FCC PART 15 SUBPART B

CERTIFICATION REPORT for E-File

KENWOOD CORPORATION COMMUNICATION EQUIPMENT DIVISION

SCANNING RECEIVER (As PC peripheral)

FCC ID: K4428451110

Report No.: Z02C-99247

Report Issue Date: September 16, 1999

ZACTA TECHNOLOGY CORPORATION YONEZAWA TESTING CENTER

4149-7 Hachi manpara 5-chome Yonezawa-shi Yamagata 992-1128 Japan

Lab code : 200306-0

TABLE OF CONTENTS

CERTIFICATE COMPLIANCE	. 3
LABORATORY MEASUREMENTS	. 5
JUSTIFICATION / ENGINEERING COMMENT SUMMURY OF TEST DATA CONFIGURATION INFORMATION SYSTEM CONFIGURATION	. 6 . 7
LABORATORY DESCRIPTION	. 9
DESCRIPTION FOR TEST SITE DESCRIPTION OF CONDUCTION TESTING DESCRIPTION OF RADIATION TESTING UNCERTAINTY	11 12
TEST SITE CONDITION & INSTRUMENTATION	14
TEST SITE CONDITION . TEST EQUIPMENT FOR CONDUCTION	14 15
TEST DATA	16

CERTIFICATE COMPLIANCE

ZACTA TECHNOLOGY CORPORATION YONEZAWA TESTING CENTER 4149-7 Hachi manpara 5-chome Yonezawa-shi Yamagata 992-1128 Japan

measured pursuant to ANSI C63.4-1992 This devi ce was bν Technology Corporation. The data in this application complies with the applicable technical standards as indicated in the measurements report and FCC Part 15 Class B limits. The EUT complies with section 15.37 "Transition provision for compliance with the rules".

APPLI CANT : KENWOOD CORPORATION COMMUNICATION EQUIPMENT

DIVISION

FCC ID : K4428451110

FCC RULE PART : FCC Part 15 Subpart B, Docket 87-389

EQUIPMENT CLASS : Class B

: PC Peripheral / Scanning Receiver EUT TYPE

FREQ. RANGE: 118MHz - 523.995MHz 800MHz - 1299. 995MHz

MAX USED FREQ. : 1299.995MHz

DATE OF TEST : September 14, 1998

MEASUREMENT: ANSI C63.4-1992

TEST RESULT: PASS

REPORT NO. : Z02C-99247

REMARKS : No modification was made during testing.

EUT is powered from DC Power Supply.

Zacta Technology Corporation certifies that no party application is subject to a denial of federal benefits, that includes FCC benefits, pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21U.S.C. 853(a).

Authorized by : Shin-ichi Abe

> General Manager, Zacta Technology Corporation Yonezawa Testing Center

The results in this test report apply only to the samples tested. This report shall not be re-produced except in full without the

FCC ID: K4428451110

written approval of Zacta Technology Corporation.

LABORATORY MEASUREMENTS

PURSUANT TO PART 15, SUBPART B

COMPANY NAME : KENWOOD CORPORATION COMMUNICATION

EQUIPMENT DIVISION

EUT : PC PERIPHERAL / SCANNING RECEIVER

MODEL NO. : TM-D700A FCC ID : K4428451110

SERIAL NO. : N/A

DATE OF TESTS : September 14, 1999 MEASUREMENT : ANSI C63.4-1992

FCC CLASS : B DI STANCE : 3m

POWER SUPPLIED : DC 13.8V(From DC Power Supply)

REPORT NO. : Z02C-99247

JUSTIFICATION / ENGINEERING COMMENT

The detector function in frequency range of 30MHz-1GHz was set to Quasi-peak mode.

Peak and average detectors were used for measurements above 1GHz. Used maximum frequency of this device is 1299.995MHz, therefore, we were measured up to 7GHz when Radiated Emission Test. Cables were manipulated to produce the worst case emissions.

All operating configuration, combination of Accessory: Microphone were measured. Sufficient warm up time is proved for these testing.

to
t

FCC ID: K4428451110

SUMMURY OF TEST DATA

RADIATION DATA

OPERATING CONFIGURATION RESULT

TEST MODE FREQUENCY MARGIN
A Band SCAN B Band 1969. 56MHz -4. 8dB

SCAN

CONDUCTION DATA

OPERATING CONFIGURATION RESULT

TEST MODE FREQUENCY MARGIN
A Band SCAN B Band 1.359MHz -13.7dB

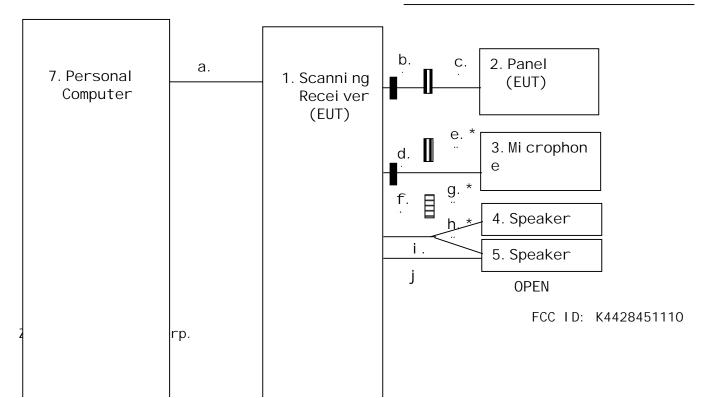
SCAN

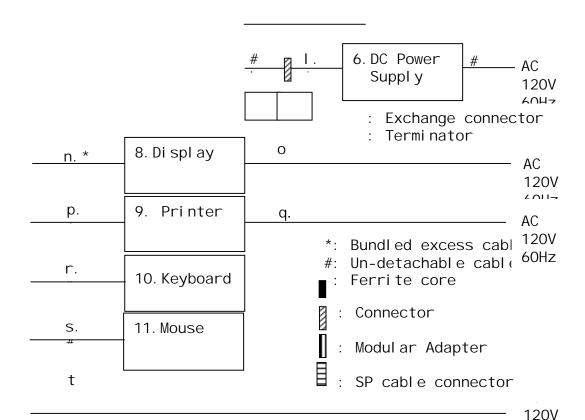
CONFIGURATION INFORMATION DEVICE INFORMATION

COMMENT:

NO	EQUI PMENT	COMPANY	MODEL NO.	SERIAL NO.	FCC ID	COMMENT
1	Scanni ng Recei ver	KENWOOD	TM-D700A	N/A	K44284511 10	EUT
2	Panel	KENWOOD	N/A	N/A	K44284511 10	EUT
3	Mi crophone	KENWOOD	N/A	N/A	N/A	Accessor y
4	Communications Speaker	KENWOOD	SP-50B	N/A	N/A	
5	Communications Speaker	KENWOOD	SP-50B	N/A	N/A	
6	DC Power Supply	KENWOOD	PS-33	30200384	N/A	
7	Personal Computer	COMPAQ	Desk Pro 5150	7610HXG3047 9	CNT75MDCZ 5	
8	Di spl ay	LG Electronic s	Stdi oWorks 56i	15005G00496 0	BEJCS585	
9	Pri nter	HP	C4555A	SG69A1425N	B94C4555X	
10	Keyboard	COMPAQ	RT6674TJP	22861605	AQ6- MTN4C15	
11	Mouse	COMPAQ	M-S34-6MD	1D75BD3F0MA 8	DZL210472	

CABLES INFORMATION


NO	CABLE	COMPAN	LENGTH	TH SHI ELDED		Connected Si tuati on		COMMEN
	CADLL	Υ	[m]	Cabl e	Connec tor	From	То	T
а	Serial cable	N/A	2.0	Shi el ded	Metal	EUT	PC	
b	Panel cable	KENWOO	4. 0	Unshi el d	Plasti	EUT	Modul ar	*
		D		ed	С		ADP	
С	Panel cable	KENWOO	3. 0	Unshi el d	Plasti	Modul ar	Panel	*
		D		ed	С	ADP		
d	Mi crophone	KENWOO	4. 0	Shi el ded	Plasti	EUT	Modul ar	*
	cabl e	D			С		ADP	
е	Mi crophone	KENWOO	3. 0	Unshi el d	Plasti	Modul ar	Mi crophon	*
	cabl e	D		ed	С	ADP	е	
f	SP cable	KENWOO	4.0	Unshi el d	Metal	EUT	SP cable	*
		D		ed			CN	


g	SP cable	KENWOO D	2. 5	Unshi el d ed	Metal	SP cable	Speaker	*
h	SP cable	KENWOO D	2. 5	Unshi el d ed	Metal	SP cable	Speaker	*
i	DATA cable	KENWOO D	1. 0	Shi el ded	Metal	EUT	(OPEN)	
j	GPS cable	KENWOO D	1. 0	Unshi el d ed	Metal	EUT	(OPEN)	
k	DC cable	KENWOO D	0. 25	Unshi el d ed	PI asti c	EUT	Connecto r	
I	DC cable	KENWOO D	1. 8	Unshi el d ed	PI asti c	Connecto r	Power supply	*
m	AC Power cord	KENWOO D	1.8	Unshi el d ed	PI asti c	Power Supply	AC Outlet	
n	RGB cable	N/A	1.4	Shi el ded	Metal	PC	Di spl ay	
0	AC Power cord	N/A	2. 0	Unshi el d ed	Plasti c	Di spl ay	Ac Outlet	
р	Pri nter cabl e	N/A	2. 0	Shi el ded	Metal	PC	Pri nter	*
q	AC Power cord	N/A	2. 0	Unshi el d ed	PI asti c	Pri nter	AC Outlet	
r	Keyboard cabl e	COMPAQ	1.6	Shi el ded	Metal	PC	Keyboard	
S	Mouse cable	COMPAQ	1. 6	Unshi el d ed	Metal	PC	Mouse	
t	AC Power cord	N/A	2. 0	Unshi el d ed	Pl asti c	PC PC	AC Outlet	

* Bundled excess cable.

SYSTEM CONFIGURATION

COMMENT:

LABORATORY DESCRIPTION

DESCRIPTION FOR TEST SITE

1. LOCATION:

ZACTA TECHNOLOGY CORPORATION YONEAZAWA TESTING CENTER 4149-7 Hachimanpara 5-chome, Yonezawa-shi Yamagata 992-1128 Japan

Phone: +81-238-28-2880 Fax: +81-238-28-2888

2. THE NUMBER OF SITE:

Total: 4 sites - Site #1, Site #2, Site #3, Site #4

3. THE TYPE OF SITE:

Whether protected site

4. TEST TYPE:

All sites could perform as follows tests:

- 1) 3/10m Radiated disturbance test
- 2) Conducted disturbance test

FCC ID: K4428451110

5. FACILITY FILING INFORMATION

FCC FINAL SITE FILING: 2.948 Pursuant to ANSI C63.4-1992

Site #1, Site #2, Site #3 (Final date: January 29, 1997)

Si te #4 (Fi nal date: June 18, 1998)

*3m/10m Radiated emission test & Conducted emission test could be performed on each site

<u>VCCI FINAL SITE FILING: V-5/97.04 Pursuant to VCCI Regulations</u> <u>for Registration of measurement facilities</u>

Site #1 R - 136 C - 132 (Final date: April 1, 1997)

Site #2 R - 137 C - 133 (Final date: April 1, 1997)

Site #3 R - 138 C - 134 (Final date: April 1, 1997)

Site #4 R - 752 C - 775 (Final date: June 23, 1998)

NVLAP ACCREDITION:

NVLAP CODE: 200306-0

NVLAP INFORMATION: NVLAP accreditation does not constitute any product endorsement by NVLAP or any agent of the U.S.

Government

DESCRIPTION OF CONDUCTION TESTING

The line-conducted emissions testing facility is located inside of the site which used for radiated emissions testing.

A 1 meter x 1.5 meter surface, 0.8 meter height from conducting ground plane wooden table is placed 40 cm away from the vertical conducting surface.

Two 50 /50 H Line Impedance Stabilization Network (LISN) are placed on the conducting ground plane.

The EUT was powered from the KYORITSU LISN and the support Equipment were another KYORITSU LISN.

50 BNC connector of the KYORITSU LISN (for peripheral) is terminated in $50\,$.

An isolation transformer has 50A which is large enough to not affect the peak consumption current by the EUT.

All interconnecting cables more than 1 meter were bundled to 1 meter length.

Sufficient time for the EUT, support equipment, and test equipment were allowed in order for them to warm up to their normal operating condition.

The frequency range was scanned from 450KHz to 30 MHz. The detector function of the test receiver was set to CISPR Quasi-peak mode and the bandwidth was set to 10KHz.

The EUT, support equipment and interconnecting cables were arranged and manipulated to maximize worst emissions for each emission in this test report.

DESCRIPTION OF RADIATION TESTING

Measurements: were made at 3 meter using broadband antenna (Bi coni cal Antenna and log-periodic antenna) & Test receiver. Frequency Range: 30MHz scanned and investigated using recei ver. Six highest was emissions(Min.) was reported. The test results represents the worst case emissions for each emission with manipulating the EUT, support equipment and interconnecting cables maximize the worst emissions in this report.

Condition:

The detector function of the test receiver was set to CISPR Quasi-peak mode and the bandwidth was set to 120kHz. Sufficient time for the EUT, support equipment, and test equipment were allowed in order for them to warm up to their normal operating condition.

The EUT and support equipment were placed on a top of a 0.8 meter height

wooden table.

For Floor-Standing devices, the EUT and all cables were installed on

electrical insulating material.

The antenna height was varied 1 to 4 meters and stopped at height producing the maximum emission. The turntable was rotated by 360 degrees and stopped at azimuth of producing the maximum emission.

Interconnecting cables which are connected to a peripheral was bundled in center, and its length was not exceed 1 meter.

Each emissions were maximized by: varying the mode of operation, changing the polarity of the antenna, whichever determined the worst case emission. The normalized site attenuation graph for the both horizontal and vertical polarization are shown in Description for site.

As specified in CFR section 15.33, in case of the highest frequency used in device is maximum frequency 1.2GHz, the frequency range investigated from 30MHz up to the frequency 7GHz.

For measurements above 1GHz, double-ridged guide antenna was used as specified in ANSI C63.4-1992 section 4.1.5.4.

Pursuant to CFR section 15.35(b) and ANSI C63.4-1992 section 4.2., Peak and Average detectors were used for measurements above 1GHz. The bandwidth of spectrum analyzer was set to 1MHz.

When measuring emissions above 1GHz, the frequencies of maximum emissions were determined by manually positioning the antenna close to the EUT and by moving the antenna over all sides of the EUT while observing a spectral display. The beam width of the antenna at that time was larger than FIIT than EUT.

UNCERTAINTY

Conducted Emission Test

Total	Uncertai nty	@95%mi n. Confi dence	±1. 78dB
probabi	lity		±1.780B

Radiated Emission Test

Total	Uncertai nty	@95%mi n. Confi dence	3m	10m
probabi l	i ty		±2. 66dB	±2. 01dB

TEST SITE CONDITION & INSTRUMENTATION

TEST SITE CONDITION

Test date	September 14, 1999
Si te #	Si te 1
Power	DC 13.8V
suppl y	
Weather	Weather: Sunny Temp.: 28 Humidity: 55%
Standard	ANSI C63. 4-1992
Deviation	Not applicable
from	
The	
standards	

TEST EQUIPMENT FOR CONDUCTION

Equi pment	Manufacture	Model name /	Cal i brati	Peri o
Equi pinerre	mariar actar c	Serial No.	on date	d
Spectrum	Hewlett Packard	8568B / 2634A02803	Jun. 1999	1
Anal yzer				year
Test Receiver	Kyori tsu	KNM-2402 / 4N-192-	Nov. 1998	1
	El ectri cal	1		year
	Works, Ltd.			
Li ne	Kyori tsu	KNW-242C / 8-1096-	Jan. 1999	1
Impedance	El ectri cal	3		year
Stabilization	Works, Ltd.	(For EUT)		
Network				
Li ne	Kyori tsu	KNW-242C / 8-875-	Feb. 1999	1
Impedance	El ectri cal	19		year
Stabilization	Works, Ltd.	(For peripheral)		
Network				
Coaxial cable	FUJI KURA	8D-2W /	Jun. 1999	1
		H110601#1/15C		year

TEST EQUIPMENT FOR RADIATION

Equi pment	Manufacture	Model name /	Calibrati	Peri o
Lqui pillerri	Manuracture	Serial No.	on date	d
Spectrum	Hewlett Packard	8568B / 2634A02803	Jun. 1999	1
Anal yzer				year
RF	Anritsu	 MH648A / M96057	Nov. 1998	, 1
Preamplifier	AIII I ISU	WH046A / W90057	1100. 1990	year
Test Receiver	Kyori tsu	KNM-5002 / 4N-200-	Jun. 1999	1
	El ectri cal	5		year
	Works, Ltd.	KCV-6002 / 4-288-2		
Bi coni cal	Schwarzbeck	BBA9106/VHA9103LE	Jun. 1999	1 1
Antenna		/ 13130919		year
Log Periodic	El ectro-	3146 / 8901-2336	Jun. 1999	1
Antenna	Mechanics Co.			year
Coaxial cable	FUJI KURA	8D-2W /	Jun. 1999	1
		H110601#1/08R		year
Coaxial cable	FUJI KURA	23D-HA/	Jun. 1999	1
		H110601#1/23D-HA		year
Si te	Zacta	Si te 1	Dec. 1998	1
attenuati on	Technol ogy			year
	Corp.			

*** Measurement above 1GHz ***

Equi pment	Manufacture	Model name /	Cal i brati	Peri o
Lqui pillerri	Mariuracture	Serial No.	on date	d
Spectrum	ADVANTEST	R3271A / 65050042	May. 1999	1 year
Anal yzer				
RF	Hewlett Packard	8449B / 3008A00589	May. 1999	2 year
Preamplifier				
Double Ridged	El ectro-	3115 / 4328	Jun. 1998	2 year
Gui de Antenna	Mechanics Co.			
Coaxi al cabl e	SUHNER	SUCOFLEX 104	May. 1999	2 year
		108014/4 & 108015/4		

Calibration is traceable to NIST or an equivalent standards reference organization.

SAMPLE OF FIELD STRENGTH CALCULATION

dB V =
$$20l og_{10}$$
 (V)
dB V /m = $20l og_{10}$
(V/m)

[Sample Calculation]

*For Conduction

Class B limit = 250 V = 48.0 dB V

@ 3.332MHz

Reading = 41.6dB V Cable Loss = 0.2dB Total = 41.6 + 0.2 = 41.8dB V

Margin = 41.8 - 48.0 = -6.2dB

6.2 dB below the limit

*For Radiation

Class B limit = 150 V/m = 43.5 dB V/m

@ 181. OMHz

Reading = 35.7dB V Ant. Factor + Cable Loss - Amp. Gain = 15.8 + 1.4 - 15.0 = 2.2dB/m Total = 35.7 + 2.2 = 37.9dB V/m

Margin = 37.9 - 43.5 = -5.6dB

5.6 dB below the

<u>limit</u>

ROC PARTISB Class B 3m RADIATION DATA SHEET @

99/09/14 SITE: 1 1 DATE OF TESTS: CHART NO SHET NO KENWOOD MDEL: TMD700A COMPANY NAME: MIT: COMMENT: A Band SCAN B Band SCAN POL ANT TABLE READ FACTOR NEΓ LIMITS MARGIN COMMENT FREQ HV[m] [deg] [MHz] [dBuV] [dB'm] [dBuVm] [dBuVm] $\int dB$ Η 1.0 170 379.99 43.0 - 12. 2 30.8 46.0 - 15. 2 V 379.99 23.7 -22.3 1.7 40 35. 9 - 12. 2 46.0 H 1.0 295 425.60 - 11. 1 47. 6 36. 5 46.0 -9.5 V 1.3 305 425.60 47. 7 36.6 -9.4 -11.1 46.0 Η 1.0 170 954. 10 32.4 1.4 33.8 46.0 - 12. 2 H 2. 2 160 1641. 37 51. 5 -4.0 47. 6 54. 0 -6.5 PEAK -7.0 Н 2.2 1641.37 47. 1 160 51.0 -4.0 54.0 **AVERACE** V 1.0 230 1641.37 -4.0 45.3 54.0 -8.8 PFAK 49. 2 -8.9 V 1.0 230 1641.37 49. 1 -4.0 45. 2 54.0 **AMERACE** Η 1. 1 175 1949. 36 46.8 -2.2 44. 6 54.0 -9.4 **PEAK** Η 1. 1 175 1949. 36 40.3 -2.2 38. 1 54.0 - 15. 9 **AVERACE** H 1. 1 170 1949.41 45.9 -2.2 43. 7 54.0 - 10. 3 PEAK Н 1. 1 170 1949, 41 40.3 -2.2 38. 1 54.0 - 15. 9 **AVERACE** Η 1. 1 170 1969. 56 51.4 -2.2 49. 2 54.0 -4.8 -PEAK -2.2 H 1. 1 170 1969. 56 49.0 46.8 54. 0 -7.2 **AVERACE** Н -1.6 -6.4 1.0 175 2163. 62 49. 2 47. 6 54.0 PEAK Н 175 47.5 45.9 -8.1 1.0 2163. 62 -1.6 54.0 **AVERACE** V 1.0 130 2163.62 47. 2 -1.6 45.6 54.0 -8.4 PEAK V 1.0 130 2163. 62 44. 1 42. 5 54.0 -11.5 - 1. 6 **AVERACE** Н 48.0 160 2288.71 - 1. 1 -6.0 1.0 49. 1 54. 0 PEAK Н 160 2288, 71 46.0 - 1. 1 44.9 54.0 -9.1 **AVERACE** 1.0 V 1.0 145 2288.71 46.0 - 1. 1 44. 9 54.0 -9.1 PEAK V 1.0 145 2288.71 40.7 - 1. 1 39.6 54.0 - 14. 4 **AMERACE**

ROC PARTISB Class B 3m CONDUCTION DATA SHEET @

DATE OF TESTS: 99/09/14 SITE 1 CHART NO 1 SHET NO 2 COMPANY NAME: KENVOOD MODE: TIMOTOOA MODE SCAN

COMMENT:

FREQ	READA	READB	FACTOR	NET A	NET B	ШMПS	MARCIN	COMMENT
$[\mathbf{N}\mathbf{H}]$	[dBaV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dB]	
0.450	20.4	20.5	0.1	20.5	20.6	48.0	-27.4	
0.915	29.4	29.2	0.1	29.5	29.3	48.0	-18.5	Anbient Noise
1.359	34.0	33.5	0.3	34.3	33.8	48.0	-13.7	-Ambient Noise
3.941	25.4	26.0	0.3	25.7	26.3	48.0	-21.7	Anbient Noise
6.036	13.5	14. 2	0.3	13.8	14. 5	48.0	-33.5	Ambient Noise
9.649	29.5	28.9	0.4	29.9	29.3	48.0	- 18. 1	Anbient Noise