

2101 Tasman Drive Santa Clara, CA 95054 USA tel 408-653-1555 fax 408-567-1069

Description of the Duty Cycle for the AccessLinkII 2-way pager

The worst case duty cycle for the pager transmitter occurs when it is sending messages from the pager to the infrastructure. For this calculation, assume infinite messages are queued in the pager, each message it the maximum length allowed (2000 characters) and the back channel is running at its slowest speed (800 bps).

The ReFLEX protocol is timed on frames, each of which is 1.875 seconds long. The sequence for transmitting a message from the pager is shown in the following table. Also shown are transmitter on times and elapsed time.

Frame	Event	Transmitter on time	Elapsed time
1	Pager signal request to transmit to system	0.1705	1.875
2	Request goes to system controller and is	0	1.875
	scheduled		
3	Grant for data unit is sent to Pager	0	1.875
4	Pager sends first data unit (100	1.875	1.875
	characters) to system		
5	Data unit goes to system controller and	0	1.875
	next data unit is scheduled		
6	Grant for next data unit is sent to Pager	0	1.875
7	Pager sends data unit to system	1.875	1.875
8-61	steps 5-7 repeat unit entire message is	18 X 1.875	54 X 1.875
	transmitted (18 more data units for a total		
	of 20)		
62	Last data unit goes to system controller	0	1.875
	and end of transmission is scheduled		
63	End of transmission is sent to pager	0	1.875
64	Ack to end of transmission is transmitted	0.1705	1.875
	from pager to system		
	Totals	37.841 seconds	120 seconds

Thus, the maximum duty cycle is 37.841/120 = 31.5%

<u>Note</u>: This is not achievable in a real system due to delays in computing and traffic delays, and is only a theoretical maximum based on the protocol.

Recalculation of SAR results based on 31.5% duty cycle

The maximum spatial peak SAR values averaged over 1g assessed in "touch" position was 3.27mW/g for the tested unit when tested in test mode. Based on the theoretical maximum in the protocol (which is not achievable in a real system), the actual transmission is only 31.5%. In considering the 31.5% duty cycle to the measured SAR data, the unit is in compliance with the requirements of the FCC for body requirements.