

TEST REPORT

REGULATION: FCC Part 2, 90

Applicant	Testing Laboratory		
JVC KENWOOD Corporation	Intertek Japan K. K. Kashima Laboratory		
1-16-2, Hakusan, Midori-ku, Yokohama-shi	3-2, Sunayama, Kamisu-shi, Ibaraki-ken		
Kanagawa, 226-8525 Japan	314-0255 Japan		
Tel.: +81 45 939 6254 Fax.: +81 45 939 6261	Tel.: +81 479 40 1097		
	Intertek Japan K. K. Tochigi Laboratory		
	870 Nakaawano, Kanuma-shi, Tochigi-ken		
	322-0306 Japan		
	Tel.: +81 289 86 7121		

Equipment type	VHF DIGITAL TRANSCEIVER
Trademark	KENWOOD
Model(s)	NX-740-M, NX-740H-K, NX-740HV-K
Serial No.	V14
FCC ID	K44452600
Test Result	Complied
Report Number	13120342JKA-002
Report issue date	January 27, 2014

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Approved by

Tested by

Hideaki Kosemura

Koichi Wagatsuma

, Wagatsuma

[Assistant Manager]

[Engneer]

In Accordance with FCC Rules and Regulations, Volume II, Part 2 and 90

Sub-part 2.1033

(c)(1) Applicant and Manufacture Information

APPLICANT

Company : JVC KENWOOD Corporation

Address : 1-16-2, Hakusan, Midori-ku, Yokohama-shi

Kanagawa, 226-8525 Japan

Contact Person : Tamaki Shimamura

Manager, Communications Equipment Division

MANUFACTURER

Company : JVC KENWOOD Corporation

Address : 1-16-2, Hakusan, Midori-ku, Yokohama-shi

Kanagawa, 226-8525 Japan

(c)(2) FCC ID

FCC ID : K44452600

Model number : NX-740-M, NX-740H-K, NX-740HV-K

Serial number : V14

(c)(3) Instruction Manual(S)

Instruction manual(s) : Please refer to attached Exhibits F

(c)(4) Type of Emission

Emission Designation : 11K0F3E(Narrow)

4K00F1E(Very Narrow) / 4K00F1D(Very Narrow) / 4K00F7W(Very Narrow)

4K00F2D(Very Narrow)

(c)(5) Frequency range

Frequency Range : 150 to 174 MHz

(c)(6) Power Rating

Output Power : 5 to 50 W

Type : Continuously Variable

(c)(7) Maximum Power Rating

Output Power : 50W

(c)(8): Voltages & currents in all elements in final RF stage,

including final transistor or solid-state device

Collector Current, A : 15.0 A Maximum

Collector Voltage, Vdc : 13.6 Vdc Supply Voltage, Vdc : 13.6 Vdc

Other Information

Number of Channel : 32 channels / 2 zone Maximum Deviation : ± 2.5 kHz (11K0F3E)

Frequency Stability : 2.0 ppm

:

Antenna Impedance : 50 Ω Norminal

Note

TABLE OF CONTENTS

			Page
SECTION	1. GENEF	RAL INFORMATION	4
SECTION	2. SUMM	ARY OF TEST RESULT	5
SECTION	3. TEST A	AND MEASUREMENT DATA	6
SECTION	4. INFORI	MATION ABOUT EUT AND SUPPORT EQUIPMENT(S)	7
SECTION	5. SUPPO	ORT EQUIPMENT	8
SECTION	6. USED (CABLE(S)	9
SECTION	7. TEST C	CONFIGURATION	10
SECTION	8. OPERA	ATING CONDITION	11
SECTION	9. MEASU	JREMENT UNCERTAINTY	12
SECTION	10. TEST	DATA	
	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	Carrier Output Power (Conducted) Unwanted Emissions (Transmitter Conducted) Field Strength of Spurious Radiation Emission Masks (Occupied Bandwidth) Transient Frequency Behavior Audio Frequency Response / Audio Low Pass Filter (Voice Input) Modulation Limiting Frequency Stability (Temperature Variation) Frequency Stability (Voltage Variation) Necessary Bandwidth and Emission Bandwidth	13 15 18 22 28 33 36 39 42 44
APPENDIX	(PHOTOGRAPHS	

SECTION 1. GENERAL INFORMATION

TEST PERFORMED

Location	Kashima No.1 Test Site and Tochigi No.2 Test Site			
EUT Received	January 08, 2014			
Date of Test	January 09, 2014 to January 23, 2014			
Standard Applied	FCC Part 2, 90			
Measurement Method	ANSI/TIA-603-D-2010			
Deviation from Standard(s)	Not applicable			

QUALIFICATIONS OF TESTING LABORATORY (Kashima Lab.)

ACCREDITATION	SCOPE	LAB. CODE	Remarks
NVLAP	EMC Testing	100290-0	USA
VLAC	EMC Testing	VLAC-008-1	JAPAN
BSMI	EMC Testing	SL2-IN-E-6008	TAIWAN
FILING			
VCCI	EMC Testing	A-0126	JAPAN
FCC	EMC Testing	Designation Number:JP0008	
IC	EMC Testing	IC-2042K-1, IC-2042K-3, IC-2042Q-12	CANADA
CB-Scheme	EMC Testing	TL222	IECEE
SAUDI ARABIA	EMC Testing	N/A	

QUALIFICATIONS OF TESTING LABORATORY (Tochigi Lab.)

<u> </u>	0 0	(10011191 = 4401)	
ACCREDITATION	SCOPE	LAB. CODE	Remarks
VLAC	EMC Testing	VLAC-008-5	JAPAN
BSMI	EMC Testing	SL2-IN-E-6017, SL2-A-E-6017	TAIWAN
FILING			
VCCI	EMC Testing	A-0129	JAPAN
FCC	EMC Testing	Designation Number:JP0011	USA
IC	EMC Testing	IC-2042P-1, IC-2042P-2	CANADA
SAUDI ARABIA	EMC Testing	N/A	

ABBREVIATIONS

EUT	Equipment Under Test	DoC	Declaration of Conformity
AMN	Artificial Mains Network	ISN	Impedance Stabilization Network
LISN	Line Impedance Stabilization Network	Q-P	Quasi-peak
AMP	Amplifier	AVG	Average
ATT	Attenuator	PK	Peak
ANT	Antenna	Cal	Calibration
BBA	Broadband Antenna	N/A	Not applicable or Not available
DIP	Dipole Antenna	LCD	Liquid-Crystal Display
AE	Associated Equipment	4LEVEL FSK	4LEVEL Frequency Shift Key
GMSK	Gaussian Maximum Shift Key	CW ID	Continuously Repeating bit stream
FM	Frequency Modulation	C4FM	Constant envelope 4 Level FM
PTT	Push to Talk	AFC	Automatic frequency control

SECTION 2. SUMMARY OF TEST RESULT

FC		TEST ITEM	TEST ITEIRESULTS
Pa			
	046 -	Carrier Output Power (Conducted)	PASS
(a)			
2.1	051 90.210	Unwanted Emissions (Transmitter Conducted)	PASS
2.1	053 90.210	Field Strength of Spurious Radiation	PASS
(a)			
2.1	049 90.210	Emission Masks (Occupied Bandwidth)	PASS
(c)	(1)		
-	90.214	Transient Frequency Behavior	PASS
2.1	047 -	Audio Low Pass Filter (Voice Input)	PASS
(a)		` ' '	
2.1	047 -	Audio Frequency Response	PASS
(a)			
2.1	047 -	Modulation Limiting	PASS
(b)		-	
2.1	055 90.213	Frequency Stability (Temperature Variation)	PASS
(a)	(1) (a)		
2.1	055 90.213	Frequency Stability (Voltage Variation)	PASS
(d)	(1) (a)		
-	90.203	Certification required (FCC Part 90.203(j)(3))	Complied
	(j)(3)		
_	90.203	Certification required (FCC Part 90.203(j)(4))	Complied
	(j)(4)		
-	90.203	Certification required (FCC Part 90.203(j)(5))	Complied
	(j)(5)	•	-
_	90.203	Certification required (FCC Part 90.203(e))	Complied
	(e)	-1 (

Limitation on Results

The test result of this report is effective equipment under test itself and under the test configuration descried on the report.

This test report dose not assure that whether the test result taken in other testing laboratory is compatible or reproducible to the test result on this report or not.

Note:

As for the FCC Part 15 Subport B-Unintentional Radiators, the EUT has been measured and declared as Verification by JVC Kenwood Corporation.

SECTION 3. TEST AND MEASUREMENT DATA

All test and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J and Industry Canada as the following individual parts

FCC Rule	Test Item	Tested
Part 21	Domestic Public Fixed radio Services	N.A.
Part 22	Non Cellular	N.A.
Part 22	Public Mobile Services	N.A.
Part 22	Subpart H - Cellular Radiotelephone Service	N.A.
Part 22	Alternative technologies and auxiliary service	N.A.
Part 23	International Fixed Public Radiocommunication service	N.A.
Part 24	Personal Communications Services	N.A.
Part 74	Experimental Radio Auxiliary , Special Broadcast and Other Program Distributional Services	N.A.
Part 80	Stations in the Maritime Services	N.A.
Part 80	Subpart E - general Technical Standards	N.A.
Part 80	Subpart F - Equipment Authorization for Compulsory Ships	N.A.
Part 80	Subpart K - Private Coast Stations and Marine Utility Stations	N.A.
Part 80	Subpart S - Compulsory radiotelephone Installations for Small Passenger Boats	N.A.
Part 80	Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes	N.A.
Part 80	Subpart U - Radiotelephone Installations Required by the Bridge-to- Bridge Act	N.A.
Part 80	Subpart V - Emergency Position Indicating Radiobeacons (EPIRB'S)	N.A.
Part 80	Subpart W - Global Maritime Distress and Safety System (GMDSS)	N.A.
Part 80	Subpart X - Voluntary Radio Installations	
Part 87	Aviation Services	N.A.
Part 90	Private Land Mobile radio Services	YES
Part 94	Private Operational - Fixed Microwave Service	N.A.
Part 95	Subpart A - General Mobile radio Service	N.A.
Part 95	Subpart C - Radio Control (R/C) radio Service	N.A.
Part 95	Subpart D - Citizens Band (CB) Radio Service	N.A.
Part 95	Subpart E -Family radio Service	N.A.
Part 95	Subpart F -Interactive Video and Data Service (IVDS)	N.A.
Part 97	Amateur Radio Service	N.A.
Part 101	Fixed Microwave Service	N.A.

IC Rule	Test Item	Tested
RSS-119	Radio Ttansmitters and Receivers Operating in the Land Mobile and Fixe Services in the Frequency Range 27.4-960 MHz	ed N.A.
RSS-134 RSS-Gen	900MHz Narrowband Personal Communication Service General Requirements and Information for the Certification of Radio Apparatus	N.A. N.A.

SECTION 4. INFORMATION ABOUT EUT AND SUPPORT EQUIPMENT(S)

4.1 List of System Configuration

Symbol	Item	Model No.	Serial No.	Manufacture	Remarks
А	VHF DIGITAL TRANSCEIVER	NX-740-M NX-740H-K NX-740HV-K	V14	JVC KENWOOD Corporation	EUT
Power Ra	tings of EUT :	DC 13.6 V +/- 1	5%	15.0 A Maximum	
Power Supply :		DC 13.6 V +/- 15	5 %		
Condition of Equipment		Proto type			
Туре		Mobile type			
Suppression Devices		No Modifications by the laboratory were made to the device			

4.2 Port(s)/Connector(s)

Port Name	Connector Type	Connector Pin	Remarks
ACC	D-sub	15 pin	
External Speaker	3.5φ	2 pin	
Antenna	M	2 pin	
Microphone	RJ-45	8 pin	

4.3 Highest Frequency Oscillator(s)/Crystal(s)

Base Clock	ock Operating Frequency		Remarks
223.95 MHz	223.95 MHz	TXRX UNIT	

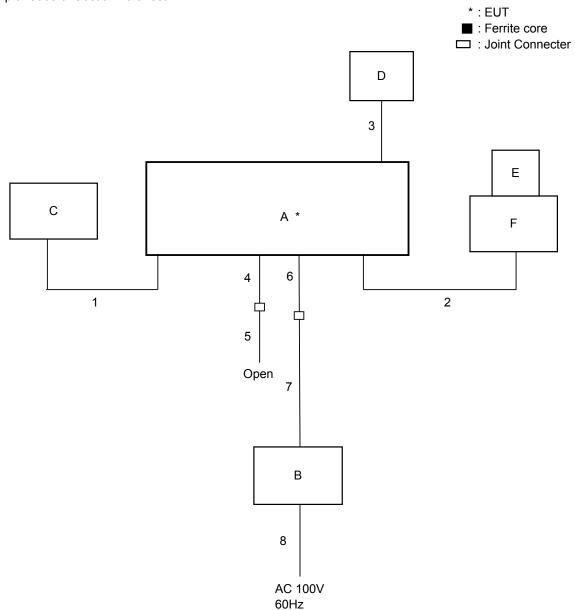
SECTION 5. SUPPORT EQUIPMENT

The EUT was supported by the following equipment during the test.

Symbol	Item	Model No.	Serial No.	Manufacture	FCC ID
В	DC Power Supply (1)	GZV4000	90290931	Daiichi Denpa Kogyo	N/A
С	External Speaker	KES-3	CGS-5064	JVC KENWOOD	N/A
D	Microphone JIG	None	None	JVC KENWOOD	N/A
E	Dummy Load	CT-01	F02000014	TME	N/A
F	Attenuator (30dB)	WA-29-30-34	8924	Weinschel	N/A
G	DC Power Supply (2)	GP035-20R	1014199060	TAKASAGO	N/A
Supplied Po	wer:				
B,G	AC 100V,60Hz				

SECTION 6. USED CABLE(S)

The following cable(s) was used for the test.


No.	Name	Length (m)	Shield	Connector	Ferrite core
1	Speaker cable	2.90	No	Plastic	
2	coaxial cable	1.00	Yes	Metal	
3	Mic. Cable	0.55	No	Plastic	
4	KCT-60 (Connection cable)	0.30	No	Plastic	
5	KCT-18 (Ignition sense cable)	3.10	No	Plastic	
6	DC cable	0.25	No	Plastic	
7	DC cable	3.00	No	Plastic	
8	Power cable for DC Power Supply (1)	1.40	No	-	
9	Power cable for DC Power Supply (2)	1.80	No	-	

FCC ID: K44452600

SECTION 7. TEST CONFIGURATION

Details of Configuration and Connection

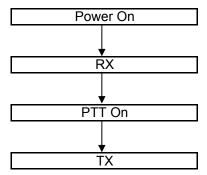
Example: Case of Section 10.3Test

FCC ID: K44452600

SECTION 8. OPERATING CONDITION

The EUT was operated under the following condition during the test.

8.1 Operating Condition


The test was carried out under Transmit mode. (FCC: 150.05MHz, 162.05MHz, 173.95MHz)

(High Power: 50W, Low Power: 5 W)

EUT was examined in the operating conditions that had maximum emissions.

8.2 Operating Flow [Transmit mode]

Following operations were performed continuously.

FCC ID :K44452600

SECTION 9. MEASUREMENT UNCERTAINTY

Carrier Output Power (Canduated)	lu	Utia-603-	d
Carrier Output Power (Conducted)	Ulab		
	+/- 0.29dB ($k = 2$)	+/- 0.59	dB
Unwanted Emissions (Transmitter Conducted)			
	+/-2.19 dB (k = 2)	+/- 1.1	dB
Field Strength of Spurious Radiation			
	+/-4.89dB ($k = 2$)	+/- 3.3	dB
Emission Masks (Occupied Bandwidth)			
	+/- 0.5dB ($k = 2$)	+/- 2.1	dB
Transient Frequency Behavior			
	+/- 1.10% (k = 2)	+/- 21.6	%
Audio Low Pass Filter (Voice Input)			
	+/- 0.1dB $(k = 2)$	+/- 1.2	dB
Audio Frequency Response			
	+/- 0.1dB $(k = 2)$	+/- 1.2	dB
Modulation Limiting			
-	+/- 1% (<i>k</i> = 2)	+/- 1	%
Frequency Stability (Temperature Variation)			
	+/- 10.1Hz (k=2)	+/-34.2	Hz
Frequency Stability (Voltage Variation)			
	+/- 10.1Hz (k=2)	+/-34.2	Hz

FCC ID :K44452600

SECTION 10. TEST DATA

10.1 Carrier Output Power (Conducted)

REGULATIONS : FCC Part 2 Section 1046 (a)

TEST METHOD/GUIDE : ANSI/TIA-603-D Section 2.2.1.2

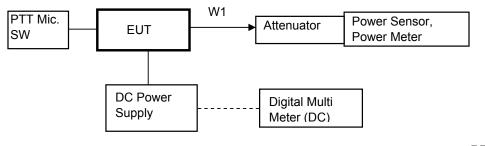
Test Procedure

1 The EUT and test equipment were set up as shown on the following page.

- The EUT was conducted to a resistive coaxial attenuator of normal load impedance.

 RF Power (dBm) = Power Meter reading (dBm) + Attenuator Loss (dB) + Cable Loss (dB)

 RF Power (W) = 10^(RF Power (dBm)/10)/1000
- 3 Modulate the transmitter with a 2.5 kHz sine wave at an input Level of 16 dB greater than that necessary to produce 50 % of rated system deviation.(Only as for the test of RSS)


Measuring Equipments

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Power Meter	Hewlett Packard	E4418B	GB38410265	Jun. 05, 13	Jun. 30, 14
2	Power Sensor	Hewlett Packard	8482A	US37292237	Jun. 05, 13	Jun. 30, 14
3	Attenuator (20dB)	Aeroflex/Wenshel	66-20-34	BY4357	May 29, 13	May 31, 14
4	Attenuator (30dB)	Weinschel	WA-29-30-34	8924	May 29, 13	May 31, 14
5	Digital Multi Meter	FLUKE	8846A	9642018	May 31, 13	May 31, 14
5	DC Power Supply	Daiichi denpa kogyo	GZV4000	90290931	None	None
6	JIG	HP	EliteBook 2560p	CNU2171Z7P	None	None
			•			

Measuring Cables

No.	Cable	Manufacturer	Model No.	Serial No.	Cal Date	Cal Exp.
W1	Coaxial Cable	Suhner	SUCOFLEX104	F0000017	Nov. 21, 13	Nov. 30, 14

Measuring Equipment Configuration

FCC ID :K44452600

Test Results

Test date	Jan. 09, 2014		
Location	Kashima No.1	Test Site	
temperature	24.0	[degree C]	
Humidity Variation	52.0	[%]	
Atmospheric Pressure	99.9	[kPa]	
Test Engineer	Koichi Wagatsı	uma	

Test was carried out for all the Authorized Bandwidth. State the worst case (below).

No.	Frequency	Band	Setting	RF Power
	(MHz)			(W)
1	150.05	Low	High Power	50.00
2	162.05	Middle	High Power	50.00
3	173.95	High	High Power	50.00
4	150.05	Low	Low Power	5.00
5	162.05	Middle	Low Power	5.00
6	173.95	High	Low Power	5.00

RF Power: Peak reading

10.2 Unwanted Emissions (Transmitter Conducted)

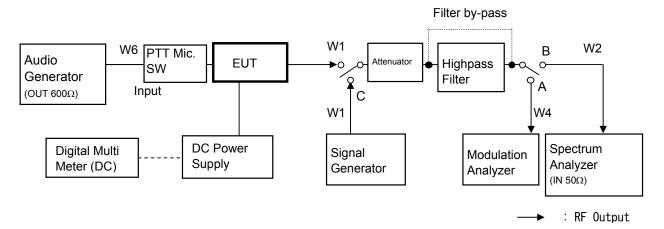
REGULATIONS : FCC Part 2 Section 1051, Part 90 Section 210

TEST METHOD/GUIDE : ANSI/TIA-603-D Section 2.2.13.2

Test Procedure

- 1 The EUT and test equipment were set up as shown on the following page.
- 2 Modulate the transmitter with a 2.5 kHz sine wave at an input Level of 16 dB greater than that than that necessary to produce 50 % of rated system deviation.
- 3 Adjust the spectrum analyzer for the following setting:
 - a) RBW: 10 kHz (< 1 GHz), 1 MHz (> 1 GHz).
 - b) VBW: 30 kHz (< 1 GHz), 3 MHz (> 1 GHz).
 - c) Sweep Speed: 50 msec.
 - d) Detector mode: Average power (FM Modulation), Positive peak with peak hold (Digital Modulation)
- 4 The emissions were measured for the worst case as follows:
 - a): within a band of frequencies defined by the carrier frequency plus and minus one channel.
 - b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.

Measuring Equipments


No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Attenuator (20dB)	Aeroflex/Wenshel	66-20-34	BY4357	May 29, 13	May 31, 14
2	Attenuator (30dB)	Weinschel	WA-29-30-34	8924	May 29, 13	May 31, 14
3	Highpass Filter	Anritsu	MP526B	6200220636	Nov. 20, 13	Nov. 30, 14
4	Audio Generator	Anritsu	MG443B	M70150	Apr. 05, 13	Apr. 30, 14
5	Modulation Analyzer	Hewlett Packard	8901B	2806A01669	Jul. 26, 13	Jul. 31, 14
6	Signal Generator	Rohde&Schwarz	SMB 100A	105709	Jan. 11, 13	Jan. 31, 14
7	Spectrum Analyzer	Agilent	E4407B	MY45102460	Apr. 06, 13	Apr. 30, 14
8	Digital Multi Meter	FLUKE	8846A	9642018	May 31, 13	May 31, 14
9	DC Power Supply	Daiichi denpa kogyo	GZV4000	90290931	None	None

Measuring Cables

No.	Cable	Manufacture Model No.		Serial No.	Cal Date	Cal Exp.
W2	Coaxial Cable	Suhner	SUCOFLEX104	KSR00091	May 30, 13	May 31, 14
W1	Coaxial Cable	Suhner	SUCOFLEX104	F0000017	Nov. 21, 13	Nov. 30, 14
W6	Balance Cable	Nicoon	3D-2V	KSR00092	Nov. 20, 13	Nov. 30, 14
W4	Coaxial Cable	Pacific custom	RG-58 C/U	KSR00096	Nov. 20, 13	Nov. 30, 14

FCC ID:K44452600

Measuring Equipment Configuration

FCC ID :K44452600

Test Results

Test date	Jan. 09, 2014	
Location	Kashimai No.1 Test Site	
temperature	25.0	[degree C]
Humidity Variation	51.0	[%]
Atmospheric Pressure	99.9	[kPa]
Test Engineer	Koichi Wagatsuma	

Test was carried out for all the frequency band of section 10.1 State the worst case (below).

State: High Power / Authorized Bandwidth 11.25 kHz

	Tuned		Spurious	Correct Level	Emission	Mask D	Margin		
No.	Frequency	Band	Frequency	Correct Level	Level	Limit			
	(MHz)		(MHz)	(dBm)	(dBc)	(dBc)	(dB)		
1	150.05	Low	300.10	-41.90	-88.89	-67.0	21.9		
2	162.05	Middle	486.15	-42.80	-89.79	-67.0	22.8		
3	173.94	High	521.85	-36.10	-83.09	-67.0	16.1		
There	There is the margin of 20dB over except for the above points.								

Mask D Limit (dBc) = -(50+10Log(P))

Correct Level (dBm) = Substitute SG Level (dBm)

Emission Level (dBc) = Correct Level (dBm) - 10Log(P*1000)

P = Carrier Level (W)

State: Low Power / Authorized Bandwidth 6 kHz

	Tuned		Spurious	Correct Level	Emission	Mask E	Margin
No.	Frequency	Band	Frequency	Conect Level	Level	Limit	
	(MHz)		(MHz)	(dBm)	(dBc)	(dBc)	(dB)
1	150.05	Low	300.10	-47.50	-84.49	-62.0	22.5
2	162.05	Middle	324.10	-49.71	-86.70	-62.0	24.7
3	173.94	High	347.90	-46.40	-83.39	-62.0	21.4
There	There is the margin of 20dB over except for the above points.						

Mask E Limit (dBc) = whichever is the lesser attenuation; -(55+10Log(P)) or -65

Correct Level (dBm) = Substitute SG Level (dBm)

Emission Level (dBc) = Correct Level (dBm) - 10Log(P*1000)

P = Carrier Level (W)

[&]quot; - " = Measurement Limit

[&]quot; - " = Measurement Limit

10.3 Field Strength of Spurious Radiation

REGULATIONS : FCC Part 2 Section 1053 (a), Part 90 Section 210

TEST METHOD/GUIDE : ANSI/TIA-603-D Section 2.2.12.2

Test Procedure

1 The EUT and test equipment were set up as shown on the following page.

2 Adjust the spectrum analyzer for the following setting:

a) RBW: 10 kHz (< 1 GHz), 1 MHz (> 1 GHz). b) VBW: 300 kHz (< 1 GHz), 3 MHz (> 1 GHz).

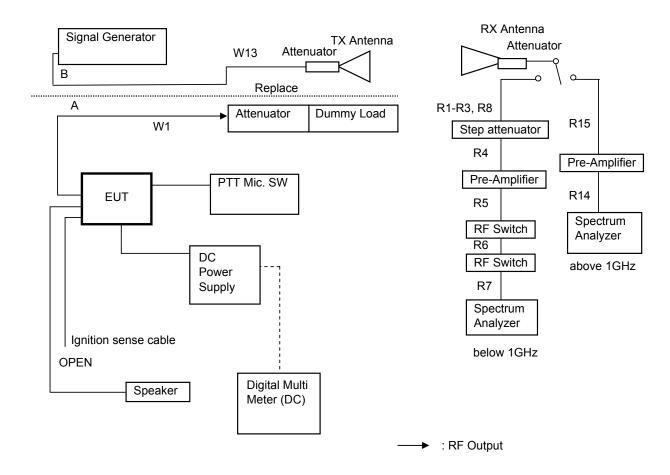
c) Sweep Speed: 50ms.

d) Detector mode: Positive Peak

- 3 The transmitter was placed on a wooden turntable, and it was transmitting into non-radiating load which was also placed on the turntable.
- 4 The measurement antenna was placed at a distance of 3 meters from the EUT.
 During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.
 The test was performed by placing the EUT on 3-orthogonal axis.
- 5 The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 6 Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable.

 The absolute levels of the spurious emissions were measured by the substitution.
- The absolute levels of the spurious emissions were measured by the substitution.

7 Spurious emissions in dB = 10 Log (TX power in Watts/0.001) – the absolute level


Measuring Equipments

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Amplifier	Hewlett Packard	83051A	3332A00329	Mar. 25, 13	Mar. 31, 14
2	Amplifier	Hewlett Packard	8447D	2944A06342	May 02, 13	May 31, 14
3	Attenuator (30dB)	Weinschel	WA-29-30-34	8924	May 29, 13	May 31, 14
4	Attenuator (6dB)	TAMAGAWA	CFA-01(NPJ-6)	F0200002	May 02, 13	May 31, 14
5	Attenuator(10dB)	HUBER+SUHNER	6810.17B	KSR0044	May 29, 13	May 31, 14
6	Attenuator(3dB)	narda	4768-3	79	Mar. 25, 13	Mar. 31, 14
7	Broad Band antenna (RX)	Schwarzbeck	VULB9168	218	Mar. 26, 13	Mar. 31, 14
8	D.R.G Antenna(RX)	Schwarzbeck	3115	3024	Dec. 05, 13	Dec. 31, 14
9	D.R.G Antenna(TX)	Schwarzbeck	BBHA9120D	457	Jun. 27, 13	Jun. 30, 14
10	DC Power Supply	Daiichi denpa kogyo	GZV4000	90290931	None	None
11	Digital Multi Meter	FLUKE	8846A	9642018	May 31, 13	May 31, 14
12	Dipole Antenna(TX)	Schwarzbeck	VHA9103	C01082007	Jun. 26, 13	Jun. 30, 14
13	Dipole Antenna(TX)	Schwarzbeck	UHA9105	AM0082002	Jun. 26, 13	Jun. 30, 14
14	Dummy Load	TME	CT-01	F0200014	Oct. 17, 13	Oct. 31, 14
15	RF Switch	Intertek	ACX-150	F02301501	May 02, 13	May 31, 14
16	Signal Generator	Rohde&Schwarz	SMB 100A	105709	Jan. 11, 13	Jan. 31, 14
17	Spectrum Analyzer	Agilent	N9030A	US51350220	Feb. 13, 13	Feb. 28, 14
18	Step Attenuator	Hewlett Packard	8494B	2805A14563	May 02, 13	May 31, 14

Measuring Cables

No.	Cable	Manufacturer	Model No.	Serial No.	Cal Date	Cal Exp.
W1	Coaxial Cable	Suhner	SUCOFLEX104	F0000017	Nov. 21, 13	Nov. 30, 14
W13	Coaxial Cable	Suhner	SUCOFLEX106	KSR00207	May 20, 13	May 31, 14
R14	Coaxial cable	SUHNER	SUCOFLEX102	712/2	Mar. 25, 13	Mar. 31, 14
R15	Coaxial cable	Candox	5B-048-98-98- 5000	111130	Mar. 25, 13	Mar. 31, 14
R1	Coaxial cable	Intertek	5D-2W	2R1001a	May 02, 13	May 31, 14
R2	Coaxial cable	Intertek	RG-177/U	2R1002	May 02, 13	May 31, 14
R3	Coaxial cable	Intertek	RG-5A/U	2R1003	May 02, 13	May 31, 14
R4	Coaxial cable	Intertek	RG-5A/U	2R1004	May 02, 13	May 31, 14
R5	Coaxial cable	Intertek	5D-2W	2R1005	May 02, 13	May 31, 14
R6	Coaxial cable	Intertek	5D-2W	2R1006	May 02, 13	May 31, 14
R7	Coaxial cable	Intertek	5D-2W	2R1007	May 02, 13	May 31, 14
R8	Coaxial cable	Intertek	5D-2W	2R1008a	May 02, 13	May 31, 14

Measuring Equipment Configuration

Test Results

Test date	Jan. 20, 2014	to Jan. 22, 2014
Location	Tochigi No.2 Test Sit	te
temperature	21 to 23	[degree C]
Humidity Variation	45 to 48	[%]
Atmospheric Pressure	98.5 to 98.7	[kPa]
Test Engineer	Koichi Wagatsuma	

Test was carried out for all the frequency band of section 10.1 State the worst case (below).

State: High Power / Authorized Bandwidth 11.25 kHz / 150.05MHz

			Dooding	SC Out	Antonno		Correct			
No	Fraguenay	Pol	Reading	SG Out		Loop	Correct	Emission	MASK D	Marain
No	Frequency		Level	Level	Gain	Loss	Level	Level	Limit Level	Margin
	(MHz)		(dBm)	(dBm)	(dBi)	(dB)	(dBm)	(dBc)	(dBc)	(dB)
1	300.10	Hor.	-54.10	-38.40	2.15	11.31	-47.6	-94.5	-67.0	27.5
'	300.10	Ver.	-55.20	-33.40	2.15	11.31	-42.6	-89.5	-67.0	22.5
2	450.15	Hor.	-53.40	-32.40	2.15	11.59	-41.8	-88.8	-67.0	21.8
-	430.13	Ver.	-52.10	-30.10	2.15	11.59	-39.5	-86.5	-67.0	19.5
3	600.20	Hor.	-69.60	-46.50	2.15	11.83	-56.2	-103.2	-67.0	36.2
٥	600.20	Ver.	-63.80	-38.90	2.15	11.83	-48.6	-95.6	-67.0	28.6
4	750.25	Hor.	-50.30	-23.90	2.15	12.05	-33.8	-80.8	-67.0	13.8
4		Ver.	-50.70	-19.90	2.15	12.05	-29.8	-76.8	-67.0	9.8
5	900.30	Hor.	-56.00	-26.60	2.15	12.25	-36.7	-83.7	-67.0	16.7
3	900.30	Ver.	-58.40	-26.40	2.15	12.25	-36.5	-83.5	-67.0	16.5
6	1050.35	Hor.	-53.80	-40.40	6.50	12.45	-46.4	-93.3	-67.0	26.3
"	1050.55	Ver.	-50.20	-38.00	6.50	12.45	-44.0	-90.9	-67.0	23.9
7	1200.40	Hor.	-60.00	-48.90	7.15	12.62	-54.4	-101.4	-67.0	34.4
'	1200.40	Ver.	-58.30	-47.00	7.15	12.62	-52.5	-99.5	-67.0	32.5
8	1350.45	Hor.	-57.20	-45.10	7.67	12.79	-50.2	-97.2	-67.0	30.2
"	1330.40	Ver.	-56.70	-44.50	7.67	12.79	-49.6	-96.6	-67.0	29.6
9	1500.50	Hor.	-56.30	-45.80	8.07	12.96	-50.7	-97.7	-67.0	30.7
	1000.00	Ver.	-55.90	-45.10	8.07	12.96	-50.0	-97.0	-67.0	30.0
There	is the margin of	20dB over exc	ept for the abo	ve points.					·	

Mask D Limit (dBc) = -(50+10Log(P))

Correct Level (dBm) = Substitute SG Level (dBm) + ANT Gain (dBi) - Loss (Cable, Attenuator) (dB)

Emission Level (dBc) = Correct Level (dBm) - 10Log(P*1000)

P = Carrier Level (W)

[&]quot; - " = Measurement Limit

State: Low Power / Authorized Bandwidth 6 kHz / 162.05MHz

			Reading	SG Out	Antenna		Correct	Emission	MASK E	
No	Frequency	Pol	Level	Level	Gain	Loss	Level	Level	Limit Level	Margin
	(MHz)		(dBm)	(dBm)	(dBi)	(dB)	(dBm)	(dBc)	(dBc)	(dB)
1	324.10	Hor.	-48.90	-32.40	2.15	11.35	-41.6	-78.6	-62.0	16.6
'	324.10	Ver.	-51.40	-30.50	2.15	11.35	-39.7	-76.7	-62.0	14.7
2	486.15	Hor.	-52.30	-29.60	2.15	11.65	-39.1	-76.1	-62.0	14.1
-	400.15	Ver.	-48.60	-27.90	2.15	11.65	-37.4	-74.4	-62.0	12.4
3	648.20	Hor.	-57.20	-32.50	2.15	11.90	-42.3	-79.2	-62.0	17.2
3	040.20	Ver.	-54.90	-29.80	2.15	11.90	-39.6	-76.5	-62.0	14.5
	810.25	Hor.	-57.60	-29.30	2.15	12.13	-39.3	-76.3	-62.0	14.3
4		Ver.	-59.80	-28.90	2.15	12.13	-38.9	-75.9	-62.0	13.9
_ ا	070 00	Hor.	-60.30	-30.60	2.15	12.35	-40.8	-77.8	-62.0	15.8
5	972.30	Ver.	-62.40	-31.20	2.15	12.35	-41.4	-78.4	-62.0	16.4
	4404.05	Hor.	-53.00	-38.80	6.88	12.54	-44.5	-81.5	-62.0	19.5
6	1134.35	Ver.	-49.70	-37.60	6.88	12.54	-43.3	-80.3	-62.0	18.3
7	1296.40	Hor.	-57.50	-44.80	7.49	12.73	-50.0	-87.0	-62.0	25.0
'	1290.40	Ver.	-56.00	-43.30	7.49	12.73	-48.5	-85.5	-62.0	23.5
8	1450 45	Hor.	-47.60	-35.60	7.97	12.91	-40.5	-77.5	-62.0	15.5
°	1458.45	Ver.	-49.40	-37.70	7.97	12.91	-42.6	-79.6	-62.0	17.6
9	1620 50	Hor.	-	-	8.24	13.08	-	-	-62.0	-
9	1620.50	Ver.	-59.80	-51.20	8.24	13.08	-56.0	-93.0	-62.0	31.0
There	is the margin of	20dB over exc	ept for the abo	ve points.						_

Mask E Limit (dBc) = whichever is the lesser attenuation; -(55+10Log(P)) or -65 Correct Level (dBm) = Substitute SG Level (dBm) + ANT Gain (dBi) - Loss (Cable, Attenuator) (dB) Emission Level (dBc) = Correct Level (dBm) - 10Log(P*1000) P = Carrier Level (W)

[&]quot; - " = Measurement Limit

10.4 Emission Masks (Occupied Bandwidth)

REGULATIONS : FCC Part 2 Section 1049 (c) (1), Part 90 Section 210

TEST METHOD/GUIDE : ANSI/TIA-603-D Section 2.2.11.2

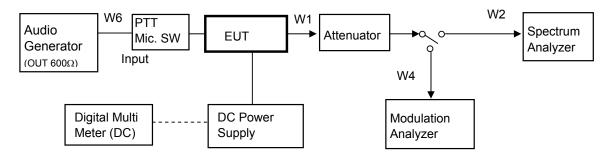
Test Procedure

1 The EUT and test equipment were set up as shown on the following page.

- 2 For EUT supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for +/- 2.5 kHz deviation (or 50 % modulation). (FM modulation).
- 3 With level constant, the signal level was increased 16 dB.
- 4 For EUT supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 5 Adjust the spectrum analyzer for the following setting:
 - a) RBW: 100Hz (Non modulation and Authorized Band 6 kHz),
 - 100Hz (Non modulation and Authorized Band 11.25 kHz),
 - 300Hz (Non modulation and Authorized Band 20 kHz).
 - b) VBW: 10times the RBW (Non modulation, Authorized Band 11.25 kHz and Authorized Band 20 kHz).
 - c) RBW and VBW: 30 kHz (Non Modulation / Digital Modulation).
 - d) Sweep Speed: 8 sec.
 - e) Sampling Time: 10 times
- The occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.

Measuring Equipments

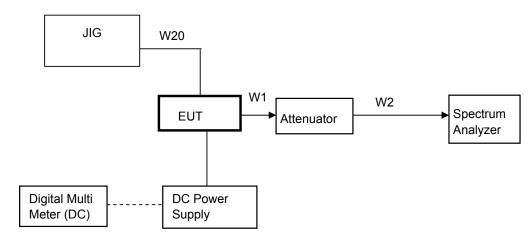
No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Attenuator (20dB)	Aeroflex/Wenshel	66-20-34	BY4357	May 29, 13	May 31, 14
2	Attenuator (30dB)	Weinschel	WA-29-30-34	8923	May 29, 13	May 31, 14
3	Audio Generator	Anritsu	MG443B	M70150	Apr. 05, 13	Apr. 30, 14
4	Modulation Analyzer	Hewlett Packard	8901B	2806A01669	Jul. 26, 13	Jul. 31, 14
5	Spectrum Analyzer	Agilent	E4407B	MY45102460	Apr. 06, 13	Apr. 30, 14
6	Spectrum Analyzer	HP	8563E	3821A09565	Apr. 08, 13	Apr. 30, 14
7	Digital Multi Meter	FLUKE	8846A	9642018	May 31, 13	May 31, 14
8	DC Power Supply	Daiichi denpa kogy	GZV4000	90290931	None	None
9	JIG	HP	EliteBook 2560p	CNU2171Z7P	None	None


Measuring Cables

No.	Cable	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
W2	Coaxial Cable	Suhner	SUCOFLEX104	KSR00091	May 30, 13	May 31, 14
W1	Coaxial Cable	Suhner	SUCOFLEX104	KSR00211	Nov. 21, 13	Nov. 30, 14
W6	Balance Cable	Nicoon	3D-2V	KSR00092	Nov. 20, 13	Nov. 30, 14
W4	Coaxial Cable	Pacific custom	RG-58 C/U	KSR00096	Nov. 20, 13	Nov. 30, 14
W20	PROGRAMMING INTERFACE Cable	JVC KENWOOD	KPG46-U	None	None	None

FCC ID: K44452600

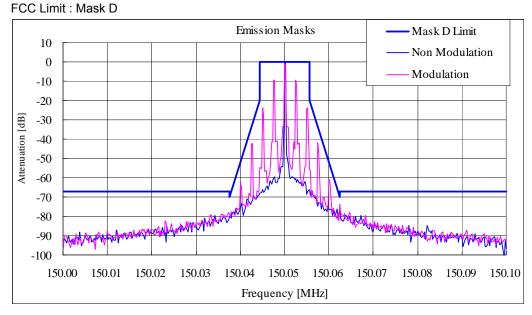
Measuring Equipment Configuration


<FM Modulation Case>

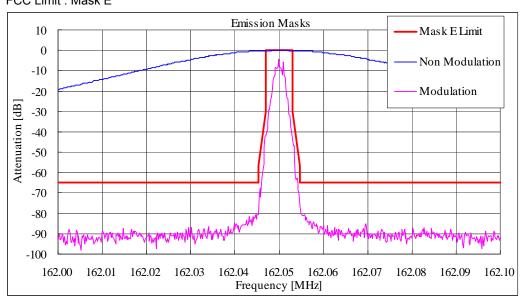
Note: Configuration of other Modulation(4Level FSK) test is composed without the Audio Generator.

→ : RF Output

<CW ID Modulation Case>

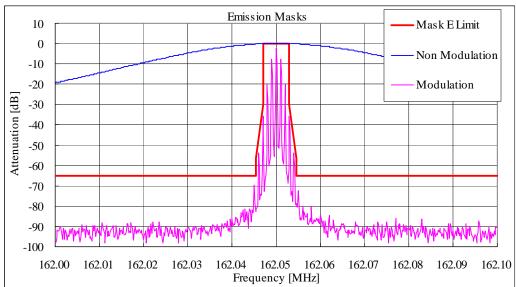


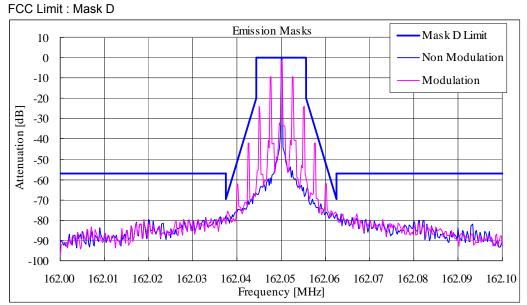
Test Results


Test date	Jan. 16, 2014		
Location	Kashima No.1 Test Site		
temperature	25.3	[degree C]	
Humidity Variation	57	[%]	
Atmospheric Pressure	100.8	[kPa]	
Test Engineer	Koichi Wagatsum		

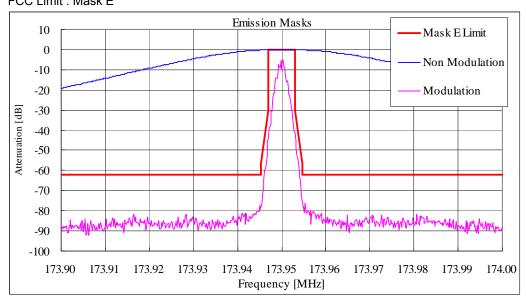
Test was carried out for all the frequency band of section 10.1 State the worst case (below).

State : High Power / Authorized Bandwidth 11.25 kHz/ 11K0F3E/ 150.05 MHz

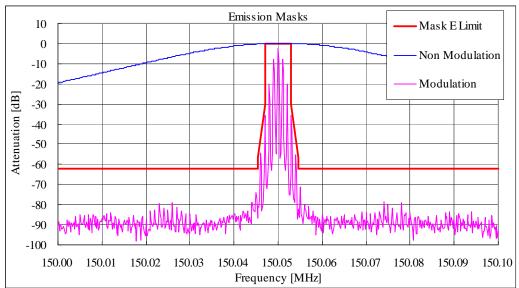

State : High Power / Authorized Bandwidth 6 kHz/ 4K00F1E/F1D/F7W/ 162.05 MHz FCC Limit : Mask E


FCC ID: K44452600

State: High Power / Authorized Bandwidth 6 kHz/ 4K00F2D/ 162.05 MHz


FCC Limit : Mask E

State: Low Power / Authorized Bandwidth 11.25 kHz/ 11K0F3E/ 162.05 MHz


State : Low Power / Authorized Bandwidth 6 kHz/ 4K00F1E/F1D/F7W/ 173.95 MHz FCC Limit : Mask E

FCC ID: K44452600

State: Low Power / Authorized Bandwidth 6 kHz/ 4K00F2D/ 150.05 MHz

FCC Limit: Mask E

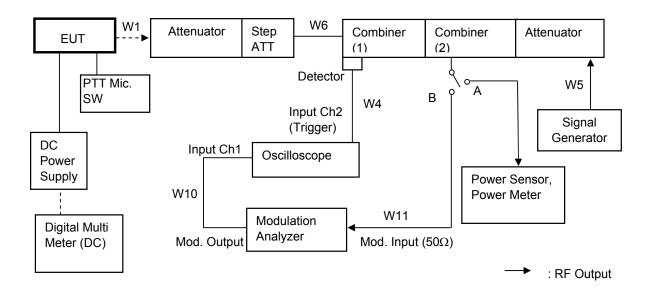
10.5 Transient Frequency Behavior

REGULATIONS : FCC Part 90 Section 214

TEST METHOD/GUIDE : ANSI/TIA-603-D, Section 2.2.19.3

Test Procedure

- 1 The EUT and test equipment were set up as shown on the following page.
- 2 The transmitter was turned on.
- 3 The transmitter carrier level was measured at the output of the combiner .
- 4 The transmitter was turned off.
- An RF signal generator (1) modulated with a 1 kHz tone at either 25 kHz or 12.5 kHz or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -30 dB below the level recorded in Procedure 3, as measured at the output of the combiner.
 - This level was then fixed for the remainder of the test and is recorded at step h.
- The oscilloscope was setup using TIA-603 steps j and k as a guide, however 1000 Hz tone was adjusted at +- 2.5 /div vertically centered on the display.
- 7 The transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as step I.
- 8 The carrier on-time as referenced in TIA-603 steps m, n, and o was captured and plotted.
- 9 The carrier off-time as referenced in TIA-603 steps p, q, r, and s was captured and plotted.

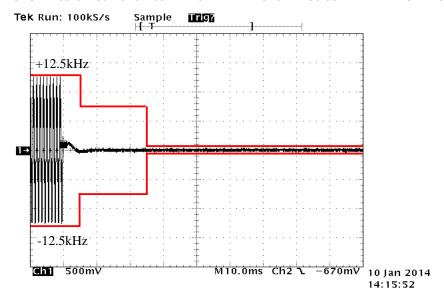

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Attenuator (20dB)	Aeroflex/Wenshel	66-20-34	BY4357	May 29, 13	May 31, 14
2	Attenuator (30dB)	Weinschel	WA-29-30-34	8924	May 29, 13	May 31, 14
3	Attenuator (3dB)	TME	CFA-20NPJ-3	679701	May 29, 13	May 31, 14
4	Step Attenuator	Hewlett Packard	8494B	2726A14515	Nov. 21, 13	Nov. 30, 14
5	Power Meter	Hewlett Packard	E4418B	GB38410265	Jun. 05, 13	Jun. 30, 14
6	Power Sensor	Hewlett Packard	8482A	US37292237	Jun. 05, 13	Jun. 30, 14
7	Oscilloscope	Tektronix	TDS 680B	B010292	Jan. 18, 13	Jan. 31, 14
8	Modulation Analyzer	Hewlett Packard	8901B	2806A01669	Jul. 26, 13	Jul. 31, 14
9	Combiner(1)	Anritsu	Z-164A	M89249	Nov. 20, 13	Nov. 30, 14
10	Combiner(2)	Anritsu	Z-164A	M89549	Nov. 20, 13	Nov. 30, 14
11	Signal Generator	Rohde&Schwarz	SMB 100A	105709	Jan. 11, 13	Jan. 31, 14
12	Digital Multi Meter	FLUKE	8846A	9642018	May 31, 13	May 31, 14
13	DC Power Supply	Daiichi denpa kogyo	GZV4000	90290931	None	None

FCC ID :K44452600

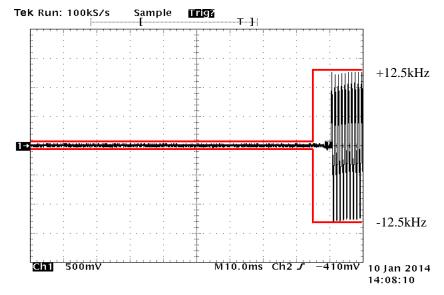
Measuring Cables

No.	Cable	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
W5	Coaxial Cable	Suhner	SUCOFLEX104	KSR00091	May 30, 13	May 31, 14
W6	Coaxial Cable	Suhner	SUCOFLEX104	F0000017	Nov. 21, 13	Nov. 30, 14
W4	Coaxial Cable	Pacific custom	RG-58 C/U	KSR00097	Nov. 20, 13	Nov. 30, 14
W11	Coaxial Cable	Pacific custom	RG-58 C/U	KSR00096	Nov. 20, 13	Nov. 30, 14
W10	Coaxial Cable	Pacific custom	RG-58 C/U	KSR00095	Nov. 20, 13	Nov. 30, 14
W1	Coaxial Cable	Suhner	SUCOFLEX104	F0000018	Nov. 21, 13	Nov. 30, 14

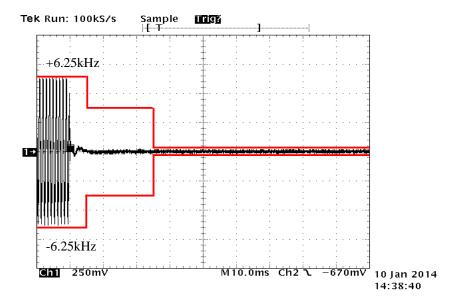
Measuring Equipment Configuration

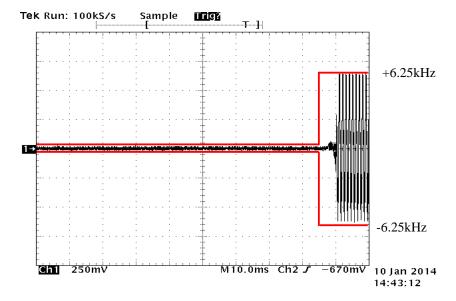


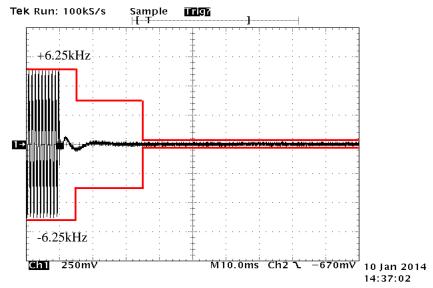
Test Results

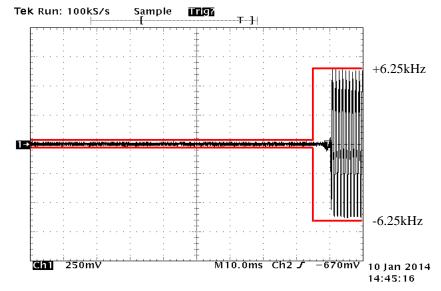

Test date	Jan. 10, 2014			
Location	Kashima No.1 Test Site			
temperature	21	[degree C]		
Humidity Variation	53	[%]		
Atmospheric Pressure	101.5	[kPa]		
Test Engineer	Koichi Wagatsuma			

Test was carried out for all the frequency band of section 10.1 State the worst case (below).


State: High Power / Authorized Bandwidth 11.25 kHz / 11K0F3E / 150.05 MHz / PTT:OFF -ON


State: High Power / Authorized Bandwidth 11.25 kHz / 11K0F3E / 150.05 MHz / PTT:ON -OFF


State: High Power / Authorized Bandwidth 6 kHz / 4K00F1E/F1D/F7W / 173.95 MHz / PTT:OFF -ON


State: High Power / Authorized Bandwidth 6 kHz / 4K00F1E/F1D/F7W / 173.95 MHz / PTT:ON -OFF

State: High Power / Authorized Bandwidth 6 kHz / 4K00F2D / 150.05 MHz / PTT:OFF -ON

State: High Power / Authorized Bandwidth 6 kHz / 4K00F2D / 150.05 MHz / PTT:ON -OFF

FCC ID :K44452600

10.6 Audio Frequency Response / Audio Low Pass Filter (Voice Input)

REGULATIONS : FCC Part 2 Section 1047 (a)

TEST METHOD/GUIDE : ANSI/TIA-603-D Section 2.2.6.2.2, 3.2.6.2

Test Procedure

1 The EUT and test equipment were set up as shown on the following page.

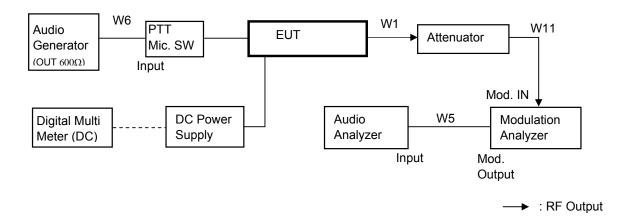
2 Adjust the Modulation Analyzer for the following setting:

a) High-pass filter: 50 Hzb) Low-pass filter: 15 kHzc) Detector: positive peak

d) Function: FM

- 3 The audio signal input was adjusted to obtain 20 % modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- 4 With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 300 Hz to 5 kHz.
- 5 The response in dB relative to 1 kHz was then measured, using the Modulation Analyzer.

Measuring Equipments

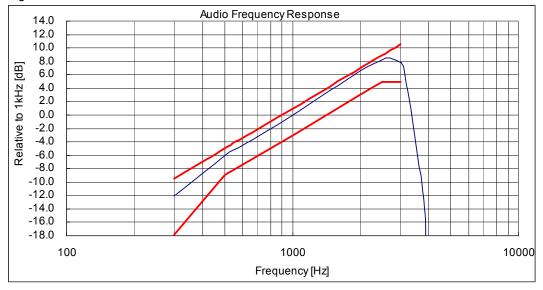

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
	Atta(00-ID)	A	00.00.04	D)/4057	M 00 40	M 04 44
1	Attenuator (20dB)	Aeroflex/Wenshel	66-20-34	BY4357	May 29, 13	May 31, 14
2	Attenuator (30dB)	Weinschel	WA-29-30-34	8924	May 29, 13	May 31, 14
3	Audio Generator	Anritsu	MG443B	M70150	Apr. 05, 13	Apr. 30, 14
4	Audio Analyzer	Hewlett Packard	8903B	2818A04372	Jul. 19, 13	Jul. 31, 14
5	Modulation Analyzer	Hewlett Packard	8901B	2806A01669	Jul. 26, 13	Jul. 31, 14
6	Digital Multi Meter	FLUKE	8846A	9642018	May 31, 13	May 31, 14
7	DC Power Supply	Daiichi denpa kogyo	GZV4000	90290931	None	None

Measuring Cables

No.	Cable	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
W1	Coaxial Cable	Suhner	SUCOFLEX104	F0000017	Nov. 21, 13	Nov. 30, 14
W6	Balance Cable	Nicoon	3D-2V	KSR00092	Nov. 20, 13	Nov. 30, 14
W11	Coaxial Cable	Pacific custom	RG-58 C/U	KSR00096	Nov. 20, 13	Nov. 30, 14
W5	Coaxial Cable	Pacific custom	RG-58 C/U	KSR00095	Nov. 20, 13	Nov. 30, 14

FCC ID: K44452600

Measuring Equipment Configuration



Test Results

Test date	Jan. 14, 2014	
Location	Kashima No.1 Test S	Site
temperature	21.5	[degree C]
Humidity Variation	53	[%]
Atmospheric Pressure	102.5	[kPa]
Test Engineer	Koichi Wagatsuma	

Test was carried out for all the frequency band of section 10.1 State the worst case (below).

State: High Power / Authorized Bandwidth 11.25 kHz / 11K0F3E / 173.95 MHz

Note:

Audio Filter of the above result is substituted with the same structure as Audio Frequency Response. On the transmission condition below 3kHz,

Transceiver shows pre-emphasis condition of transmission function.

On the transmission condition above 3kHz, Transceiver shows Audio Low Pass Filter.

10.7 Modulation Limiting

REGULATIONS : FCC Part 2 Section 1047 (b)

TEST METHOD/GUIDE : ANSI/TIA-603-D Section 2.2.3.2, 1.3.4.4

Test Procedure

1 The EUT and test equipment were set up as shown on the following page.

2 Adjust the Modulation Analyzer for the following setting:

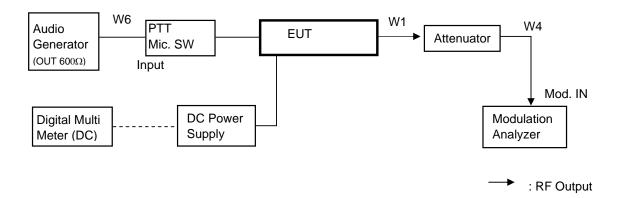
a) High-pass filter : offb) Low-pass filter : 15 kHzc) Detector : positive peak

d) Function: FM

- 3 Apply a 1kHz modulation signal to the transmitter from the audio generator, and adjust the level to obtain 60% of full rated system deviation.
- 4 Measure the modulation frequency that was showed on the Modulation Analyzer when the output levels of the Audio Generator were changed from -20 dB to +50 dB by 10 dB.
- Set the output frequencies of the Audio Generator 300 Hz and 3 kHz, and repeat test procedure 4.
- 6 Set the Detector of the Modulation Analyzer Negative Peak.

7 Repeat test procedure 4 and 5.

Measuring Equipments

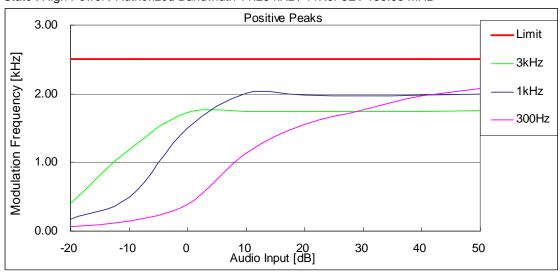

No.	Equipment	Manufacture	Model No.	Serial No.		Cal Exp.
1	Attenuator (20dB)	Aeroflex/Wenshel	66-20-34	BY4357	May 29, 13	May 31, 14
2	Attenuator (30dB)	Weinschel	WA-29-30-34	8924	May 29, 13	May 31, 14
3	Audio Generator	Anritsu	MG443B	M70150	Apr. 05, 13	Apr. 30, 14
4	Modulation Analyzer	Hewlett Packard	8901B	2806A01669	Jul. 26, 13	Jul. 31, 14
5	Digital Multi Meter	FLUKE	8846A	9642018	May 31, 13	May 31, 14
4	DC Power Supply	Daiichi denpa kogyo	GZV4000	90290931	None	None

Measuring Cables

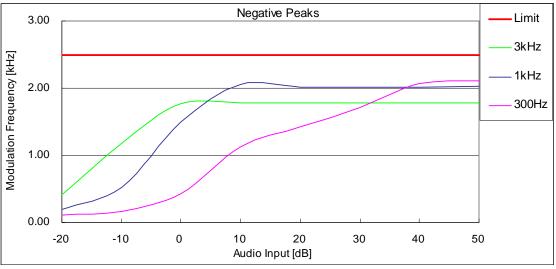
No.	Cable	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
W1	Coaxial Cable	Suhner	SUCOFLEX104	F0000017	Nov. 21, 13	Nov. 30, 14
W6	Balance Cable	Nicoon	3D-2V	KSR00092	Nov. 20, 13	Nov. 30, 14
W4	Coaxial Cable	Pacific custom	RG-58 C/U	KSR00096	Nov. 20, 13	Nov. 30, 14

FCC ID: K44452600

Measuring Equipment Configuration



Test Results


Test date	Jan. 14, 2014	
Location	Kashima No.1 Test S	Site
temperature	23	[degree C]
Humidity Variation	53	[%]
Atmospheric Pressure	102.5	[kPa]
Test Engineer	Koichi Wagatsuma	

Test was carried out for all the frequency band of section 10.1 State the worst case (below).

State: High Power / Authorized Bandwidth 11.25 kHz / 11K0F3E / 150.05 MHz

State: High Power / Authorized Bandwidth 11.25 kHz / 11K0F3E / 150.05 MHz

10.8 Frequency Stability (Temperature Variation)

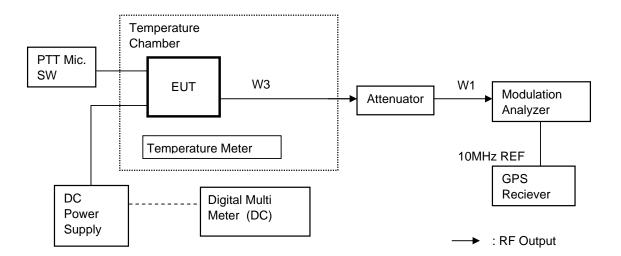
REGULATIONS : FCC Part 2 Section 1055 (a) (1), Part 90 Section 213(a)

TEST METHOD/GUIDE : ANSI/TIA-603-D Section 2.2.2.2

Test Procedure

- 1 The EUT and test equipment were set up as shown on the following page.
- 2 Set the temperature -30 degrees C.
- 3 Leave the EUT for 1 hour after it became the temperature that was set up.
- 4 Make the EUT the transmitting state.
 - One minutes later, measure the output frequency.
- 5 Make the EUT the receiving state.
- 6 Set the temperature 50 degrees C by 10 degrees C. And repeat test procedure 3 to 5.

Measuring Equipments


No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1 2 3 4 5 6	Attenuator (20dB) Attenuator (30dB) Modulation Analyzer Digital Multi Meter DC Power Supply Temperature Chamber Temperature Meter	Aeroflex/Wenshel Weinschel Hewlett Packard FLUKE Takasago Tabai Sato	66-20-34 WA-29-30-34 8901B 8846A GP035-20R PL-3F PC-5000TRH-	BY4357 8924 2806A01669 9642018 1014199060 5103661 A11999972	May 29, 13 May 29, 13 Jul. 26, 13 May 31, 13 None None Apr. 08, 13	May 31, 14 May 31, 14 Jul. 31, 14 May 31, 14 None None Apr. 30, 14
8	GPS Receiver	Hewlett Packard	II HP Z3801A	3542A02414	None	None

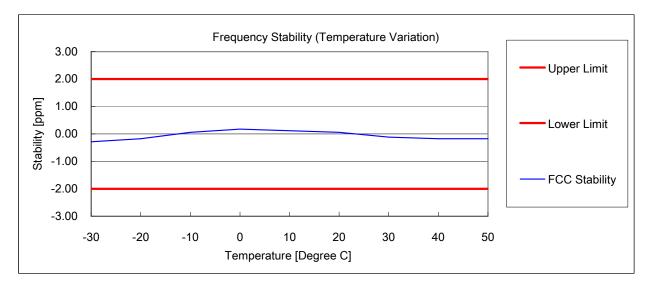
Measuring Cables

No	. Cable	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
10/	. 0 '. 0.	0.1	OLIOOFI EVAN	450000047	N 04 40	NI: 00 44
W	Countai Cabio	Suhner	SUCOFLEX10		Nov. 21, 13	,
W:	3 Coaxial Cable	Suhner	SUCOFLEX10	4KSR00211	Nov. 21, 13	Nov. 30, 14

FCC ID :K44452600

Measuring Equipment Configuration

Test Results


Test date	Jan. 23, 2014
Location	Kashima No.1 Test Site
Test Engineer	Koichi Wagatsuma

Test was carried out for all the frequency band of section 10.1 State the worst case (below).

State: High Power / Authorized Bandwidth 11.25 kHz / 173.95 MHz

Reference Frequency: 173.950000 MHz(FCC Stability)

No.	Temperature	Frequency	FCC Stability	Limit	Min. Margin
	(Degree C)	(MHz)	(ppm)	(+/- ppm)	(ppm)
1	-30	173.949950	-0.29	2.0	1.71
2	-20	173.949970	-0.17	2.0	1.83
3	-10	173.950010	0.06	2.0	1.94
4	0	173.950030	0.17	2.0	1.83
5	10	173.950020	0.11	2.0	1.89
6	20	173.950010	0.06	2.0	1.94
7	30	173.949980	-0.11	2.0	1.89
8	40	173.949970	-0.17	2.0	1.83
9	50	173.949970	-0.17	2.0	1.83

FCC ID :K44452600

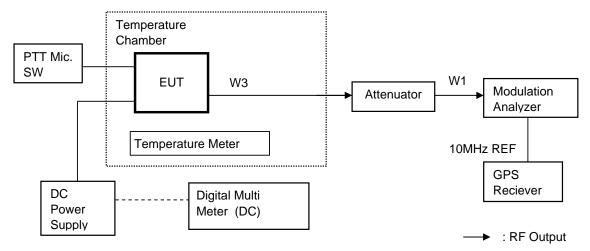
10.9 Frequency Stability (Voltage Variation)

REGULATIONS : FCC Part 2 Section 1055 (d) (1), Part 90 Section 213(a)

TEST METHOD/GUIDE : ANSI/TIA-603-D Section 2.2.2.2

Test Procedure

- 1 The EUT and test equipment were set up as shown on the following page.
- 2 The power supply voltage to the EUT was varied from 85 % to 115 % of the nominal value measured at the input to the EUT.


Measuring Equipments

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Attenuator (20dB)	Aeroflex/Wenshel	66-20-34	BY4357	May 29, 13	May 31, 14
2	Attenuator (30dB)	Weinschel	WA-29-30-34	8924	May 29, 13	May 31, 14
3	Modulation Analyzer	Hewlett Packard	8901B	2806A01669	Jul. 26, 13	Jul. 31, 14
4	Digital Multi Meter	FLUKE	8846A	9642018	May 31, 13	May 31, 14
5	DC Power Supply	Takasago	GP035-20R	1014199060	None	None
6	Temperature Chamber	Tabai	PL-3F	5103661	None	None
7	Temperature Meter	Sato	PC-5000TRH-II	A11999972	Apr. 08, 13	Apr. 30, 14
8	GPS Receiver	Hewlett Packard	HP Z3801A	3542A02414	None	None

Measuring Cables

	•					
No.	Cable	Manufacture	Model No.	Serial No.	Cal Date	
W1	Coaxial Cable	Suhner	SUCOFLEX104	F0000017	Nov. 21, 13	Nov. 30, 14
W3	Coaxial Cable	Suhner	SUCOFLEX104	KSR00211	Nov. 21, 13	Nov. 30, 14

Measuring Equipment Configuration

FCC ID: K44452600

Test Results

Test date	Jan. 23, 2014
Location	Kashima No.1 Test Site
Test Engineer	Koichi Wagatsuma

Test was carried out for all the frequency band of section 10.1

State the worst case (below).

Reference Frequency: 150.050000 MHz

State: High Power / Authorized Bandwidth 11.25 kHz / 150.05 MHz

No.	Temperature	Diviation	Voltage	Frequency	Stability	Limit	Margin	
	(Degree C)	(%)	(V)	(MHz)	(ppm)	+/- (ppm)	(ppm)	
1	20+/-5	85	11.56	150.050000	0.00	2.0	2.00	
2	20+/-5	100	13.60	150.050010	0.07	2.0	1.93	
3	20+/-5	115	15.64	150.050000	0.00	2.0	2.00	

FCC ID: K44452600

10.10 Necessary Bandwidth and Emission Bandwidth

REGULATIONS : FCC Part 2 Section 202 (g) & Federal Register/ Vol.68, No236
TRC 43

Calculation Results

State: 11K0F3E (Authorized Bandwidth 11.25 kHz)

Item	Mark			
Maximum Modulation	(M)	3	kHz	
Maximum Deviation	(D)	2.5	kHz	
Constant Factor	(K)	1		
Necessary Bandwidth	(Bn)	11	kHz	

Bn = (2xM) + (2xDxK)

State: 4K00F1E / 4K00F1D / 4K00F7W (4Level FSK / 4800bps, Authorized Bandwidth 6 kHz)

Item	Mark			
Digital information rate	(R)	4800	bps	
Peak frequency deviation	(D)	1.55	kHz	
Signaling states	(S)	4		
Numerical factor	(K)	0.516		
Necessary Bandwidth	(Bn)	4	kHz	

 $Bn = (R/log_2S)+2xDxK$

State: 4K00F2D (CWID, Authorized Bandwidth 6 kHz)

Item	Mark			
Maximum Modulation	(M)	0.8	kHz	
Maximum Deviation	(D)	1.2	kHz	
Numerical factor	(K)	1		
Necessary Bandwidth	(Bn)	4	kHz	

Bn = (2xM) + (2xDxK)