## FCC PART 15.247

# EMI MEASUREMENT AND TEST REPORT

For

## AlphaSmart Inc.

973 University Ave. Los Gatos, CA 95032

FCC ID: K2VDANA002

2004-02-20

This Report Concerns: **Equipment Type:** Class II Permissive Change Transceiver, Palm Powered Laptop **Test Engineer:** Ling Zhang **Report No.:** R0402171 **Test Date:** 2004-02-17 **Reviewed By:** Hans Mellberg Bay Area Compliance Laboratory Corporation (BACL) **Prepared By:** 230 Commercial Street Sunnyvale, CA 94085 Tel: (408) 732-9162 Fax: (408) 732 9164

**Note:** This test report is specially limited to the above client company and product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

# AlphaSmart Inc. **TABLE OF CONTENTS**

| GENERAL INFORMATION                                | 3  |
|----------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) |    |
| Objective                                          |    |
| RELATED SUBMITTAL(S)/GRANT(S)                      |    |
| TEST METHODOLOGY                                   |    |
| TEST FACILITY                                      | 3  |
| SYSTEM TEST CONFIGURATION                          | 5  |
| JUSTIFICATION                                      |    |
| EUT Exercise Software                              |    |
| SPECIAL ACCESSORIES                                |    |
| SCHEMATICS / BLOCK DIAGRAM                         |    |
| EQUIPMENT MODIFICATIONS                            |    |
| CONFIGURATION OF TEST SYSTEM                       |    |
| TEST SETUP BLOCK DIAGRAM                           |    |
| SUPPORT EQUIPMENT LIST AND DETAILS                 |    |
| EXTERNAL I/O CABLING LIST AND DETAILS              |    |
| POWER SUPPLY INFORMATION                           |    |
| SUMMARY OF TEST RESULTS                            | 8  |
| §15.209 - SPURIOUS RADIATED EMISSION               | 9  |
| MEASUREMENT UNCERTAINTY                            | 9  |
| EUT SETUP                                          |    |
| SPECTRUM ANALYZER SETUP                            |    |
| TEST EQUIPMENT LIST AND DETAILS.                   |    |
| TEST PROCEDURE                                     | 11 |
| CORRECTED AMPLITUDE & MARGIN CALCULATION           |    |
| SUMMARY OF TEST RESULTS                            |    |
| RADIATED EMISSION TEST RESULT                      |    |
| §15.207(A) - CONDUCTED EMISSIONS                   | 14 |
| MEASUREMENT UNCERTAINTY                            |    |
| EUT SETUP                                          |    |
| SPECTRUM ANALYZER SETUP                            |    |
| TEST EQUIPMENT LIST AND DETAILS                    |    |
| TEST PROCEDURE                                     | 14 |
| SUMMARY OF TEST RESULTS                            |    |
|                                                    | 15 |
| CONDUCTED EMISSIONS TEST DATA                      |    |

#### **GENERAL INFORMATION**

#### **Product Description for Equipment Under Test (EUT)**

The *AlphaSmart Inc.*'s, model: *DANA WIRELESS*, or the "EUT" as referred to in this report is a transceiver, Palm Powered Laptop, which measures approximately 1.7"L x 1.2"W x 0.12"H. The EUT is a DTS device, which operates at the frequency range of 2412 – 2462 MHz, with the maximum conducted output power of 19.95dBm (98.7mW)

\* The test data gathered are from a production sample, serial number WUUSRD-336097136 provided by the manufacturer.

#### **Objective**

This type approval report is prepared on behalf of *AlphaSmart Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commissions rules.

This is a C2PC application. The original application was granted on 8/12/03. The difference between the original device and the current one are as follows: A short (about 1") flex cable between the main PCB and the Wireless module was added. This flex cable simply extends the USB signals provided to the module, and does not affect the 802.11b radio. There is no change in mounting location of the module.

The objective of the manufacturer is to determine continued compliance with FCC rules, especially Conducted and Spurious Radiated Emission.

#### **Related Submittal(s)/Grant(s)**

The original application was originally granted on 8/12/03. Please refer to BACL report R0306181 for the details of the original application.

#### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.4-2001, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz and FCC97114 for Direct Sequence SS.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

#### **Test Facility**

The Open Area Test site used by BACL to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules and Article 8 of the VCCI regulations on

December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2001.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The scope of the accreditation covers the FCC Method – CFR Title 47, Parts 2 and 15, CISPR 22: (use right version and spelling!) Electromagnetic Interference – Limits and Methods of Measurement of Information Technology Equipment test methods.

#### **SYSTEM TEST CONFIGURATION**

#### **Justification**

The host system was configured for testing according to ANSI C63.4-2001.

The EUT was tested in the normal (native) operating mode to represent *worst*-case results during the final qualification test.

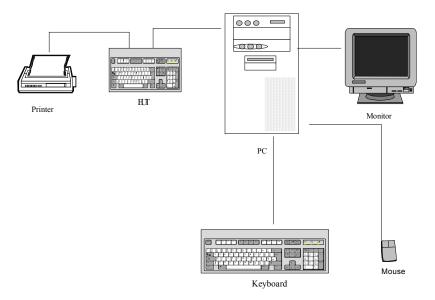
#### **EUT Exercise Software**

The EUT exercise program used during radiated and conducted testing was designed to exercise the system components. The test software, provided by the customer, is started the Windows terminal program under the Windows 98/2000/ME/XP operating system.

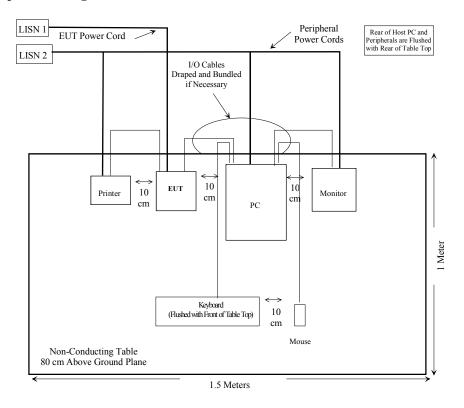
Once loaded, set the Tx channel to low, mid and high for testing.

#### **Special Accessories**

As shown in following test block diagram, all interface cables used for compliance testing are shielded. The host PC and the peripherals featured shielded metal connectors.


#### **Schematics / Block Diagram**

Please refer to Appendix A.


#### **Equipment Modifications**

No modifications were made to the EUT.

### **Configuration of Test System**



### **Test Setup Block Diagram**



## **Support Equipment List and Details**

| Manufacturer | Description | Model          | Serial Number | FCC ID      |
|--------------|-------------|----------------|---------------|-------------|
| SMILE INT'L  | Monitor     | CA1716DS       | ALKKU65431034 | GBVCA1716DS |
| HP           | Computer    | Pavilion 8660c | Us00412593    | DOC         |
| Key Tronics  | Keyboard    | J9813          | E0301QCMTPS2C | DOC         |
| Logitech     | Mouse       | m-s34          | LZB95225500   | DOC         |
| HP           | Printer     | C8415a         | MYCOLO140Y7   | DOC         |
| ALPHA SMART  | PDA host    | N/A            | N/A           | DOC         |

## **External I/O Cabling List and Details**

| Cable Description           | Length (M) | Port/From | То  |
|-----------------------------|------------|-----------|-----|
| Non-shielded monitor Cable  | 1          | Monitor   | PC  |
| Non-shielded keyboard Cable | 1          | Keyboard  | PC  |
| Non-shielded mouse Cable    | 1          | Mouse     | PC  |
| Non-shielded USB Cable      | 1          | PC        | EUT |
| Non-shielded printer cable  | 1          | Printer   | EUT |

## **Power Supply Information**

| Manufacturer | Description   | Model       | Serial Number | FCC ID |
|--------------|---------------|-------------|---------------|--------|
| ALPHA SMART  | AC/DC ADAPTER | 41-7.5-500D | N/A           | DOC    |

## **SUMMARY OF TEST RESULTS**

Results reported relate only to the product tested, serial number: WUUSRD-336097136.

| FCC RULES       | DESCRIPTION OF TEST                      | RESULT    |
|-----------------|------------------------------------------|-----------|
| §2.1093         | RF Exposure                              | Unchanged |
| §15.203         | Antenna Requirement                      | Unchanged |
| § 15.207 (a)    | Conducted Emissions                      | Pass      |
| §15.209 (a)     | Spurious Emission                        | Unchanged |
| §15.209 (f)     | Radiated Emission                        | Pass      |
| §15.247 (a)(2), | 6 dB Bandwidth                           | Unchanged |
| §15.247 (b)(3), | Maximum Peak Output Power                | Unchanged |
| § 15.247 (c)    | 100 kHz Bandwidth of Frequency Band Edge | Unchanged |
| §15.247 (d),    | Peak Power Spectral Density              | Unchanged |

#### §15.209 - SPURIOUS RADIATED EMISSION

#### **Measurement Uncertainty**

All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ±4.0 dB.

According to §15.205, except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                 | MHz                   | MHz             | GHz              |
|---------------------|-----------------------|-----------------|------------------|
| 0.090 - 0.110       | 16.42 – 16.423        | 399.9 – 410     | 4.5 – 5.15       |
| $^{1}0.495 - 0.505$ | 16.69475 – 16.69525   | 608 - 614       | 5.35 – 5.46      |
| 2.1735 – 2.1905     | 16.80425 - 16.80475   | 960 – 1240      | 7.25 – 7.75      |
| 4.125 – 4.128       | 25.5 – 25.67          | 1300 – 1427     | 8.025 - 8.5      |
| 4.17725 – 4.17775   | 37.5 – 38.25          | 1435 – 1626.5   | 9.0 – 9.2        |
| 4.20725 - 4.20775   | 73 – 74.6             | 1645.5 – 1646.5 | 9.3 – 9.5        |
| 6.215 - 6.218       | 74.8 – 75.2           | 1660 – 1710     | 10.6 – 12.7      |
| 6.26775 - 6.26825   | 108 – 121.94          | 1718.8 – 1722.2 | 13.25 – 13.4     |
| 6.31175 - 6.31225   | 123 – 138             | 2200 – 2300     | 14.47 – 14.5     |
| 8.291 – 8.294       | 149.9 – 150.05        | 2310 - 2390     | 15.35 – 16.2     |
| 8.362 – 8.366       | 156.52475 – 156.52525 | 2483.5 – 2500   | 17.7 – 21.4      |
| 8.37625 - 8.38675   | 156.7 – 156.9         | 2655 – 2900     | 22.01 – 23.12    |
| 8.41425 - 8.41475   | 162.0125 – 167.17     | 3260 – 3267     | 23.6 – 24.0      |
| 12.29 – 12.293      | 167.72 – 173.2        | 3332 – 3339     | 31.2 – 31.8      |
| 12.51975 – 12.57725 | 240 – 285             | 3345.8 – 3358   | 36.43 – 36.5     |
| 13.36 – 13.41       | 322 – 335.4           | 3600 – 4400     | ( <sup>2</sup> ) |

<sup>&</sup>lt;sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510MHz <sup>2</sup> Above 38.6

Except as provided in paragraph (d) and (e), the filed strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

According to §15.209, the device shall meet radiated emission general requirements.

Except for Class A device, the filed strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

| Frequency of Emission | Field Strength |          |  |  |  |  |
|-----------------------|----------------|----------|--|--|--|--|
| (MHz)                 | (uV/m)         | (dBµV/m) |  |  |  |  |
| 30 - 88               | 100            | 40       |  |  |  |  |
| 88 - 216              | 150            | 43.5     |  |  |  |  |
| 216 - 960             | 200            | 46       |  |  |  |  |
| Above 960             | 500            | 54       |  |  |  |  |

#### **EUT Setup**

The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the ANSI C63.4-2001. The specification used was the FCC 15.209 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

#### **Spectrum Analyzer Setup**

According to FCC Rules, 47 CFR, Section 15.33, the frequency was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

| Frequency Range | RBW    | <i>Video B/W</i> |
|-----------------|--------|------------------|
| Below 30MHz     | 10kHz  | 10kHz            |
| 30 - 1000MHz    | 100kHz | 100kHz           |
| Above 1000MHz   | 1MHz   | 1MHz             |

#### **Test Equipment List and Details**

| Manufacturer  | Description                       | Model       | Serial Number | Cal. Date  |
|---------------|-----------------------------------|-------------|---------------|------------|
| HP            | Amplifier, Microwave              | 8449B       | 3147A00400    | 3/14/2003  |
| HP            | Amplifier, Pre                    | 8447E       | 1937A01057    | 8/4/2003   |
| HP            | Amplifier, Pre                    | 8447E       | 1937A01046    | 8/2/2003   |
| HP            | Analyzer, Spectrum                | 8565EC      | 3946A00131    | 6/30/2003  |
| ETS           | Antenna, Biconical                | 3110B       | 9603-2315     | 10/11/2003 |
| A.R.A.        | Antenna, Horn, DRG                | DRG-118/A   | 1132          | 9/30/2003  |
| A. H. Systems | Antenna, Horn, DRG                | SAS-200/571 | 2455-261      | 8/1/2003   |
| ETS           | Antenna, logperiodic              | 3148        | 0004-1155     | 10/11/2003 |
| EMCO          | Antenna, Loop, H-Field<br>Gain/AF | 6512        | 00029604      | 2/12/2004  |

<sup>\*</sup> **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

For the radiated emissions test, the EUT, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within -4 dB $\mu$ V of specification limits), and are distinguished with a "Qp" in the data table.

#### **Corrected Amplitude & Margin Calculation**

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of  $-7dB\mu V$  means the emission is  $7dB\mu V$  below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - FCC 15.209 Limit

#### **Summary of Test Results**

According to the data in section 12.7, the EUT <u>complied with the FCC Title 47, Part 15, Subpart C, section 15.205</u>, 15.207 and 15.247, and had the worst margin of:

#### **Environmental Conditions**

| Temperature:       | 25° C     |
|--------------------|-----------|
| Relative Humidity: | 52%       |
| ATM Pressure:      | 1100 mbar |

- -13.03 dB at 7236 MHz in the Vertical polarization, Low Channel
- -13.26 dB at 7311 MHz in the Vertical polarization, Middle Channel
- -14.40 dB at 7386 MHz in the Vertical polarization, High Channel
- -10.96 dB at 123.468 MHz in the Vertical polarization, Unwanted Emission

## **Radiated Emission Test Result**

| Indicated            |            | TABLE     | Ant    | ANTENNA CORRECTION FACTOR |          | CORRECTED AMPLITUDE |       |       |             |        |        |
|----------------------|------------|-----------|--------|---------------------------|----------|---------------------|-------|-------|-------------|--------|--------|
| Frequency            | Ampl.      | 0 1       | Angle  | Height                    | Polar    | Anten<br>na         | Cable | Amp.  | Corr. Ampl. | Limit  | Margin |
| MHz                  | dBμV/<br>m | Comments  | Degree | Meter                     | H/V      | dBμV/<br>m          | DB    | DB    | dBμV/m      | dBμV/m | dB     |
| Low Channel, 1-25GHz |            |           |        |                           |          |                     |       |       |             |        |        |
| 2412                 | 107.17     | Fund/Peak | 220    | 1.7                       | v        | 28.1                | 3.35  | 35.6  | 103.02      |        |        |
| 2412                 | 106        | Fund/Peak | 220    | 1.2                       | h        | 28.1                | 3.35  | 35.6  | 101.85      |        |        |
| 2412                 | 103.7      | Fund/Ave  | 220    | 1.7                       | v        | 28.1                | 3.35  | 35.6  | 99.55       |        |        |
| 2412                 | 102.33     | Fund/Ave  | 220    | 1.2                       | h        | 28.1                | 3.35  | 35.6  | 98.18       |        |        |
| 7236                 | 34.4       | Ave       | 100    | 1.5                       | v        | 36.3                | 5.97  | 35.7  | 40.97       | 54     | -13.03 |
| 7236                 | 33.83      | Ave       | 0      | 1.4                       | h        | 36.3                | 5.97  | 35.7  | 40.4        | 54     | -13.60 |
| 4824                 | 33.5       | Ave       | 270    | 2                         | v        | 32.5                | 4.91  | 34.75 | 36.16       | 54     | -17.84 |
| 4824                 | 32.83      | Ave       | 330    | 1.5                       | h        | 32.5                | 4.91  | 34.75 | 35.49       | 54     | -18.51 |
| 7236                 | 47.17      | Peak      | 100    | 1.5                       | v        | 36.3                | 5.97  | 35.7  | 53.74       | 74     | -20.26 |
| 7236                 | 47.17      | Peak      | 0      | 1.4                       | h        | 36.3                | 5.97  | 35.7  | 53.74       | 74     | -20.26 |
| 4824                 | 46.33      | Peak      | 330    | 1.5                       | h        | 32.5                | 4.91  | 34.75 | 48.99       | 74     | -25.01 |
| 4824                 | 46         | Peak      | 270    | 2                         | v        | 32.5                | 4.91  | 34.75 | 48.66       | 74     | -25.34 |
|                      |            |           |        | Mid                       | dle Chan | nel, 1-250          | GHz   |       |             |        |        |
| 2437                 | 107.5      | Fund/Peak | 220    | 1                         | v        | 28.1                | 3.35  | 35.6  | 103.35      |        |        |
| 2437                 | 107.33     | Fund/Peak | 220    | 1.4                       | h        | 28.1                | 3.35  | 35.6  | 103.18      |        |        |
| 2437                 | 104.2      | Fund/Ave  | 220    | 1                         | v        | 28.1                | 3.35  | 35.6  | 100.05      |        |        |
| 2437                 | 103.67     | Fund/Ave  | 220    | 1.4                       | h        | 28.1                | 3.35  | 35.6  | 99.52       |        |        |
| 7311                 | 34.17      | Ave       | 250    | 1.4                       | v        | 36.3                | 5.97  | 35.7  | 40.74       | 54     | -13.26 |
| 7311                 | 33.83      | Ave       | 180    | 1.3                       | h        | 36.3                | 5.97  | 35.7  | 40.4        | 54     | -13.60 |
| 4874                 | 35         | Ave       | 150    | 1                         | v        | 32.5                | 4.91  | 34.75 | 37.66       | 54     | -16.34 |
| 4874                 | 32.67      | Ave       | 180    | 1                         | h        | 32.5                | 4.91  | 34.75 | 35.33       | 54     | -18.67 |
| 7311                 | 47.67      | Peak      | 250    | 1.4                       | v        | 36.3                | 5.97  | 35.7  | 54.24       | 74     | -19.76 |
| 7311                 | 47.33      | Peak      | 180    | 1.3                       | h        | 36.3                | 5.97  | 35.7  | 53.9        | 74     | -20.10 |
| 4874                 | 47         | Peak      | 150    | 1                         | v        | 32.5                | 4.91  | 34.75 | 49.66       | 74     | -24.34 |
| 4874                 | 45.17      | Peak      | 180    | 1                         | h        | 32.5                | 4.91  | 34.75 | 49.66       | 74     | -24.34 |

|      | High Channel, 1-25GHz |           |     |     |   |      |      |       |        |    |        |
|------|-----------------------|-----------|-----|-----|---|------|------|-------|--------|----|--------|
| 2462 | 108                   | Fund/Peak | 220 | 1.5 | V | 28.1 | 3.35 | 35.6  | 103.85 |    |        |
| 2462 | 106.5                 | Fund/Peak | 150 | 1.4 | h | 28.1 | 3.35 | 35.6  | 102.35 |    |        |
| 2462 | 104.5                 | Fund/Ave  | 220 | 1.5 | V | 28.1 | 3.35 | 35.6  | 100.35 |    |        |
| 2462 | 102.83                | Fund/Ave  | 150 | 1.4 | h | 28.1 | 3.35 | 35.6  | 98.68  |    |        |
| 7386 | 33.03                 | Ave       | 150 | 1.6 | V | 36.3 | 5.97 | 35.7  | 39.6   | 54 | -14.40 |
| 7386 | 32.8                  | Ave       | 150 | 1.5 | h | 36.3 | 5.97 | 35.7  | 39.37  | 54 | -14.63 |
| 4924 | 34.87                 | Ave       | 250 | 1.8 | V | 32.5 | 4.91 | 34.75 | 37.53  | 54 | -16.47 |
| 4924 | 33.03                 | Ave       | 330 | 1.8 | h | 32.5 | 4.91 | 34.75 | 35.69  | 54 | -18.31 |
| 7386 | 47.37                 | Peak      | 150 | 1.5 | h | 36.3 | 5.97 | 35.7  | 53.94  | 74 | -20.06 |
| 7386 | 46.37                 | Peak      | 150 | 1.6 | V | 36.3 | 5.97 | 35.7  | 52.94  | 74 | -21.06 |
| 4924 | 46.7                  | Peak      | 250 | 1.8 | V | 32.5 | 4.91 | 34.75 | 49.36  | 74 | -24.64 |
| 4924 | 45.7                  | Peak      | 330 | 1.8 | h | 32.5 | 4.91 | 34.75 | 49.36  | 74 | -24.64 |

| Indicated |        | Table     | An     | tenna | Correction Factor |               |        | FCC 15 Subpart B |        |        |
|-----------|--------|-----------|--------|-------|-------------------|---------------|--------|------------------|--------|--------|
| Frequency | Ampl.  | Direction | Height | Polar | Antenna           | Cable<br>Loss | Amp.   | Corr. Ampl.      | Limit  | Margin |
| MHz       | dBμV/m | Degree    | Meter  | H/V   | dBμV/m            | dBμV/m        | dB     | dBμV/m           | dBμV/m | dB     |
| 123.468   | 47.83  | 180       | 1      | V     | 11.7              | 1.57          | 28.556 | 32.54444         | 43.5   | -10.96 |
| 170.73    | 43.67  | 270       | 1.2    | h     | 13                | 1.86          | 28.333 | 30.19664         | 43.5   | -13.30 |
| 123.5     | 45.17  | 30        | 1.8    | h     | 11.7              | 1.57          | 28.556 | 29.88444         | 43.5   | -13.62 |
| 230.368   | 44.17  | 45        | 1.6    | v     | 12.6              | 2.17          | 28.08  | 30.86            | 46     | -15.14 |
| 230.323   | 41.5   | 100       | 2      | v     | 12.6              | 2.17          | 28.08  | 28.19            | 46     | -17.81 |
| 308.257   | 36.83  | 270       | 1.6    | V     | 14.4              | 2.3           | 27.8   | 25.73            | 46     | -20.27 |
| 226.453   | 37.67  | 150       | 1.8    | V     | 11.8              | 2.17          | 28.12  | 23.52            | 46     | -22.48 |

## §15.207(a) - CONDUCTED EMISSIONS

#### **Measurement Uncertainty**

All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is +2.4 dB.

#### **EUT Setup**

The measurement was performed in the shield room, using the same setup per ANSI C63.4-2001 measurement procedure. The specification used was FCC 15 Subpart B limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

#### **Spectrum Analyzer Setup**

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30Mhz.

#### **Test Equipment List and Details**

| Manufacturer | Description           | Model   | Serial Number | Cal. Date  |  |
|--------------|-----------------------|---------|---------------|------------|--|
| Rohde &      | AntiCaial LICN        | ECH2 75 | 071004/020    | 2002 02 29 |  |
| Schwarz      | Artificial LISN       | ESH2-Z5 | 871884/039    | 2003-03-28 |  |
| Rohde &      | EMI Total Description | EGGG20  | 100176        | 2002 05 06 |  |
| Schwarz      | EMI Test Receiver     | ESCS30  | 100176        | 2003-05-06 |  |

<sup>\*</sup> **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Procedure**

During the conducted emission test, the power cord of the host system was connected to the auxiliary outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (within -4 dB $\mu$ V of specification limits). Quasi-peak readings are distinguished with a "**Qp**".

#### **Summary of Test Results**

According to the recorded data in following table, the EUT <u>complies with the FCC</u> Conducted margin for a Class B device, with the *worst* margin reading of:

-24.0dB at 0.15 in the Neutral mode

#### **Environmental Conditions**

| Temperature:       | 25° C     |
|--------------------|-----------|
| Relative Humidity: | 52%       |
| ATM Pressure:      | 1100 mbar |

#### **Conducted Emissions Test Data**

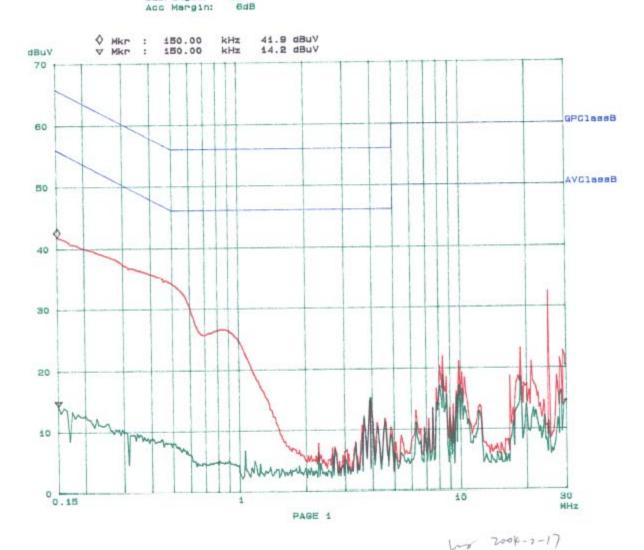
|           | LINE CON  | FCC PART 15 CLASS B |              |       |        |
|-----------|-----------|---------------------|--------------|-------|--------|
| Frequency | Amplitude | Detector            | Phase        | Limit | Margin |
| MHz       | dΒμV      | Qp/Ave/Peak         | Line/Neutral | dΒμV  | dB     |
| 0.15      | 42.0      | QP                  | Neutral      | 66    | -24.0  |
| 0.15      | 41.7      | QP                  | Line         | 66    | -24.3  |
| 25.20     | 32.5      | QP                  | Neutral      | 60    | -27.5  |
| 9.90      | 20.1      | AVG                 | Line         | 50    | -29.9  |
| 25.20     | 29.4      | QP                  | Line         | 60    | -30.6  |
| 8.40      | 18.8      | AVG                 | Neutral      | 50    | -31.2  |
| 28.70     | 16.2      | AVG                 | Neutral      | 50    | -33.8  |
| 9.90      | 23.9      | QP                  | Line         | 60    | -36.1  |
| 8.40      | 22.0      | QP                  | Neutral      | 60    | -38.0  |
| 25.20     | 9.4       | AVG                 | Line         | 50    | -40.6  |
| 0.15      | 14.2      | AVG                 | Neutral      | 56    | -41.8  |
| 0.15      | 12.3      | AVG                 | Line         | 56    | -43.7  |

#### **Plot of Conducted Emissions Test Data**

Plot(s) of Conducted Emissions Test Data is presented hereinafter as reference.

#### Bay Area Compliance Laboratory Corp 17. Feb 04 17:30 DANA WIRELESS ALPHA SMART EUT: Manuf: Op Cond: Normal LINE Operator: Comment: US Scan Settings (3 Ranges) | ---- Frequencies -Start Stop Step OFF 9k 1M 5k 150k QP+AV ime i5dBLN DM 10k 9k 1 M OFF ima i5dBLN QP+AV 100k 9k MOE 5M Final Measurement: x QP / + AV Meas Time: 25 Subranges: 6dB Acc Margin: 41.6 dBuV 12.2 dBuV kHz kHz dBuV 70 GPG1assB 60 AVClassB 40 30 20 10 0.15 10 PAGE 1

Wor 2004-2-17


# Bay Area Compliance Laboratory Corp 17. Feb 04 18:27 Class B

EUT: DANA WIRELESS
Manuf: ALPHA SMART
Op Cond: Normal
Operator: LING

Comment: N

| Scan Settin | ngs (3 Ranges | 1)   |       | Contract Section 1974 |        |        | no established |
|-------------|---------------|------|-------|-----------------------|--------|--------|----------------|
|             | Frequencies   |      |       | Receiv                |        |        |                |
| Start       | Stop          | Step | IF BW | Detector              | M-Time | Atten  | Preamp         |
| 150k        | 1M            | 5k   | 9k    | QP+AV                 | 20ma   | 15dBLN | OFF            |
|             |               | 10k  | 9k    | QP+AV                 | 1mm    | 15dBLN | OFF            |
| 1M          | 5M            |      |       |                       |        | 15dBLN | OFF            |
| 5H          | HOE           | 100k | 9k    | GP+AV                 | 1mm    | TOUBLE | OL.            |

Final Measurement: x GP / + AV Meas Time: i s Subranges: 25

