## Maximum Permissible Exposure (MPE) Evaluation

| Applicant | $:$ Kenwood Corporation |
| :--- | :--- |
| Equipment | $:$ UHF FM Tranceiver |
| Model No. | $:$ TK-8180-K2 |
| FCC ID | $:$ K4437313120 |
| IC |  |

## MPE Calculations

According to the OET Bulletin 65 (Edition 97-01)
$S=\frac{P G}{4 \pi R^{2}}$
$R=\sqrt{\frac{P G}{4 \pi S}}$
Where:
$\mathrm{S}=$ Power density (in appropriate units, e.g. $\mathrm{mW} / \mathrm{cm}^{2}$ )
$\mathrm{P}=$ Power input to antenna (in appropriate units, e.g., mW )
$G=$ Power gain of the antenna in the direction of interest relative to an isotropic radiator
$\mathrm{R}=$ Distance to the center of radiation of the antenna (appropriate units, e.g., cm)

| Tx Frequency | $=$ | 400 to $470(\mathrm{MHz})$ |
| ---: | :---: | :--- |
| Maximum peak power | $=$ | $44.77(\mathrm{dBm}) \quad(=30 \mathrm{~W})$ |
| Antenna gain $=$ | $2.15(\mathrm{dBi})$ |  |
|  |  |  |
| $\mathrm{S}=$ | $0.27\left(\mathrm{~mW} / \mathrm{cm}^{2}\right)(=\mathrm{f} / 1500: \mathrm{f}=$ frequency in MHz$)$ |  |
| $\mathrm{P}=$ | $18000.00(\mathrm{~mW}) \quad(=$ Maximum peak power $\mathrm{x} 120 \% \times$ Dutycycle $50 \%)$ |  |
| $\mathrm{G}=$ | $1.64($ numeric $)$ |  |
| $\mathrm{R}=$ | $93.87(\mathrm{~cm})$ |  |

P = Value calculated according to CFR Part 90.205(q)

Calculated minimum separation distance from antenna :

