

CERTIFICATE OF COMPLIANCE

Regulation: FCC Part 2, 90, 90.210

Applicant	Testing Laboratory		
Kenwood Corporation	ETL SEMKO Japan K. K. Kashima No.1 Test site		
1-16-2, Hakusan, Midori-ku, Yokohama-shi	FCC Registration Number: 934283		
Kanagawa, 226-8525 Japan	3-2, Sunayama, Kamisu-shi, Ibaraki-ken		
Tel.: +81 45 939 6254 Fax.: +81 45 939 7093	314-0255 Japan		
	Tel.: +81 479 40 1097 Fax.: +81 479 46 1788		
	URL: www.japan.intertek-etlsemko.com		

Equipment type	UHF DIGITAL TRANSCEIVER
Trademark	KENWOOD
Model(s)	TK-5800
Serial No.	None
FCC ID	K4437184110
Measurement Method	ANSI/TIA/EIA-603B-2002
Deviation from standard(s)	No deviation
Test Result	Complied
Report Number	ESJ-106087
Report issue date	June 29, 2006

This equipment has been shown to be capable of compliance with the applicable standard(s) as indicated in the test report.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of ETL SEMKO Japan K. K. The results and statements contained in this report pertain only to the equipment evaluated.

Approved by

Tested by

Maoki Sagawa

Naoki Ikeda

Tested by

Naoki Ikeda

[Assistant Manager]

TABLE OF CONTENTS

			Page
SECTION 1.		GENERAL INFORMATION	3
SECTION 2.		TEST AND MEASUREMENT DATA	5
SECTION 3.		MEASUREMENT RESULT	6
SECTION 4.		TEST DATA	
	4.1	Carrier Output Power (Conducted)	7
	4.2	Unwanted Emissions (Transmitter Conducted)	8
	4.3	Field Strength of Spurious Radiation	10
	4.4	Emission Masks (Occupied Bandwidth)	14
	4.5	Transient Frequency Behavior	17
	4.6	Audio Frequency Response / Audio Low Pass Filter (Voice Input)	21
	4.7	Modulation Limiting	23
	4.8	Frequency Stability (Temperature Variation)	25
	4.9	Frequency Stability (Voltage Variation)	27
	4.10	Necessary Bandwidth and Emission Bandwidth	29
SECTION 5.		VALIDITY OF TEST REPORT	30
SECTION 6.		DESCRIPTION OF TEST SITE	30
APPENDIX		PHOTOGRAPHS	

SECTION 1. GENERAL INFORMATION

DESCRIPTION OF TEST ITEM

Kind of EUT : UHF DIGITAL TRANSCEIVER

Condition of EUT : Prototype
Type : Table-top type
Trademark : KENWOOD

TEST PERFORMED

EUT Received June 08, 2006 Test started June 19, 2006 Test completed June 26, 2006 Temperature 22 to 25 degree C Humidity 55 to 70 % Atmospheric 100 to 102.1 kPa Voltage DC 13.6 V +/- 15% Current 13A Maximum Frequency None

TEST TRACABILITY

Tracability to national standards of test result is achieved by means of calibration tractability to national or international standards.

ABBREVIATIONS

EUT = Equipment Under Test Cal Exp. = Calibration Expire

D.R.G. Antenna = Double Rigid Guide Antenna

In Accordance with FCC Rules and Regulations, Volume II, Part 2 and 90

Sub-part 2.1033

(c)(1) APPLICANT AND MANUFACTURER INFORMATION

APPLICANT

Company : Kenwood Corporation

Address : 1-16-2, Hakusan, Midori-ku, Yokohama-shi

Kanagawa, 226-8525 Japan

Contact Person : Tamaki Shimamura

Manager, Communications Equipment Division

MANUFACTURER

Company : Kenwood Corporation

Address : 1-16-2, Hakusan, Midori-ku, Yokohama-shi, Kanagawa,

226-8525 Japan

(c)(2) FCC ID

FCC ID : K4437184110 Model number : TK-5800 Serial number : None

(c)(3) INTRUCTION MANUAL(S)

Instruction manual(s) : Please refer to attached Exhibits F

(c)(4) TYPE OF EMISSION

Emission Designation : 11K0F3E / 6K00F1E / 6K00F1D

(c)(5) FREQUENCY RANGE

Frequency Range : 450 to 485 MHz

(c)(6) POWER RATING

Output Power : 10 to 45 W Type : Variable

(c)(7) MAXIMUM POWER RATING

Output Power : 45 W

OTHER INFORMATION

Number of Channel : 512

Channel Spacing : 12.5 kHz / 6.25 kHzAntenna Impedance : $50 \Omega \text{ Norminal}$

Note

a. DC Power Supply cable is supplied together with EUT by the applicant.

b. One core of DC Power Supply cable is supplied together with EUT by the applicant.

SECTION 2. TEST AND MEASUREMENT DATA

All test and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J and Industry Canada as the following individual parts:

FCC RULE	TEST ITEM	Tested
Part 21	Domestic Public Fixed radio Services	N.A.
Part 22	Non Cellular	N.A.
Part 22	Public Mobile Services	N.A.
Part 22	Subpart H - Cellular Radiotelephone Service	N.A.
Part 22	Alternative technologies and auxiliary service	N.A.
Part 23	International Fixed Public Radiocommunication service	N.A.
Part 24	Personal Communications Services	N.A.
Part 74	Subpart H - Low Power Auxiliary Stations	N.A.
Part 80	Stations in the Maritime Services	N.A.
Part 80	Subpart E - general Technical Standards	N.A.
Part 80	Subpart F - Equipment Authorization for Compulsory Ships	N.A.
Part 80	Subpart K - Private Coast Stations and Marine Utility Stations	N.A.
Part 80	Subpart S - Compulsory radiotelephone Installations for Small Passenger Boats	N.A.
Part 80	Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes	N.A.
Part 80	Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act	N.A.
Part 80	Subpart V - Emergency Position Indicating Radiobeacons (EPIRB'S)	N.A.
Part 80	Subpart W - Global Maritime Distress and Safety System (GMDSS)	N.A.
Part 80	Subpart X - Voluntary Radio Installations	N.A.
Part 87	Aviation Services	N.A.
Part 90	Private Land Mobile radio Services	YES
Part 94	Private Operational - Fixed Microwave Service	N.A.
Part 95	Subpart A - General Mobile radio Service	N.A.
Part 95	Subpart C - Radio Control (R/C) radio Service	N.A.
Part 95	Subpart D - Citizens Band (CB) Radio Service	N.A.
Part 95	Subpart E -Family radio Service	N.A.
Part 95	Subpart F -Interactive Video and Data Service (IVDS)	N.A.
Part 97	Amateur Radio Service	N.A.
Part 101	Fixed Microwave Service	N.A.

IC RULE	TEST ITEM	Tested
RSS-119	Land Mobile and Fixed Radio Transmitters and Receivers	N.A.

SECTION 3. MEASUREMENT RESULT

FCC		TEST ITEM	RESULTS
Part2	Part90		
2.1046	-	Carrier Output Power (Conducted)	PASS
(a)			
2.1051	90.210	Unwanted Emissions (Transmitter Conducted)	PASS
2.1053	90.210	Field Strength of Spurious Radiation	PASS
(a)			
2.1049	90.210	Emission Masks (Occupied Bandwidth)	PASS
(c) (1)			
-	90.214	Transient Frequency Behavior	PASS
2.1047	90.242	Audio Low Pass Filter (Voice Input)	PASS
(a)	(b) (8)	Audio Low Lass Phier (Voice Input)	1 Abb
2.1047	(0) (0)	Audio Frequency Response	PASS
(a)	-	Audio Prequency Response	I ASS
2.1047		Modulation Limiting	PASS
(b)	_	Woddiation Emitting	TASS
2.1055	90.213	Frequency Stability (Temperature Variation)	PASS
(a) (1)	(a)	requency statistic (remperature variation)	17100
2.1055	90.213	Frequency Stability (Voltage Variation)	PASS
		rrequency stability (voltage variation)	CGAI
(d) (1)	(a)		

Limitation on Results

The test result of this report is effective equipment under test itself and under the test configuration descried on the report.

This test report dose not assure that whether the test result taken in other testing laboratory is compatible or reproducible to the test result on this report or not.

SECTION 4. TEST DATA

4.1 Carrier Output Power (Conducted)

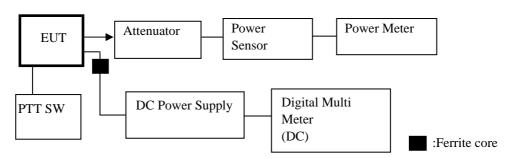
REGULATIONS : 47 CFR 2.1046 (a)

TEST METHOD/GUIDE : ANSI/TIA/EIA-603B-2002, section 2.2.1.2

TEST PROCEDURE

The EUT and test equipment were set up as shown on the following page.

The EUT was conducted to a resistive coaxial attenuator of normal load impedance.


 $RF\ Power\ (dBm) = Power\ Meter\ reading\ (dBm) + Attenuator\ Loss\ (dB) + Cable\ Loss\ (dB)$

RF Power (W) = $10^{(RF Power (dBm)/10)/1000}$

TEST EQUIPMENTS

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Power Meter	Hewlett Packard	E4418B	GB38410265	Apr. 21, 06	Apr. 30, 07
2	Power Sensor	Hewlett Packard	8482A	2607A11551	Apr. 21, 06	Apr. 30, 07
3	Attenuator (20dB)	Weinschel	40-20-34	AA5761	Jul. 07, 05	Jul. 31, 06
4	Attenuator (30dB)	Weinschel	WA-29-30-34	8923	Jun. 15, 06	Jun. 30, 07
5	DC Power Supply	Daiwa	PS-3020	None	None	None
6	Digital Multi Meter	Sanwa	CD721	3215593	May 12, 06	May 31, 07

MEASUREMENT EQUIPMENT CONFIGURATION

UNCERTAINTY

Measurement uncertainty is ± -0.5 dB (k = 2)

TEST RESULTS

Measured for the worst case

No.	Frequency		Setting	RF Power
	(MHz)			(W)
1	450.100	Low	High Power	45
2	467.600	Mid	High Power	45
3	484.900	High	High Power	45
4	450.100	Low	Low Power	10
5	467.600	Mid	Low Power	10
6	484.900	High	Low Power	10

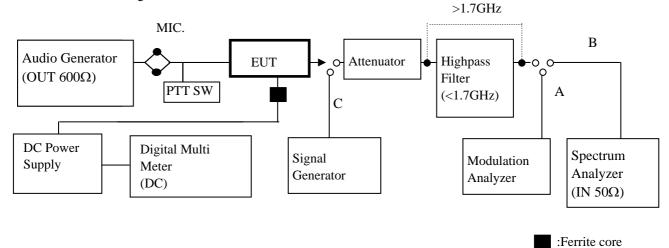
4.2 Unwanted Emissions (Transmitter Conducted)

REGULATIONS : 47 CFR 2.1051, 90.210

TEST METHOD/GUIDE : ANSI/TIA/EIA-603B-2002, section 2.2.13.2

TEST PROCEDURE

1 The EUT and test equipment were set up as shown on the following page.


- 2 Modulate the transmitter with a 2.5 kHz sine wave at an input Level of 16 dB greater than that necessary to produce 50 % of rated system deviation.
- Adjust the spectrum analyzer for the following setting:
 - a) Resolution Bandwidth: 10 kHz (< 1 GHz), 1 MHz (> 1 GHz).
 - b) Video Bandwidth: 30 kHz (< 1 GHz), 3 MHz (> 1 GHz).
 - c) Sweep Speed: 50 msec.
 - d) Detector mode: Average
- 4 The emissions were measured for the worst case as follows:
 - a): within a band of frequencies defined by the carrier frequency plus and minus one channel.
 - b): from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency,

or 40 GHz, whichever is lower.

TEST EQUIPMENTS

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Audio Generator	Anritsu	MG443B	1004468	Aug. 03, 05	Aug. 31, 06
2	Attenuator (20dB)	Weinschel	40-20-34	AA5701	Jul. 07, 05	Jul. 31, 06
3	Attenuator (30dB)	Weinschel	WA-29-30-34	8923	Jun. 15, 06	Jun. 30, 07
4	Modulation Analyzer	Hewlett Packard	8901B	3403A04852	Apr. 12, 06	Apr. 30, 07
5	Signal Generator	Rohde&Schwarz	SMR40	834128/0028	Mar. 17, 06	Mar. 31, 07
6	Spectrum Analyzer	Agilent	E7403A	MY42000062	Sep. 01, 05	Sep. 30, 06
7	Highpass Filter	Anritsu	MP526D	6200220657	Jul. 17, 05	Jul. 31, 06
8	DC Power Supply	Daiwa	PS-3020	None	None	None
9	Digital Multi Meter	Sanwa	CD721	3215593	May 12, 06	May 31, 07

MEASUREMENT EQUIPMENT CONFIGURATION

UNCERTAINTY

Measurement uncertainty is ± 1.2 dB (k = 2)

TEST RESULTS

Measured for the worst case

State: High Power / 12.5 kHz channel bandwidth

No.	Frequency		Correct Level	Emission Level	Limit	Margin		
	(MHz)		(dBm)	(dBc)	(dBc)	(dB)		
1	2250.50	Low	-38.58	-85.11	-71.5	13.6		
2	-	Mid	-	-	-71.5	-		
3	-	High	-	-	-71.5	-		
There	There is the margin of 20dB over except for the above points.							

State: Low Power / 12.5 kHz channel bandwidth

No.	Frequency		Correct Level	Emission Level	Limit	Margin		
	(MHz)		(dBm)	(dBc)	(dBc)	(dB)		
1	-	Low	=	-	-65.0	=		
2	-	Mid	-	-	-65.0	-		
3	-	High	-	-	-65.0	-		
There	There is the margin of 20dB over except for the above points.							

Mask E Limit (dBc) = -(55+10Log(P))

Correct Level (dBm) = Substitute SG Level (dBm)

Emission Level (dBc) = Correct Level (dBm) - 10Log(P*1000)

P = Carrier Level (W)

[&]quot; - " = Measurement Limit

4.3 Field Strength of Spurious Radiation

REGULATIONS : 47 CFR 2.1053 (a), 90.210

TEST METHOD/GUIDE : ANSI/TIA/EIA-603B-2002, section 2.2.12.2

TEST PROCEDURE

1 The EUT and test equipment were set up as shown on the following page.

2 Adjust the spectrum analyzer for the following setting:

a) Resolution Bandwidth: 10 kHz (< 1 GHz), 1 MHz (> 1 GHz).

b) Video Bandwidth: 300 kHz (< 1 GHz), 3 MHz (> 1 GHz).

c) Sweep Speed: 50ms.

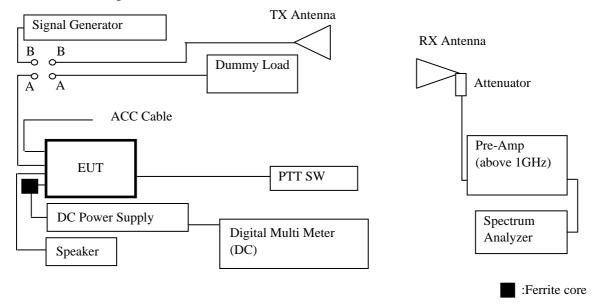
d) Detector mode: Positive Peak

3 The transmitter was placed on a wooden turntable, and it was transmitting into non-radiating load which was also placed on the turntable.

4 The measurement antenna was placed at a distance of 3 meters from the EUT.

During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The test was performed by placing the EUT on 3-orthogonal axis.


- 5 The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable.

 The absolute levels of the spurious emissions were measured by the substitution.
- Spurious emissions in dB = 10 Log (TX power in Watts/0.001) the absolute level
- 8 Spurious attenuation 6.25 kHz channel bandwidth limit in dB = 55 + 10 Log 10 (power out in Watts)
- Spurious attenuation 12.5 kHz channel bandwidth limit in dB = 50 + 10 Log 10 (power out in Watts)

TEST EQUIPMENTS

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Dipole Antenna(TX)	Schwarzbeck	UHA9105	None	Apr. 26, 06	Apr. 30, 07
2	D.R.G Antenna(TX)	Schwarzbeck	3115	5045	Jun. 08, 06	Jun. 30, 07
3	Tri-log Antenna(RX)	Schwarzbeck	VULB9168	106	Mar. 08, 06	Mar. 31, 07
4	D.R.G Antenna(RX)	Schwarzbeck	3115	5044	Jun. 08, 06	Jun. 30, 07
5	Pre-Amplifier	Hewlett Packard	83051A	3332A00329	Sep. 28, 05	Sep. 30, 06
6	Step Attenuator	Hewlett Packard	8494B	2726A14513	Nov. 01, 05	Nov. 30, 06
7	Attenuator(6dB)	Anritsu	MP721B	M57593	Nov. 01, 05	Nov. 30, 06
8	Attenuator(3dB)	Narda	4768-3	79	Sep. 28, 05	Sep. 30, 06
9	Spectrum Analyzer	Hewlett Packard	8564E	3643A00665	Aug. 18, 05	Aug. 31, 06
10	Signal Generator	Rohde&Schwarz	SMT06	100684	Feb. 17, 06	Feb. 28, 07
11	Dummy Load	TME	CT-150NP	1138693	Jul. 27, 05	Jul. 31, 06
12	DC Power Supply	Daiwa	PS-3020	None	None	None
13	Digital Mlti Meter	Sanwa	CD721	3215593	May 12, 06	May 31, 07

MEASUREMENT EQUIPMENT CONFIGURATION

UNCERTAINTY

Measurement uncertainty is $\pm 4.2 dB$ (k = 2)

TEST RESULTS

Measured for the worst case

State: High Power / 12.5 kHz channel bandwidth / 450.1 MHz

			Reading	SG Out	Cable	Antenna	Correct	Emission		
No	Frequency	Pol	Level	Level	Loss	Gain	Level	Level	Level	Margin
	(MHz)		(dBm)	(dBm)	(dB)	(dBi)	(dBm)	(dBc)	(dBc)	(dB)
1	900.20	Hor.	-	-	2.41	2.15	-	-	-71.5	-
1	700.20	Ver.	-	-	2.41	2.15	-	-	-71.5	-
2	1350.30	Hor.	-48.13	-43.80	1.84	7.91	-37.7	-84.3	-71.5	12.7
2	1330.30	Ver.	-46.67	-43.30	1.84	7.91	-37.2	-83.8	-71.5	12.2
3	1800.40	Hor.	-55.42	-48.40	2.15	8.62	-41.9	-88.5	-71.5	16.9
J	1600.40	Ver.	-55.00	-50.00	2.15	8.62	-43.5	-90.1	-71.5	18.5
4	2250.50	Hor.	-65.00	-64.70	2.41	9.03	-58.1	-104.6	-71.5	33.1
+	2230.30	Ver.	-60.08	-55.00	2.41	9.03	-48.4	-94.9	-71.5	23.4
5	2700.60	Hor.	-	-	2.66	9.48	-	-	-71.5	-
J	2700.00	Ver.	-	-	2.66	9.48	-	-	-71.5	-
6	3150.70	Hor.	-62.10	-56.60	2.89	9.96	-49.5	-96.1	-71.5	24.5
J	3130.70	Ver.	-61.75	-53.60	2.89	9.96	-46.5	-93.1	-71.5	21.5
7	3600.80	Hor.	-58.83	-51.30	3.12	10.10	-44.3	-90.9	-71.5	19.3
,	3000.80	Ver.	-56.25	-44.00	3.12	10.10	-37.0	-83.6	-71.5	12.0
8	4050.90	Hor.	-54.50	-44.50	3.32	9.94	-37.9	-84.4	-71.5	12.9
3	4030.70	Ver.	-59.17	-49.40	3.32	9.94	-42.8	-89.3	-71.5	17.8
9	4501.00	Hor.	-63.20	-53.10	3.53	10.92	-45.7	-92.2	-71.5	20.7
7	4501.00	Ver.	-	-	3.53	10.92	-	-	-71.5	-

Mask E Limit (dBc) = -(55+10Log(P))

 $Correct\ Level\ (dBm) = Substitute\ SG\ Level\ (dBm) + ANT\ Gain\ (dBi) - Cable\ Loss\ (dB)$

Emission Level (dBc) = Correct Level (dBm) - 10Log(P*1000)

P = Carrier Level (W)

[&]quot; - " = Measurement Limit

State: Low Power / 12.5 kHz channel bandwidth / 450.1 MHz

			Reading	SG Out	Cable	Antenna	Correct	Emission	Limit	
No	Frequency	Pol	Level	Level	Loss	Gain	Level	Level	Level	Margin
(MHz)			(dBm)	(dBm)	(dB)	(dBi)	(dBm)	(dBc)	(dBc)	(dB)
1	900.20	Hor.	-89.00	-50.70	2.41	2.15	-51.0	-91.0	-65.0	26.0
I	900.20	Ver.	-	-	2.41	2.15	-	-	-65.0	-
2	1350.30	Hor.	-52.50	-48.30	1.84	7.91	-42.2	-82.2	-65.0	17.2
2	1550.50	Ver.	-51.33	-48.40	1.84	7.91	-42.3	-82.3	-65.0	17.3
3	1800.40	Hor.	-55.67	-48.50	2.15	8.62	-42.0	-82.0	-65.0	17.0
3	1800.40	Ver.	-56.17	-51.50	2.15	8.62	-45.0	-85.0	-65.0	20.0
4	2250.50	Hor.	-	-	2.41	9.03	-	-	-65.0	-
4	2230.30	Ver.	-61.33	-56.80	2.41	9.03	-50.2	-90.2	-65.0	25.2
5	2700.60	Hor.	-	-	2.66	9.48	-	-	-65.0	-
3	2700.00	Ver.	-	-	2.66	9.48	-	-	-65.0	-
6	3150.70	Hor.	-62.10	-56.60	2.89	9.96	-49.5	-89.5	-65.0	24.5
6	3130.70	Ver.	-60.40	-51.40	2.89	9.96	-44.3	-84.3	-65.0	19.3
7	3600.80	Hor.	-	-	3.12	10.10	-	-	-65.0	-
/	3000.80	Ver.	-65.00	-58.50	3.12	10.10	-51.5	-91.5	-65.0	26.5
8	4050.90	Hor.	-58.10	-50.40	3.32	9.94	-43.8	-83.8	-65.0	18.8
0	4030.90	Ver.	-58.50	-47.30	3.32	9.94	-40.7	-80.7	-65.0	15.7
0	4501.00	Hor.	-	_	3.53	10.92	-	=	-65.0	-
9	4501.00	Ver.	-	_	3.53	10.92	-	-	-65.0	-
There i	s the margin of 20dB over	er exce	ept for the abo	ove points.						

Mask E Limit (dBc) = -(55+10Log(P))

Correct Level (dBm) = Substitute SG Level (dBm) + ANT Gain (dBi) - Cable Loss (dB)

Emission Level (dBc) = Correct Level (dBm) - 10Log(P*1000)

P = Carrier Level (W)

[&]quot; - " = Measurement Limit

4.4 Emission Masks (Occupied Bandwidth)

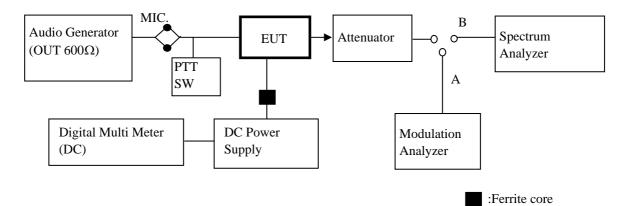
REGULATIONS : 47 CFR 2.1049 (c) (1), 22.359, 357 (a) (1), 74.1236, 90.210

TEST METHOD/GUIDE : ANSI/TIA/EIA-603B-2002, section 2.2.11.2

TEST PROCEDURE

1 The EUT and test equipment were set up as shown on the following page.

For EUT supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for +/- 2.5 kHz or +/- 1.80 kHz deviation (or 50 % modulation).

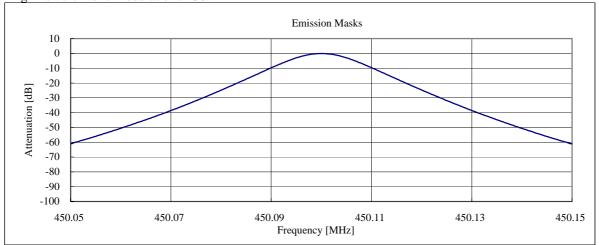

With level constant, the signal level was increased 16 dB.

For EUT supporting digital modulation, the digital modulation mode was operated to its maximum extent.

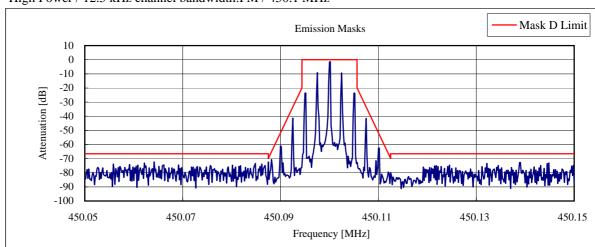
- 4 Adjust the spectrum analyzer for the following setting:
 - a) Resolution Bandwidth: 100 Hz (Nonmodulation and 12.5 kHz channel and 6.25 kHz channel bandwidth).
 - b) Video Bandwidth: 100 Hz (Nonmodulation and 12.5 kHz channel and 6.25 kHz channel bandwidth).
 - c) Sweep Speed: 8 sec.
 - d) Sampling Time: 10 times
- 5 The occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.

TEST EQUIPMENTS

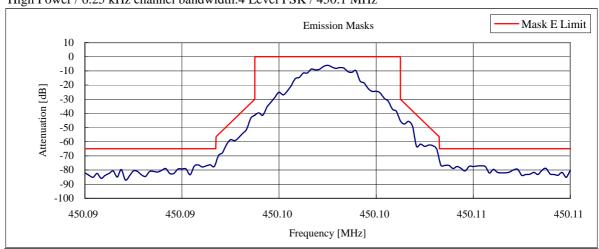
No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Audio Generator	Anritsu	MG443B	1004468	Aug. 03, 05	Aug. 31, 06
2	Attenuator (10dB)	TME	CFA-05NPJ-10	262856	Jun. 07, 05	Jun. 30, 06
3	Attenuator (20dB)	Weinschel	40-20-34	AA5701	Jul. 07, 05	Jul. 31, 06
4	Attenuator (30dB)	Weinschel	WA-29-30-34	8923	Jun. 15, 06	Jun. 30, 07
5	Modulation Analyzer	HP	8901B	3403A04852	Apr. 12, 06	Apr. 30, 07
6	Spectrum Analyzer	HP	8564E	3643A00665	Aug. 18, 05	Aug. 31, 06
7	DC Power Supply	Daiwa	PS-3020	None	None	None
8	Digital Multi Meter	Sanwa	CD721	3215593	May 07, 06	May 31, 07

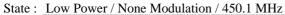

UNCERTAINTY

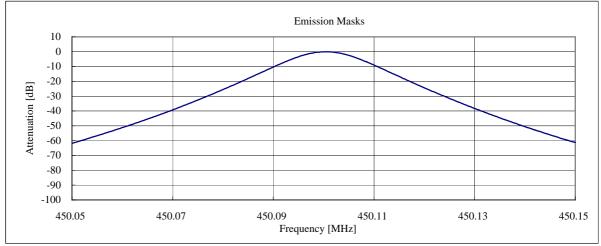
Measurement uncertainty is ± 1.2 dB (k = 2)

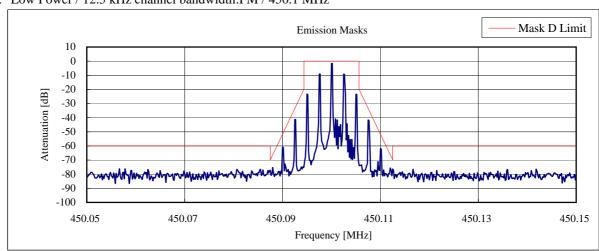

TEST RESULTS

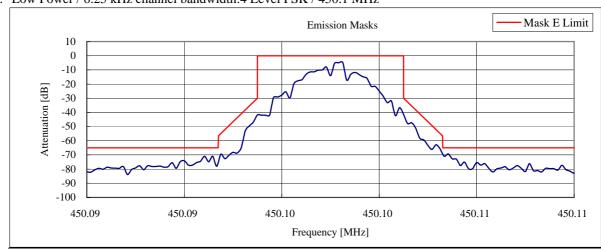
Measured for the worst case


State: High Power / None Modulation / 450.1 MHz




State : High Power / 12.5 kHz channel bandwidth: FM / 450.1 MHz





State: Low Power / 12.5 kHz channel bandwidth:FM / 450.1 MHz

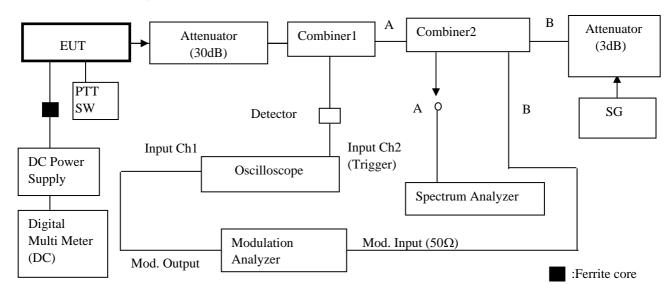
State: Low Power / 6.25 kHz channel bandwidth: 4 Level FSK / 450.1 MHz

4.5 Transient Frequency Behavior

REGULATIONS : 47 CFR 90.214

TEST METHOD/GUIDE : ANSI/TIA/EIA-603B-2002, section 2.2.19.3

TEST PROCEDURE

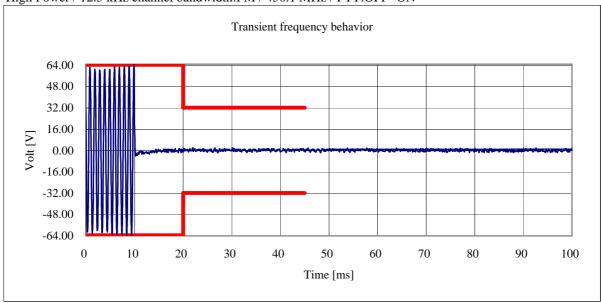

1 The EUT and test equipment were set up as shown on the following page.

- 2 The transmitter was turned on.
- 3 Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded as step f.
- 4 The transmitter was turned off.
- An RF signal generator (1) modulated with a 1 kHz tone at either 12.5 kHz or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step f, as measured at the output of the combiner.
 - This level was then fixed for the remainder of the test and is recorded at step h.
- 6 The oscilloscope was setup using TIA/EIA-603B-2002 steps j and k as a guide, and to 10 msec./div.
- 7 The transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as step l.
- 8 The carrier on-time as referenced in TIA/EIA-603B-2002 steps m, n, and o was captured and plotted.
- 9 The carrier off-time as referenced in TIA/EIA-603B-2002 steps p, q, r, and s was captured and plotted.

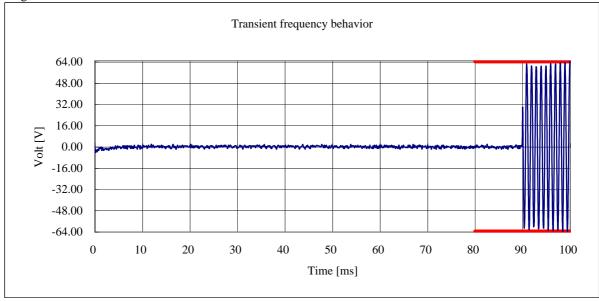
TEST EQUIPMENTS

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Signal Generator	Hewlett Packard	8657B	3247U03266	Apr. 10, 06	Apr. 30, 07
2	Oscilloscope	IWATSU-LeCroy	LT342	00922	Jul. 29, 05	Jul. 31, 06
3	Spectrum Analyzer	Agilent	E7403A	MY42000062	Sep. 01, 05	Sep. 30, 06
4	Attenuator (10dB)	TME	CFA-05NPJ-10	262856	Jun. 07, 05	Jun. 30, 06
5	Attenuator (20dB)	Weinschel	40-20-34	AA5701	Jul. 07, 05	Jul. 31, 06
6	Modulation Analyzer	Hewlett Packard	8901B	3403A04852	Apr. 12, 06	Apr. 30, 07
7	Combiner(1)	Anritsu	Z-164A	M89549	Jul. 07, 05	Jul. 31, 06
8	Combiner(2)	Anritsu	Z-164A	M89249	Jul. 07, 05	Jul. 31, 06
9	Attenuator (3dB)	TME	CFA-20NPJ-3	679701	Jul. 07, 05	Jul. 31, 06
10	DC Power Supply	Daiwa	PS-3020	None	None	None
11	Digital Multi Meter	Sanwa	CD721	3040939	May 07, 06	May 31, 07

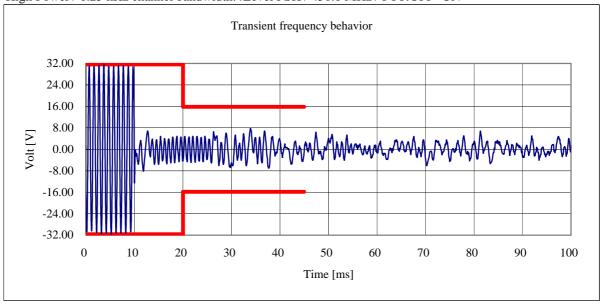
MEASUREMENT EQUIPMENT CONFIGURATION

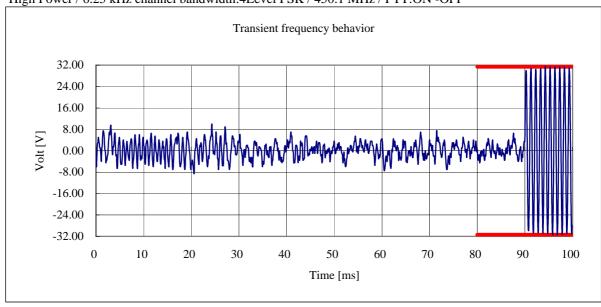

UNCERTAINTY

Measurement uncertainty is ± 1.3 dB (k = 2)


TEST RESULTS

Measured for the worst case


State : High Power / 12.5 kHz channel bandwidth: FM / $450.1 \, MHz$ / PTT: OFF -ON



 $State: \ High\ Power\ /\ 6.25\ kHz\ channel\ bandwidth: 4Level\ FSK\ /\ 450.1\ MHz\ /\ PTT: OFF\ -ON$

 $\label{eq:ptt:on-off} PTT: ON-OFF$ State : High Power / 6.25 kHz channel bandwidth: 4Level FSK / 450.1 MHz / PTT: ON - OFF

4.6 Audio Frequency Response / Audio Low Pass Filter (Voice Input)

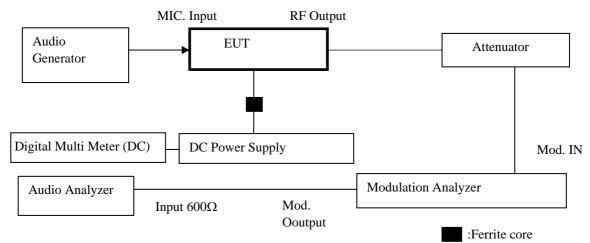
REGULATIONS : 47 CFR 2.1047 (a)

TEST METHOD/GUIDE : ANSI/TIA/EIA-603B-2002, section 2.2.6.2.2, 3.2.6.2

TEST PROCEDURE

The EUT and test equipment were set up as shown on the following page.

2 Adjust the Modulation Analyzer for the following setting:

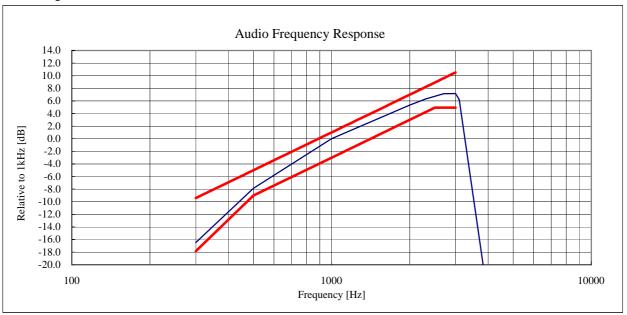

a) High-pass filter: 50 Hzb) Low-pass filter: 15 kHzc) Detector: positive peakd) Function: FM

- The audio signal input was adjusted to obtain 20 % modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 300 Hz to 5 kHz.
- 5 The response in dB relative to 1 kHz was then measured, using the Modulation Analyzer.

TEST EQUIPMENTS

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Audio Generator	Anritsu	MG443B	1004468	Aug. 03, 05	Aug. 31, 06
2	Attenuator (20dB)	Weinschel	40-20-34	AA5701	Jul. 07, 05	Jul. 31, 06
3	Attenuator (30dB)	Weinschel	WA-29-30-34	8923	Jun. 15, 06	Jun. 30, 07
4	Modulation Analyzer	HP	8901B	3403A04852	Apr. 12, 06	Apr. 30, 07
5	Audio Analyzer	HP	8903B	2948A07326	Apr. 18, 06	Apr. 30, 07
6	DC Power Supply	Daiwa	PS-3020	None	None	None
7	Digital Multi Meter	Sanwa	CD721	3215593	May 12, 06	May 31, 07

MEASUREMENT EQUIPMENT CONFIGURATION


UNCERTAINTY

Measurement uncertainty is $\pm 1.2 dB$ (k = 2)

TEST RESULTS

Measured for the worst case

State: High Power / 12.5 kHz channel bandwidth / 467.6 MHz

Note:

Audio Filter of the above result is substituted with the same structure as Audio Frequency Resonse. On the transmission condition below 3kHz, Transceiver shows pre-emphasis condition of transmission function.

On the transmission condition above 3kHz, Transceiver shows Audio Low Pass Filter.

4.7 Modulation Limiting

REGULATIONS : 47 CFR 2.1047 (b)

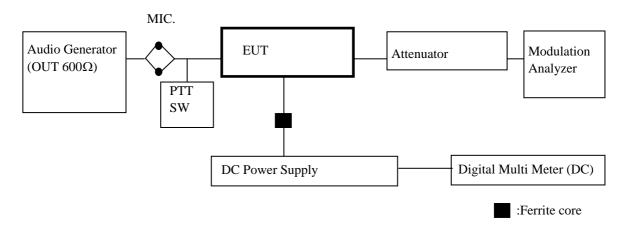
TEST METHOD/GUIDE : ANSI/TIA/EIA-603B-2002, section 2.2.3.2, 1.3.4.4

TEST PROCEDURE

1 The EUT and test equipment were set up as shown on the following page.

2 Adjust the Modulation Analyzer for the following setting:

a) High-pass filter: offb) Low-pass filter: 15 kHzc) Detector: positive peak

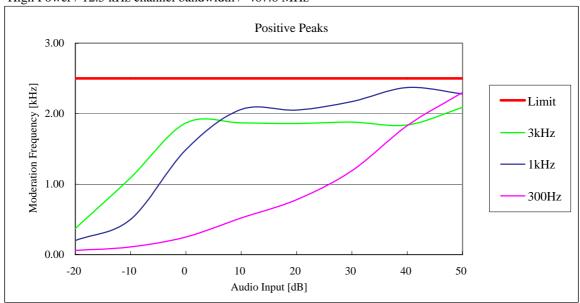

d) Function: FM

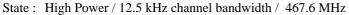
- Apply a 1kHz moduralating signal to the transmitter from the audio generator, and adjust the level to obtain 60% of full rated system deviation.
- 4 Measure the modulation frequency that was showed on the Modulation Analyzer when the output levels of the Audio Generator were changed from -20 dB to +50 dB by 10 dB.
- 5 Set the output frequencies of the Audio Generator 300 Hz and 3 kHz, and repeat test procedure 4.
- 6 Set the Detector of the Modulation Analyzer Negative Peak.
- Repeat test procedure 4 and 5.

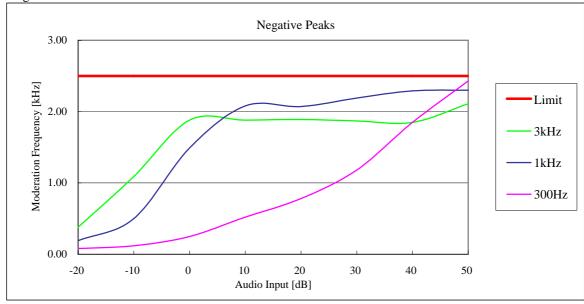
TEST EQUIPMENTS

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Audio Generator	Anritsu	MG443B	1004468	Aug. 03, 05	Aug. 31, 06
2	Attenuator (20dB)	Weinschel	40-20-34	AA5701	Jul. 07, 05	Jul. 31, 06
3	Attenuator (30dB)	Weinschel	WA-29-30-34	8923	Jun. 15, 06	Jun. 30, 07
4	Modulation Analyzer	HP	8901B	3403A04852	Apr. 12, 06	Apr. 30, 07
5	DC Power Supply	Daiwa	PS-3020	None	None	None
6	Digital Multi Meter	Sanwa	CD721	3215593	May 12, 06	May 31, 07

MEASUREMENT EQUIPMENT CONFIGURATION


UNCERTAINTY


Measurement uncertainty is ± 0.8 dB (k = 2)


TEST RESULTS

Measured for the worst case

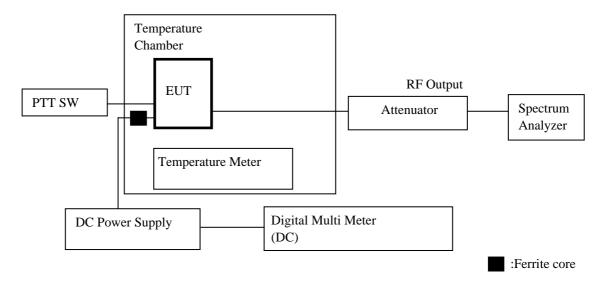
State: High Power / 12.5 kHz channel bandwidth / 467.6 MHz

4.8 Frequency Stability (Temperature Variation)

REGULATIONS : 47 CFR 2.1055 (a) (1), 22.355, 74.1261 (b), 90.213(a)

TEST METHOD/GUIDE : ANSI/TIA/EIA-603B-2002, section 2.2.2.2

TEST PROCEDURE


- 1 The EUT and test equipment were set up as shown on the following page.
- 2 Set the temperature -30 degrees C.
- 3 Leave the EUT for 1 hour after it became the temperature that was set up.
- 4 Make the EUT the transmitting state.
 - Two minutes later, measure the output frequency.
- 5 Make the EUT the receiving state.
- 6 Set the temperature 50 degrees C by 10 degrees C.

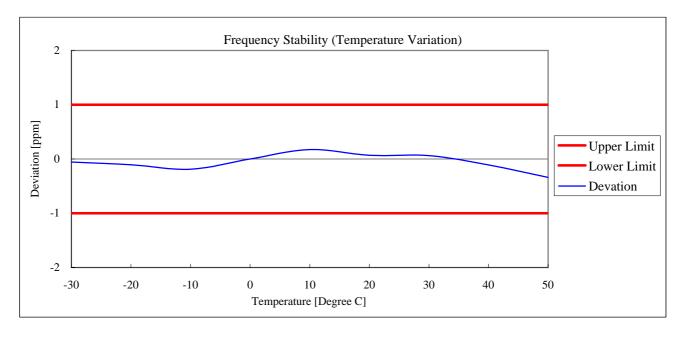
And repeat test procedure 3 to 5.

TEST EQUIPMENTS

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Spectrum Analyzer	Agilent	E7403A	MY42000062	Sep. 01, 05	Sep. 30, 06
2	Attenuator (20dB)	Weinschel	40-20-34	AA5701	Jul. 07, 05	Jul. 31, 06
3	Attenuator (30dB)	Weinschel	WA-29-30-34	8923	Jun. 15, 06	Jun. 30, 07
4	DC Power Supply	Daiwa	PS-3020	None	None	None
5	Digital Multimater	Sanwa	CD721	3215593	May 12, 06	May 31, 07
6	Temperature Chamber	Tabai	PL-3F	5103661	None	None
7	Temperature Meter	Sato	PC-5000TRH-II	A14999972	Mar. 15, 06	Mar. 31, 07

MEASUREMENT EQUIPMENT CONFIGURATION

UNCERTAINTY


Measurement uncertainty is +/- 3.6%

TEST RESULTS

Measured for the worst case

State: High Power / 12.5 kHz channel bandwidth / 450.1 MHz

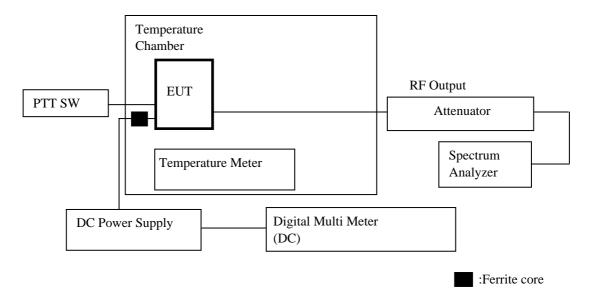
No.	Temperature	Frequency	Deviation	Limit	
	(Degree C)	(MHz)	(ppm)	(ppm)	
1	-30	450.099975	-0.06	1.0	
2	-20	450.099952	-0.11	1.0	
3	-10	450.099915	-0.19	1.0	
4	0	450.100000	0.00	1.0	
5	10	450.100078	0.17	1.0	
6	20	450.100031	0.07	1.0	
7	30	450.100028	0.06	1.0	
8	40	450.099951	-0.11	1.0	
9	50	450.099847	-0.34	1.0	

4.9 Frequency Stability (Voltage Variation)

REGULATIONS : 47 CFR 2.1055 (d) (1), 22.355, 74.1261 (b), 90.213(a)

TEST METHOD/GUIDE : ANSI/TIA/EIA-603B-2002, section 2.2.2.2

TEST PROCEDURE


The EUT and test equipment were set up as shown on the following page.

The power supply voltage to the EUT was varied from 85 % to 115 % of the nominal value measured at the input to the EUT.

TEST EQUIPMENTS

No.	Equipment	Manufacture	Model No.	Serial No.	Cal Date	Cal Exp.
1	Spectrum Analyzer	Agilent	E7403A	MY42000062	Sep. 01, 05	Sep. 30, 06
2	Attenuator (20dB)	Weinschel	40-20-34	AA5701	Jul. 07, 05	Jul. 31, 06
3	Attenuator (30dB)	Weinschel	WA-29-30-34	8923	Jun. 15, 06	Jun. 30, 07
4	DC Power Supply	Daiwa	PS-3020	None	None	None
5	Digital Multimater	Sanwa	CD721	3215593	May 12, 06	May 31, 07
6	Temperature Chamber	Tabai	PL-3F	5103661	None	None
7	Temperature Meter	Sato	PC-5000TRH-II	A11999972	Mar. 15, 06	Mar. 31, 07

MEASUREMENT EQUIPMENT CONFIGURATION

UNCERTAINTY

Measurement uncertainty is +/- 3.6%

TEST RESULTS

Measured for the worst case

State: High Power / 12.5 kHz channel bandwidth / 450.1 MHz

No.	Diviation	Voltage	Frequency	Deviation	Limit
	(%)	(V)	(MHz)	(ppm)	(ppm)
1	85	11.6	450.099985	-0.03	1.0
2	100	13.6	450.100041	0.09	1.0
3	115	15.6	450.099958	-0.09	1.0

4.10 Necessary Bandwidth and Emission Bandwidth

REGULATIONS : 47 CFR 2.202 (g) & Federal Register/ Vol.68, No236

CALCULATION RESULTS

State: 11K0F3E(12.5kHz channel bandwidth)

Item	Mark		
Maximum Modulation	(M)	3kHz	
Maximum Deviation	(D)	2.5kHz	
Constant Factor	(K)	1	
Necessary Bandwidth	(Bn)	11kHz	

Bn = (2xM) + (2xDxK)

State: 6K00F1E(4Level FSK/4800bps, 6.25kHz channel bandwidth)

Item	Mark		
Digital information rate	(R)	4800bps	
Peak frequency deviation	(D)	1.8kHz	
Signaling states	(S)	4	
Numerical factor	(K)	1	
Necessary Bandwidth	(Bn)	6kHz	

 $Bn = (R/log_2S) + 2xDxK$

State: 6K00F1D(4Level FSK/4800bps, 6.25kHz channel bandwidth)

Item	Mark		
Digital information rate	(R)	4800bps	
Peak frequency deviation	(D)	1.8kHz	
Signaling states	(S)	4	
Numerical factor	(K)	1	
Necessary Bandwidth	(Bn)	6kHz	

 $Bn = (R/log_2S) + 2xDxK$

5. VALIDITY OF TEST REPORT

The test result of this report is effective for equipment under test itself and under the test configuration described on the report.

This test report does not assure that whether the test result taken in other testing laboratory is compatible or reproducible to the test result on this report or not.

Copying of this report without permission is prohibited.

6. DESCRIPTION OF TEST LABORATORY

ACCREDITATION			SCOPE	LAB. CODE
LAB CODE 100290-0	NVLAP NVLAP NVLAP	USA USA USA	EMC Testing Calibration Telecommunication	100290-0 100290-0 100290-0
VINC	VLAC	JAPAN	EMC Testing	VLAC-008-1
BSM	BSMI	TAIWAN	EMC Testing	SL2-IN-E-6008
	NATA	AUSTRALIA	Calibration	13491
	NATA	AUSTRALIA	Telecommunication	100290-0

FILING			SCOPE	LAB. CODE
V €I	VCCI	JAPAN	EMC Testing	
Federal Communications Commission	FCC	USA	EMC Testing	934283
Industry Canada	IC	CANADA	EMC Testing	IC-2065
	IC	CANADA	Telecommunication	IC-2065
	SASO	SAUDI ARABIA	EMC Testing	

Note 1 : NVLAP accreditation does not constitute any product endorsement by NVLAP or any agent of the U.S. Government.