 31-Mar-20 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Jun-20
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 03245 SN: C2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID #	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. DAE4-654_Jun19) 27-Jun-19 (No. DAE4-654_Jun19)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Jun-20 Scheduled Check
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 310982 / 06327 SN: 854 ID # SN: GB41293874	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house) 06-Apr-16 (in house check Jun-18)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Jun-20 Scheduled Check In house check: Jun-20
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: GP41293874 SN: MY41498087	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03104) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No.	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 02552 (20x) SN: 310962 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03104) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No.	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: GP41293874 SN: MY41498087	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03104) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No.	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 02552 (20x) SN: 310982 / 06527 SN: 3877 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642001700 SN: US41080477	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. 217-03104) 31-Dec-19 (No. 2X3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-59 (in house check Jun-18) 31-Mar-14 (in house check Oct-19)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 03245 SN: C2552 (20x) SN: 310962 / 06327 SN: 3877 SN: 3877 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03105) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. 217-03104) 31-Dec-19 (No. 217-03104) 27-Jun-19 (No. 217-03104) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house) 06-Apr-16 (in house check Jun-18)	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Baference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Natwork Analyzer Agitent E8358A	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-19) Function	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20
Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor E44198 Power sensor E4412A RF generator HP 8648C Nstwork Analyzer Agitent E8358A	E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-19) Function	Scheduled Calibration Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20

Certificate No: D450V2-1007_May20

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V2-1007_May20

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4	
Extrapolation	Advanced Extrapolation		
Phantom	Flat Phantom V4.4	Shell thickness: 6 ± 0.2 mm	
Distance Dipole Center - TSL	15 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	450 MHz ± 1 MHz	-	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.4 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.76 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.796 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.18 W/kg ± 17.6 % (k=2)

Certificate No: D450V2-1007_May20

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.4 Ω - 8.6 jΩ	
Return Loss	- 20.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.390 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

- 1		2.2.2.1.2.2.2.2.1
4	Manufactured by	SPEAG

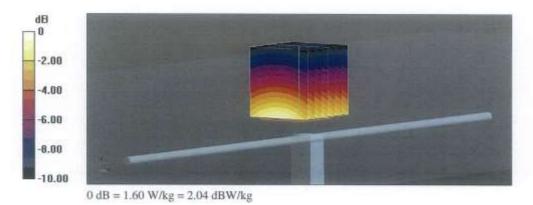
Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 22.05.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN: 1007


Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.87$ S/m; $\epsilon_r = 43.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.58, 10.58, 10.58) @ 450 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27,06,2019
- Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 44.12 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.84 W/kg SAR(1 g) = 1.19 W/kg; SAR(10 g) = 0.796 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (>30 mm) Ratio of SAR at M2 to SAR at M1 = 64.9% Maximum value of SAR (measured) = 1.60 W/kg

Certificate No: D450V2-1007_May20

Page 5 of 6

Impedance Measurement Plot for Head TSL

				F	4	X	EX	A		00006 41 00006	081 p	F	-8. 95.9	5.360 (6092 (336 m) 53.421
				F	7	X	K	Ê	J					
	Ch 1 Awg = out 250.000 M	20 4Hz -	-	-	-	_			150	looor		_	-	50.000 M
10.00	Ch 1 Avg = art 250.000 b	20 4Hz			T	_	~	1	450.(0000		_	-	so.ooo м 360 d
10.00 5.00 0.00	ant 250.000 M	20 4Hz				_	~	1	450.(doooc	00 IV H	_	-	-
10.00 5.00	ant 250.000 M	20 4H2 -	-				2	1	450.(0000		_	-	-
10.00 5.00 0.00 5.00 -10.00 -15.00	ant 250.000 M	20 4Hz					,		450.(0000	00 IV H	_	-	-
10.00 5.00 0.00 5.00 10.00 15.00 20.00	ant 250.000 M	20 4Hz -					,		450.(0000		_	-	-
10.00 5.00 5.00 5.00 -10.00 -15.00 20.00	ant 250.000 M	20 4Hz					, , , ,		450.0	d0000	00 MH	_	-	-
10.00 5.00 5.00 5.00 -10.00 -15.00 -20.00 -25.00 -30.00	ant 250.000 M	20 4Hz —					,	2	450.0	0000		_	-	-
10.00 5.00 5.00 5.00 -10.00 -15.00 20.00	ant 250.000 M	AH2					,	2	450.0	0000		_	-	-

Certificate No: D450V2-1007_May20

Page 6 of 6